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1 Introduction

Minimizing a nonlinear function of several variables subject to satisfying bounds on these
variables is probably one of the most common types of constrained optimization problems en-
countered in practical applications. Some authors (see [9], for instance) even claim that a vast
majority of optimization problems should be considered from the point of view that their vari-
ables are indeed restricted to certain meaningful intervals, and should therefore be solved in
conjunction with bound constraints. Fortunately it is the simplest of the inequality constrained
problems, because of its structure. On the other hand, it is, in a way, more complex than many
equality type problems : indeed it involves a combinatorial part, which is the detection of the
set of constraints that are active at the solution. Algorithms that can take advantage of this
structure and that are reasonably efficient in the determination of the optimal active set are thus
of interest to many practitioners.

This fact has already been observed by many authors, and some special purpose methods have
been proposed, as in [1], [2] and [11]. Of particular interest to us is the first of these proposals
(on which the third is based), because it provides a rather complete convergence theory to back a
satisfying numerical performance. However, although this theory can easily be applied to convex
problems, it is not clear in Bertsekas’s presentation in [1] how to extend it to the nonconvex case,
and still guarantee global convergence.

This question of ensuring global convergence on nonconvex problems has, on the other hand,
been explored extensively in the recent past, in connection with the use of trust region techniques.
One of the main reason behind this development is the combination of a rather intuitive framework
with a powerful theoretical foundation ensuring convergence to a stationary point, even from
starting points that are far away from the problem’s solution. We refer the reader to [12] for an
excellent survey of this topic in the context of unconstrained optimization. More recently, many
authors have considered extending the trust region concepts and algorithms to the constrained
minimization case (see [3], [4], [7], [15], [16] for instance). In most of these papers, quite general
equality contraints have been investigated, and a variety of solutions have been proposed. Another

interesting reference is [8], where the linear inequality constrained case is considered.

It is the purpose of this paper to provide a general global convergence theory for an algorithm
that solves nonconvex optimization problems with simple bounds, using a trust region technique.
The analysis and algorithm presented merge ideas from [12] and [14] concerning unconstrained
problems with those from [1], as far as the treatment of the bounds is concerned. Global con-
vergence and adequate determination of the correct active set are proved. Preliminary numerical
results that indicate the viability of the proposed method are reported elsewhere [5].

Section 2 presents the problem and algorithm in more details, while section 3 is devoted to
the convergence theory. Some conclusions are drawn in section 4.



2 An algorithm for bound constrained optimization

We consider solving the problem
min f(z) (1)

where f(z) is a function of n real variables which are subject to the constraints
L <z <y (i=1,...,n). (2)

We assume that we can compute the function value f(z) and the gradient V f(z) for any feasible
point z. We are also given a feasible starting point zp, and we wish to start the minimization

procedure from that point. If we define £ as the intersection of the set

{zeR"| f(2) < f(=0)}
with the feasible region defined by (2), we may formulate our assumptions on the problem as
follows.

AS.1 The set £ is compact and has a non empty interior.

AS.2 The objective function f(-) is twice continuously differentiable in an open domain
containing L.

The first of these assumptions says that the optimization problem is non trivial and cannot
be reduced to a lower dimension. In particular, infinite (positive and/or negative) bounds are
allowed provided the set L is still bounded.

The algorithm we propose for solving (1) subject to (2) is of trust region type. Indeed, at each
iteration, we define a quadratic approximation to the objective function, and a region surrounding
the current iterate where we believe this approximation to be adequate. The algorithm then finds,
in this region, a candidate for the next iterate that sufficiently reduces the value of the quadratic
model to the objective. If the function value calculated at this point matches its predicted value
closely enough, the new point is then accepted as the next iterate and the trust region is possibly
enlarged; otherwise the point is rejected and the trust region size decreased.

Before describing the details of the method, we need to introduce some notation. We will
denote by I(z) the set of all bound constraints that are violated or active at the point z and

def .
C(z) = spanfe: | ¢1(z)}, (3)
where the vectors e; are the vectors of the canonical basis. This last subspace is nothing but the

linear subspace spanned by the variables that are not at their bounds or infeasible at z. We will
also need the affine subspace

Alz) ¥ {y|y=z+ 2z with z€C(z)}, (4)

that contains z and is parallel to C(z). We will use the “projection” operator defined componen-
twise by
Iy ifz <,
(Plz])i =14 w ifz 2w, (5)

z; otherwise.



This operator “projects” the point = onto the feasible region defined by (2)

We are now in position to describe more precisely the strategy we propose in order to choose,
at the kth iteration, a candidate for the (k4 1)th iterate. Our model of the objective function is
of the form

my(zk + sk) = f(zk) + 9% 5 + %S£Bk8k, (6)
where the superscript T stands for the transpose, where g, = V f(z}), and where the symmetric

matrix By is an approximation to the Hessian V2 f(z). (As will be seen below, this approximation

may be quite poor.) We also consider a direction wy satisfying the condition

D,TDkwk = gk (7)
for some nonsingular diagonal scaling matriz Dg. (Without loss of generality, we assume that the
entries of Dy are non-negative.) This vector then gives the scaled gradient direction. As in the
unconstrained case, we will first ensure a sufficient decrease of our model along this direction,
but, because of the bounds, we have to “project” onto the feasible region, yielding the polygonal
line P[zy — twy) for ¢ > 0. This line satisfies the important norm increasing property, that is

|Plzk — tiwg] — zi]| > || Pz — tawk] — zk|| whenever ¢, > t,. (8)

We may then define the continuous piecewise quadratic function
gk (t) = mi(Plzy — twy]) (9)

as a function of t > 0, and denote by tf the value of t in (9) corresponding to the first local
minimum of g (t) subject to the trust region constraint defined by

| Dk (Plzk — twe] — zi)|| < vAg, (10)
where Ay is the trust region radius at the kth iteration, » is a positive constant and || - || is the
usual {3 norm on R". The point

z$ = Plzy — t§ wy (11)

is called the generalized Cauchy point at iteration k. This notion is illustrated in Fig. 1, where the
circles are the contour lines of the objective function, and the trust region is large and inactive,

so that its boundaries do not appear in the picture.

feasible infeasible

Fig. 1: The generalized Cauchy point.



