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Abstract

Boolean combinations of VLSI masks are important in VLSI de-
sign. We describe an optimal algorithm for two layers and rectangles
having the same orientation in the plane. The algorithm runs in time
O(nlogn + p) using space O(n), where n is the number of rectangles
and p is the number of edges in the output. Note that this algorithm
avoids spending computation time on edges that do not contribute
to the output, unlike its counterpart for arbitrary polygons. Also, the
contour of the Boolean combination is computed in the form of contour
cycles rather than single contour edges. We also extend the algorithm
to more than two layers and to orthogonal polygons having the same
orientation. The time bound remains the same for any fixed number
of layers; it is O(k2* - nlogn + p) for k > 2 layers when k is an input
parameter.

1 Introduction

Boolean combinations of VLSI layout masks for several layers are needed for
a number of purposes in the VLSI physical design process, such as design
rule checking, connectivity checking, device recognition, or feature extrac-
tion. For instance, a transistor may be realized on a VLSI chip whenever
polysilicon intersects diffusion, as given by the two masks. Because of the
high number of objects involved, the efficiency of algorithms for Boolean
mask combinations turns out to be very important. Therefore, a number of
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2 Widmayer and Wood

practitioners and researchers have devoted their attention to the develop-
ment and implementation of fast algorithms for the Boolean masking prob-
lem, see [1,2,3,6,5,7,9,11,12,17].

While the solutions described for the general case of arbitrary polygons
seem to be reasonably efficient, the same cannot be said about the isothetic
case (the term “isothetic” is recommended by [13] to denote objects with
sides parallel to any of the coordinate axes). Specifically, assume that the
mask of each VLSI layer is given as a (multi-) set of isothetic rectangles. For
most VLSI physical layouts, this is still the situation today. In such a special
case, it is certainly highly undesirable to spend as much computation time
for Boolean mask combinations as is acceptable in the general case. The best
known solution for the general case takes time O((n+ k) log n) for two masks
and, for instance, the Boolean AND operation, where n is the total number
of polygon edges involved, and k is the total number of edge intersections.
Note that k may be proportional to n%, even though a description of the
algorithm’s output may be very small, for instance proportional to n. In
other words, the algorithm for the general case spends computation time
on intersection points that don’t contribute to the final result. Moreover, it
would certainly be preferable to spend only constant time per output item
rather than logn, as in the general case.

We describe an algorithm without these two flaws in the next section,
that is, an algorithm with O(nlogn + p) running time for two masks with a
total of n isothetic rectangles, the Boolean operation AND, and p edges in
the contour of the resulting polygons. Our algorithm reports the resulting
contour in the form of contour cycles and not just contour edges, but uses no
more than O(n) space. Therefore, the algorithm is optimal in both time and
space. In addition, we describe how to compute other Boolean combinations
of two masks. Finally, in Section 3 we generalize our algorithm to more than
two masks and to isothetic polygons.

2 Boolean Combinations of Two Layers

We are given two layers (multisets) of isothetic rectangles in the plane, say
a layer R of red ones and a layer § of green ones. Let R = {R;|1 <1 < n,}
and § = {G;]1 < j < ng}, where R; (§;) denotes a red (green) rectangle.
Each rectangle is given by the four coordinates of its four sides, that is, by a
quadruple (Ziest, Tright, Ybottom, Ytop). A rectangle represents a set of points
in the plane in the usual way: rectangle (Ziest, Zright, Ybottom, Yeop) TEPresents
the set {(xay)lzleft <z < Zright, Yoottom S Y S ytop}- For given R and 9 a
point p = (z,y) in the plane is called red (green) if there exists a rectangle
R; € R (g € §) withpe R; (p€ G;).

