EPARTMENT
EPARTMENT

EPARTMENT

ER SEENGE B
ER SCIENCE D

]
Ut
Ut

T

1

WATERL
F WATERL

g

I
II¥

S

RSITY OF WATERLOO C

B
R

The Node Visit Cost
of

Brother Trees

Rolf Klein
Derick Wood

Data Structuring Group

CS-86-40

September, 1986

The Node Visit Cost of Brother Trees *

Rolf Klein t Derick Wood ?

September 19, 1986

Abstract

The performance of a brother search tree depends on its shape; it
can be measured by three basic cost measures: node visit cost, com-
parison cost, and space cost. The structure of brother trees that are
optimal with respect to each of these cost measures is already known,
as well as how to construct them in linear time. In this paper we in-
vestigate sharp bounds for the range that the node visit cost may take
for a given size of tree. To this end we determine the structure of those
brother trees which, for a given size N, have maximal (or pessimal)
node visit cost. We derive a tight upper bound for the node visit cost
of brother search trees which together with the lower bound obtained
earlier yields the desired range estimation. Furthermore, we show that
at least 11.6% of the internal nodes of a brother tree of maximal height
are unary.

Key-words: brother trees, node visit cost, worst case cost

1 Introduction

For the implementation of dictionaries several balanced tree schemes are at
the implementors disposal which allow arbitrary sequences of the dictionary
operations insert, delete and member to be implemented in time O(log N),
N being the number of keys currently present in the structure. Some of
these schemes are: balancing the weight of subtrees as in the BB|a] trees
of [3] and balancing the height of subtrees as in the AVL trees of [1] and
the (a, b)-trees of [2]. The latter class also includes the brother (leaf-search)
trees and brother search trees investigated in [5,6,7,8].

*This work was partially supported by Natural Sciences and Engineering Research
Council of Canada Grant A-5692.

Hnstitut fiir Angewandte Informatik und Formale Beschreibungsverfahren, Universitit
Karlsruhe, Postfach 6980, D-7000 Karlsruhe, West Germany

¥Data Structuring Group, Department of Computer Science, University of Waterloo,
Ontario N2L 3G1, Canada

2 Klein and Wood

In order to select an appropriate balanced tree scheme for a specific
application the implementor should know about the time and space require-
ments of the different schemes in some detail. At least he should have at
hand good estimates for the constants that are hidden in the corresponding
“big O”s. Very often a careful investigation of a given scheme is necessary
to obtain precise estimates. This frequently leads to structural results that
are interesting in their own right, because they help us to understand the
intrinsic behaviour of our data structures and enrich the theory of trees.

Concerning brother trees, their storage utilization has been studied in
[8] in both the worst case and the average case, and shown to be better than
the memory utilization of (2,3)-trees. If, at the initialization phase of a
dictionary, a set of N keys to be stored is given in lexicographical order and
if member queries occur more frequently than insert or delete operations
it is natural to ask for a brother search tree that can hold N keys and is
optimal in some sense. Once such a tree is given the N keys can be placed
in linear time by traversing the tree. This problem has been solved in (4]
with respect to three different cost measures, the space cost, the comparison
cost, and the node visit cost. For each of these cost measures the structure
of the optimal brother tree for N keys has been characterized. Furthermore,
algorithms have been presented that allow us to construct optimal brother
trees in linear time.

In the present paper we continue the work begun in [4]. We start to
investigate the general case when brother search trees are built by insert-
ing the initial set of keys in arbitrary order (resp. dynamically altered by
sequences of insert and delete operations). Here we are interested in the
worst case behavior of our cost measures and in the structure of the bro-
ther search trees which attain maximal cost. In this paper we address the
node visit cost. For each integer N we first characterize the structure of all
brother search trees for N keys that have maximal node visit cost. This is
done by determining their detailed profile. Then we derive a formula for the
maximal node visit cost depending on N and give a tight upper bound for
this function. Together with the lower bound obtained in [4] this gives the
precise range the node visit cost of a brother tree can take. As a further
consequence we show that at least 11.6% of the internal nodes of a brother
tree of maximal height are unary.

2 Brother trees, detailed profiles and node visit
cost

In this paragraph we recall the basic definitions that will be needed in the
sequel. They can also be found in [4].
A brother tree is a rooted, oriented tree each of whose internal nodes

Node Visit Cost of Brother Trees 3

Figure 1: A brother search tree.

has either one or two sons. Each unary node must have a binary brother.
All external nodes are at the same depht. As a consequence of the brother
condition, the root of a brother tree must be binary.

