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Abstract

A conver set can be defined as a set of points whose intersection
with any line is either empty or connected. The notion of a convex set is
one of the most fruitful concepts in contemporary geometry and that of
the convez hull of a set of points (the smallest convex set containing the
points) is considered central to computational geometry. For practical
reasons computational geometry has also studied orthogonally convez
sets which are sets of points whose intersection with any horizontal or
vertical line is empty or connected.

In this paper we generalize the notion of a convex set to include
both definitions of convexity and derive several basic results based on
this definition thereby unifying these two areas.

Keywords: Convex Sets, Convex Hulls, VLSI Design, Restricted-
Orientation Convexity, Computational Geometry.

1 Introduction

In the fifteen years or so of its existence the field of computational geom-
etry has bifurcated quite markedly into the study of algorithms for either
orthogonal® or arbitrarily oriented objects. Possibly the main reason for
this is that the major application areas of computational geometry, namely:

*This work was supported by Natural Sciences and Engineering Research Council Grant
No. A-5692.

tData Structuring Group, Department of Computer Science, University of Water-
loo, Waterloo, Ontario, N2L3G1 Canada. e-mail: dwood or gjerawlins %watdaisy
Q@waterloo.csnet

1An orthogonal (also known as rectilinear, isothetic, iso-oriented, x-y or aligned) object
is a planar figure composed solely of horizontal and vertical lines, segments and rays.
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VLSI design; computer aided design; digital picture processing; computer
vision and computer graphics, have traditionally placed heavy emphasis on
orthogonally oriented objects. This in turn is due to technical restrictions,
as for example, the fact that most input/output devices and layout schemes
have been orthogonal. Recent technical advances in VLSI design however
now allow objects to have more than the usual two orientations and as a re-
sult designers are now concerned with objects with horizontal, vertical and
lines of 45° and 135° ([16]). Some companies now offer the capability of any
finite number of orientations.

Another justification for the special study of orthogonal polygons might
be that such polygons are very constrained and so it is a commonplace that
algorithms for orthogonal polygons are very “tight” ([12]) since we can very
often examine all possible cases. It is natural to speculate on whether we can
increase the number of allowed orientations and still have fast algorithms.

Convex sets are a comparatively recent but very fruitful concept in ge-
ometry having applications in optimization, statistics, geometric number
theory, functional analysis and combinatorics ([5,7]) and this is one of the
reasons for the inordinate interest in convex sets in computational geome-
try. But its study is also practically motivated since the convex hull of an
object typically has much less complexity than the object itself and so it
is much used in testing for intersections among objects ([7,14]).2 Convex
polygons also crop up in decomposition results since, as is typical, there are
very good algorithms for convex polygons and so polygons are decomposed
into convex subparts to answer various queries ([7,14]). Finally, the convex
hull was one of the first concepts studied in computational geometry ([13])
and so deserves especial attention.

In [9] we defined and gave optimal algorithms to construct various new
versions of the convex hull of a finitely-oriented polygon (meaning a polygon
whose edge orientations belong to only a fixed finite set of orientations). The
new notion of convexity introduced in that paper was a natural generaliza-
tion of the well-known concept of orthogonal convexity (see [6], for example)
and new versions of the hull introduced there were meant to generalize the
definitions used with respect to orthogonal polygons. As it turned out, this
was an advantageous generalization since the new notion completely encom-
passed the old and there was no additional complexity, in fact the convex
hull algorithms were slightly simplified. The reason for the simplification
being that the generalization allowed the identification of inessential details
that were specific only to orthogonal polygons.

In this paper we investigate the next most general concept of restricted-
ortentation converity and apply it to arbitrary sets of points thereby gen-

2The same reason suffices to explain the great popularity of the “bounding box™ of an
object in computer graphics and computer vision.
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eralizing all our previous results and, among other things, verifying a few
otherwise unsupported observations in the literature.

Curiously, our investigation demonstrates that in the plane we may treat
restricted-orientation convexity just as if it were orthogonal convexity. In
other words, it is always possible to construct a case analysis which is only
concerned with at most two orientations at a time. It seems natural to
conjecture that this relationship also holds in three dimensions (that is,
we only need results for three dihedral orientations) and so on to higher
dimensions. This result is interesting on several levels, the most important
of which is the purely practical one that, tn terms of convezity, there is no
loss in going from orthogonal to arbitrarily many orientations.

Because we shall refer to some of them in the body of the paper we list
here some of the most salient properties of planar convex sets ([3]). In the
following P is a planar convex set:

1. P is simply connected.
. The intersection of P and any line is either empty or a connected set.

. P is the intersection of all convex sets which contain it.

2

3

4. If p & P then there exists a line separating p and P.
5. P is the intersection of all halfplanes which contain it.
6

. If p,q € P then the line segment joining p and ¢ is in P.

Except for property (1), all of these are defining characteristics of convex
sets. In the concluding section of this paper we list the corresponding prop-
erties of our more general “convex” sets which include these as special cases.