We require that the step sj satisfies the following three conditions,

f(z) — mu(zk + sk) > Ba[f (k) — q (%)), C (12)
| Desill < B2 (13)

and
I(z$) C I(zk + 1) (14)

In equations (12) and (13), the constants must satisfy the conditions

ﬂl (S (0,1] and ,32 > . (15)

The first of these conditions requires the model reduction at z; + s, to be within a fixed fraction
of the model reduction at z§, the second requires it to be inside a extended trust region, and the
third condition ensures that all bounds that are active at the generalized Cauchy point are still
active at x + sg.

This clearly generalizes the conditions used by Moré in [12] by suitably extending the notion
of a Cauchy point to the case where bound constraints are present. Note that, because of the
equivalence of norms and the presence of the constant v and Bz in (10) and (13) respectively,
other norms than the {2 norm can be chosen to define the trust region. In particular, the I, norm
may be of interest, because the shape of the trust region is then that of a box, and its boundaries
are aligned with the bound constraints.

We also note that we do not impose that s; be the quasi-Newton step
8k = —B;lgk, (16)

where By is positive definite, whenever ||Dysi|| < Ay, in contrast with [14]. This assumption
may indeed be undesirable when n is large. In this context, the calculation of such a direction
may be quite costly and is not always justified.

The reason for introducing the scaling matrices Dy is also practical. As discussed in [12],
they ensure invariance with respect to diagonal transformations of the problem, which are the
only ones that preserve the structure of the constraints. These matrices also allow the use of
preconditioned conjugate gradients as a method for deriving a suitable step. Preconditioned
conjugate gradients have already proved to be extremely useful in the context of large scale

problems [11]. The preconditioner is then defined as the diagonal matrix
Cy = DT Dy. (17)

Note that, in practical implementations of this flexible method, a more sophisticate preconditioner
can be used in the subspace C(z§), in order to improve on efficiency when computing the step
sg. We only require the diagonal preconditioner for the computation of z{, because this is the
part of the procedure where the combinatorial treatment of the bounds is performed, and the

special structure of the constraints exploited.



Finally, we stress the fact that the computation of tf can be implemented in a rather efficient

way, once wy is known (see [5]).

We are now able to outline our algorithm. It depends on some constants u € (0,1), 5 € (u, 1),
4o, 71 and 2 which must satisfy

0<v<m<1i<. (18)
These constants are used in the trust region radius updating in a way similar to [12].

step 0 : The starting point zo and the function value f(zo) and gradient go are given, as well as
an initial trust region radius, Ag, and By, an initial approximation to the Hessian at the
starting point. Set k = 0.

step 1 : Obtain a step s as described above.

step 2 : Compute f(z) + s;) and
f(zx) = f(zx + sk)

¥ Flon) — mulze + ox)° (19)
step & In the case where
Pk > B, (20)
set
Tht1 = Tk + Sk, Gkt1 = V[(Tk41) (21)
and
Agt1 € [Ag,12Ay] if pr 29 (22)
or
Agi1 € [(MmAR, Ak] if pr < . (23)
Otherwise, set
Tkl = Tk,  Gh+1 = Gk (24)
and
Dgt1 € [YoAk, M1Ak]- (25)

step 4 : Update the matrices By and Dj. Increment k by one and go to step 1.

This is obviously a theoretical algorithm. Many details should be added in order to specify
a practical numerical procedure. In particular, we have omitted a stopping criterion, and all
details on the method to determine the step s once the generalized Cauchy point mf has been
calculated.

We call an iteration successful if the test (20) is satisfied, that is when the achieved function
reduction f(zx)— f(zk+sk) is large enough compared to the predicted function reduction f(zj)—
my(zx + si). If (20) is not satisfied, the iteration is said to be unsuccessful.
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We finally observe that this algorithm only generates feasible points, which can be an ad-
vantage in the case of “hard” constraints, that is when the function and/or gradient values are
undefined or difficult to compute if some constraints are violated.

3 Convergence analysis

We now turn to the analysis of the behaviour of our algorithm, when applied to problem
(1)-(2). It is quite clear that this behaviour will depend on the conditions we impose on the
matrices By and Dy.

We first state our assumptions of the scaling matrices Dy.

AS.3 The scaling matrices are diagonal and have uniformly bounded inverses, that is

1D < o1 (26)

for some o3 > 1.

Condition (26) is identical to that imposed in [12]. As in this last reference, we observe
that this condition does not imply that the scaling matrices have uniformly bounded condition
numbers.

(AS.3) also allows us to characterize critical points of our problem as expressed in the following
statement.

Lemma 1 Let = be feasible and D be a diagonal nonsingular matriz. Then x 1is e eritical point
for problem (1)-(2) if and only if

Plz -tw]==z (27)

for allt > 0, and where w s given by
DTDw = V(). (28)
This lemma results immediately from Proposition 1.35 in [1]. Observe now that, if we define
di(t) = Plag — twg] — 2z (29)

we can rewrite the conditions for z; to be critical in terms of this new vector : zj is a critical
point if and only if dg(t) = O for all ¢ > 0. The quantity

def

hi = (|Plax — we] — zell = (|2 (1), (30)

can therefore be regarded as a measure of the “criticality” of the kth iterate. The geometric
interpretation of this quantity is illustrated in Fig. 2.

6



’ P [Zk - wk]
-
Tk

feasible infeasible

Fig. 2: The critical length hg.

Since we are interested in asymptotic convergence, we will assume below that the sequence
of iterates is infinite and hy > O for all k.