There are two different methods of storing keys in a brother tree. First,
we can store keys in ascending order in the external nodes and use the
internal nodes for routing or separating values only. This leads to the class
of brother leaf search trees. Second, we can associate one key to each internal
binary node while the internal unary nodes and the external nodes remain
empty. Here the keys are stored in inorder. The latter results in the class of
brother search trees (also called 1-2 brother trees in the literature). The two
different methods correspond to the usual notions of external, resp., internal
search trees. In this paper we are concerned only with brother search trees,
so we often refer to them as, simply, brother trees.

Figure 1 shows an example of a brother search tree for the keys 3, 7, 8,
11, 25, 27, 30. In general, we call the number of internal binary nodes of a
brother tree its size. Note that the number of external nodes of a brother
tree is always by 1 greater than its size.

We count the level of nodes starting with level O at the root. So the
external nodes of the tree shown in Figure 1 are on level 4. Therefore, the
height of this tree equals 4.

If T is a binary tree with external nodes on level h only then the detailed
profile A(T') of T is the sequence

<UJO,,30 >,<O)1,,31 >)-"a<wh’/3h >

4 Klein and Wood

of ordered pairs < w;, B; > where

w; = number of unary nodes on level ¢

Bi = number of binary nodes on level ¢

for0<i< h-1and

wp, = 0
h-1
Br = number of external nodes =1 + Zﬂ;
1=0

Thus, all the external nodes are binary by definition. Furthermore, we define
Vm = Wm + Bm to be the number of nodes at level m. The tree T in Figure
1 has detailed profile A(T) = <0,1>,<1,1>,<1,2>,<2,3>,<0,8 >,
for example. The notion of detailed profile turned out to be an appropriate
tool for the analysis of brother trees in [4] already.

Let T be a brother tree of height h and with detailed profile A(T) =
< wo, Po >, < wy,P1 >,...,< wh,Br >. Then the node visit cost of T is
defined by

h—-1
NVCOST(T) = Y (i + 1)4;
=0

We have NVCOST(T) = 21 for the tree T in Figure 1. If N = 8;, — 1 is the
size of T then 1

¥
is just the average number of node visits per access for a brother search tree,
because 7 + 1 nodes must be visited in order to access a node on level ¢, and
keys are associated only to internal binary nodes. In a PASCAL implemen-
tation of a brother search tree, NVCOST is a measure for the number of
pointers that must be traced to access the keys. The other constituent part
of the time complexity is the number of key comparisons which are neces-
sary to access the keys, that is, the comparison cost NVCOST(T') (see [4] for
details). Here we are investigating the worst case behavior of NVCOST(T).

The significance of detailed profiles is immediate.

NVCOST(T)

(2.1) Proposition: The node visit cost NVCOST(T) of a brother tree
depends only on its detailed profile A(T).

In order to investigate the node visit cost we will consider detailed profiles
of brother trees rather than the trees themselves. For this purpose we must
determine which sequences of ordered pairs of integers are detailed profiles
of brother trees, and which are not.

Node Visit Cost of Brother Trees 5

(2.2) Proposition: Let h > 1 and < wg,Bo >,...,< wh,Br > = A be a
sequence of ordered pairs of integers. Then A is detailed profile of a brother
tree if and only if the following conditions are satisfied

1. w;, ;i 20,0<1<h
(IJO=0, ﬂ0=1

2.
3 wi+28;=vi41,0<¢<h~-1
4. wp=0

5.

Bi 2 wiy1, 0<i<h

Proof: See [4].]

Note that the w; can be computed recursively using (4) and (3), as soon
as the fB; are known. Nevertheless, it is useful to include them into the
detailed profiles.

There is one more result from [4] that will be needed in the sequel. It
states that NVCOST(T) is strictly increasing with the height A(T).

(2.3) Proposition: Let T and T' be brother trees which have the same
number of external nodes. Assume that h(T) < h(T') holds for the heights
of T and T', respectively. Then NVCOST(T) < NVCOST(T').

Proof: See [4], Lemma 3.1. m]

Note that the converse of (2.3) fails to hold. Figure 2 shows two brother
trees which are both of height 3 but have NVCOST 12 and 11. The reason
becomes clear by the formula

h
NVCOST(T)=(h—1)(N+1) +1—) w;
1=0
which is obtained from (2.8) in [4] by applying the definition of the v;.

(2.4) Corollary: A brother tree of size N is NVCOST pessimal if and only
il

1. its height is maximal.

2. it has the minimal number of unary nodes under all competitors that
satisfy 1.

6 Klein and Wood

fadh

Figure 2: Two trees of the same height, but different NVCOST.

