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ABSTRACT

A helix(k) list is a newly defined robust multiply-linked list
having k pointers in each node. In general the i’#h pointer in each
node addresses the i’th previous node. However the first pointer in
each node addresses the next node, rather than the previous. This
paper presents an algorithm for performing local correction in a
helix(k>3) list. Given the assumption that at most k errors are
encountered during any single correction step, this algorithm
performs correction whenever possible, and otherwise reports failure.
The algorithm generally reports failure only if the instance being
corrected has a disconnected node. However, in a helix(3) structure
one specific type of damage that causes disconnection is
indistinguishable from alternative damage that does not. This also
causes the algorithm to report failure.

1. Introduction:

A helix(k) storage structure is a circular multiply-linked list of nodes, in which
each node contains k pointers. In general the i’ pointer in each node links that
node to the #th previous node. However, the first pointer in each node addresses
the next node, rather than the previous. Each node contains an identifier field
that identifies it as belonging to a specific instance of a helix(k) structure. A count
of the number of nodes in the instance is also present. A helix(k) structure has k
consecutive headers that allow access to the instance.

The helix(k) storage structure is a variant of the spiral(k) storage structure [3].
In the spiral(k) storage structure each node has k—1 pointers that address the next
k—1 nodes, and a k’zh pointer that addresses the k’th previous node. In general, &
errors in a spiral(k) structure may cause some nodes to be reachable only via
forward pointers, suggesting that any local correction algorithm must necessarily
traverse the instance forwards. Unfortunately, in a spiral(3) structure a different
set of k=3 errors may cause these nodes to be reachable only via back pointers.
Thus any local correction algorithm that anticipates three errors in a spiral(3)
locality may be unable to perform correction, even though all nodes in the structure
are connected. By using a helix(k>3) structure this problem is avoided.

The local correction algorithm described in this paper for a helix(k>3)
structure starts at headers whose addresses are assumed to be correct, and proceeds
backwards through the entire instance iteratively identifying the previous node. At
each step, paths expected to lead to this previous node are used to vote on the
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correct value of this previous node. The nodes addressed by these paths receive
additional votes when paths proceeding from them appear correct. These votes,
and occasionally additional information obtained from the structure being
corrected, allow the previous node to be identified whenever possible.

2. Definitions

Each node in a helix(k) structure contains identifier, forward pointer, and
k—1 back pointer components. A count component exists in one of the header
nodes. An error is an incorrect value in one such component [6].

Initially it is assumed that the addresses of the header nodes within the
instance being considered are known and can therefore be srusted. As correction
proceeds, components of the instance become trusted. Any node addressed by a
trusted component is trusted. However, trusted nodes may initially contain
untrusted components.

Nodes will be labelled N and subscripted by the correct forward distance from
them to the last trusted node. The last trusted node is therefore Ny, while earlier
trusted nodes have negative subscripts. Back pointers will be labelled » and
forward pointers f with subscripts indicating the correct distance spanned by these
pointers.

At any correction step, the node N; that should immediatcly precede the
trusted nodes will be called the targer. The target is disconnected if no correct
pointer in the instance addresses it. Components examined in attempting either to
identify the location of the target, or to detect that it is disconnected, define the
current locality. Local correction requires that the number of untrusted
components in any locality be bounded by a constant [3]. When the target has
been identified, the identifier and forward pointer in the target, and the back
pointers that should address this target, are components of trusted nodes. Since the
correct values of these components are known, the values of these components can
be corrected if incorrect. Once correct, these components and the target become
trusted.

One method of attempting to identify the target is to use votes [3,4,7]. Each
constructive vote is a function which follows a path from a trusted node and returns
a candidate node N, for consideration as the target. Constructive votes are labelled
C. Each diagnostic vote is a predicate which when presented with a candidate
node N,, assumes that this candidate is the target node N;, examines a path
proceeding from this candidate, and returns true if this path appears correct.
Diagnostic votes are labelled D. A candidate receives the support of each
constructive vote that returns it, and each diagnostic vote which returns true when
presented with it. Each candidate receives a vote equal to the number of votes
supporting it. If the candidate is not the target then it is an incorrect candidate.
The following votes are used in this paper:
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Vote Path Compared with
followed node or path
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The node addressed by Ny-b,-f1 is also considered to be a candidate, even if this
node is addressed by no constructive vote. Since at most &k errors are assumed to
occur in any locality, this ensures that the target lies within the locality being
corrected, unless the target is disconnected.
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Fig 1. Pointers used in a correct helix(3) locality

3. Theoretical results

It is assumed throughout this section that at most k errors occur in any single
locality, and that the Valid State Hypothesis [6] holds. This asserts that, in the
absence of errors, identifiers and pointers within the instance being corrected
contain information that differs from information occurring at the same offset in
other nodes within the node space. Without some assumption about the number of
errors occurring in a locality, and the number of errors seen when invalid
components are examined, little can be said about the behaviour of any local
correction algorithm.