The contour of R is a description of U, R;, the set of all red points,
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in the form of an isothetic polygon (possibly with holes) for each connected
set of red points. A polygon is described by an alternating sequence of
vertical and horizontal polygon edges in cyclic order around the polygon.
The contour problem for a set of isothetic rectangles has been studied by
a number of authors ([8,4,16]). A recent solution ([16]) uses a simple data
structure, the visibility tree, to solve the problem in optimal time. In [16]
the contour is reported as a set of edges of the contour polygon, not in the
form of contour cycles. However, [15] show how the solution of [16] can be
modified so that it reports contour cycles in optimal time and space. We
base our solution of the Boolean masking problem on a modified version of
the visibility tree, and the observation of optimality in [15].

2.1 The Boolean AND

We illustrate the basic idea of our algorithm by computing the Boolean AND
of the two layers R and §. That is, we show how to compute the contour
of the set of points that are both red and green, that is {Jjr; R; N U?{'__l Gi-
All operators we use are regularized in the sense of [14] . This means the
result of an operation is taken to be the closure of the interior of the non—
regularized (“usual”) operation. The effect of regularizing operations is to
get rid of isolated or dangling lines or points that may otherwise result from

polygons touching each other (for details, consult [14]).

2.1.1 An Outline of the Algorithm

We solve the problem by means of a plane-sweep algorithm. Imagine a
vertical line moving from z = —co to £ = +oo through the plane, that is,
from left to right. The line meets left vertical edges and right vertical edges
of the rectangles in order of ascending x-values. Between any two adjacent
x~values, the intersection of the sweep line with the rectangles is the same
for any two positions of the sweep line. Therefore it will be sufficient to
stop the sweep line at the vertical edges of rectangles; we call these x—values
sweep points of the sweep line.

This well-known principle (see e.g. [10] ) amounts to solving a two—
dimensional problem by solving a series of one-dimensional problems and
combining the answers.

During the sweep, we keep track of the horizontal edges (top and bottom
edges of rectangles) that currently intersect the sweep line. It is obvious
that not all edges form part of the output of the algorithm, but instead
only those that are on the boundary of an area consisting of points that
are red and green (a red-green area). For simplicity of the discussion only,
let us assume that no two horizontal edges (vertical edges) share the same
y-value (x-value). However, this assumption is not a crucial one in solving
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Figure 1: A red-green contour.

the problem. A straightforward modification of the algorithm given below
will suffice when this assumption is dropped.

Upon meeting a vertical edge, we decide which parts of that edge belong
to the output of the algorithm. In addition to horizontal edges, we store con-
tour cycles that have started but not yet ended, that is, contour cycles that
currently intersect the sweep line. Storing each contour cycle, for instance,
as a doubly linked list with two pointers to its ends, we can easily update
the contour cycles (start a new one, concatenate two adjacent existing ones,
terminate an existing one) in time bounded by a constant for each update
operation, that is, in total time O(p). When a contour cycle is terminated,
its description is output, and hence it no longer consumes storage space. It
has been shown in [15] that the total number of edges of all contour cycles
intersected by some vertical line is O(n). Consult [15] for a more detailed
explanation of how to maintain contour cycles and a proof of the cited fact.
Given the bound on the number of edges in all intersected contour cycles,
we simply can afford to maintain all of the started but not yet terminated
contour cycles without asymptotically extra space. Therefore, in the follow-
ing presentation, we shall only describe how to find the horizontal edges of
the contour; it is understood that the contour cycles are always computed
in the described way.

It is obvious that horizontal contour edges of the red—green area are
exactly those parts of edges that belong to the contour of the red area, but
fall into a green area, or that belong to the contour of the green area, but
fall into a red area; see Figure 1.

A contour edge of the former type is called a red-green—visible edge, a
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contour edge of the latter type is called a green-red-visible edge, rg— and
gr—edge for short. An edge belonging to the contour of the red (green) area,
but not a rg- or a gr-edge, is called a red-visible (green-visible) edge, r- (g-)
edge for short. Note that contour edges differ from rectangle edges in that
the former may be parts of the latter. In the example depicted in Figure 1,
e1 is an r—-edge, e is an rg—edge, es is a g—edge, eq4, €5, and eg are of none of
the mentioned types, and e7 is a gr-edge.