We now state our condition on the model Hessians, namely :

AS.4 If we define

by =1+ max \D;7 T B; DY, (31)
1=0,...,
we require that
©0
> 31- = +oo0. (32)
k=0 k

Note that we added 1 to the norm of the scaled Hessian approximation in order to prevent
definition problems when this last quantity is identically zero. This condition (32) is the weakest
possible involving the whole of By for obtaining convergence to a stationary point when Dy = I.
This was shown by Powell in [14] in the context of unconstrained minimization, where he provides
an example showing that, if condition (32) is violated, the algorithm can converge to a noncritical
point. It is also worth remembering that the well known BFGS secant update does satisfies (AS.4)
on convex problems (see [13]). This is also the case of a suitably safeguarded Symmetric Rank
One update applied on convex and nonconvex problems (see [5]). On the other hand, if second
derivatives of the objective function are available and used for B;, then they are obviously bounded
on £, and (AS.4) holds too.

Our convergence analysis can be divided into three parts. In the first part, we examine
the consequences of our step strategy and generalize the important condition that, for a given
successful iteration, iteration k say,

1D T ox

- +8;) > ¢1||DFT in[A
f(Zk) f(zk Sk)_C]_“ k gk”Imn[ k’”D;—TBkD;1”+1

I (33)

for some constant ¢; > 0. This condition is crucial in both [12] and [14] for the unconstrained
case, and its generalization to the bounded case stays crucial in our framework. In the second
part of our theory, we establish global convergence of our algorithm to a critical point of the

7



problem. We also show the important property that the algorithm determines the set of bounds
that are active at the solution in a finite number of iterations. This means that, asymptotically,
its rate of convergence is that of a purely unconstrained method. The third part of the analysis
is concerned with guaranteeing the convergence to a local minimum, and not merely a critical
point, and with the conditions to impose on the step s; to take second order information into
account.

3.1 Obtaining a sufficient decrease in the model

Let us first examine the implications of our step strategy at iteration k. Since the iteration
is fixed, so is the scaling matrix Dy, and the complete procedure for determining a step s can
be viewed as taking place in a scaled space. Indeed, if we denote the scaled quantities with a
superscript s, we can define

z; = Dixg, 8 = Dgsg, dj(t) = Dydi(t) . (34)
and
95 =D;Tgr, Bi=D;TB,D;. (35)
Observe also that
wi = Dywy = gi, (36)

so that the scaled w; direction is nothing but the scaled gradient. In this new space, we can
rewrite the piecewise quadratic of (9) as

qk(t) = mk($k+dk(t))
= f(=) +g; di(t) + 3[di ()] Brdi(t) (37)
= fo(=}) + [9a]T 1 (2) + §[d1(8))T BLdy(2),

where we 1;edeﬁne the objective function on the scaled space by
f*(&') = f(Di*z") = {(=). (38)
Similarly, the bounds in (2) are transformed into new bounds on the scaled variables
IP<zi<u} (i=1,...,n), (39)

with
= (Dk).','l.' and uf = (Dk),-.-u,-. (40)

These bounds, in turn, allow the definition of an index of the scaled active constraints

I'(z*) = I(=), (41)



and of a scaled P*[:] operator as in (5), corresponding to the projection onto the feasible domain
defined by (39). Similarly also, a scaled £’ can be defined using (38) and (39). Then we have
that

di(t) = Di(Plzx — tw] — 2x) = P*[2} — tgi] — =} (42)
for all ¢, and the constraints (10) and (13) can be rewritten as
|1P*[=k — tgk] — =il < v (43)

and
llskll < Badri (44)

respectively. Observe finally that, for all z,
llzll < D [l ll=*l} < oall2*| (45)

To simplify the notation, we will use this one to one correspondence between the original and
scaled spaces at iteration k, and therefore assume that the scaling matrix Dy = I. Hence the
scaled and original spaces coincide for this iteration, and the superscript s can be dropped. We

will reintroduce the notion of scaled space when we consider several iterations of our algorithm.
Lemma 2 For all 0 < t; <t2 and all k, we have that
I(zk + di(t1)) S I(zk + di(t2)). (46)

This lemma is trivial once we observe that the set of active bounds can only be increased as
one follows the polygonal line defined by zj+ di(t), and no satisfied bounds can become violated.
We now define the reduced gradient with respect to a given set of active bounds as follows,

; fi¢l
0 otherwise,
where the subscript 1 denotes the 1th component of the vector.
Lemma 3 Assume that (AS.1)-(AS.2) hold. Assume also that hy > 0. Then, if
def
er % max [1,max [V /(a1 (48)
we obtain that .
(e + de (g 2 Fhe (49)
where 1A
(1) _ 2%
) = P (50)



To prove this lemma, we first note that c; is well defined because of the continuity of the
gradient and the compactness of £. We also deduce that

1 1h 1
BN < 100l < 525 lloul] < Ghe (51)

Let us now denote by tg) the smallest ¢ such that

lldx()l] = he. (52)

Then, using (51), one obtains that
o<t < <1, (53)
Hence, because of (51) and (52),
len(en + @D 2 (@60 - ) llan(ay + L))

2 [ldu(t?) - du(ti)] (54)

> () = a6

> ‘;’hka

which proves the lemma. O

It is worth noting that the line coordinate tg) depends only on hx and the problem.

With this tool at our disposal, we may now examine a crucial part of our development : the
guaranteed decrease in the quadratic model starting from a non critical point.