This paper is subdivided into the following sections: Section 2 estab-
lishes the conventions that we will be adhering to in this paper. Section 3
contains the definition of these new “convex” sets and several of their more
elementary properties. Section 4 contains two theorems; the “Separation
Theorem” which gives exact conditions on when a point can belong to the
“convex hull” of a set and the “Decomposition Theorem” which establishes
a kind of incremental property of these new “convex” sets. Section 5 in-
troduces the notion of a “stairline” which serves as a suitable analogue of a
straight line for these sets. Section 6 contains two theorems; the “Character-
ization Theorem” which characterizes these new sets completely in terms of
their boundary (using stairlines) in much the same way that planar convex
sets have been so characterized and the “Visibility Theorem” which charac-
terizes these sets in terms of a generalization of visibility. Finally, in section
7, we summarize the properties established in this paper and point the way
to further work in this area.
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2 Agreements

All of our results are described in R? since planar relationships admit of
easy visualization, but the results are easily generalizeable to R®" (and in
fact to any finite-dimensional normed linear space) in the usual way. We
assume the reader’s familiarity with such elementary topological concepts
as (path-) connectedness, closure, simplicity, separability, support, interior
and boundary of planar figures.

We shall denote subsets of %2 by bold face capital letters (e.g., P and
Q) and elements of such sets by lower case italic letters (e.g., p and ¢). We
treat a subset of R? as a set of interior points together with its boundary.

We shall use the symbol O, with or without subscripts, to refer to a set
(possibly empty) of orientations. A collection of lines, segments and rays
is said to be O-oriented if the set of orientations® of the elements of the
collection is a subset of 0. Thus we shall speak of “O-lines”, “O-segments”
and “0O-rays” to mean O-oriented lines, segments and rays. By extension,
we call a polygon an “O-polygon” if its edges are O-segments.

Because we wish to preserve symmetry of direction in this paper we
shall assume that the set O is symmetric about the horizontal, that is, if
it contains an orientation § < 180° it also contains an orientation ¢ + 180°
and similarly for § > 180°. Hence we shall specify a set of orientations only
by the set of orientations less than 180°, it being understood that all the
complementary orientations are present. So, for example, if we say that
the set of orientations 0 has two orientations we mean that it has four
orientations two of which are complementary to the other two.

The notion of O-orientation has been previously defined (for finite O)
in [4,9,16,17] and, in a slightly related form, in [2]. As mentioned in the
Introduction there is a vast literature concerning the special case of O =
{0°,90°} (more exactly, 0 = {0°,90°,180°,270°}). {0°,90°}-objects are
more usually called orthogonal (also; rectilinear, isothetic, iso-oriented, x-y
or aligned) objects (see [7,18] for further references).

We shall assume that O is representable as a list of disjoint closed ranges
where some (or all) of the ranges may collapse to just single orientations.
For example, O may be the set {f1,[02,83),[04,05],06,07} (all 6; < 180°).
(Note that we do not list the orientations greater than 180°.)

We also assume that O is kept in sorted order so that given a range in
O we can speak of the “next” range in O (the successor of the last range is
the first range). In the above example, 6; < 0; < 03 < 04 < 05 < 05 < 07

3The orientation of a directed line is the counterclockwise angle made with the hor-
izontal in a directed plane (in the goniometric sense). The orientation of an undirected
line is the smaller of the two possible orientations. We will only discuss undirected lines
in this paper.
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and [02, 03] is the “next” range after the “range” 8;(= [0y, 6:]).

We call the open range (f;,0;) O-free if there are no orientations in O in
the range (8;,62). We call the open range (01, 0;) a mazimal O-free range if
(61, 82) is O-free and 8,83 € 0. If O has n ranges then O divides the set of all
orientations, [0°,180°), into 2n maximal O-free ranges. In the example the
maximal O-free ranges are (0,,03), (93,04), (05, 05), (96, 87), (67,61 + 180°),
plus the five complementary ranges.

We shall use the notation L(p,q) to mean the line passing through the
points p and ¢ and similarly, the notation LS(p, ¢) to mean the line segment
with endpoints p and g. We also use the notation ©(L) (where L is a line,
segment or ray) to mean the orientation of L. If L is a line, segment or ray
and 6(L) ¢ O then by the maximal O-free range of L we mean the unique
maximal O-free range in which (L) lies.

Any collection of lines, segments and rays having (one, two or) three
orientations in the plane can be mapped onto another collection having the
same incidence structure as the first but with (one, two or) three completely
different orientations. For this reason we frequently, for ease of exposition,
assume that when considering a particular L and O where 6(L) ¢ O and O
has two or more orientations that (0°,90°) is L’s maximal O-free range.

3 Restricted-Orientation Convexity

Property (2) of convex sets stated in the Introduction can be taken as a defin-
ing characteristic of convex sets (as are all the others except for property
(1)). A set is said to convez if its intersection with any line is empty or con-
nected. Here however we are only interested in intersections with a particu-
lar class of lines, namely those whose orientations belong in some restricted
set of orientations. As a result we speak of restricted-orientation convezity.
The phrasing is somewhat unhappy since it implies that it is a restriction on
normal convexity when in fact the opposite is the case, restricted-orientation
convexity includes (normal) convexity as a special case.

From this point on we assume that we have chosen some fixed set O of
orientations (none of our results depend on the particular set chosen).

