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ABSTRACT

In this paper we first derive two normal form constructions
for cellular automata to transform any given (one-dimensional) cel-
lular automaton into one which is one-way and/or totalistic. An
encoding of this restricted type of automaton together with any ini-
tial configuration becomes the input of our small universal cellular
automaton, using only 14 states. This improves well-known results
obtained by simulation of small universal Turing machines and also
some recent results on universal totalistic cellular automata.

1. Introduction

Interest in cellular automata (CA) has been renewed since their application
to the study of complex systems [19-21]. In this context the universality of CA
was discussed in [21] and open problems about universal CA with a small number

of states were stated in [22]. We give some results here.

A cellular automaton (CA) is said to be universal if it can simulate every
Turing Machine or, even stronger, if it can simulate every CA of the same dimen-
sion. The first universal cellular automaton was given in the famous work of J.
von Neumann on the simulation of self-reproduction. He gave a 2-dimensional
universal and self-reproducing CA with 29 states. This was improved to 20 states
in [1].

Also well known is the work on small universal Turing Machines (cf. |11,

12, 15]). In this case the goal is to minimize simultaneously the number of states

and the number of tape symbols. In [12] it is shown that there is a universal
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Turing Machine with either 4 symbols and 7 states or with 6 symbols and 6
states. Smith [16] has shown that any Turing Machine with m symbols and n
states can be simulated by a one-dimensional CA whose uniform cell has m+2n
states. Thus either one of the universal TM from [12] yields a universal CA with
442.7 = 6+2.6 = 18 states. Here we improve this result and show that there is a
universal one-dimensional CA with 14 states. We believe that some more effort
in the detailed “low-level programming” of our basic strategy can decrease this
by 2 or 3 states. However, the minimal number of states of a universal one-
dimensional CA could still be much smaller, since already CA with 3 or 4 states

show astonishingly complex behaviour.

The well known "Game of Life" is a "semi-totalistic” CA which means that
the next state of a cell only depends on its own current state and the sum of the
states of its neighbors. S. Wolfram also introduced an even more restricted type
of CA, called totalistic. The next state of a cell of such CA depends only on the
sum of all the states in its neighborhood, including its own. D. Gordon [9] has
shown that totalistic one-dimensional CA can simulate every Turing Machine and
we will strengthen this and show that every one-dimensional CA can be simulated
by a totalistic one. We will use this result in the construction of our small
universal CA. We will also use the result that every one-dimensional CA can be
simulated by a one-way (unidirectional) one-dimensional CA [6,8,18] and that

one-way CA are equivalent to trellis automata [4].

2. Preliminaries

As we will consider only one-dimensional and homogeneous cellular auto-
mata in this paper we will restrict ourselves to this special case in the following

definitions. The more general terminology can be found in [5] or [17].

Intuitively, a cellular automaton consists of a doubly infinite array of cells.
All cells are identical copies of one single finite automaton. The local transition
function of each cell only depends on the actual states of its left and right neigh-
bor and itself. Thus, a computation of a cellular automaton can be defined in the
straightforward way as the synchronous application of the local transition func-

tion at each cell. The set of states always contains a so-called quiescent state q
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with the property: if a cell and its left and right neighbors are quiescent at time ¢
then this cell is quiescent at time t+1. As we assume finite input for the cellular
automaton this implies that there is a finite number of nonquiescent cells in the

initial configuration and in every subsequent configuration as well.

Definition 2.1 A (one-dimensional, homogeneous) cellular automaton is a triple
A =(Q, d, q), where @ is a finite set of states, d is the local transition function,
d: @X@XE — @ where the arguments of d are used in the following meaning
d(state of left neighbor, own state, state of right neighbor), and ¢ in @ is the
quiescent state, i.e. it holds d(q, ¢, q) = q.

A configuration of A is a mapping C : Z — @, where Z denotes the set of
integer numbers such that C(i) = q (quiescent state) for all but finitely many ¢’s.

The set of nonquiescent cells of a configuration C is called the support of C.

A computation of A now consists of a sequence of configurations
Cy,C1,Co...;Cp .., where Cy is the initial configuration and each configuration
C;41 is generated by simultaneous invocation of the transition function d for all

cells of A with states as given by C;.

3. Simulation by one-way automata

For our construction of a universal cellular automaton in subsequent

chapters we will need an automaton which is totalistic and one-way.

A cellular automaton A with set of states ¢ and transition function
d: QXQXQ — Q is called one-way, if d only depends on the state of the own
cell and the state of its right neighbor cell. Thus we can write the transition
function of a one-way cellular automaton in the form e : @X@ — @ with the
convention that the arguments of e consist of the states of the own cell and those

of its right neighbor.

