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Abstract

We present the first time- and space-optimal algorithm for the prob-
lem of computing the contours of the disjoint polygons defined by the
union of n rectangles in the plane. It requires O(nlogn + €) time and
O(n) space, where e is the total number of edges in the contour cy-
cles. The space optimality of the solution is demonstrated by way of
a combinatorial argument.

1 Introduction

Given a set of n rectangles in the plane with edges parallel to the coordinate
axes (isothetic rectangles), we reconsider the problem of computing and
reporting the contour of the union of these rectangles. Much work has
already been done on this topic, see [2,3,4,6,8,10]. The best results available
until now are:

e O(nlogn+ e) time and O(n) space algorithms for computing all edges
of the contour, where e is the number of edges in the contour, see
[2,10]. These can be modified to give an O(n + €) space algorithm for
computing the contour cycles. Note that we do not count the space
used for the final output, but only space for the intermediate storage
of edges that are to be used again by the algorithm. In (8], it has been
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2 Widmayer and Wood

noticed that only O(n) space need be main memory; O(e) space can
be secondary storage. '

e an O(n?) time and O(n) space algorithm, see [6].

We bridge the gap between these two solutions, by providing a solution
which is time optimal, that is, requires O(nlogn + €) time and is also space
optimal, that is, it requires O(n) space. This not only resolves an open
problem, but the proof technique also confirms an empirical conjecture due
to Prusinkiewicz and Raghavan which arises from their work in [6], that
O(n) space suffices.

2 Time and Space Optimality

We show that two of the above time optimal algorithms, namely those in [2]
and [10], can be modified such that they actually report the contour cycles
in optimal time and space. To this end, it is sufficient to keep track of all
contour cycles that have been started but not yet ended, in a manner similar
to the one described in [5].

Let us refer to the plane sweep algorithm of [10] in order to demonstrate
briefly how this can be done. This algorithm reports the horizontal edges
of the contour; the vertical edges can be deduced from them. We modify
the algorithm so that in addition to the plane sweep for detecting contour
edges, (tentative) contour cycles are maintained. We distinguish between
outer or boundary contour cycles and inner contour cycles, that is the con-
tours of holes in the following. Each tentative, incomplete contour cycle
is represented by two points on the sweep line. We assume the edges as-
sociated with these points are in the usual cyclic order; clockwise for outer
contours and counterclockwise for inner contours. Left vertical edges of rect-
angles inaugurate outer contours, while right vertical edges inaugurate inner
contours. When the sweep line meets a left vertical edge, it may close or
partially close contour cycles, see Figure 1. When it meets a right vertical
edge, it may combine two contour cycles or widen contour cycles, see Figure
2. When a vertical edge closes a contour cycle, the cycle is finished and can
be output (reported) in its entirety. A simple implementation of tentative
contour cycles as doubly linked lists of edges ensures that the optimal time
bound of O(nlogn + ) is maintained. For the details of keeping track of the
(tentative) contour cycles for a similar problem, consult [5].

The storage used by this procedure is clearly bounded by O(n+-c), where
¢ is the total number of edges in all contour cycles that have been started,
but have not yet been finished, at any stage of the plane sweep. The above
algorithm is space optimal if and only if ¢ = O(n). Our contribution in this
note is to show that ¢ = O(n) in fact holds. We first prove that the union of
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Figure 1: Meeting a left vertical edge

() (b}
Figure 2: Meeting a right vertical edge

a set of rectangles has a linear number of edges in its outer contour. This is
similar to a result in [4], for a set of rectangles without holes in their union.

Theorem 2.1 Given n isothetic rectangles in the plane, the outer contour
of their union contains O(n) edges.

Proof: The outer contour of the union has as many vertices as edges and
each connected component has an outer boundary which is a closed curve.
Consider one component consisting of m rectangles, say. Since its outer
boundary is a closed curve, the number of reflex vertices is four less than
the number of convex vertices. But the number of convex vertices is at
most 4m, since each rectangle can contribute at most four convex vertices
and convex vertices are formed in no other way. Thus there are at most
4m — 4 reflex vertices and therefore at most 8m — 4 vertices or edges in the
component. Clearly over all components there are at most 8n — 4 vertices
or edges, and this bound is achievable, see [4] O

We now prove the needed combinatorial result.

Theorem 2.2 Given n isothetic rectangles in the plane, the total number

of all edges in contour cycles intersecting any vertical or horizontal line 1s
O(n).
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Figure 3: Contour cycles intersected by a line

Proof: Let us argue for each connected component of the set of rectan-
gles separately. Consider a connected component of m rectangles. Cut each
rectangle intersected by vertical line [ into two rectangles at [/, see Figure 3.
Now consider the two subsets of rectangles to the left of I and to the right
of | separately. Each of these subsets consists of no more than m rectangles.
All edges of intersected contour cycles now lie on the outside contour of one
of the two subsets. The total number of edges in both outside contours may
be even higher than the number of edges in the intersected contour cycles.
This is because some of the contour cycle edges may have been split into
two, and intersected rectangle edges may have been added to the outside
contours. For each subset, the number of edges on the outside contour is
linear in the number of rectangles by the above proposition. Hence, for the
connected component consisting of m rectangles, we obtain O(m) edges in
all intersected contour cycles. As this holds for each connected component,
the proof of the theorem is complete. |

Note that the contour cycles such as outer contours and holes are reported
by the described plane sweep algorithm from left to right, according to their
rightmost point. This means that, in general, the holes belonging to one
connected component, and the outer contour of that connected component,
are not necessarily reported consecutively. They may be interspersed with
other components’ holes and outer contours. If it is desired that all contour
cycles of a connected component be reported consecutively, it is sufficient
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to first find all connected components, and then compute the contour cycles
for the components separately. Because the connected components can be
found in O(nlogn) time (see {1]), optimality is maintained.

Thus we obtain

Theorem 2.3 Given n isothetic rectangles in the plane, the contour of their
union can be computed in O(nlogn + e) time and O(n) space, where € is the
number of edges in the contour. Moreover in the same bounds contour cycles
corresponding to each connected component can be reported separately such
that their outer contour cycle is followed by their hole contour cycles.

Proof: The first claim follows from the above arguments, so let us turn
to the second. First, we use the algorithm of [1] to obtain the connected
components of the rectangles. Second, we process each component to obtain
its outer contour and, third, we then process each component separately to
obtain its inner contour cycles. Since the outer contour cycles require only
O(n) space, we can afford to save them for the third step. Hence we output
them either before or after their inner contour cycles to obtain the desired
result. Clearly these steps can be accomplished in the stated space and time
bounds. O

These results are both time-and space-optimal.

Observations similar to the above one can be applied to a number of
other problems advantageously. For other examples, see [9]; a more basic
treatment of similar arguments can be found in [7].
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