Lemma 4 Assume (AS.1)-(AS.2) hold. Assume also that, for some t£3) >0,

a & lza (o + di(t))]| > 0. (55)
Then, for all t € [0, (Y],
d 1
%) < —50‘2 (56)
and 1 .
qk(t) < flzx) — Eaﬁta (57)

where (56) only holds where the derivative of qi(t) is defined, and where

£ 2 2cy(1+/n) [|Bell + 1]

t£4) = min

To prove this result, we first examine the behaviour of the slope of the function gx(t) in the
interval [0, tis)]. As t increases from 0 to t;ca), the polygonal line z + dj(t) may hit several bounds.
Let us label

O=to<ty <+ <tm=t (59)

10



the “bends” or breakpoints points (if any) of this polygonal line. Consider now the set T' of points
in [0, tscs)] where the piecewise quadratic gx(t) is differentiable, that is the complete interval minus
the breakpoints (59). Then for any t € T,

d
2 0(0) = gk di(t) + di Badi(t), (60)

where dj(t) is defined componentwise by

d
[dk(8))i = S 1de(e))s (1)
for t = 1,...,n. We now assume, without loss of generality, that if bounds become active as ¢
(3)
k

variables become active first. It is then possible to write that

increases from O to t}’, they do so in order of successive indices, that is the bounds on the first

—tigkls for t € [0,wy],
[d(t)]i = { —w[f[l.:z]k]; for tc Ewi’;ia)], (62)
where w; is the ¢t value at which the 1th bound becomes active, if applicable. Equivalently,
[k (8))s = —loals [t5(¢ € [0, wi) + wis (¢ € (wi,t{])] , (63)
where the function §(condition) is equal to 1 if condition is true and zero otherwise. Then
[dx(t)]i = —[geli6 (¢ € [0,wi]). (64)
We now examine the quadratic term in (60):
(4 (8)]” Bedi(t) = ,il[Bk].-,-{gkL-[ng,- [t6(t € [0, wi]) + wib (¢ € (i t])] 6 € [0,05)).  (65)
ij=

Let us now consider a given ¢t € T'. Then there is an integer s such that ¢t € (t,,t,+1). Define r by
I(zg + di(ts)) = {1,...,r — 1}. (66)
Therefore we obtain the following equivalences

te 0wy & 12>,

67
te(w,-,tscs)] & 1<r-1, (67)

Hence, for t € (t5,ts41),
[de(t)]" Brdi(t) = Xn: [Bilijloxlilgel; [t6(5 2 r)6(5 = r) + wib(i < r)é(5 = )], (68)
£,7=1

while

sl = — Sloul 2 1) = = Ll (69

=1
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Gathering (68) and (69), we obtain

Fae(t) = =T ol +t T8 [Belijlonlilowli + X7 j=11Bliilorli o]0

70
<~ Dl loel? + ¢ Sy Belslonklasls + £l 1B, )
where Bj is defined by
N [Bk],‘j ifi<r and 72> r,
B = 71
[Bili { 0 otherwise. (7)
Observe now that
I Bill < IBillF < |Bellr < v/nl|Bx|- (72)
If we put vi = zx(zk + di(ts)), then (70) implies that, for all ¢t € (t,,ts41),
d
5 9¢(0) < =llol* + tlon]” Bev + 67 v/nllge || Be. (73)
Hence, for allt € T,
d
Za(t) < —af + e (1+ v/n) |1 By (74)

where we have used (48), the Cauchy-Schwarz inequality and the fact that Lemma 2 implies the
inequality [|vg|| 2 k. In particular, if we consider tgf) as defined by (58), we obtain that

d 1
500 < —ed + 695301+ V)1 Bel| < —50d (75)

(when the derivative exists), and, consequently, that
1
gk (t) < f(zx) — Eait (76)

for all ¢ € [0, t£4)]. o

Observe that this lemma does not take the trust region constraint (13) into account : only
the model and the problem bounds are considered.

We can now state the equivalent of condition (33) in the case of bounded problems. In order

to avoid confusion when applying this property, we formulate our result without assuming that
Dy =1

Lemma 5 Assume (AS.1)-(AS.8) hold. Assume also that

h)’c = ”Dk(P[xk - wk] - :Ek)” > 0. (77)
Then
1 812 [hfc]z
f(zk) — my(zg + sx) > —c3[h}t] min —E—k—,Ak , (78)
where \ (1)
def . B3 min(1,v)f;
= <1
Al n’ 32cioi(1+ \/ﬁ)} - (79)
If the kth iteration s successful, we have also that
1 812 [hi]z
f(zk) = fzr+se) 2 5#03[’%] min T,Ak \ (80)

12



We prove the result in the scaled space first, and then reformulate it in the original space.
We observe that, if tg) is used as tf) in Lemma 4, then aj > 1hx > 0, and relation (57) implies
that ,

() < f(z) - ghit, (81)

provided that ¢ is in an interval whose upper bound is

2 2
1(5) & g hy 1 h? 1 h

n|—,— =— k___ (82)
2c2” 8c3(1+/n) (||Bell +1)]  8c3(1++/n) (||Bell + 1)

because hy < cz2 by definition. Assume first that Hdk(tf'))[l < vAg. Then , recalling (12), we
obtain that

f(zk) — mi (s + s8) > %ﬁlhztff). (83)

On the other hand, if “dk(tis))ll > vAy, we know that ||d(t$)|| = vAg, and, since

vA vA .
d < <
s (“25) | < 2ot gu] < v, (59
we can deduce that A
vAg
t¢ > —_—
Pz (85)

Therefore (81) implies that

f(zE) — mp(ze + s5) > I;—'f:-hﬁAk- (86)
Gathering (82), (83) and (86), we obtain that
min(L,v)8; ,, . h?
Tg) — > —7———h —k ALl

In this last inequality, as in the whole development in the scaled space, we have assumed that
the scaled gradients are bounded above by the constant c;. Returning to the unscaled space, we
have to replace this bound by o;c¢2, which reintroduces the scaling and uses (26). We also replace
|| Bk|| + 1 by the scalar by, which already incorporates the scaling, and hg by h{. The relation
(87) is thus nothing but the scaled form of (78), except that the constant cs is possibly further
reduced, in order to simplify another development below. The inequality (80) then results from
(78), (19) and (20). O

This closes the first part of our convergence theory, devoted to finding a suitable generalization

of condition (33) to the case where bound constraints are present.

3.2 Global convergence to critical points

We now wish to use the guarantee of a sufficient decrease in the model to prove global
convergence to critical points for the algorithm. This will be accomplished very much in the
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spirit of [14]. The global convergence itself will be indeed separated into two propositions, with
statements close to thoge appearing in Powell’s paper. It is interesting to note that, although the
proof of the second statement follows Powell’s argument closely, the proof of the first of these
statements is quite different from that in [14].