The four classes of r—, g—, rg—, and gr-edges provide enough information
to properly keep track of the rg— and rg—edges during the line sweep, in
the following way. Consider what happens to the horizontal edges currently
cut by the sweep line, that is the active edges, when a vertical red edge is
encountered (similarly for green).

First, consider the case that the edge is the left edge of some rectangle
R;, a left edge for short. At the current x-value, this edge extends from
Ybottom O Ytop in the y—direction. All active horizontal edges with y—values
not in the interval {ysottom, Ytop] are clearly untouched. So we restrict our
view to those horizontal edges that have their y—values in this interval. Any
edge belonging to the red contour before can no longer belong to the red
contour after the left red edge, hence the class of r-edges and the class of
rg—edges both become empty. Any edge belonging to the green contour will
still belong to the green contour behind the sweep point, but will also be in
a red area. Hence, the class of gr-edges is defined as the union of the classes
of gr-edges and g-edges; the class of g—edges becomes empty.

Second, consider the case that the sweep line encounters a vertical right
red edge. A right red edge corresponds to a red rectangle that is being passed
by the sweep line. The y—interval covered by that red rectangle may (partly)
still be covered by some other red rectangle. We again restrict our view to
horizontal edges with y—values in the y—interval of the right red edge. Some
of the active horizontal edges may still lie in a red area, and others may no
longer lie in a red area. Consider red horizontal edges first. Some of them
may become visible, but not necessarily all of them. In Figure 2 at sweep
point h of the sweep line, e; and e; become visible, whereas e; and ez don’t.
Of those edges becoming visible, some may become red-visible, others may
become red—green visible. In our example in Figure 2, e; becomes red—green
visible because it lies in a green area, whereas e4 becomes red—visible. Now
consider green horizontal edges. The only possible change is that some of the
gr-edges may become g-edges because they exit from a red area, whereas
others may stay in a red area and therefore remain gr—-edges. In our example,
es becomes a g—edge, but eg remains a gr-edge at sweep point h.

Besides changing the status of some horizontal edges, a left vertical edge
initiates two horizontal edges, namely the top and bottom edges of the
corresponding rectangle, that is, these two horizontal edges become active.
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Figure 2: Horizontal edges becoming visible.

Their status with respect to the four classes (r-, g-, rg—, gr-edges) has to
be determined. For a right vertical edge, the corresponding top and bottom
edges of the rectangle become inactive. The edges have to be added to or
removed from their classes.

The desired output can now easily be generated by keeping track of
the changes in the classes of rg—edges and gr—edges. Whenever an edge joins
one of these two classes, that ist, becomes green—red—visible or becomes red—
green—visible, an edge of the desired reg—green contour is started; whenever
an edge is removed from those classes, the corresponding edge (which must
have started previously) is terminated.

2.1.2 The Algorithm in Detail

The following algorithmic description summarizes the discussion so far.
Algorithm Red-and-Green Contour

{We are given two sets R = {R;|1 <7 < n,} and
g ={Gil1 <j<ng}of

isothetic rectangles. We output a set of horizontal edges (of maximal length)
that lie on the contour of Jr, R,-OU?LI Gj. The contour cycles are obtained
by the minor modification described above.}

begin

1. Sort the vertical edges of rectangles in R U § into ascending x—order.
Each x—value is called sweep point. Initialize sets R, G, RG, and GR,
denoting sets of active r—edges, g-edges, rg-edges and gr-edges, to be
empty.
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2. For all sweep points in x—order corresponding to vertical edge e do:
Let e be a red vertical edge (without loss of generality; for e being
green, just exchange red with green in the following description). Let
R(e), G(e), RG(e), and GR(e) denote the subsets of those horizontal
edges in R, G, RG, and GR that have their y-values in the range
between e’s bottom and top points. Let epotiom, €top be the bottom
and top horizontal edges of the rectangle of which e is a vertical edge.

(a) If e is a left edge, then: output start of edges G(e); output end of
edges RG(e); GR:= GRUG(e); G :=G - G(e); R:= R— R(e);
RG := RG — RG(e); add epottom, €top to the corresponding class
of active horizontal edges, if any; and output start for those of
the two edges falling into RG or GR.