Intuitively, to maximize NVCOST for a given maximal height A means
to have the unary nodes as close to the root as possible in order to give
them as many as possible binary descendants. This minimizes the number
of unary nodes.

3 Fibonacci trees

Our first goal is, for a given size N, to determine the detailed profile(s)
of those brother trees which have maximal NVCOST. As a consequence
of (2.3), these trees must be of maximal height. We start by stating this
relationship the other way round.

(3.1) Lemma: For given height h > 1, the brother trees with minimal size
have Fibonacci profile

<0,1>,< f0>f1 >, < fl)fZ >a°-"<f;,..2>fﬁ_1 >)<O,fi,+1 >

where (fi;)i>o denotes the sequence of Fibonacci numbers fo = f; = 1,
fire=finn+ fi,§20.

Proof: By induction on h. Let T be a brother tree of height h and minimal
size. For h = 1,2 the assertion is immediate. Assume h> 2. ThenT is,
up to rotation, of one of the two shapes shown in Figure 3. Both T; and T,
are brother trees and have minimal sizes with respect to their heights. By
the induction hypothesis, their sizes are f; and fj in the first and f;_, and
f3 in the second case. Since 2f; > f;_, + f; the second case applies. Now
the assertion follows by “adding” the Fibonacci profiles of T} and T, giving

Node Visit Cost of Brother Trees 7

or T=

p~ 224
|
(S
b~ 14
|
[]

T{ T,— Tl Tr

/

Figure 3: The trees used in the proof of Lemma 3.1.

A(T). 0

In the sequel let Fib(k) denote the set of all brother trees with detailed
profile < 0,1 >,< fo,f1 >,< f1,f2 >,...,< fi_0 5y >,< 0, fipr >
Each tree in Fib(it) has height & and 441 external nodes.

As a consequence of (3.1) we obtain

(3.2) Lemma: Let T be a brother tree of height h and size v. Then the
following assertions hold for each integer h.

1. fv<f;,,, thenh< h.
2. Ifv=f;,,, then h < h.

3. Ifv=f;,, and h=h, then T is Fib(h)

Proof: By contradiction, using (3.1). O

We conclude
(3.3) Corollary: Let f{‘ be of size f;_ ,. Then NVCOST(T) is maximal if
and only if T is in Fib(h).

Proof: By (2) of (3.2), h(T) < h, but the maximality of T implies h(T) = h
by (2.3). Now the “only if” part follows from (3.2), 3, and the “if” part is

8 Klein and Wood

fh+1
m+1

Figure 4: Fibonacci replacement.

a trivial consequence of (2.1). O

This solves our problem in the case that the size is a Fibonacci number;
here the brother tree with maximal NVCOST is, up to rotations, a Fibonacci
tree. But the Fibonacci numbers — and therefore the gaps between them,
too — are growing exponentially. Thus, much remains to be done!

Fortunately, we can apply the same reasoning as above to the upper part
of brother trees. The idea is as follows: Assume that the first m levels of
a brother tree T' could be replaced by a Fibonacci tree Fib(;;) (regarding
its external nodes as being internal), without violating the brother tree
properties of T, see Figure 4. If vy, < fj,, then, by (3.2), the resulting tree
is higher than T unless the replaced top of T is itself in Fib(h). In all other
cases NVCOST(T) is increased, due to (2.3). This leads to a contradiction
if we assume that T has maximal node visit cost.

First we describe the conditions under which the brother tree properties
are not violated by this replacement.

(3.4) Lemma: Let T be a brother tree with detailed profile A(T) = <
wo, fo >, < wl)ﬁl >y 0< wm-—l;ﬂm—l >,< wm)ﬂ‘n} >,< wm+1’ﬂm+1 S STERN
< wp, Br > with1 < m < h. Then for each integer h the following assertions
are equivalent.

A. fi19 S Vmt1 £ 2f;,, and vmi1 = [y 2 Wmit

Node Visit Cost of Brother Trees 9

B. The first m levels of T can be replaced by a tree in Ffb(il) , that is, there
are integers &;, and B, such that

A = <0,1>,<fo,i><f,fa>...,< f;,-pff._l >
< &"ﬂ)ﬂi‘ >, < wm+l)ﬂm+1 >,..0, < wh:ﬂh >
is the detailed profile of a brother tree T.
Then &j, and B;‘ are uniquely determined by the equations
@y = 2[5~ Vmt1
.Bi, = Vm+1~— f7z+l

Proof: By (2.2) A is the detailed profile of a brother tree if and only if the

following conditions are satisfied.