Definition: We say that P is O-convez if the intersection of P and any
O-line is either empty or connected.

(Note that if P is a polygon then P is {6}-convex if and only if P is
monotone in § + 90°.)

This is a natural generalization of the notion of orthogonal convexity
— a set is orthogonally convex if its intersection with any horizontal or
vertical line is either empty or connected. The practical motivation for such
a definition is that in many instances (example, VLSI design) the possible
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(a) (b) (©)

(d) (e) (0

Figure 1: O-convex figures.

lines are restricted to just horizontal and vertical ones and we are mostly
concerned with the intersection of these lines and planar figures. Orthogonal
convexity has been defined not only in computational geometry ([18]) but
also in digital picture processing ([11]) and for polyominoes ([1]).

Figure 1 contains some example figures which are O-convex for various
0. Figure 1 (a) is not O-convex for any non-empty O, but is O-convex
if O = O, as are all the other figures. Figures 1 (b) and (c) are convex
with respect to any horizontal line, as are (d), (e) and (f), so they are all
{0°}-convex besides being @-convex. Note that (b) and (c) are not convex
in any other direction. Figures 1 (d), (e¢) and (f) are convex with respect
to any vertical line as well and so they are also {0°,90°}-convex. Note that
(d) is not convex in any other direction. Figures 1 (e) and (f) are convex
with respect to any line with orientation in the range {[90°,180°]} and so
they are also {{90°,180°]}-convex. Note that (e) is not convex in any other
direction. Figures 1 (f) is O-convex for any 0.

Lemma 3.1 All planar convex sets are O -convez.

Proof: If O is empty then, vacuously, all sets are O-convex. Suppose that
O is non-empty. Since convex sets are by definition sets whose intersection
with any line is either empty of a connected set then they are e fortior:
O-convex for any 0. O

Indeed, we can go further and completely characterize convex sets as a
sub-class of O-convex sets:

Observation: A planar set is convex if and only if it is {[0°, 180°)}-convex.
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In fact it is easy to construct examples to show that this is true for no
smaller set of orientations. For example if we delete just one orientation
(say 8;) then any set consisting of just two distinct points on a {f;}-line is
{8}-convex for all § # 6; but is, of course, not convex. In fact examples
like these establish that the statement “for all P, P is connected if P is
O-convex” holds if and only if 0 = {[0°,180°)}.

Note that the following sets are convex, and hence O-convex for any O:
the empty set, R2, and, any point, line, segment, ray or halfplane in ®2.

There is a straightforward extension of O-convexity to R" which singles
out a subclass, 0, of (n — 1)-dimensional hyperplanes and defines a set to be
O-convex if its intersection with any translate of such a hyperplane is empty
or connected. Any k-flat in R" is O-convex in that sense. For n = 2 the
flats are: any point (a O-dimensional hyperplane), any line (a 1-dimensional
hyperplane) and the whole plane (a 2-dimensional hyperplane).

Lemma 3.2 If C i3 a non-empty collection of O-convex sets, then C is
O-convez.

Proof: The result is vacuously true if 0 is empty since all sets are @-convex.
If O is non-empty but there are no two points in [ C which lie on an O-line
then the intersection of any O-line and () C is either empty or a single point.

Suppose then that O is non-empty and that there exists at least two
points in (}C which lie on an O-line. If such a pair exist then they belong
to each member of C. Since each member i8 O-convex, the segment joining
such a pair is in each member of C and so is in [1C. Hence () C is O-convex.

&

Definition: We call the intersection of all O-convex sets containing P the
O-hull of P, and write O-hull(P).

Observe that VO,P; P C O-hull(P) even when O =@ or P =@ (or
both).

Lemma 3.3 VO,P ; O-hull(P) ezists, is unique and is the smallest O-
convez set which contains P.

Proof: Since the hull is defined as the intersection of a non-empty collection
of sets (there exists at least one set which contains P and is O-convex,
namely the entire plane R?) it always exists and is unique.

O-hull(P) contains P and it must be O-convex by Lemma 3.2. Also, no
O-convex set containing P can be smaller than 0-hull(P) since O-hull(P) is
contained in all such sets. Since O-hull(P) is unique it is then the smallest
such set. &
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This means that we can speak of the O-hull of any set and be assured
of its existence and uniqueness. If 0 = @ then O-hull(P) = P, for all P,
since P is the smallest set containing P which is not required to be convex
in any direction. Similarly, if P = @ then O-hull(P) = P, for all O, since
the intersection of every O-line and P is empty. When 0 = {0} and P is
a polygon then the O-hull of P has been called the “f-visibility hull” of P
([12,15]).

Note that in Figure 1, (f) is the O-hull of (a) for any non-empty O and
(d) and (e) are the {90°}-hulls of (b) and (c) respectively.

Lemma 3.4 VO,P; P is O-convex if and only if O-hull(P) =P

Proof: O-hull(P)=N{Q |P C Q A Q is O-convex}. If P is O-convex
then P must be a member of the intersected family, and so O-hull(P) =
MQ | P CQ A Qis O-convex} NP. Hence, O-hull(P) € P. But
P C O-hull(P), hence, O-hull(P) = P.