(b) If e is a right edge, then: Let R', RG' be the sets of edges that
were not visible and now become red-visible, red—green—visible,
respectively. Let G' be the set of green-red-visible edges in G R(e)
that become green—visible. Then: output start of edges RG';
output end of edges G'; R := RUR'; RG := RG U RG'; GR :=
GR-G'; G := GUG'; remove epottom, €top from the corresponding
class of active horizontal edges, if any; and output end for those
of the two edges in RG or GR.

end

Let us now specify in more detail how to perform the (crucial) update
operations for sets R, G, RG, and GR of active horizontal edges, that is,
how to determine the sets G(e), R(e), RG(e), GR(e) for a left vertical edge,
and R', G', RG', GR' for a right vertical edge. We also discuss in the next
subsection how to implement the set union and difference operations used
in the algorithm.

It is easy to determine G(e), R(e), RG(e), GR(e) for a left vertical edge
e by simply testing whether the y—value of a horizontal edge lies within the
y-interval from ypottom tO Yiop, the bottom and top ends of e.

It is not as easy to find red (green) edges that become red—visible or red-
green—visible (green—visible or green-red-visible). To determine whether an
active horizontal red edge is red-visible or red-green—visible it is sufficient
to know whether or not the intersection of the edge with the sweep line
lies within the intersection of an active red rectangle with the sweep line,
that is, whether or not the red point p on the sweep line is covered by a
red interval. However, when a right vertical red edge e covering red point
p is encountered in the sweep, this binary information is not sufficient to
determine whether p will still be covered by some red interval after e will
have been removed. We, therefore, use a counter indicating how many red
intervals cover a point.



8 Widmayer and Wood

More precisely, we partition the sweep line into a set of contiguous in-
tervals, induced by the set of active red horizontal edges, or red points on
the sweep line as we shall say. With each of these intervals, we associate an
integer value red—cover; this value indicates by how many red rectangles, or
intervals on the sweep line, the corresponding interval is covered. A set of
green—cover values is defined similarly.

The cover values are maintained during the sweep as follows.
Algorithm Maintain Cover Values
begin

1. Initialize the set of intervals for the red—cover values to be (—o0, +00).
Initialize the red—cover and the green—cover values for this interval to

be 0.

2. Upon meeting a red vertical edge in the sweep, do the following (similar
for green):

(a) If e is a left vertical edge, then: The bottom and top end points
of e each split a red—cover interval into two intervals. That is,
the number of intervals is increased by two. Each of the split
intervals inherits the cover from the interval being split. For all
intervals between yiott0m and yiop, increase the red—cover value

by 1.

(b) If e is a right vertical edge, then: The two end points, Ypottom
and ygp, occur as interval boundaries in the set of red—cover
intervals. Decrease the red-cover for all intervals between yyotrom
and y:;p by 1. Now the two intervals sharing endpoint yottom
have the same red-cover value. Remove ypost0m and merge the
two intervals into one, inheriting the red—cover from the merged
intervals. Do the same for y;,,. This decreases the number of
red—cover intervals by two.

end

The labels of the steps of this algorithm correspond to those of Red-
and-Green Contour; when interleaving both algorithms according to the
labels, each step of Maintain Cover Values should be taken first and the
corresponding step of Red—and—Green Contour second, for each label.

Note that each active red point on the sweep line forms a border between
exactly two red—cover intervals with cover values differing by exactly 1. We
can now easily express the classification of a red horizontal edge in terms
of these covers, for any fixed sweep line position. An active horizontal red
edge is an r—edge or an rg—edge iff one of its bordering red—cover intervals
has red-cover value 0, and the other has red—cover value 1. It is an rg—edge
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iff it lies within a green-cover interval with green—cover value > 0. The
classification is similar for green edges.