(2) @20 (b) B0
(€) fiat2fi =0+ B (d) vmir =@ + 255
() fr-12@ (f) B; 2 wms1

Clearly (f) implies (b). The system of linear equations (c),(d) is equivalent
to the representations of @&; and ﬂh in the theorem. Now the following
equivalences hold.

(a') € Vm+1 < 2f‘i,+1

(e) & fh 1= 2f;,+1 Vm+1
€ fir2 SVmin

L=4

(f)

Um+1 — fiip1 2 Wm+1

(3.5) Remarks:

1. The number h is uniquely determined by the equation f} , < Ym41 <
2f441 for we have 2f;; < fi4s-

2. The condition Vm+1— f;,; = Wm+1 18 a consequence of the first inequality

in A, if w41 < 1. For we have vy — th > VUm+l — fh_*_2 > 0.

(3.6) Corollary: Let T be a brother tree of height h that has maximal
NVCOST with respect to its size. Assume that f;‘“ < Um41 £ 2fi+1:
wm+1 < 1, and vy < f,, hold for integers m and h satisfying 0 < m < h
and h > 0. Then

10 Klein and Wood

1. iL=m,
2. <wi)ﬂi >=< fi—l;fi >, ISiSm—I, and

3. wm =2f;,1 — Vm+1 and Bm = Umi1 — fi -

Proof: Lemma (3.4) applies because we have wp4+1 < 1 (see (3.5), 2). By
assumption, ¥y < f;.; < J;. Since T has maximal NVCOST (1) and (2)
must hold. Now (3) is a consequence of (3.4). |

(3.7) Corollary: The assertion of (3.6) remains valid if we drop the as-
sumption vy < f; +1 and assume w,, < 1 instead.

Proof: w,, <1 implies v,, = [ﬁ"z"’—l] < figr- .

4 Investigating the worst case structures

Throughout this section T is a brother tree of height A and size N that has
detailed profile

A(T)=<wo,ﬂo>,...,<wh,ﬂh>, Br=N+1

In the previous section we have shown that, if NVCOST(T) is maximal, the
upper levels of T have Fibonacci profile if certain conditions are fulfilled.
Now we prove a statement that draws a similar conclusion but presupposes
different conditions. Both results together will lead to the desired structure
theorem in Section 5.

First, we describe a technique for increasing the NVCOST of a brother
tree by transformations of the type shown in Figure 5. Here the binary
node 1 is moved down from level m + 1 to level m + 2, thereby increasing
NVCOST(T) by 1. This transformation is the inverse of the technique that
has been used in Lemma 3.2, [4], in order to minimize NVCOST(T).

(4.1) Lemma: If wpyz > 2 and Wyl < Pm, then NVCOST(T) can be
increased.

Proof: We have to show that
<wo,P0>,- 0 <Wmy B >, <Wmir + 1, Pmy1 — 1 >,

<Wmt2 = 2,Bmy2+1>,< Wm+3, Bm+3 >,...,< Why Br >

Node Visit Cost of Brother Trees 11

Figure 5: An increasing NVCOST transformation.

is the detailed profile of a brother tree. Applying (2.2) we see that all condi-
tions are fulfilled because A(T) is a valid profile, except that w42 —2 >0
and By, > wm+1 + 1. But the latter hold by assumption. |

As an important consequence we get

(4.2) Lemma: Assume that NVCOST(T) is maximal. Let u > 0 be maxi-
mal such that wyys > 2 (if such a u exists). Then

< wi, B >=< fi—1, fi >, t=1,...,u+1

Proof: Since NVCOST(T) is maximal, (4.1) yields

(*) Wm+2 2 2= Wms1 = Bm

because wm4+1 < Pm holds by the brother tree Property (5) in (2.2). But
in each brother tree we have B,, > 2 as long as m > 2. Thus repeated
application of (*) gives

Wyl = Puy, Wu = Pu-1,...,ws = P2, wy = f1

At this point the implication chain ends because 8; = 1. For,if ws = 83 > 2,
then the next step would give w;y = fp = 1; but vy = 1+ w; > 3 is
impossible. Now the assertion follows by induction on 1:

<wy,pr>=< 1,1>=< fo, f1 >

because wy = v1 — 1 = 2 -1 = 1, < wi41,Bi1 >=< fi,wi + fi >=<
fi, fi+1 > because we have f;41 = w; + 20; — wiy1 for all # and w;;1 = B; for
t=1,...,u. O

By the maximality of u, the tree in (4.2) has at most one unary node on
each of the levels u+3,..., h. This determines the structure of these levels.