Theorem 1 shows how an algorithm can detect and correct up to k errors in
the empty instance. Subsequently it is assumed that the instance being corrected is
not empty. -Under this assumption, Theorem 2 shows that the target receives at
least k votes, and that incorrect candidates receive at most k votes, if distinct from
the last k£ trusted nodes. Theorem 3 specifies when disconnection of the target can
be suspected, and in all but one case determined. Theorem 4 demonstrates how
the target can be identified in all other cases. Collectively, these results can be
used to construct a simple, efficient algorithm, that performs local correction
whenever possible.

Theorem 1

If an instance of a helix(k>3) structure contains at most k& errors, it can be
determined if this instance is empty. Having determined this, any errors in the
instance can be trivially corrected.
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Proof

In a helix(k>3) instance at least 2k+1 components contain values indicating
when the instance is empty. Specifically the b, pointer in each of the & header
nodes address themselves, the b;_; pointers in all but the first header point forward
one node, the forward pointer in the first header addresses the last, and the count
is zero. Given at most k errors, the instance is therefore empty if and only if at
least k+1 of these components indicate that the instance is empty. O

Theorem 2

If r<k errors occur in any locality within a helix(k>3) structure, the instance
being corrected is not empty, and votes are modified so that they do not support
any of the last £ trusted nodes, then (a) the target receives at least 2k—r>k votes,
and (b) incorrect candidates receive at most r<k votes.

Proof of (a)

Since the instance is not empty, the target is distinct from the last k trusted
nodes. Thus, modifying votes so that they cannot support any of the last & trusted
nodes leaves the vote for the target unchanged. In a correct non-empty instance
each vote supporting the target uses distinct pointers. Since r pointers are assumed
to be damaged, at most r votes can fail to support the target. The other 2k—r
votes must therefore continue to support the target. O

Proof of (b)

Each vote supporting an incorrect candidate N, contains at least one error. If
N, is to reccive more than r votes as a result of r errors, then some votes must
contain only errors present in other votes supporting N,,.

If this shared error occurs in a forward pointer then it must be shared by Dy
and C;, since no other vote uses a forward pointer. Since D; supports N,, this
pointer addresses Ny. Since C; also uses this pointer it supports Ny. But N, receives
no votes, contradiction.

The only error in a back pointer that could be shared by votes, supporting an
incorrect candidate N,,, must occur in the b,_; pointer used by D,, since all other
back pointers used either occur at different offsets, or originate in nodes that are
known to be distinct. This error can be shared with at most one of C_,, Dy _5 and
D,;_4, since no other vote uses a b,_; pointer. However, for this shared error to
cause N, to receive more than r votes as a result of r errors, no vote supporting N,
may contain more than one error.

If C,_, and D, share a common b;_, pointer, and the instance being corrected
is not empty then D, contains at least two errors since Ny-b, incorrectly addresses
N, . If D,_5 and D, share a common b,_; pointer, then D, contains at least two
errors since Ny-b, incorrectly addresses itself. Finally, if D,_, and D, share a
common b,_; pointer, then at least one of Ny-b;, and N,-b, must be in error since -
they originate in distinct nodes, but address a common node.

Since at most one error can be shared by two votes supporting an incorrect
candidate N,, and then only if some vote supporting N, contains at least two
errors, N, receives at most » votes when r errors are introduced into any locality. O
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Theorem 3

In a helix(3) structure, changing N,-f; to address Ny, and the other two
pointers correctly addressing N; so that they address N,, is indistinguishable from
damage that causes N_;-b; and Ny-b, to address N;, and Ny-b; to address N,. Thus
it cannot alway be detcrmined if the target is connected. However, if nodes
contain identifier components, and at most k errors occur in any locality, then in
all other cases it can be determined if the target is connected.

Proof

If all k pointers correctly addressing the target have become damaged then the
target is disconnected. Otherwise, since at most k errors occur in any locality, the
target is connected, and cither supported by one of the constructive votes, or
addressed by the path Ny-by-f;.

If no candidate reccives k or more votes then the target must be disconnected,
since Theorem 2 ensurcs that the target receives at least k votes. Conversely, if
any candidate receives morc than & votes this must be the target. So assume that
some candidate receives k votes and no candidate receives more than this. Then
either this is the only candidate or multiple candidates exist. These cases are
addressed separately.