Lemma 6 Assume that (AS.1)-(AS.8) hold. Consider a sequence {z\} of points generated by
the algorithm, and assume that there is a constant € > O such that, for all k,

hi > e, (88)

where hi is defined by (77). Then there exist a constant c4 > O such that, for all k > 1,

C4

Ag 2 5’ (89)
where by, 1s defined by (31).
In order to prove the lemma, we first define
¢s & max || V2 (z)] (90)
zel ’

and assume, without loss of generality, that cso? > 1, and that
) (c50? + bo) Ao

€ < min | 1, A, 91

( ﬂzV ~ocs(1 — n) ©1)

£+ o8) = mu(ex + ou)] = £16F (Gx — Be)ssl (52)

We have also that

because of (6), where
1
Gy = /0 V2 (zp + tsy) d. (93)

This yields that

1 _ _ 1
|f(z + sk) — me(zr + s5)] < EﬂgAﬂle T(Gr - Br)DiY|| < gﬂgAi[csaf + o],  (94)

where we have used (AS.3), (13), (31),(34), and the inequality ||Gk|| < ¢5. Assume now that

there is a k such that
€

2

(cs0F + br) Ak < 70(1 - 77)03"57, (95)
2

and define r as the first iteration number such that (95) holds. (Note that (91) implies that (95)

does not hold for £ = 0, and hence r > 1.) Then the mechanism of the algorithm ensures that

A
bro18r-1 < (c50% 4 by1)Ap1 < (c507 + br)fygr <(1-n)es—5 < €, (96)

62
p3
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where we used (79) to derive the last inequality. This last inequality, (31), (88), (91) and Lemma 5
then imply that

€?

1 ) 1
f(zr-1) = mp_y(2r—1 + 8p-1) > 56362 min[-—, A,_1] > ‘2'C3€2Ar—1- (97)

br—-l
Combining (94) and (97), we obtain that

|f(2r—1+ 8r—1) — mr_1(Tr—1 + 8r-1)] < BE(cs0? + br—1)Ar—1
If(zr—l) - mr—l(zr-—l + Sr—l)l -

lpr—1 — 1] < <1-n, (98)

cgel

where we also used (19) and the middle part of (96). This imposes p,—1 > 7, and therefore (22)
implies that A, > A,—3. This, in turn, gives that

2
€
(c50f + br-1)Ar=1 < (502 + b,)A, < Yo(1 — n)c3—, (99)
2

which contradicts the assumption that r was the first index with (95) satisfied. Hence, (95) never
holds, and we obtain that

2
(cso + br)Ak > vo(1 — n)Cs% (100)
2
for all k£ > 1. But, since
cs0f + bk < 50} (br + 1) < 2c505by (101)
for all such k, we have proved (89) with
1-— 2
o= 2oll=nese (102)

2432
O
We are now ready for our main convergence theorem.

Theorem 7 Assume that (AS.1)-(AS.{) hold. Assume also that {z;} is a sequence of iterates
generated by the algorithm. Then

hgggf hy =0, (103)
where hy ts defined in (30).

The proof of this statement is by contradiction. Assume therefore that there is an € > 0 such
that

hy > eoy (104)
for all k, implying that
B> e (105)

because of (45). Now Lemma 5 and the fact that the objective function is bounded below on the
set £ imply that

%#6352 > min [%,AkJ < > [f(=k) = f(zR41)] < +o00, (108)

keS kes

15



where S is the set of successful iterations. Using this inequality and Lemma 6, we may deduce
that the sum

min(e?, ¢4) Z — < > min [e bk] > min [bz ,Ak] (107)

kES kes kES
converges to a finite limit. Let now p be defined as an integer such that
i <1 (108)
and define also
S(k)=|Sn{o,...,k}| (109)

the number of successful iterations up to iteration k. Then define

={k| k< pS(k)} and J2 = {k|k > pS(k)} (110)

We now want to show that both sums
> a and Z (111)

are finite. Consider the first. If it has only finitely many terms, its convergence is obvious.
Otherwise, we may assume that J; has an infinite number of elements, and we then construct
two subsequences. The first one consists of the indices of J; in ascending order and the second
one, Js say, of the set of indices in S (in ascending order) with each index repeated p times.
Hence the jth element of J3 is no greater than the jth element of J;. This gives that

Z—_Z pZ—<+oo (112)

ren O T fel, kes bk
because of the non-decreasing nature of the sequence {b;} and the convergence of the last sum.
We now turn our attention to the second sum in (111). Observe that, for k € J,

E: <A< S(k),, k- S A, < 71:/?,71: LN (,7 . 1) /pAo, (113)

where we have used Lemma 6 and the definition of J; in (110). This yields that
1 A —1\k/p
> <=2 () < oo (114)
kel Ok C4 el,
and the second sum is convergent. Therefore the sum
1
2 5= Z Z (115)
k=0 ven B ie7,
is finite, which contradicts (AS.3). Hence condition (104) is impossible and (103) is true. O

Directly from this proof, we also obtain the following important corollary.

16



Corollary 8 Assume that (AS.1)-(AS.4) hold, and that {z\} is a sequence of iterates generated
by the algorithm. Then .
i els

llkrglorgf h; = 0. (116)

We note that (116) gives an scaled equivalent of (103). We often prefer (116) as a convergence
result, because we believe that, in most cases, the scaled quantities are more meaningful when
they are used to assert convergence (see also [6] on this subject).

We are also able to prove that the “liminf” in (103) can be replaced by a true limit, if we
somewhat strengthen our assumptions, as is shown in the next theorem.

We first complete our assumptions on the scaling matrices.

(AS.5) There is a positive constant o2 > 1 such that, for all k,

|1 Dill < 0. (117)

This and (AS.3) clearly implies that the scaling matrices have uniformly bounded condition
numbers. Although slightly stronger than the condition in [12], we note that it is rather natural,
because it prevents hj going to zero when the sequence zy does not approach a critical point.