Conversely, if O-hull(P) = P then, since 0-hull(P) is O-convex, P is
O-convex. &

Note that when O is the set of all orientations then this lemma reduces
to property 3 stated in the Introduction.

Corollary 3.1 VO,P; O-hull(O-hull(P)) = O-hull(P)
Lemma 3.5 VO,P,Q; P C Q= 0-hull(P) C O0-hull(Q)

Proof: If P C Q then 0-hull(Q) is an O-convex set containing P. But
O-hull(P) is contained in all such sets.

Lemma 3.6 If O is non-empty and P is connected, then O-hull(P) is sim-
ply connected.

Proof: If P is empty we have nothing to prove, so suppose P is non-empty.

Suppose that O-hull(P) is disconnected. Since P is connected it can only
belong to one of the connected components of O-hull(P) (it must belong
to at least one otherwise O-hull(P) does not contain P). This component
must be O-convex, otherwise the entire hull is not O-convex. Hence we
may discard all of the other components of O-hull(P) and have a smaller
O-convex set which contains P. But O-hull(P) is the smallest such set.
Therefore O-hull(P) must be connected if P is connected.

Suppose that O-hull(P) is connected but contains a hole. Since O is
non-empty there must exist at least one O-line which cuts this hole. Hence
there exists an O-line whose intersection with O-hull(P) is neither empty nor
connected. But this implies that O-hull(P) is not O-convex hence O-hull(P)
must be simply connected. &

Compare this lemma with property (1) stated in the Introduction.



Restricted-Orientation Convexity 9

Corollary 3.2 If O is non-empty and P 15 connected and O-convez, then
P 15 simply connected.

Proof: If P is O-convex then it is its own hull. &

Lemma 3.7 A set 1s O-convez if and only if it consists of a set of disjoint
connected components such that each component is O-convez and no O-line
intersects any pair of components.

Proof: Let P consist of a set of disjoint connected components such that
each component is a connected O-convex set and no O-line intersects any
pair of components. Since no O-line can intersect any two of them simulta-
neously and each component is separately O-convex, the entire collection is
O-convex.

Conversely, let P be disconnected and O-convex. If one of its components
is not O-convex then P cannot be O-convex. Similarly, if there exists an
O-line which intersects any two components then P cannot be 0-convex. &

Observe that if O is the set of all orientations then for each pair of
connected components there exists at least one O-line which intersects them.
Hence, all {{0°, 180°)}-convex sets are connected.

4 The Decomposition Theorem

Intuitively, we think of the action of forming the 0-hull of a set P as sweep-
ing a line of each orientation in 0 across P and adding suitable line segments
to the hull formed so far so that it is convex in each direction in 0. (Note
that if O is empty then we do not add anything to P.) Thinking of it this
way it does not seem sensible that the hull we eventually produce is changed
if we decide to change the order of orientations in which we sweep. As we
shall prove in Theorem 4.2 this is, in fact, the case but only for connected
sets. For disconnected sets Lemma 4.2 is the strongest possible result.

Lemma 4.1 IfP is connected and p € O-hull(P), then each O-line through
p intergects P.

Proof: If either O or P is empty then the lemma is vacuously true since
then O-hull(P) = P. Further, if p € P we have nothing to prove. So
suppose that both O and P are non-empty and that p & P.

Suppose that there exists a § € O such that the {#}-line through p
does not intersect P. Then, by the continuity of % and the fact that P
is connected, there exists a convex set (and hence an O-convex set) which
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contains P and does not contain p, namely, any halfplane bounded by a
{8}-line separating p and P. Hence p cannot be in the intersection of all
O-convex sets which contain P and so cannot be in the hull. &

Theorem 4.1 (The Separation Theorem) Let P be connected and p &
P. p € O-hull(P) if and only if there ezists a § € O such that the {0}-line
through p intersects P in, at least, two points on either side of p.

Proof: If either O or P is empty then the lemma is vacuously true since
then O-hull(P) =P. So suppose that both 0 and P are non-empty.

If p ¢ P and there exists an O-line which intersects P at two points
which bracket p then p must be in the O-hull of P (else the O-hull would
not be O-convex).

Conversely, if P is connected and p € O-hull(P)\ P then all O-lines
through p must intersect P (Lemma 4.1).

We shall prove the claim for the three cases in which we have either
exactly one orientation in O, two or more with at least one O-free range
and finally if O is all orientations (that is, there are no O-free ranges).

Case 1: 0 = {0}

The {6}-line through p must cut P. Suppose that it only cuts it on one
side of p (say to the right of p). Then we may delete p and all other points
in {0}-hull(P) on the left f-ray from p and so obtain a smaller {8}-convex
set which contains P. But {#}-hull(P) is the smallest such set. Hence p
cannot be in {#}-hull(P). Hence the {#}-line through p must cut P on both
sides of p.

Case 2: O contains two or more orientations but not all.

