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ABSTRACT

It has been proved recently, cf, [AL], that each system of equations
over a finitely generated free monoid having only a finite number of
variables has an equivalent finite subsystem. We discuss the prob-
lem when such a finite subsystem can be effectively found. We show
that this is the case when the system is defined by finite, algebraic
or deterministic two-way transducers.

1. Introduction

Throughout the history of mathematics compactness results, that is results
stating that something which is specified by an infinite way is actually specified
by a finite subpart of this infinite specification, have been eagerly looked for. In
recent years a remarkable compactness property of free monoids has been
revealed. More precisely, it has been shown in [AL] and [Gu] that each system of
equations over a finitely generated free monoid and having a finite number of
variables is equivalent to its finite subsystem.

This compactness result is closely related to the Ehren feucht Conjecture,
cf. [K], which is as follows: For each subset L of a finitely generated free monoid
T " there exists a finite subset F' of L such that for any two morphisms & and g
from ¥ into another free monoid the equation h(z) = g(z) holds for all = in L
if and only if it holds for all z in F. F is called a test set for L. It is
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straightforward

to conclude that the Ehrenfeucht Conjecture follows directly from the above
compactness property of systems of equations, which, hence, could be called the
Generalized Ehrenfeucht Conjecture. It was shown in [CK1], as a first step
towards the solution of the Ehrenfeucht Conjecture, that these two statements
are in fact equivalent.

After knowning that each system of equations possesses an equivalent finite
subsystem a natural question to be asked is “under which conditions such a finite
subsystem can be effectively found?”” This is the topic of this note.

We first recall from [CK1] a connection between the Ehrenfeucht Conjec-
ture and its generalized version showing that the conjecture holds effectively for
certain types of subsets of X * if and only if systems of equations of the
“corresponding” type possess effectively equivalent finite subsystems. Then we
start to consider systems of equations defined by different kinds of transducers,
that is automata with outputs. Such devices suit very well to describe infinite
systems of equations - for each successful computation the input word defines the
lefthand side of an equation and the corresponding output word defines the right-
hand side of the same equation.

We consider three types of transducers: finite transducers, pushown trans-
ducers and determinisitic two-way transducers. We show that in each of these
cases the corresponding systems of equations possess effectively equivalent finite
subsystems. In the first two cases proofs are based on pumping properties of sets
of words, and the results are proved already in [CK1] and [ACK]. In the third
case the detailed proof is much more complicated as is shown here.

2. Preliminaries

We assume that the reader is familiar with the basic facts of formal
language theory, cf. e.g. [H], as well as those of free monoids. Consequently, we
define here in details only a few most infrequently used notions as well as our
special terminology, while some other notions are described only informally.

Let ¥ be a finite alphabet and N={z,..,z,} a finite set of variables such
that NN = J. An equation with n variables (or unknowns) over a free
monoid ¥ generated by £ is of the form

(1) u=1v with uweN .

A system of equations is any collection of equations. A solution of a system of
equations over ¥ is a morphism h:N'—X" satisfying h(u) = h(v) for all
equations u = v in the system. Thus, a solution can be identified with an n-
tuple of words. Two systems of equations are called equivalent if they have
exactly the same solutions.

Observe that in defining equations we did not allow constants, i.e., u and
v in (1) were in N" rather than in (NU E)'. This was done only for the sake of
convenience, since without affecting our considerations constants in equations can
be eliminated by introducing for each symbol a in ¥ a new variable X, and
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replacing

each occurrence of ¢ by X, and adding a finite set of new equations X, = a.

Following [CK1]| we next introduce our special notion. In what follows we
identify an equation u = v with the pair (u,v). Consequently, a system S of
equations with unknowns NN can be viewed as a binary relation over N, ie.,
SCN "XN*. Now, let L be a family of languages (over the same alphabet) and
R a family of binary relations over N. We say that R is morphically character-
ized by L if the following holds: A binary relation R is in R if and only if there
exist a language L in L and two morphisms h and g such that
R = {(h(w),g(w) |we L}. Finally, we say that a system of equations (that is a
binary relation) is of type L if it belongs to the family of relations morphically
characterized by L.

A connection between the Ehrenfeucht Conjecture for a family L of
languages and its generalized version for systems of equations of type L (for
definitions cf. Introduction) can now be obtained, as is shown in [CK1]:

Theorem 1. For any family L of languages the following statements are
equivalent :

() For each effectively given L in L a test set can be effectively found,

(i) For each effectively given system S of equations of type L a finite
equivalent subsystem can effectively be found.

A natural way (at least for computer scientists) to define infinite systems of
equations is to use transducers that is to say automata with outputs. In this
paper we shall be considering three types of transducers which are informally
described in the following lines (for more details cf. [H]). A finite transducer is a
finite (nondeterministic) automaton provided with an output structure, that is for
each transition a (possibly empty) output is produced. Similarly, a pushdown
transducer is an ordinary pushdown automaton provided with an output struc-
ture. Finally, a deterministic two-way transducer is obtained from a determinis-
tic two-way automaton by adding a single output to each transition rule.