More precisely, we obtain the following result.
Lemma 9 Assume that (AS.8) and (AS.5) hold. Then
;%hk < ||Plek = gi] — zell < o3 (118)
for all k.
This lemma is not difficult to prove. We first observe that (AS.3), (AS.5) and (7) imply that
7wl < fwel] < oFlanl (119

for all = 1,...,n, and that the components of wi and gx have the same sign. But, if we set

__{ u; if [gk]j <0,
vj =

. 120
l; if [gk]j >0, ( )

we have also that, for all 7,

|[[Plzk — wi] — 25l min(|[wkl;], |[zx]; — v;i])

< min(of|[gxl;}, [[ze]; — vs]) (121)
< 2|[Plzk — gi] — k)l
Similarily, for all 7,
{Plzr — wi] — ze]i| = min(:lzrl[gk]jl, H{zkl; — v5l) (122)
> ;lgl[P[xk - gk] — z&ljl-

17



(118) follows immediately. O

We also require the following condition.
(AS.8)
Jim By{f(z8) — [ (@re1)] = 0. (123)
It says that the norm of the approximating Hessians should not increase too fast compared
with the speed of convergence of the function values. This condition clearly holds if the sequence

{bx} is uniformly bounded, as assumed in {12]. Note that the fact that f(-) is bounded below
and (AS.4) already imply that

li’{r_l.ir;f be[f(zk) — f(zk+1)] = 0. (124)
Indeed, assume that
blf(zk) — fzrs1)] 2 € (125)
for some € > 0. Then - .
2 31; < %Z[f (2x) = f(@k41)] < oo | (126)
k=0 k=0

if f(-) is bounded below, which is impossible because of (AS.4).

Theorem 10 Assume (AS.1)-(AS.6) hold. Assume also that {z}} is a sequence of iterates gen-
erated by the algorithm. Then, '

kll'r{.l0 hy =0. (127)

We prove this theorem by contradiction. Assume therefore that there is an ¢; € (0,1) and a

subsequence {m;} of successful iterates such that, for all m; in this subsequence

€
hm; > ==, (128)
a1

and thus, by (45),
hm; 2 €1. (129)

Corollary 8 guarantees the existence of another subsequence {/;} such that

hi > € for m; <k <l; and hj, < e, (130)
where we have set
= < (131)
2 40}a} 1

Note that the last inequality in (130), (45) and Lemma 9 imply that
“P{xl.‘ - gl.’] - 2:1‘.“ < aghl.' < 01022’52' (132)

We may now restrict our attention to the subsequence of successful iterations whose index is in
the set
K={k|keS and m; <k <}, (133)

18



where m; and [; belong respectively to the two subsequences defined above. Applying now
Lemma 5, for k € K, we obtain that

2
f(zk) = fze41) 2 %#0363 min[%,Ak]- (134)

Because of (123), we have then that
};IEIII} bkAk =0. (135)

Therefore, we can deduce that, for ¢ sufficiently large,

IA

Sk, ks — il
P20y Ei‘;,ln; (KA

e TH7E [ (z3) — flma)]
ca[f(:vm'.) - f(z)ls

where the sums with superscript (K) are restricted to the indices in K, and where we have set

[ |

(136)

IA A IA

o et 2P201
[16363

(137)

But the last right hand side of relation (136) tends to zero as ¢ tends to infinity, and thus
continuity and (132) imply that

IP[2m; = gmi] = Zm,|| < 20107€2 (138)
for 1 sufficiently large. We méy now apply Lemma 9 again, and we obtain that
‘ hum, < 203026 < L
m; S £0103€2 S o (139)

when ¢ is sufficiently large. This contradicts (128) and proves the theorem. O
As above, we note that (AS.3) and (AS.5) imply a scaled equivalent of (127), i.e.

. ois
kli‘ngo hi = 0. (140)

Before dealing with the extension of convergence results involving second order information to
the bounded case, we wish to analyse the behaviour of the algorithm when the sequence converges
to a critical point. In particular, we will show that, if the iterates converge to a critical point
satisfying the strict complementarity conditions, then the set of constraints that are active at
this critical point is correctly identified in a finite number of iterations.

In the argument that follows, we consider {zx} an arbitrary sequence generated by the algo-
rithm. We also define L to be the set of all limit points of this sequence. This set is non-empty
because £ is compact. We then restrict our attention to the case where the following assumption
holds.

(AS.7) All limit points in L satisfy the strict complementarity slackness condition
1€ I(z.) = |(Vf(z4))i] >0 (141)
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for every z« € L, where 1 is the index of a bound.

We first show that, once a constraint is picked up as the iterates approach a limit point, it
will be active for the rest of the calculation.

Lemma 11 Assume that (AS.1)-(AS.4) and (AS.7) hold. Then L is finite and

I(z4) € I(zgtm) (142)

for all m > 0 and k sufficiently large.

After a finite number of iterations, every iterate lies in the neighbourhood of a limit point.
More precisely, we can choose a § > 0 such that, given an iterate z) with k sufficiently large,
there exists a limit point z. € L such that

zx € N(z4,6) ize lL]|z- =z < 6). . (143)

Using continuity, compactness of L and (AS.7), we can also assume, without loss of generality,
that & is small enough to ensure that, for all z, € L, all z € N(z.,6) and all § € I(z),

j € I(z.) (144)

sen([V/(2)]5) = sen([V/(=.));) and [[V/(@)]5| 2 VS (=)l ' (149)

Consider now such a large k. If the kth iteration is unsuccessful, then zj.; = z; and, clearly,
I(zk) € I(zk4+1). Ifit is successful, the mechanism of the algorithm ensures that I (z§) C I(zk+1)-
But (144) and (145) then imply that I(zz) C I(z§). Therefore, we obtain that I(z) C I(zk+1)
for all k sufficiently large, and (142) is proved. O

We now show that, for every convergent subsequence, the correct active set is identified by
the algorithm after a finite number of iterations.

Theorem 12 Assume (AS.1)-(AS.{) and (AS.7) hold. Furthermore, assume that
kliongo hy = 0. (148)
Then, if {zk;} 18 a subsequence converging to a limit point z, € L, z. 18 critical and
I{zy,) = I(z4) . (147)

for i sufficiently large.