Every O-line through p must cut P. Suppose that none of them cut P
both to the left and to the right of p. Since P is connected this means that
there exists at least one O-convex halfplane containing P and not p. The
simplest such halfplane is bounded by the first {#}-line through p which does
not cut P to the left of p and the first {#}-line through p which does not cut P
to the right of p (see Figure 2 for a simple example with 0 = {0°,90°,135°}).
This halfplane must be O-convex as no O-line can intersect both of the
boundary O-lines since the entire range is O-free.

Hence p cannot be in O-hull(P) for it would not be contained in the
intersection of all 0-convex sets which contain P. Hence at least one of the
O-lines through p must cut P to the left and to the right of p.

Case 3: 0 = {[0°,180°)}.
Here O-hull(P) is the normal convex hull of P. Since O contains all
possible orientations and, by Lemma 4.1 each of them must intersect P
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PN e -

Figure 2: A halfplane containing P and not p.

then there must exist an infinity of O-lines which intersect P at points
bracketting p. &

Observe that if O; C Oa then O1-hull(P) C Oz-hull(P) for all P since
Oz-hull(P) contains P and is O;-convex. In some sense as a set of orien-
tations O “grows” to include all possible orientations, the set O-hull(P)
“grows” to the (normal) convex hull of P.

Lemma 4.2 V0,02, P ; O1-hull(P)U Oz-hull(P) C O1-hull(0z-hull(P))
- (01 U 02)-hull(P)

Proof: V0;,P ; P C 0;-hull(P) and so, from Lemma 3.5, O1-hull(P) C
O1-hull(Oz-hull(P)). Also, O2-hull(P) C O1-hull(Os-hull(P)). Hence, (01—
hull(P) U Og-hull(P)) C O1-hull(Os-hull(P)).

Since 0z C 01 U 02 an (01 U 0z)-convex set is Oj-convex. Hence,
VP ; Og-hull(P) C (01 U 02)-hull(P). And so, by Lemma 3.5 we have
that, O1-hull(Oz-hull(P)) C O1-hull({ 01U O2)-hull(P)) = (01U 02)-hull(P)
(since an (03 U Oz)-convex set is O1-convex). O

This result also holds if we replace O1-hull(Oz-hull(P)) by Oz-hull(
O1-hull(P)).

Simple counter-examples show that all these results are best possible, in

that, there exists sets for which the respective converses are false. However,
we can strengthen Lemma 4.2 considerably by restricting P to be connected.

Theorem 4.2 (The Decomposition Theorem) If P is connected then
V01, 0,

(01U O)-hull(P) = Oy-hull(Oz-hull(P))
O,-hull(0;-hull (P))
= O -hull(P) U O -huII(P)
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Proof: First, from Lemma 4.2 we have that,

O1-hull(P) U Oz-hull(P) C 0y-hull(O2-hull(P)) C (01 U Og)-hull(P).

Therefore all we need establish is that if P is connected then (O; U
02)-hull(P) C (O1-hull(P) U Os-hull(P)).

Observe that if P is empty or if both 0; and O; are empty then the
theorem is true. So assume that P is non-empty and O; U Oz is non-empty.

Let p € (01 U Og)-hull(P).

If p € P then p is in both the 0;-hull and the Oz-hull of P. Hence
p € (O1-hull(P) U Og-hull(P)).

If p € (01U 02)-hull(P) \ P then, from Theorem 4.1, we know that there
must exist a § € 0; U 02 such that the {}-line through p cuts P to the
left and right of p. But this means that p must be in either 0;1-hull(P) or
in Oa-hull(P) for # belongs to one of 01 or Oz. Hence, p € (O1-hull(P) U
Oz-hull(P)).

Hence, (01 U 02)-hull(P) C (01-hull(P) U 0z-hull(P)). O

Corollary 4.1 If P is connected and O = |J O; then (U O;)-hull(P) =
U(Os-hull (P))

This corollary verifies Toussaint and Sack’s observation ([15]) that the
(normal) convex hull is the union of the “visibility hulls” over all directions
of visibility.4

Sack ([12]) showed, in the orthogonal case, that the horizontal hull of
the vertical hull of an orthogonal polygon (or alternately the vertical hull
of the horizontal hull) is equivalent to the union of both hulls. It was taken
as self-evident that the union is the smallest horizontally and vertically
convex polygon enclosing the orthogonal polygon. Corollary 4.1 validates
that assumption.

This decomposition result immediately yields an algorithm to find the
hull of any connected set given that we can find the hull in one direction.
It turns out though that connected O-convex sets have considerably more
structure than this and we can exploit this structure to construct optimal
algorithms to find the hull of any connected set (see [9] for the special case
of finite O, see [8] for the general case).

5 The Notion of a Stairline

To characterize O-convex sets we need a new definition of “line” more ap-
propriate to O-convex sets. We call these generalized lines “stairlines” and

4Interestingly, the Decomposition Theorem bears a strong resemblance to the double
integration rule where if f(z,y) 1s continuous then fff(z,y)dzdy = fff(z,y)dydz.
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we define and investigate them in this section. First though we need the
concept of the span of a continuous curve in the plane.

Definition: We say that the continuous plane curve S has span [0, 0]
(61 < 8,) if for any two distinct points p,g € S 8(L(p, q)) € [01,02]).