Let T be an arbitrary transducer of any of the above types. Then if IV
denotes the input alphabet (that is the alphabet of the underlying automaton)
and M denotes the output alphabet then 7T defines via successful computations a
binary relation Sy CNX M. Consequently, each transducer defines a system of
equation with NU M as the set of variables.

Next we argue in favour of our above special notion by using some known
results from the theory of transducers. Let Reg and CF denote the families of
regular (or rational) and context free (or algebraic) languages, respectively. We
said that a system of equations is of type Reg iff it is morphically characterized
by the family Reg, which, in turn, means by the well known Nivat Theorem, cf.
[B], that the system is defined by a finite transducer. We call such systems of
equations rational. Similarly, a system of equations is of type CF iff it is defined
by a pushdown transducer, c¢f. [CC|; hence, we call these relations algebraic.
Finally, it is clear that the family of arbitrary binary relations is of type “the
family of all languages”.

We proceed by giving two examples of systems of equations.
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Example 1. Let L C N be a regular language. Then the system of
equations defined by

S={z =2 |zel},

when 2% denotes the reverse of the word z, is algebraic, since it is obvious how
to construct a pushdown transducer for S.

Example 2. Let d:N"—N" be a morphism defined by d(a) = aa for
each a in N. Then the relation defined by

S = {d(z) = zz® |2€Z "}

can be realized by a deterministic two-way transducer. The same conclusion
holds if « ranges over an arbitrary given regular language instead of ¥ .

In order to be able to express relations defined by deterministic two-way
transducers in terms of type L for some family L of language we shall need the
following definitions. Let w be a word in the alphabet ¥ and h,, ..., h;, for
k>1, be a set of endomorphisms of ¥ ’.

Define
Lo = {’lU}

k
Li+1 = L,U Uth(L,) for ZZO
J=
and
[+
L = U L,'.
1=<0

Languages L thus defined are called DTOL Languages. Further a language L is
called an HDTOL Language iff it is a morphic image of a DTOL language. The
family of all HDTOL languages is denoted by HDTOL. More about these and
related language families can be found from [RS].

The family HDTOL has the following properties. Firstly, it contains all reg-
ular or even all linear context-free languages as is easy to see. Secondly, it is
incomparable with the family of context-free languages, cf. [RS]. Finally, the most
important property of HDTOL languages from the point of view of this note is
that these languages are “purely morphically defined”. As an illustration of the
power of HDTOL languages we give the following example.
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Example 3. The language
L'={zz%z |z€{a,b}}
4 o
is an HDTOL language. Indeed, L' = h( U L;), where
1 =0
L, = {w}
Liys = LiUh (L)Uhy (L), for i>o,

and the morphisms ﬁa,h,,_:{w,a,b,A,Z,B,B?}* — {a,b,A,Z,B,E}* and the mor-
phism h:{w,a,b,A,A,B,B)}* — {a,b}" are defined as follows:

hy: w—AAA hy: w — BBB h: w — €
A—aA {l_—»l_z_A A—a
A —Aa A —Ab A—a
B —aB B —bB B —b,
B — Ba B — Bb B —b
a —+a a —a a —a
b —b b —b b —b

where € denotes the empty word.

3. Results

In this section we consider systems of equations defined by the above three
types of transducers, and conclude that in each case an equivalent finite subsys-
tem can be effectively found.

Theorem 2. For each rational system S of equations (given by a finite
transducer) an equivalent finite subsystem S’ can be effectively found.

Outline of the proof. A straightforward consequence of pumping proper-
ties of regular languages and of the following implication, cf. [ACK] or [K] : For
any words w,y,u,v,r,y,u and ¥ we have

Ty =Ty
TuYy = TUY{ = TUvy = TUVY
TVY = TVY

0

It follows from the proof of Theorem 2 that not only an equivalent finite
subsystem S’ can be found but it can also be strongly bounded. Indeed, assume
without loss of generality that S is given by a normalized finite transducer (that
is to say that inputs read and outputs produced in single transition steps are of
the length at most 1). Then the S’ can be chosen to contain only those equations
in which the words (in unknowns) are shorter than two times the cardinality of
the state set of the finite transducer.
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The proof of Theorem 2 used pumping properties of regular languages.
Similarly we can use pumping properties of context-free languages to establish
the Ehrenfeucht Conjecture for this family. However, in this case the detailed
proof is quite lengthy, cf. [ACK], but since everything can be done effectively we
conclude by Theorem 1 the following.

Theorem 3. For each algebraic system of equations (given by a pushdown
transducer) there effectively exists an equivalent finite subsystem.

Next we turn to consider systems of equations defined by deterministic
two-way transducers. In order to establish the above compactness property also
in this case we need a different approach. In this case the systems of equations
are not characterized by any family of languages (cf. discussion after Theorem 5),
however, the family of HDTOL languages plays an important role. For this fam-
ily we have:

Theorem 4. Each system of equations of the type HDTOL possesses effec-
tively an equivalent finite subsystem.