For any fixed sweep line position and an active red (green) horizontal
edge e, let gc(e)(rc(e)) denote the green—cover (red—cover) value of the green—
cover (red—cover) interval into which e falls. Let RC(e)(GC(e)) be the set
of the two red-cover (green—cover) values of the two bordering red-cover
(green—cover) intervals. In Figure 2, at sweep line position h, r(es) changes
from 1 to 0, RC(e;) changes from {1, 2} to {0, 1}, for instance.

At a fixed sweep line position, we can now define classes R, G, RG, and
GR in terms of cover values:

(1) R :={e|eis red active,RC(e) = {0, 1}, gc(e) = 0};

(2) RG :={e|e is red active,RC(e) = {0,1}, gc(e) > 0};
(3) G :={e|eis green active,GC(e) = {0, 1}, rc(e) = 0};
(4) GR := {e|e is green active,GC(e) = {0,1},rc(e) > 0}.

The changes of these sets, as needed in Step 2a of Red—and-Green Con-
tour, can be described in terms of a restriction by the range of the vertical
right edge e:

(1) R' := R, restricted to edges in the range of ¢;
(2") RG':= RG, restricted as in (1');

(3') G':=G, restricted as in (1');

(4') GR':= GR, restricted as in (1').

In total, the following information has to be maintained properly during
the line sweep:

(a) the set of active red points on the sweep line, and the set of active green
points;

(b) the cover intervals for red—cover and green—cover values, and the red—
cover and green—cover values themselves for these intervals;

(c) the sets R, G, RG, and GR.

In the next subsection, we demonstrate how this can be done efficiently,
using a data structure which is a modification of the visibility tree [16].
2.1.3 An Efficient Implementation

We use a single data structure, an augmented visibility tree, for storing all
information necessary during the sweep. The projections of the 2n horizon-
tal edges of the given n rectangles on the y—axis yields 2n distinct y—values,
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Y1, Y2, ---»Y2n. These divide the y—axis into 2n + 1 disjoint contiguous in-
tervals Iy = (—oo,y1), [y = [y1,¥2)s--+» i = [%i» %i+1),-- -5 [2n = [y2n,00).
Let T be an ordered binary tree with 2n leaves and with minimal height;
identify the leaves from left to right with y;,y2,...,y2n. Leaf y; also repre-
sents interval I;. Each internal node u represents an interval I(u) which is
the union of all intervals in the leaves of T'(u), the subtree of T rooted at
u. That is, I(u) = [yi, y;), where y; is the leftmost leaf in T'(u), and y;_; is
the rightmost. Specifically, the root of T represents the interval [y;,+00).
With each node u (internal or leaf node) of T' we associate the following
information:

(i) I(u), the interval represented by u;

(i) active (u), for leaf nodes u = y; only, indicating whether y; is currently
active;

(iii) RC(u), the number of red intervals I, (intersections of red rectangles
with the sweep line) that cover I(u), but don’t cover I(parent(u));
that is, RC(u) := |{I,|I(u) C I, I(parent(v)) € I, }|;

(iv) GC(u), similar to (iii) for green instead of red;

(v) R(u), the set of active red points in T(u) that correspond to r—edges
with respect to T'(u), that is, if T(u) is considered independently of T';

(vi) G(u), the set of active green points in T (u) that correspond to g-edges
with respect to T'(u);

(viil) RG(u), the set of active red points in T'(u) that correspond to rg—edges
with respect to T'(u);

(viii) GR(u), the set of active green points in T(u) that correspond to
gr-edges with respect to T'(u).

For each node u, I(u) is set to its proper value at the beginning of the
operation of the algorithm and it remains unchanged throughout; all other
values may change. Initially, for each node u in T, active(u) := false,
RC(u) := GC(u) := 0, and R(u) := G(u) := RG(u) := GR(u) := Q.
Note that R, G, RG and G R of the preceding subsection are represented as
R(root), G(root), RG(root), and G R(root).