12 Klein and Wood

(4.3) Lemma: Assumew; <1 forj=gq,...,h. Then

<wj,ﬂ_.,-> = < Vj4i mod2,uj+1 div 2 >, g<jij<h-1
N+1 .
vi = [2;,—..,], g<Jj<h

Proof: We have v;,1 = 26; + w; with w; € {0,1}. Clearly, v, = [N—Z"o'—l] .
Now
vi-1 = wj-1+ B
= vjmod2+v; div2

[

= | by the induction hypothesis,

_ [N+1
TS
O

Let us summarize: If NVCOST(T) is maximal and if there is a u such
that wy+2 > 2, then for the maximal u with this property, T looks like the
tree shown in Figure 6. Here the levels 0 to u+2 have Fibonacci profile, and
the lower part (levels u + 3,...,h) is as complete a binary tree as possible
due to (4.3). By an application of (3.4) with h = u+ 2 we can determine
< Wy+2, But+2 >, too, which gives us the complete detailed profile.

(4.4) Corollary: Assume that NVCOST(T) is maximal and that there is
an u > 0 such that wy4+2 > 2. Let u be maximal. Then A(T) is determined
by

<wy,fo> = <0,1>
<w,Bi> = < fia, fi >, 1<i<u+l
<wyt2,Putz > = < 2fuys - [Zﬁ:‘-’“la)]) [2,{(.;13)] — futs >
<wj,Bi> = <vjp1mod2,vi div2>, u+3<j<h-1
<wh,Pr> = <O,N+1>
Furthermore,

[N+1
v; =

Node Visit Cost of Brother Trees 13

u+1 Fib(u + 2)
u+ 2
u—+3

(‘binary”
h

Figure 6: The general structure of maximal NVCOST trees.

N+1
Jutra < [“2,,—_(;;5] < 2fuss

5 The structure of brother trees with maximal
NVCOST for given size

In view of the last lines in the previous section we define
(5.1) Definition: For each integer N > 1 let o(N) denote the smallest
integer k > 0 such that there exists an integer A > 0 which satisfies

N+1
fi+25[oF]Sthﬂ

Note that h is uniquely determined by k. We shall discuss the function
later. For the time being we need

(5.2) Proposition: If T is a brother tree of height h and size N then
a(N)<h-1.

Proof: Since N +1 < 2" we have [%—i}:_l_] = 1. Thus, there is a number

k < h — 1 satisfying
N+1

2k

f2=2=[]=2f1

14 Klein and Wood

Now we can prove the first part of our structure theorem.

(5.3.A) Theorem: Given an integer N > 1, the NVCOST pessimal brother
trees of size N are uniquely determined by the following detailed profile:

<wg,Po> = <0,1>
<wi,Bi > = < fi-1,fi >, 15'Sil—1

N+1 N+1
<wp, B> = <2fiz+1_[oF]’[o]‘fi+1>
<wj,fi> = <vjp1 mod2, viyy div 2>, il-}-lSjSh—l
<wh,Brh> = <O,N+1>

for k= a(N), h as defined in (5.1), and h = h+ k + 1.

Proof: Because of (2.1) it suffices to show: If T is a brother tree of size N
and if NVCOST(T') is maximal, then its detailed profile is as stated in the
theorem. Let

A(T) =< wg, Po >"“’<“’i’ﬂi>

Case 1: w; <1, 0<j<h. By (4.3),

<w;,Bi> = <vjprmod2, viy div2>, O_jSi'z—l
N+1 v
2h-i

From (5.2) we get k = a(N) < h — 1. Thus, for m := h — k — 1 we have

N+1
fit2 SVm1 = { oF] < 2/

by definition of &, and wp, < 1, wm+1 < 1 by assumption. Now the appli-
cation of (3.7) yields

"

h—-k-1 = m=h,
<wi,Bi> = <fii,fi> 1<i<h-1
N+1 N+1
<wp, B> = <2fh+1_[o]’[oF]_fh+1>

Therefore, h = h, and the assertion follows. (Note that f; , < 1

as a
consequence of the above equations. This is only possible if h—k-1=h< 3;
see Figure 7 below.)