(Of course, 8, = 85 if and only if the curve is a line, segment or ray with
orientation 6;.)

As an illustration: if S is a continuous curve with span [0°,90°] and
(z1,91), (z2, y2) are any two points on S then either (z; < z; and y1 < y3)
or (z1 > z2 and y; > ¥2).

Definition: We say that a continuous curve in the plane with span [0, 6]
is an O-stairline if (0,,0;) is O-free.

(Note that if 8; = 8, then (8, 02) is vacuously O-free since there are no
orientations in the range and so any line, segment or ray is an O-stairline.)

We chose the name “stairline” as a merger of (orthogonal) staircases
([18]) and (straight) lines. By analogy with lines, segments and rays we also
use the terms “O-stairsegment” and “O-stairray” with the obvious mean-
ings. Note that a line, segment or ray of any orientation is an O-stairline,
O-stairsegment or O-stairray.

Remark: To avoid excessive terminology we shall assume for the rest of his
paper that O is understood and we shall just refer to “stairlines” (“stairseg-
ments” or “stairrays”). Also, if a result is stated for stairlines we do not
add the cumbersome qualifications that it also holds for stairsegments and
stairrays.

Lemma 5.1 If S is a stairline, then S is O-convez.

Proof: Suppose S is an stairline with span [0y,0;]. If §; = 0, then S is a
straight line and is hence O-convex. Suppose then that 6; # 6;. Suppose
that there exists an O-line L which cuts S at two distinct points p and gq.
Since S has span [;,0;] then (L) = 6(L(p, q)) € [01,02]. Since (8;,02) is
O-free then ©(L) can only be 6, or ;.

Suppose ©(L) = 8, and §; € O. Without loss of generality assume that
[61,82) = [0°,90°] and that p is to the left of ¢ (that is, p and ¢ lie on a
horizontal line). Consider any point r on S in between p and ¢. r must
be on or above the horizontal line segment LS(p, q) otherwise ©(L(p,r)) &
[01,82]. Similarly, r must be on or below the horizontal line segment LS(p, q)
otherwise ©(L(g,r)) & [01,02]. Hence r € LS(p, ¢) for all r in S in between
p and ¢q. That is, between p and ¢, S is a line segment. Hence, even if 0;
(or 83) is an orientation in O then S is O-convex. O
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e _

Figure 3: A variety of stairsegments.

If S divides the plane into two halfspaces we call them both “stair-
halfplanes” for obvious reasons. Beware! It is easy to fall into the habit of

thinking of “stair-halfplanes” as just halfplanes with “wavy line boundaries”.
This is only true if O # @.

Corollary 5.1 All stair-halfplanes are O-convez.

Corollary 5.2 If P is connected and there exists a stair-halfplane which
contains P and not the point p, then p & O-hull(P).

Definition: We say that a stairline composed of a sequence of connected
line segments is a polygonal stairline.

It is easy to show that if a connected sequence of segments I,1s, ..., I,
forms a stairline, stairsegment or stairray with span [0, 6] then

(1)Vi<i<m; O(L) € [8:,0:].

(2)V2<i<m-—1; [ meetsl;_ and l;;, only at its endpoints.

Polygonal stairlines have been previously defined for the special case
of orthogonal objects (see [18] for references) in that special case they are
known as “staircases”. See Figure 3 for examples of a stairsegment, a polygo-

nal stairsegment, and an O-oriented polygonal stairsegment for 0 any subset
of {[90°,180°]}.

Definition: We call the set of all stairsegments joining p and q the O -region
of p and ¢q and write O-region(p, q).

Note that if (LS(p, ¢)) € O then O-region(p,q) = LS(p,q). Of course,
if O consists of all orientations then, for all p and ¢, O-region(p,q) =
LS(p,q)- On the other hand if O is empty then every range is O-free and so
any continuous curve connecting p and q for any p and ¢ is a “stairsegment”,
hence @-region(p, ¢) = R2.

Definition: If 0 has at least two orientations then we say that the parallel-
ogram induced by p and q, ||pq, is LS(p, q) if ©(LS(p, ¢)) € O. Else it is the
parallelogram with diagonal endpoints p and ¢ and with sides of orientations
6, and 0,, where (fy,602) is LS(p, ¢)’s maximal O-free range.
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Figure 5: A stairsegment from p to ¢ through r.

Note that if O = {[0°,180°)} then, for all distinct p and ¢, |[pg =
LS(p,q). See Figure 4 for examples of ||pg for 0 = {0°,90°}.

If 6(LS(p,q)) ¢ O then we call the two sets of segments connecting p
and ¢ the arms of ||pg.

Lemma 5.2 Ifp and q are two points in the plane and O 1s a set of at least
two orientations, then any stairsegment joining p and ¢ must lie wholly in
|lpg. Further, all points in ||pq lie on some stairsegment joining p and q.

Proof: If 6(LS(p,q)) € O then the lemma is true, so suppose otherwise.
Without loss of generality, let (0°,90°) be LS(p, ¢)’s maximal O-free range.

If any continuous path from p to ¢ leaves the parallelogram ||pg then it
can only be monotone in either the horizontal or vertical direction but not
both and so cannot be a stairsegment. Hence when O contains two or more
orientations then all stairsegments must lie in ||pg.