Single candidate: If only onc candidatc N, exists, then the path Ny-by-f; and all
paths used by constructive votcs address N,. If N, is not the target then each path
contains an error. Since only k errors occur in the locality, the error in the path
Ny'by-f; must be shared with Cy, implying that N,_;-b; is correct. Conversely, if
N, is the target, then only diagnostic votes contain errors, again implying that
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N,_;-b; is correct. Since N,_;-b; addresses N,, it can easily be be determined if
N,=N,. Similarly, since at most k errors occur in any locality, N, must have an
undamaged identifier field, allowing it to be easily determined if N, lies outside
the instance being corrected. Finally, it can easily be determined if N, is one of
the last £ trusted nodes. In any of the above cases N, is clearly not the target node
Ny

So suppose that N, lies within the instance, but has an address that differs
from N,, Nj, and each of the last k trusted nodes. If N,-f; contains an error, then
this pointer must be used by C; since each incorrect pointer in the locality is used
by some constructive vote, but no other constructive vote uses f. Since N, receives
k votes, C; contains exactly this one error and thus N,=N,, contradiction. Thus
N,-f; must be correct. Conversely, if N, is the target N;, then since all of the
diagnostic votes associated with N,_, are damaged N,-f; must contain an error.
Thus N, is the target if and only if N,-f; contains an error.

The pointer N,-f; cannot address Ny since it is known that N, receives no
diagnostic votes. If this pointer addresses any other trusted node then it contains
an error since N,, is distinct from the last £ trusted nodes. This pointer also clearly
contains an error if it addresses itself. In any of the above cases, since N, f; is
known to be in error, N, is the target. So assume that N,-f; addresses N, which is
distinct from all of the above nodes. Then N, -b; is correct since it is distinct from
all of the k pointers containing errors.

Consider following the path N,-f-b;, and then k—1 forward pointers. If N,-f;
is correct then none of these k—1 forward pointers can be N,-f, since N, is not one
of the last k trusted nodes, and thus all k—1 forward pointers are also correct and
form a path that arrives back at N,. Conversely, if N,-f; is incorrect then Ny-f; is
correct and thus the path followed must either fail to arrive back at N,, or arrive
back at N, prematurely. Thus N, is the target if and and only if the above path
appears incorrect.

Multiple candidates: If constructive votes agree on a common candidate, but
support a different candidate from that addressed by Ny-b,-f; then the target is
connected. Otherwise, since constructive votes disagree, any candidate N,
receiving k votes must receive at least one diagnostic vote. If the target is
disconnected, since all errors occur in pointers correctly addressing N;, only the
diagnostic vote D; can support N,. However, this implies that N, is N;, and that
N2'fl addresses Ng.

The statement of the theorem has acknowledged that if this damage occurs in
a helix(3) structure, then it cannot be determined if the target is connected.
However, for a helix(k>4) structure the pointer N_;-b3 is unused and thus correct
since k other pointers within the locality are known to be in error. Since this
pointer correctly addresses N, it can be used to determine if the candidate receiving
k votes is indeed N,. If it is then the target is disconnected. Otherwise, this
candidate is the target. O

Theorem 4

If the conditions of Theorem 3 are satisfied, and it has been determined that

the target is connected as described in Theorem 3, then the target can always be
identified.
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Proof

If the target is the only candidate, or receives a vote greater than any other
candidate, then the target is trivially identifiable. For an incorrect candidate N, to
receive the same vote as the target Ny, both must reccive k votes.

Suppose that N;-f; contains an error. Then this error must be used by some
vote supporting the incorrect candidate N,, since otherwise k—1 errors could cause
k votes to support an incorrect candidate contradicting Theorem 2. The only vote
that can utilise such an error in Ny-f; is C;, and then only if N,_;-b; erroneously
addresses N;. But in this case C; contains two errors that are used by no other
vote that supports N,. This implies that k—2 errors cause the remaining k—1 votes
to support N,.. Once again this contradicts Theorem 2. Thus Ny-f; must be correct.

Since Nj-f; is correct we can trivially identify the target if N,-f; does not
address N;. So suppose that N,-f; contains an error that causes it to also address
Np. Since it is known that each error in the locality damages a vote correctly
supporting the target, the incorrect candidate, N,, must be N,. But in this case the
damage to N,-f; implies that N, ;-b, is correct and therefore addresses the
incorrect candidate N,. Thus if both N;-f; and N,.f; address N, then the target is
that node not addressed by N,_;-b;. O

4. Conclusions

The above results are the natural progression of ideas first presented in [4].
This earlier work presented an algorithm that corrected mod(k) linked lists [1,2, 5]
by using weighted votes. Mod(k) lists can be derived from helix(k) lists by
replacing all the back pointers in a helix(k) list by a single pointer addressing the
k’th previous node. The mod(k) algorithm is somewhat simpler to implement than
the algorithm presented in this paper, but the use of weighted votes resulted in a
proof of correctness that was more complex than desired.