Let I be a y—interval obtained by intersecting a rectangle with the sweep
line. While the sweep line intersects that rectangle, information on I is
stored in T at all nodes u for which I(u) C I and I(parent(u)) € I. These
nodes u are called the nodes of the canonical covering of I. The crucial
observation behind this way of representing I is that only O(logn) nodes
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belong to the canonical covering of I, and also only O(log n) nodes lie on the
union of the paths from the root of T’ to the nodes in the canonical covering.
Hence, starting at the root, the nodes of the canonical covering of I are found
in O(logn) steps. We store an active rectangle in the corresponding cover
values of the canonical covering nodes. If I stems from a red rectangle, say
I = I,, then I, contributes an increment of one to RC(u) for all canonical
covering nodes u of I, (similarly for I; and GC(u)).

It is important to see how the sets R(u), G(u), RG(u) and G R(u) can be
defined in terms of these sets for u’s children, leftchild(u) and rightchild(u),
provided the children exist.

(A) If RC(x) = 0 and GC(x) =0
then R(u) := R(leftchild(u))U R(rightchild(u));
G(u) := G(leftchild(u)) U G(rightchild(u));
RG(u) := RG(leftchild(u)) U RG(rightchild(u));
GR(u) := GR(leftchild(u)) U G R(rightchild(u));
(B) If RC(u) >0 and GC(u) =0
then R(u) := RG(u) := G(u) = @;
GR(u) := G(leftchild(u)) U G(rightchild(u)) U GR(leftchild(u))
UG R(rightchild(u));
(C) Similarly for RC(u) = 0 and GC{(u) > @;
(D) If RC(u) > 0 and GC(u) >0
then R(u) := G(u) := RG(u) := GR(u) := @;

These relationships are crucial in that they allow efficient transitions at
all sweep line positions, even though at first glance this might not appear to
be the case. We shall describe below how the set union operations used in
the above invariant can be implemented to take only constant time, instead
of the linear time one might expect at first glance.

Let us illustrate the maintenance of T' when the sweep line meets a left
red vertical edge, and when it meets a right red vertical edge; for green
edges, the procedure is similar. Upon encountering a left vertical red edge
with y—interval I,, we change the information for all nodes u in the canonical
covering in the following way:

{left vertical red edge}
1.RC(u) := RC(u) + 1;
2.{Update output edges}
If RC(v) = O for all nodes v in T on the path from the root to u
(but not including «) and RC(u) =1
then for all e € RG(u) do:
terminate output of edge e;
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if GC(v) = 0 for all nodes v in T on the path from the root to u
(including u)
then {I(u) is not covered by green}
for all e € G(u) do:
start output of edge e
else {I(u) is covered green: do nothing }
else {I(u) was already covered red: do nothing }
3.If RC(u) = 1
then{locally in T'(u), I(u) becomes red covered}
maintain R(u), G(u), RG(u), and G R(u) according to (B)
or (D), whichever applies
else {I(u) was already covered red in T'(u): do nothing}.
{right vertical red edge}
1.RC(u) := RC(u) — 1;
9.If RC(u) =0
then {locally in T(u), I(u) is no longer covered red}
maintain R(u), G(u), RG(u), GR(u) according to (A) or (C),
whichever applies;
else {I(u) remains covered red: do nothing};
3.{Update output}
If RC(v) = 0 for all nodes v in T on the path from the root to u, including u,
then {I(u) is no longer covered red}
for all e € RG(u) do
start output of edge e;
if GC(v) = 0 for all nodes v in T on the path from the root to u,
including u,
then {I(u) is not covered green }
for all e € G(u) do:
terminate output of edge e
else {I(u) is covered green: do nothing}
else {I(u) is covered red: do nothing}.

It should be clear that the manipulation of the augmented visibility tree T
is just an implementation of Red-and-Green Contour. Because there are at
most O(logn) nodes in the union of all nodes on the paths from the root
of T to all nodes u in the canonical covering of I,, we can find in O(logn)
steps the cover—values of the nodes on these paths, as required in the above
description.

In addition to changing the status of active horizontal edges, we also
have to insert (delete) active horizontal edges when the sweep line meets a
left (right) vertical edge. The output of a new (old) edge can be properly
started (terminated) by taking into account the cover values of nodes on the
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path from the root of T to the leaf, in the obvious way. Also, the classes to
which a new (old) horizontal edge belongs for the nodes on this path can be
easily updated by a bottom-up maintenance procedure, a straightforward
generalization of the description in [16] for the contour case. For further
(conceptually minor) details of the inner workings of the visibility tree also
consult [186].