Node Visit Cost of Brother Trees 15

Case 2: There is a u > 0 such that wyy;s > 2. Let u be maximal. Now
the assertion of the theorem follows from (4.4), but with u + 2 instead of h
and h — (u + 3) instead of k. We have k < h — (u + 3) by the minimality
of k = a(N). If k = h — (u+ 3), then the last inequality of (4.4) implies
h = u+ 2, and the proof is complete. Now assume k < h — (u+ 3). Let

[N+1

2] Pt

for an integer m > u+ 3. Then wy, < 1, Wy < 1, (3.7) yields h =m, and

<w,Bi> = <fs‘—1,fi>,15f$il—1
N+1 N+1
<wp, B> = <2f;,+1-[oF]’[ok]‘fi+1>
By (4.4), the pairs < wh+1,ﬂh+1 y-++» < wj, B5 > also have the values

our theorem claims because h > u + 3. Note that A > u + 4 would imply
[5,—5 £ 1, a contradiction. Thus h=u+3 holds, and from the equations

N+41
oF = Vmi1 = Vi

N+1] _
ghh | VB

we infer h—h = k+1, which completes the proof. Figure 8 gives an example
for the last case. O

Roughly speaking, this theorem has the following interpretation: To
obtain a brother tree of size N that has maximal NVCOST proceed bottom-
up as follows: If it is possible to obtain a Fibonacci number of nodes at the
next level without violating the brother tree properties, then do so, and put
the corresponding Fibonacci tree on top. Otherwise, halve the number of
nodes by introducing at most one unary node at the next level and repeat
this process.

Figures 7-9 give some examples of brother trees which have maximal
NVCOST; they correspond to different cases in the proof of (5.3.A). The
bottommost level at which the number of nodes is Fibonacci is marked by
a dotted line.

One question still remains open: How many “non-Fibonacci” levels can
a NVCOST pessimal brother tree have? In the previous examples we always
have k < 2. This is not by mere accident!

16

Klein and Wood

Here N +1 = 33,h = 6,k = 2,7& = 3 because of 8 = fz42 <
9= [%%] < 10 = 2f341. This example shows that we may have
h—k=4in Case 1.

Figure 7.

Node Visit Cost of Brother Trees

Here we have N+1=15,h=5,k =0,k = 4 due to 13 = fag2 <
15 < 2f441 = 16. With the notations of (4.4), u + 2 = 3 holds.
Thus h = u + 3 can occur in Case 2.

Figure 8.

(3455

The NVCOST pessimal brother tree of size 12 must be a Fib(5)
due to (3.3)! We have h =5, k =0, and h = 4. Here level h +1
also belongs to the “Fibonacci top”.

Figure 9.

17

18 Klein and Wood

(5.3.B) Theorem: For all integers N > 1, a(N) < 2 holds. Thus, a
brother tree of size N that has maximal NVCOST is a Fibonacci tree up
to at most 3 levels from its bottommost level. More precisely, if N + 1 €

[fp+2> fp+3], then

a(N) = 0ifN+1€e [fp+2,2fp+1],
a(N) = 1if N+1€ (2fp41,4f);
a(N) = 2if N +1€ (4fp, foss)-

Moreover, we have h(T) = p+1 and h = p — a(N).

Proof: First note that each integer n > 2 lies in a “Fibonacci interval”
[fp+2, fp+s) for a unique integer p > 0. We have

[fo+2s fo+s) = [fo+2, 2fp+1] U (2fp+1, fp+3)

If n lies in the upper part (2fp+1, fp+3) then the Fibonacci interval of [%.'
is [fp+1, fp+2) because n < fy43 — 1 implies

n + -1 2 -2
” < fo+1 £p+2 < fp+22 = fora—1

Assume a(N) > 1. By definition of a(N), each number in the sequence

] [

P 221 O LS

is included in the upper half of its Fibonacci interval:
2fpr1 < N+1< fp4s

[N +1
2fp < 2 1 < fp+2

[N+1
2fpt2-a(N) < E;(')V)_—l.l < fpt+a-a(N)

The left side of the last inequality implies
2°Mfp i an) < N +1< fpis

By a well known identity for Fibonacci numbers,

fors = fprr—a)fa(W)+1 T for1-a() fa(N)
fp+2—a(N)fa(N)+2-

IA

Node Visit Cost of Brother Trees 19

Together with the above equation this yields

22(N) < fa(N)+2
which implies a(N) < 2. The characterization of a is immediate. In (5.1)
we have h = p — a(N). With k = a(N) in (5.3.A) we obtain h(T) = h =
h+k+1=p+1. O

Theorems (5.3.A) and (5.3.B) describe completely the structure of bro-
ther trees that have maximal NVCOST. By (3.2) we already know that a
brother tree of size N can have height at most p+ 1 if N +1 € [fp+2, fp+3)-
Theorem (5.3.B.), in particular, implies that the maximal height equals p+1
for all N + 1 in this interval. Thus, the maximal height of a brother tree is
a non-decreasing function of its size.