As a consequence, if the complete sequence {z;} converges to a single limit point, then this point

is critical and its active set is correctly identified by the algorithm after finitely many iterations.
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The criticality of z, follows from (146) and Lemma 1.
Let I, = limsup I(zk;). Using Lemma 11,

I(zx,) € I(z4), (148)

for all 1 sufficiently large. Hence I(zy;) = I, for 1 sufficiently large. Suppose I, C I(z.).
Then there exists a non-empty set J C I(z,) such that J N I, = 0. However, from the strict
complementarity slackness in (AS.7) and (145), we may deduce that

B2 o3 ol 2 ol min (V1)1 2 (149)
JjeJ

for some € > 0. Hence hy, > ¢, for all k large enough. This contradicts (146). O

This last result is important because it shows that the asymptotic behaviour of the algorithm
is that of a purely unconstrained method, restricted to the subspace of variables that are not at
their bounds at the solution. Hence rate of convergence analysis for the unconstrained case can
be applied in our context without any modification.

It is also interesting to observe that Lemma 11 and Theorem 12 together imply that all limit

points of the sequence of iterates generated by the algorithm have the same active set.

3.3 Convergence to local minimizers

In this subsection, we consider exploiting second order information in the model and the
objective functions to ensure stronger convergence results. Our analysis follows the broad lines of
the developments in [12], recasting the results presented therein for unconstrained optimization
into the context of bounded minimization. We first examine some conditions that guarantee that
the complete sequence of iterates generated by the algorithm converges.

Define first A}[X] as the minimum eigenvalue of the symmetric matrix X restricted to the

subspace C(z.). Then we can state the following result.

Theorem 13 Assume that (AS.1)-(AS.7) hold, and assume that {zy, } is a subsequence of iter-
ates, generated by the algorithm, converging to the critical point x.. Assume also that there is an
€ > 0 such that

lim inf AlBg,] > €. (150)

Assume finally that V2 f(z.) 1s non-singular on the subspace C(z,). Then the complete sequence

of iterates {xx} converges to z. and all iterates lie in A(z.) after finitely many iterations.

The criticality of z. is ensured by theorem 10. We first choose a § > 0 and a k; sufficiently
large to ensure (143), and the two conditions thereafter, for all k > k3, and that the minimum
singular value of VZf(z) restricted to the subspace C(z.) is larger than some constant ¢z > 0.
We also apply theorem 12 to the subsequence {zy,} and deduce that

I(zy,) = I(z.) (151)
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for all 1 sufficiently large. We can then choose ¢ large enough so that ki, > ky,

1 .

’\I[Bk;] 2 '2'57 (152)

llzk; — 2| < Lty (153)
' ~ 4c7+4 €

and (151) hold for all ¢ > 1}, and also so that

he < e76 (154)

for all k > k;,. This last relation has to hold for large enough k because of theorem 10. For all
i > 11 we now observe that, using (151)

 sp, € C(z) (155)

and we decompose gk, as
gk, = g,ﬁ, +g,}c\: with g,]:". € C(z«) and gkR'. €C(z)t.’ (156)

The vector g}c‘f is thus the gradient of the model at zj, projected onto C(z.), and has the property
that
lofill = hi; < crby (157)

for 1 > 11. Consider now the one dimensional strictly convex quadratic function of the parameter
7 defined by

$(r) = mi (o, + 7ok) = f(zn). (158)
Then, since ¢(0) = 0 and ¢(1) < 0 by construction of the step s, we obtain that
r. % arg min é(r) > —;— (159)

But an easy computation shows that

_lekse] _ 2llgiill
* = >
s{in'.sk'. €lsk; | ’

(160)

where we have used the Cauchy-Schwartz inequality, (152) and (155) to derive the last part of
this bound. Therefore, we can deduce that

4
llsill < llokill (161)
Hence, gathering (153), (157) and (161), we obtain that

4
lebess = 2ell < okl + llw, — 2ol < [ 2 +1] 61 < 6. (162)

Assume now that
ki1 — 2l > . (163)
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Then, using (151), (162) and our assumptions on VZf(z.) and §, we have that
rers = o all = 11921 (0) st — )] > erbi, (164)
where u is a point in the segment (z,41,z.). This is impossible because of (154), and therefore

[[Zki+1 = || < 61 (165)

All the conditions that are satisfied at zx; are thus satisfied again at 4,11, and the argument
can be applied recursively to show that, for all 5 > 1.

zk4s — 2| < 61 < 6. (166)

Since 6 is arbitrarily small, this proves the convergence of the complete sequence {z;} to z,. O

This result is interesting because it confirms the intuition that the algorithm can be forced
to converge to a critical point which is not a minimizer, when the Hessian approximations By do
not reflect adequately the behaviour of V2f(z).

Since the final calculations are purely unconstrained, we can also apply Moré’s results in [12]
and deduce that all iterations are eventually successful, and that the trust region radii A are
bounded away from zero.

We now wish to show that convergence to a point where the necessary second order conditions
for a local minimizer hold can also be established, if one is willing to strengthen the requirements
on the step sg.

We shall impose the following conditions instead of (12).

(AS.8) The choice of the step sy ensures that

fzx) — me(zk + s&) > Bi]f (zx) — min me(zl + pr)], (167)

where the minimum is taken over eigenvectors p; € C(z$) associated with A}[By] that are scaled
so that the point xf + py still lies in the trust region.
We also require that some step along a direction of negative curvature can be made, when

such a direction is found, as ensured by the condition

(AS.9)
B2 > v. (168)

We will finally require that the model reflects the behaviour of the objective function more
accurately (for example, by using exact Hessians or finite difference approximations). Thus, we
require that the two following conditions hold.