Proof: By Theorem 1 it is enough to show that the Ehrenfeucht Conjec-
ture holds effectively for HDTOL languages. This, in turn, was shown in [CK2],
cf. also [CK1], using the (noneffective) validity of the Ehrenfeucht Conjecture, cf.
[AL], and a decidability result of Makanin cf. [Mak], stating that it can be tested
whether a given equation over a free monoid has a solution.

0

From Theorem 4 we obtain

Theorem 5. FEach system S of equations defined by a deterministic two-
way transucer possesses effectively an equivalent finite subsystem.

Proof. Let S be defined by a deterministic two-way transducer 7" which
means that

(u,v) €S iff v="T(u)

Without loss of generality we may assume that the input and output alphabets of
T coincide, say are equal to IN. Since we can allow endmarkers in our transduc-
ers it is easy to construct from T another deterministic two-way transducer, say
T,, such that

Ti(u) =% T(u) forall uw €N’
where 4 is the barred copy of u.

Next we define the language
(2) L ={Ty(u) |lu eN}.
Then, clearly
§ = {(h(u), K(w) |u €L}
where the morphisms k,k : {NU N }‘ are defined by
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h{a) = ¢

and h(a)=a forall ain N
h(a)=a and h =€

a) forall ain N.

So, by Theorem 4, it remains to be shown that L is an HDTOL language.

In order to see this we first note that the domain of T is regular, cf. [H].
Secondly, it was shown in [ERS] that the image of an EDTOL language, which is,
by definition, of the form K N %" where K is a DTOL language and ¥ is an
alphabet, under a deterministic two-way transducer is an EDTOL language, too.
Finally, it is known that the families of EDTOL and HDTOL languages coincide,
cf. [NRSS], and so by the fact that each regular language is an HDTOL language
we conclude that L in (2) is an HDTOL language. Furthermore, by the above
references, it can be effectively constructed from 7 completing the proof of

Theorem 5.
[m]

By the proof of Theorem 5, each system of equations defined by a deter-
ministic two-way transducer is of type HDTOL. The converse is not true. In
fact, the family of systems of equations defined by deterministic two-way trans-
ducers cannot be morphically characterized by any family of languages, since,
for example the domains and the images of these transucers determine different
families of languages, as was seen in the proof of Theorem 5. It also follows from
the proof of Theorem 5 that systems of equations of the form

(3) {(u,T(u))|u €L} with L € HDTOL and T a deterministic two-way
transducer

are of type HDTOL, yielding the following strengthing of Theorem 5:

Theorem 8. For each system of equations of the form (3) there effectively
exists an equivalent finite subsystem.

The fact that deterministic two-way transducers are single-valued implies
that (3) does not give all systems of equations of type HDTOL either.

4. Applications and concluding remarks

We start this final section by pointing out a couple of applications of our
previous results. We hope (and believe) that more will be found in the future.

Application 1. Let X be a finite set of words over an alphabet ¥. We
consider the semigroup X generated by X, and we are particularly interested
in the set of all identities of X* in £°. It is straightforward to see, cf. e.g.
[Mak], that this set of identities forms, in our terms, a rational system of equa-
tions with X as the set of variables. Consequently, by Theorem 2, it has a finite
equivalent subsysté;n which, moreover, can be effectively found. This means that
all the identities of Xt are actually implied by a finite effectively findable set of
identities of X, cf. also [HK] and [S] for a more general result. As a conclusion
we have found a short proof for the following result:

Corollary 1. It is decidable whether two finitely generated subsemigroups
of a free semigroup are isomorphic.

Application 2. Let us call a word z palindromic if z = 2% . Now we
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raise the question of deciding whether a given language is a subset of the set of
all palindromic words. For regular languages the problem can be settled by
Example 1 and Theorem 3. Indeed, let L be a regular language. Then the rela-
tion {ng,xR) |z €L} is algebraic and hence equivalent with a finite relation
{(z,z") |z € F}, where F' C L and can be effectively found. Now, the result fol-
lows since L is palindromic iff the relation {(x,z%) |z € L} holds.

A similar argumentation can be used to solve the problem for HDTOL
languages, since the relation {(m,wR) |z €L}, where L € HDTOL,, is of type
HDTOL, cf. Example 3 and the proof of Theorem 5. More about these and simi-
lar problems can be found in [HKK].

As a concluding remark we want to compare our results to some related

results. We first observe, cf. also [CK1] and [ACK]:

Corollary 2. The equivalence problem for rational (resp. algebraic or of
type HDTOL) systems of equations is decidable.

Proof. By our theorems in Section 3, in each case systems of equations
can be replaced by finite systems of equations. Hence, the result follows since the
equivalence of two finite systems of equations can be tested as was shown in
[CK1].

O

By Corollary 2 we can decide whether two finite transducers defines
equivalent systems of equations. On the other hand it is a well-known result cf.

[Gr] or [B] that it is undecidable whether two finite transducers are equivalent,
that is whether they define the same relation.
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