Empirical results presented in the appendix suggest that the algorithm
presented in this paper when applied to helix(k) structures is significantly better
than earlier algorithms used to correct spiral(k) structures. This is hardly
surprising despite the similarities between these two classes of structure. Earlier
algorithms operated under the assumption that at most k—1 errors occurred in any
locality of the similar spiral(k) structure, and therefore made no attempt to either
detect disconnection or to behave intelligently when & errors occurred in a locality.

Currently, it is unclear how one might evaluate a correction algorithm, or
identify the type of behaviour that could be reasonably be expected from a “good”
algorithm. While it seems reasonable to judge an algorithm on its empirical
behaviour there seems no way of confidently simulating the types of unknown error
that are likely to be encountered in any real environment. If anything the
theoretical bchaviour of a correction algorithm is of even less use in predicting the
practical usefulness of an algorithm. However theoretical results help identify the
types of error that will be corrected by the algorithm, and may eventually be used
to accurately predict the statistical behaviour of correction algorithms. This is an
open and interesting area for research.
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APPENDIX

Empirical results

1. Explanation

This appendix presents empirical results obtained when “random” errors were
introduced into instances of a helix(3), helix(4), spiral(3) and spiral(4) structure.
Each instance contained 100 consecutively located nodes plus headers. Increasing
numbers of pointers were randomly selected from within this instance, and
modified by adding or subtracting a random number between 1 and 10.

The spiral(3) and spiral(4) instances were corrected using the spiral correction
algorithm described in [3]. This algorithm uses the following votes to correct up to
k—1 errors in any locality. If a single candidate received k+1 or more votes the
algorithm concludes that this node is the target. Otherwise the algorithm reports
failure.

Vote Path Compared
followed with node

Cicick | Myikbr fi
Gy Ny by
Dicicr | Nofi N

Unfortunately since the spiral and helix structures are different, it was
impossible to execute the correction algorithms on the same “randomly” damaged
instances. Thus the errors applied to each instance were related only by the above
constraints. Each test was performed 1000 times on each instance before the
number of pointers being damaged was increased. Statistics were collected on the
number of times that each damaged instance remained connected, and was thus
potentially correctable. Statistics were also collected on the number of times the
appropriate algorithm was able to correct the instance presented to it, and the
number of times that each algorithm was misled into attempting to apply an
incorrect change.
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2. Comments

Under the various errors introduced, the helix(3) structure remained connected
85% of the time and the spiral(3) structure 84% of the time. The helix(4) and
spiral(4) structures remained connected 99% of the time.

The helix(3) structure was corrected 54% of the time while the spiral(3)
structure was corrected only 36% of the time. Similarly, the helix(4) structure was
corrected 83% of the time, but the spiral(4) structure only 66% of the time. More
informally, in the experiments conducted, the helix(k) algorithm generally behaved
as well as the spiral(k) correction algorithm, even when the structures that it was
correcting contained an additional 10 errors.

Somewhat surprisingly the helix correction algorithm attempted more
erroneous corrections than the spiral correction algorithm. In the helix(3) structure
111 erroneous corrections were attempted compared to 33 in the spiral(3) structure.
Similarly, in the helix(4) structure 2 erroneous corrections were attempted
compared to none in the spiral(4) structure. Various factors seem to have
contributed to this discrepancy. Since the spiral correction algorithm failed more
often, it encountered fewer errors, and thus had less opportunity to be misled. In
addition, the helix correction algorithm can be misled when an incorrect candidate
receives k votes, while the spiral correction algorithm can be misled only if some
incorrect candidate received at least k+1 votes. This becomes particularly
significant when constructive votes support nodes outside of the instance being
corrected. Given the nature of the diagnostic votes used, and the fact that only
components within the instance are damaged, such nodes receive no diagnostic
votes from the spiral correction algorithm, but can receive up to k—1 diagnostic
votes from the helix correction algorithm.

Although the spiral(3) and helix(3) structures are naturally much more robust
than the mod(3) structure it is of some interest to compare the results presented
above with those presented earlier for the mod(k) correction algorithm [4]. In
order to provide a direct comparison, instances of the helix(3) and spiral(3)
structure containing more than 30 damaged pointers will be ignored. Under this
scenario the spiral(3) and helix(3) structures remained connected 98% of the time,
while the mod(3) structure remained connected only 55% of the time. The helix(3)
instances were corrected 90% of the time, the spiral(3) instances 70% of the time,
and the mod(3) instances 40% of the time. Earlier mod(k) correction algorithms
that did not use the techniques presented in this paper consistently corrected 26%
of such damaged mod(k) instances.
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