6 Exact formulae for the minimal and maximal
NVCOST of brother trees

In this section we first use the structure theorems of Section 5 to derive
precise formulae for the worst case NVCOST. Let NVCOST(N) denote the
maximal node visit cost of all brother trees of size N. Remember that

h-1
NVCOST(T) =) (i +1)B;
=0
if T is of height h. From (5.3.A) and (5.3.B) we immediately obtain

4

-1
TS+ (+ DV 1 fpn)
fN+1e [fp+2:2fp+1]-

Ter0rrp([LH] -) + o+ 0 | E3,

if N+1€(2fpr1,4f)-

6+ 05+ -0 ([A] -)+
N+1

p |t + o+ 1) | 3L,

\ if N+ 1€ (4fp, fp+3)-

NVCOST(N) = |

(6.1) Lemma: I,’g(i + 1)fi =2+ pfp+1 — fp+2

20 Klein and Wood

Proof: By induction on p. O

(6.2) Theorem: Assume N + 1 € [fp42, fp+3). Then

([(p+1)(N+1)— fo4s+2,
i N +1€ [fpra, 2fpe1)-

p(N+1)+ [XL - foin+2,

NVCOST(N) ={ TN +1€2fp+1,4fsl.
N+1

(p—1)(N+1)+ [—’%—]— +2| L] - fua + 2,

| N+ 1e (4f, foua).

Proof: Application of (6.1) and the identities

lN+1j+I'N+1'| = N+1

2 2

N+1 N+1
+[E22]+ || = v

2

[[lé"—q

O

Disregarding the floor and ceiling functions we can look at NVCOST(N)
as a function which is continous and piecewise linear with corresponding
slopes p+ 1, p+ 3, p+ 1 inside the Fibonacci interval [fp42,2fp+1], but
makes a jump of height % fo+3 — fp at its right end.

We can compare NVCOST(N) with NVCOST(N), the minimal node
visit cost of all brother trees of size N, which has been computed in [4],
(6.3).

(6.3) Theorem: Assume N + 1 € (2P~1,2%|. Then

(h—1)(N+1)-22 41,
if N+1e (2k1,8.2F2|.
h(N+1)-2F+1,
if N+1€e(3-2h2,2h).

NVCOST(N) =

with h = [logy(N + 1)].
NVCOST(N) is a continous and piecewise linear function on (2*~1,2%|

with slopes h — 1 and h. It makes a jump of height 2* at the right end of
this interval.

NVCOST

Node Visit Cost of Brother Trees 21

A
p+2

} s —1Iv

N
7

Jo+2 2fp+1 4fp Jo+3 N

Figure 10: The graph of NVCOST(N) in the interval [fp12, fp+3)-

—

NVCOST

N~

Figure 11: The graph of NVCOST(N) in the interval (21, 2k].

22 Klein and Wood

7 Tight bounds for the node visit cost of brother
trees

First we want to derive a more useful, tight upper bound for NVCOST(N).
In Figure 10 the line with slope p + -1- majorizes the graph of NVCOST in
the interval [fy42, fp+3). Thus,

NVCOST(N) < (p+) (N +1) = fpr1 +2

for all N + 1 € [fp+2, fp+3). Here we use

[l-l

2 N+1J 5
—_— 4 <_N+

2 2[2 _4(1),

where equality holds if and only if N 4 1 is a multiple of 4. In order to get
rid of the term fp4; remember that

n+l _ &n+1)’ n>0

1
fn= %(0‘
holds for the Fibonacci numbers; here a = Ltf@ ~ 1.618 is the positive

rootof X2 - X ~1=0,and &@ = 1—_23§ ~ —0.618 is the negative one.
Hence, using a& = -1,

fer1 (i L1) _ artt — alart?
fpes —1 a? of fors—1 T aPtt — o2apt+4 — \/gaz
- (=1)**1v5
T a8 + (_.1)p+1 — \/gap+4
1
= O|+—
((N + 1)2)
for N +1 < fp13 = O(a®). Therefore,
- (L, 1 1 1 fots =1
for1 = (a2 T a1 +0<(N+1)2)) Ny1 W
1 1 1 fprs —1
- az(N+1)+a2+o(N+l> "N¥1 *

Because 2 — al—z- = a, this yields

Node Visit Cost of Brother Trees 23

(7.1) Lemma:

—_ 1 1 1
NVCO < - - = S
ST(N)_(p+4 az)(N+1)+°‘+O<N+1>

for N +1 € [fp42, fp+3). Equality holds for all N+1 = f,.3—1= 0 mod 4.
For the minimal node visit cost, we see from Figure 11 that