If r € ||pg the we can easily construct a stairsegment joining p and
¢ passing through r (see Figure 5 for a simple example stairsegment for

0 = {0°,90°}). O

Hence, when O has two or more orientations, O-region(p, ¢) = ||pg.

With respect to O-convex sets stairlines are the most natural analogues
of straight lines with respect to convex sets, in that: there exists a stairseg-
ment which realises the shortest distance between any two points; an O-line
meets a stairline at at most one point (unless collinear with some part of
the stairline); and two stairlines with disjoint spans can only intersect at at
most one point. However, the intersection of two stairlines with non-disjoint
spans is either empty, connected or disconnected — unlike the simpler case
for straight lines. Further, stairlines can be non-intersecting without being
parallel (in the conventional sense). Also two points may define exactly one



16 Rawlins and Wood

O-line or infinitely many stairlines (that is, all stairlines passing through
their O-region). Perhaps a closer analogy would be to say that two stair-
lines with non-disjoint spans are parallel and that they are collinear if they
intersect anywhere. If two stairlines have disjoint spans then they behave
just like normal straight lines (i.e., intersect exactly once etc.).

With stairlines standing for lines we can generalize convexity in other
ways than the one we investigate in this paper. For example, we call a set P
“strongly O-convex” if for every pair of points p and ¢q in P all stairsegments
with endpoints p and q lie in P. It is possible to prove that this definition
of convexity always produces convez (in the normal sense) O-oriented sets.
Indeed, when O = {0°,90°} then the strong O-convex hull of P is just
the bounding box of P. We investigated the notion of strong O-convexity
in a previous paper ([9]) and we show in [10] that both O-convexity and
strong O-convexity along with many other natural definitions of convexity
are essentially the same.

6 Other Characterizations of 0-Convex Sets

In this section we characterize connected O-convex sets by deriving con-
ditions on the form their boundary must take and proving a generalized
version of property 6 (see the Introduction).

Definition: We say that p is an O-eztremal of P if p is a point of support
of P with respect to an O-line.

We now show that the boundary of a closed connected O-convex set may
be completely characterized in terms of stairsegments.

Definition: We say that a portion of a continuous curve in the plane is
a mazimal stairsegment in the curve if it is a stairsegment and it is not a
proper subset of any other stairsegment in the curve.

Theorem 6.1 The Characterization Theoremm A simply connected
closed set 18 O-convezx if and only if the portions of its boundary in between
any two consecutive O-extremal points are mazimal stairsegments.

Proof: If P is closed and simply connected and its boundary is made up
only of stairsegments meeting at 0-extremal points in P then the only way
in which P could fail to be O-convex is if some O-line intersects some one of
the stairsegments more than once, since no O-line can intersect such a set
more than twice. But this is impossible, since any O-line can only intersect
a stairline at most once (unless it is collinear with some part of the stairline).
Hence such a set must be O-convex.
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Figure 6: S(p, ¢) is a maximal stairsegment.

Suppose now that P is a connected closed O-convex set. Consider any
pair of distinct consecutive 0-extremal points p and q of P. If LS(p,q) C P
then ©(LS(p,q)) € O and hence LS(p,q) is a stairsegment joining p and
g. So let S(p,q) be the portion of P’s boundary connecting p and q where
S(p, q) is not a line segment. Since p and ¢ are distinct consecutive extremal
points of P then 8(LS(p,q)) ¢ O. Without loss of generality, assume that
LS(p, q)’s maximal O-free range is (0°,90°) and that p is below and to the
left of ¢ (see Figure 6).

Now sweep a horizontal line from ¢ down to p. If at any time in this
sweep this line intersects S(p, ¢) more than once then P cannot be 0-convex,
and similarly for a vertical line sweeping from p to q. Hence S(p,q) is a
stairsegment connecting p and ¢. Trivially, it is maximal since it’s endpoints
are 0-extremal in P. $

Observe that in the normal convex hull (that is, 0 = {[0°,180°)}) all
points are O-extremal and so the maximal stairsegments in the boundary
shrink to points.

Corollary 6.1 A polygon is O-convez if and only if its boundary consists
of a sequence of polygonal stairsegments meeting at convez interior angles.

Corollary 6.2 An O-polygon is O-convez if and only if its boundary con-
sists of a sequence of O-oriented polygonal stairsegments meeting at convez
interior angles.

For the special case of finite 0 Corollary 6.1 has been stated without
proof in [17] and it was proved in a different, more direct, way in [9)].

Note that the characterization of the boundary of O-convex polygons as
a sequence of polygonal stairsegments is a direct generalization of the case
for orthogonal polygons ([18]).

In the theory of (normal) convex sets two points are said to be visible
from each other in a set if the line segment joining them lies wholly in the
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set. Thinking of stairlines as the analogues of straight lines we are led to
define a generalized form of visibility in which two points in a set are visible
from each other if there exists at least one stairsegment joining them which
lies wholly in the set. This leads to the next characterization of O-convex
sets and againg it only applies to connected O-convex sets.