Here, we simply want to mention that we use the technique from [16] to
form the unions of sets R(u), G(u), RG(u), G R(u) for nodes u in T'. Each of
these sets is represented by two pointers on the two ends of a doubly-linked
list of points, representing intersections of horizontal edges on the sweeping
line. With invariants (A), (B), (C), and (D) fulfilled initially and maintained
throughout the algorithm, the union of two sets can be realized simply as
the concatenation of two lists. Because sets R(u), G(u), RG(u), and G R(u)
are disjoint and can be defined as unions of disjoint sets at u's children, the
arguments of [16] apply.

2.1.4 Time and Space Requirements

As has been shown in the previous subsection, the augmented visibility tree
supports the following operations within the following time bounds:

e insertion/deletion of a horizontal edge: O(logn)

e a single union operation for two disjoint sets as required by the algo-
rithm: O(1)

and therefore

e maintenance of sets R(u), G(u), RG(u), G R(u) for all nodes u in the
canonical covering of a vertical edge, in total: O(logn)

e additional cost for starting/terminating output for an edge of the red—
green—contour (performed when a vertical edge is met): O(1)

For the plane-sweep algorithm, sorting the edges with respect to z, and for
the augmented visibility tree, sorting the edges with respect to y, can all be
done in time O(nlogn). As we have O(n) insertion/deletion/maintenance
operations, apart from the output the algorithm runs in time O(nlogn).
For p output edges in total, we get the following theorem.

Theorem 2.1 The contour, in the form of contour cycles, of the intersec-
tion of two layers of rectangles (the Boolean AND operation) can be com-
puted in time O(nlog n+p), where n is the number of rectangles, and p s the
number of edges in the contour, and with space O(n). This is asymptotically
optimal with respect to time and space.
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Proof: The time bound follows from the previous considerations; the space
bound follows from the constant space used for any of the O(n) nodes of the
augmented visibility tree, and the fact that there are at most O(n) edges
in all intersected contour cycles at any stage in the sweep (see [15]). Opti-
mality follows from the optimality of the given time and space bounds for
the contour problem (see [15]): Compute the contour for a set of rectan-
gles by considering all of them to belong to one layer, and by computing
the Boolean AND of that layer with one big rectangle enclosing all others. O

2.2 The Other Boolean Operators

The computation of Boolean operations on two layers of isothetic rectangles
other than AND can be accomplished with essentially the algorithm de-
scribed in Section 2.1, with only minor modifications on the output edges.
Recall that for the Boolean AND, the output consists of exactly the edges
in RG UGR. Now consider other Boolean operations and the output edges
corresponding to them:

e red OR green has output edges RUG;
e red ANDNOT green has output edges RU GR;
e green ANDNOT red has output edges G U RG.

The important observation is that sets R, G, RG, and GR are just sufficient
to describe the result of any Boolean combination of two layers, where we
just refer to the covering of areas with layers, disregarding how often some
area is covered by rectangles of a layer. Therefore we get the following.

Theorem 2.2 The contour, in the form of contour cycles, of the result of
any Boolean operation, applied to two layers of rectangles, can be computed
in time O(nlogn +p), with space O(n), where n is the number of rectangles
and p is the number of contour edges. This 1s asymptotically optimal with
respect to time and space.

In fact, Boolean operations of the abovementioned types are the practi-
cally relevant ones, but not the only ones that can be computed. We can in
the same way compute contours that can be specified by requirements on
the number of times areas must be covered for each of the layers together
with Boolean operators. Examples are the i—contour of a set of rectangles,
or expressions like (2 red) AN DNOT (> 3 % green) with the obvious mean-
ing. We do not, however, claim that these types of Boolean combinations
are of any practical interest.
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3 Generalizations

Of the many conceivable generalizations, we simply want to mention briefly
two fairly straightforward ones with perhaps some practical interest, namely
how to treat more than two layers, and how to deal with isothetic polygons.