(AS.10) The matrices By satisfy the conditions

A[By] < cgAl[VZf(xx)] when A[V2f(zx)] <O, (169)
where cg is some positive constant, and

lim |r(Bg,sk) — r(V2f(zk),sx)| =0 whenever lim ||sx| =0, (170)
k— oo k—o0
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where r(X,s) = s7 Xs/||s||? is the Rayleigh quotient of the symmetric matrix X with respect to
the direction s (it can be viewed as a measure of the curvature of the quadratic form defined by
X along s).

We first consider a consequence of these conditions on the model decrease.

Lemma 14 Assume that (AS.1)-(AS.8), (AS.5) and (AS.8) hold. Assume furthermore that

M{[By] <0 (171)
for some k. Then,
1
flxx) — mi(ze + sx) > "ECQ)\I[Bk]A)zg, (172)
where the constant cg is defined by
def o (B2 —v\?
Cog = ,31 ( . ) . (173)

Consider first py € C(z.) an eigenvector of By, associated with A[By], and assume it is scaled
so that

PE (96 + Bu(af — 2x)) <0 (174)
and '

|1 Dx(f + px — =) || = Be&Aee (175)
If we set azf ¢! zf + pk, we obtain that

1 1
me(ef) = ma(af) + 2 (gn + Bu(af — =) + 3p¥ Bupe < S(2) + 5N [Belllmell®,  (176)

where we used the inequality my(z{) < f(zx), (174) and the definition of py. Observe now that

| Drpell || De(2f — i) B2 —v
2> -1 —, 177
1D4(2F — 2l = 1Da(ag )] 2 am
because of (10) and (175), and hence
v
Br8e = 1Ds(af = o)l < [1Daael + 104(f — =)l < (1+ 22 oallell. (179
This last inequality and relation (176) together then imply that
1 _ 2
f(z) — mu(f) 2 —3 X [Bi] ("202 ”) Al (179)
To complete the proof, one only needs to notice that
f(2k) — mi(zx + sk) > Ba[f (=x) — mx(ak)] (180)

because of (167). O
We now show that there is a limit point where the second order necessary conditions for a

minimizer are satisfied.
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Theorem 15 Assume that (AS.1)-(AS.5) and (AS.8)-(AS.10) hold. Then there is a limit point
z. of the sequence of iterates generated by the algorithm, with V?f(x,) positive semidefinite on
C(z4).

We proceed again by contradiction, and assume that, for all limit points z, of the sequence
{zx}, the Hessian matrix V2 f(z.) has an eigenvector in C(z.) corresponding to a negative eigen-
value bounded above by —2¢;, where ¢; is some positive constant. We first want to show that
the trust region radii Ay tend to zero. Assume it is not true, that is there exists a subsequence

{m;} of sucessful iterations such that
Am; > € (181)

for some €3 > 0. Then, because of (AS.1), we can exhibit a subsequence of this subsequence
which is converging to a limit point, =, say. Without loss of generality, we assume that the whole

sequence {zn,} converges to z.. We will also assume that ¢ is large enough to ensure that
I(zm;) C I{z,) and X [VZf(2n,)] < —a : (182)
by using the continuity of the Hessian. Hence (169) implies that
ABp,] < —cgeq (183)

for 1 sufficiently large. Using this bound, lemma 14, the fact that iteration m; is successful and
(181), we deduce that
f(@m) = f(Zmi+1) > %M0809€1€§ (184)
for large 1. But this inequality is clearly impossible because
00
;[f(wm.-) = f(gmi+1)] < g[f(wk) = f(zr41)] < f(20) - f(z4) < +oo. (185)
i= €

Hence no subsequence of successful iterations is such that (181) holds, and

lim Ay =
lim Ay, = 0. (186)
This, in turn, implies that

kl_l_’rgo Ar =0 and kl:n;lo Iskl] =0, (187)

by using (13), (23) and (25). We note that, for k sufficiently large, the point z is close enough

to a limit point to ensure that
z\l[sz(:z:k)] < —¢; and hence )\I[Bk] < —cgé€1, (188)

because of (169). Combining now (92), the bound ||s}| < 01824 and (172) together, we obtain

that
o303

CgCo€1

lox — 1] < |r(Bk, &) = r(V*f (), )| (189)
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and the right hand side of this expression tends to zero because of the second part of (187) and
(170). The updating rules for the trust region radius then prevent Aj from tending to zero. This
contradicts the first part of (187) however, and therefore there must be a limit point z, where
V2 f(z.) is positive semidefinite. O

Strictly speaking, this result does not ensure that z. is a local minimizer, because we did
not show that it is critical, nor that it was not a saddle point. It is nevertheless often the case
that z, is a local minimizer, and criticality can be guaranteed by imposing (AS.6), as shown by
theorem 10.

Observe finally that we really proved that there is a limit point where the matrices By are
asymptotically positive semidefinite, and it is only because we imposed an adequate relationship

between these matrices and the true Hessian that the theorem’s statement involves the latter.

4 Conclusions and perspectives

We believe that the theory presented in this paper is interesting for several reasons.

Firstly, it extends most of the convergence results known for unconstrained problems to the
very frequent case where bounds on the variables are present. This extension is obtained by
generalizing the now classical notion of a Cauchy point in what seems to us a natural way. Quite
general conditions on the size of the Hessian approximations are also considered, allowing for a
number of specialized implementations.

At variance with [8], for example, the implementation of our algorithm does not require
extensive linear algebra, and what is needed can be accomplished by using efficient iterative
methods such as preconditioned conjugate gradients. Therefore, the framework presented here
is quite well suited to large dimensional problems. In particular, one may consider using it in
conjunction with partitioned secant updating techniques on the very general class of partially
separable problems [10]. These last techniques have been already used for bounded problems in
the Harwell library subroutine VEO8, which was shown in [11] to be remarkably efficient, although
it still lacks the strong theoretical foundation that we provide for the present proposal.

Finally, preliminary numerical experience with this type of algorithms is rather encourag-
ing(see [5]). The theory developed here may therefore well prove to be useful in practical appli-
cations.

Further extensions of this framework to the linearly and nonlinearly constrained case are also

of interest. They are the subject of continuing research.
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