NVCOST(N)> (h—1)(N+1)-2*2+1

holds for N + 1 € (2*~1,2"]. Since 2"-2 + % < %(N + 1) we obtain
3 3
NVCOST(N) > (h - 5) (N+1)+3

Equality holds for N + 1 = 2*~1 + 1. Summarizing we get

(7.2) Theorem: If T is a brother tree of size N then

(h- g)(zv +1)+ g < NVCOST(T)

< (p—c)(N+1)+a+O<Tv—%)

holds and both bounds are tight. Here

h = [logy(N +1)]
loga(N + §) +loga(vB) 4]

p=

logz(a)
~ [1.44-logy(N + g) — 2.328]
a = 1 +2\/§ ~ 1.618
¢ = 2 _42‘/5 ~ 0.132

Proof: We have N + 1 € (fp+2, fp+3) if and only if fy4s is the smallest
Fibonacci number greater than N + 1, or, equivalently, p is the smallest
integer such that

ap+4

N+i<

Mo co
Sl
en

24 Klein and Wood

For, < % O

._l_ &P+4
5

(7.3) Corollary: Up to an O(loﬁg%ﬁ) error, we have

NVCOST(T)
N

for the average number of node visits per access in a brother tree of size N.

logy(N +1 —ﬁg < [1.44log N+§ —~0.328] — 2.132
2 2 2 2

By Theorem (5.3.B) and (2.3), the maximal height A(N) of a brother tree
of size N is

B(N) = p+ 1 [Laglogy(N + 3) - 0.328] ~ 1

Hence, the upper bound in (7.3) can be rewritten as

logN)
N

(¥) ————————NVCO;T(N) <h(N)-1-c+ o(

On the other hand, the formula before Corollary (2.4) tells us that
(i%) NVCOST(N) = k(N)(N + 1) = N — wy,

where wjy denotes the minimum number of unary nodes in a tree of size N
that is of maximal height.

(7.4) Corollary: If a brother tree T is sufficiently large and of maximal
height, then at least 11.6% of its internal nodes are unary.

Proof: Combining (i) with (ii) yields

a0 o)

N N
Thus
Wy > c +O(logN)
wny+N " c+1 N
with
5 _
¢ _25-8V5 166
c+1 61

Node Visit Cost of Brother Trees 25

This minimum value is obtained if N+1 is a multiple of 4, is a prodecessor
of a Fibonacci number, and if T has maximum NVCOST (see (7.1)). Note
that the maximum percentage of unary nodes is approximately %,_oo = 38.2%
and this is obtained in Fibonacci trees.

8 Concluding Remarks

In this paper we have continued the investigation of the node visit cost,
NVCOST(T), of a brother tree T, an important time cost measure for this
balanced tree scheme, which has been introduced and studied in [4]. We
first characterized the worst case structures, that is, the structure of those
brother trees whose NVCOST is a maximum among all brother trees of size
N. From this structure theorem we derived both an exact formula and a
tight upper bound for the maximal node visit cost. The latter, together
with a lower bound for NVCOST that has been derived in [4], determines
the range of this cost precisely. Thereby, one of the open problems posed in
[4] has been solved. This solution was not trivial, nevertheless, we think it
is worth trying to get similar results for other cost measures (for example,
comparison cost) and other balancing schemes (for example, AVL trees).

9 Acknowledgement

The first author wants to thank his wife Anne Briiggemann-Klein for intro-
ducing him to TgX and for her TgXnical help.

References

[1] G.M. Adel’son-Vel’skii and Y.M. Landis. An algorithm for the organi-
zation of information. Doklady Akademi Nauk, 146:263-266, 1962.

[2] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching.
Springer-Verlag, New York, 1984.

[3] J. Nievergelt and E.M. Reingold. Binary search trees of bounded bal-
ance. SIAM Journal on Computing, 2:33-43, 1973.

[4] Th. Ottmann, D.St. Parker, A.L. Rosenberg, H.-W. Six, and D. Wood.
Minimal-cost brother trees. SIAM Journal on Computing, 13:197-217,
1984.

[5] Th. Ottmann and H.-W. Six. Eine neue Klasse von ausgeglichen
Binarbaumen. Angewandte Informatik, 9:395-400, 1976.

26

6]

7

8]

Klein and Wood

Th. Ottmann, H.-W. Six, and D. Wood. On the correspondence between
AVL trees and brother trees. Computing, 23:43-54, 1979,

Th. Ottmann, H.-W. Six, and D. Wood. Right brother trees. Commu-
nications of the ACM, 21:769-776, 1981.

Th. Ottmann and D. Wood. 1-2 brother trees or AVL trees revisited.
Computer Journal, 23:248-255, 1981.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