3.1 More than Two Layers

When we are dealing with more than two layers, say k layers for k£ > 2, and
we want to compute an arbitrary Boolean function of the rectangles in these
layers, we simply need to consider more combinations of layers explicitly,
that is, we need to maintain more disjoint subsets of active horizontal edges.
To see this, consider a third layer, blue, in addition to red and green. A red
horizontal edge can now enter a green area, as before, but it can also enter
a blue area, or it can enter both. If it enters both, it does of course not
matter in which order it has entered them.

In general, we get the following subsets of relevant active horizontal
edges for k layers lq,[5,...,l;. Similarly to the red—and—green layer case, we
denote the class of active horizontal edges that forms part of the contour
of layer !; by L;, Whenever an L;-edge lies in an area covered by l;, we
let L; follow L;. Because the order of several layers in which an L;~edge
lies doesn’t matter, we simply have a set of L;’s, j # 1, following L;. Let
L = {Li|1 < ¢ < k}. Then we get all relevant classes of edges as follows:

for all L;,1 <1 <k, and
for all subsets S C L — L,
L;S is a relevant class.

For example, returning to the two layer case with Ly = R and L; = G, we
get all relevant classes in this way as:

L@, corresponding to R;
L1{L2}, corresponding to RG,
L,@, corresponding to G;
Ly{L,}, corresponding to GR.

The number of classes of edges we get in this way is 2¥~!, the number of
subsets of L — L;, for each of the L;, 1 < ¢ < k, totalling to k- 2k-1 classes.

We again use the augmented visibility tree to store classes of active
horizontal edges during the sweep. With each node u in the augmented
visibility tree, we store a counter for the cover of each layer, denoted by L;C
for 1 < ¢ < k. In addition, we store two pointers to each of the k-2F-1 classes
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of active horizontal edges, where each class is represented by a doubly linked
list. To see that the algorithm works in essentially the same way as before,
let us describe the invariant for the classes stored at each node, denoted by
(A), (B), (C), (D) in the two layer case. For node u, L;S(u) denotes class
L;S, as represented local to T'(u), that is, if we disregard the rest of T'. Then
the invariant is the following :

(I) For all L; for which L;C(u) = 0:
L;iS(u) for S = Sy U Sy, with Sy such that VL; € Sy, L;C(u) =0,
and 81 = Up;c(u)>0 Lj, is defined as
L;S(u) := Upg(iestchitd(u) rightchita(u)} Li(So U Ugies, S')(v)
(I1) For all L; for which L;C(u) > O:
LiS(u):=90, VS CL-L;;
L;S(u):=@, ¥S C L — L;, L; # L.

Obviously, invariant (A), (B), (C), (D) is a special case of (I), (II). The
reader is invited to check how (A) is derivable from (I), (B) and (C) are
derivable from (I) for GR and from (II) for R, RG, and G, and (D) is
derivable from (II).

The operations of starting and terminating output edges can be similarly
generalized. The time spent on processing a node in the visibility tree is,
however, no longer a constant, but is, instead, proportional to the number
of classes, k - 28~1. We conclude with the following.

Theorem 3.1 The contour, in the form of contour cycles, of the result of
Boolean operations applied to k layers of rectangles, can be computed in
time O(k - 2¥ - nlogn + p) with O(k-2* - n) space, where n is the number of
rectangles, and p is the number of contour edges.

Note that optimality in time and space can be claimed here only for a
constant number of layers, but not in general, that is, not when k is an input
parameter.

3.2 Isothetic Polygons

We just want to mention briefly that isothetic polygons can be handled by
the visibility tree in basically the same way as rectangles. To see how this
is done in the contour computation, consult {16]. In the same way, we get
the following.

Theorem 3.2 The contour, in the form of contour cycles, of the result of
Boolean operations, applied to k layers of isothetic polygons, can be computed
in time O(k- 2% -nlogn + p) with O(k-2* - n) space, where n is the number
of contour edges.
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