Theorem 6.2 (The Visibility Theorem) If P is connected, then P 1is
O-convez if and only if for all p and q in P there ezists a stairsegment in P
with endpoints p and q.

Proof: Suppose that P is connected and for all p,q € P there exists a
stairsegment joining them lying in P. If 6(LS(p, ¢)) € O then ||pq collapses
to LS(p,q). Hence there is only one stairsegment joining p and ¢ and so it
must lie in P. Hence P is O-convex.

Conversely, suppose that P is connected and O-convex. If p,q € P
and ©(LS(p,q)) € O then there exists a stairsegment lying in P joining
p and ¢ — namely, LS(p, q) (else P is not O-convex). Suppose then that
6(LS(p,q)) € O. Consider ||pg. If either arm of ||pg lies in P then there
exists a stairsegment lying in P joining p and g since either arm of ||pq is
a stairsegment. Assume then that neither arm lies wholly in P. Since the
lower arm (say) consists of two O-segments and it does not lie wholly in P
then it must intersect the boundary of P exactly twice (else P would not be
O-convex).

Both of these intersection points must belong to one maximal stairseg-
ment since if they belonged to separate maximal stairsegments than there
must be at least one O-extremal point on P’s boundary between the two
intersection points. This means that there must exist at least one O-
orientation in LS(p, ¢)’s O-free range. But this is impossible.

Now we can construct a stairsegment lying in P connecting p and g by
starting at p and following the lower arm until we encounter P’s boundary
then follow the boundary until we intersect the arm again, then follow the
arm to q. O

Note that in normal convexity this theorem collapses to property 6 stated
in the Introduction, since all (normal) convex sets are connected.

7 Conclusions

We have shown that O-convex sets contain both convex sets and orthog-
onally convex sets as sub-classes and that the properties of both can be
explained as special cases of the properties of O-convex sets. The main
characteristic of convex sets that we have lost in generalizing to O-convex
sets 1s connectivity. A convex set is always connected.
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Connected O-convex sets have all of the properties of convex sets listed at
the beginning of the paper if we interpret a “line” as a stairline and generalize
the betweenness relation to reflect the fact that the “line segment” joining
two points is no longer necessarily unique and can be any stairsegment
connecting them. And so, any point in O-region(p, q) is “between” p and gq.
In the following we assume that P is a connected O-convex set.

(1) ¥ O is non-empty then P is simply connected (Lemma 3.6). Indeed,
the connected components of any O-convex set are simply connected once
0O is non-empty (Lemma 3.7 together with Lemma 3.6).

(2) The intersection of P and any O-line is either empty or a connected
set (by Definition). This is true even if P is allowed to be disconnected.
One of the points of this property for convex sets is that lines are themselves
convex. We could obtain the needed analogy by saying that the intersection
of any two O-convex sets is again O-convex (Lemma 3.2) (although observe
that the intersection of two connected O-convex sets may be disconnected).

(3) P is the intersection of all O-convex sets which contain it (Lemma
3.4). This is true even if P is allowed to be disconnected.

(4) If p & P then there exists a stairline separating p and P (Theorem
4.1 and Corollary 5.2).

(5) P is the intersection of all stair-halfplanes which contain it (Corollary
5.2).

(6) If p,q € P then there exists a stairsegment in P connecting p and ¢
(Theorem 6.2).

Restricted-orientation convexity is a generalization of orthogonal con-
vexity which has itself been separately defined in computational geome-
try, digital picture processing, VLSI design and combinatorics. Restricted-
orientation convexity serves as a useful vantage point to survey and unify
many scattered results and observations in the literature of computational
geometry. We have shown that restricted-orientation convexity is a rea-
sonable generalization of convexity since properties analogous to those of
normal convex sets hold for these more general “convex” sets.

It may be argued that since computational geometry concerns itself with
figures in R™ that it is not necessary to develop the theory of O-convex sets
in as general a setting as is possible. There are two telling rejoinders to
this point of view, the first being a purely practical one. To take but one
pertinent example, the history of algorithms for finding the convex hull of a
simple polygon illustrates that unaided geometric intuition is not sufficiently
powerful to avoid egregious errors® Any theoretical machinery that may

5There have been several algorithms proposed over time (and accepted as correct)
which were later shown to be incorrect.
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aid insight is desirable. Secondly, there is a well-demonstrated synergism
between theoretical investigations and practical problems, in that practice
suggests new areas for theory and in turn a developing theory suggests a
broadening and sharpening of practique. Finally, if any further justification
were needed, we submit that the study of restricted-orientation convexity is
of sufficient interest and importance in its own right.

Besides the above justifications we believe that this material will be
beneficial in at least two practical areas (restricted-orientation VLSI design
and restricted-orientation robotic path problems) and that it is of contin-
uing theoretical interest as evidenced by further work in “starshapedness”,
“visibility” , the computation of nearness of “convex” polygons, etc. ([8]).

It is our opinion that, while the practical concerns from which com-
putational geometry grew will continue to change and expand, the broad
outlines of computational geometry that serve to delienate it from classical
geometry and combinatorial geometry are now sufficiently well defined that
it can now, in its turn, give impetus to the development of new directions
of geometry.
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