In this section we will outline a transformation of an arbitrary cellular auto-
maton to a one-way cellular automaton in order to specify bounds for the

increase in the number of states and in time-steps needed in the simulation.

In (18] a similar technique was used for the case of real- time cellular auto-

mata, more general cases were considered in [6] and [8].
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The construction of the one-way automaton can be described briefly by:
1.  merging of each state with the state of its right neighbor
2.  shifting to the left during the state transition.

Let s,, 8,,...,5; be states in a configuration, such that s, # ¢ and let

tg, ty,..tp41 be the states after one transition as shown below

9 9 9 8 82 8 "°° 8k q 7 q

g q to t; g tyg - L1 9 4

Then it takes 2 time-steps in our simulating one-way automaton to produce the

transition

9 9 g9 81 83 83 8k q q q

g ty t; ty t3 v ey 9 9 g

For the given cellular automaton A let @ be the set of states and
d : @XQXEQ — @ the transition function.

As defined above, in the simulating one-way cellular automaton 4 the tran-
sition function d' will consider only the states of its own cell and its right neigh-

bor cell.
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Let @ = Q U @XQ and define d' : @'XQ' — Q' as follows
d'(u,w) = uv for (u,v)# (g,9)
d(g,9)=q
d'(uv, vw) = d(u,v,w)
d(q,qu) = d(q,9,u)
d'(wq,q) = d(w,q,9)

for all u,v,w in Q.

Thus, the transition shown above is completed in two time-steps by A in

the following way

q q 8 89 83 8k q q q
q q8; 8383 8283 &9 g9 aq q
o t 1 by by 9 9 g

The details of this construction are straightforward, so we can state the fol-

lowing theorem:

Theorem 3.1 For every cellular automaton A with k states there exists a one-
way cellular automaton A which simulates A twice slower and A needs at most

k% + k states.

In the above construction of the simulating one-way cellular automaton one
can delay the given transitions by "aging” the states in @ (eg. a, d', a", d",...) to

obtain slower expansion of the nonquiescent cells.
Therefore it is clear that the following corollary holds:

Corollary 8.2 For every cellular automaton A with k states and for every
m>1 there exists a one-way cellular automaton A which simulates A(m+1})-

times slower and A needs at most k? + mk states.

Later, we will have to apply this corollary for m=3 in the construction of a
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universal one-way cellular automaton.

4. Simulation by totalistic automata

In this section we will show that each cellular automaton can be simulated
(without loss of time) by a cellular automaton which has a totalistic transition

function and uses up to four times as many states as the original automaton.

Definition 4.1 A cellular automaton A with set of states @ and transition func-
tion [ : QXQ@XQ — @ is called totalistic, if @ C N (non-negative) and there
exists a function f': N — N such that f(z,y,2) = f(z+y+z) for all z,y,z in Q.

The transformation of an arbitrary cellular automaton whose states are
identified with non-negative integers is now accomplished by a cyclic "coloring” of
cells. We use four different powers of a basis such that in the number representa-
tion of the sum of three neighboring states left neighbor, right neighbor and own

cell are still identifiable by the position of a missing entry.

Consider e.g. a cellular automaton A with set of states @ = {1,2,....n} and

transition function d : @X@XQE — @ and let the figure below depict part of a

configuration of A.

— > > >, >, < P
8_p 8. 89 1 2 3
& & o |&—oo & c—

Let B = n+1 be the basis for the colouring factors 10, 100 and 1000 (in B-ary

notation). Then the above configuration changes to the following:

d
!

—
€

1008 | “1 10s_, ’ PR 10008, 100s,) 105,

2
y
[
A
7

Thus our new set of states is

Q@ = {sm|s €Q, m €{1,10,100,1000}} .
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So @' contains 4n states and we can define now the (partial) totalistic transition

function d' : N — @' as follows
d'(zyz) = 10d(z,y,z)
d(zyz0) = 100d(z,y,2)
d'(yzz) = 1000d(z,y,2)

d'(20zy) = d(z,y,?)

for all z,y,z in Q.

Again zyz, xyz0, yz0x, z0zy, 10, 100, 1000 are to be interpreted as

numbers in the B-ary system.

It is now straightforward, that the cellular automaton A with set of states
@' and totalistic transition function d' correctly simulates A without loss of time

and it therefore holds

Theorem 4.2 For every cellular automaton A there exists a totalistic cellular
automaton 4 which simulates A without loss of time and has at most four times

as many states as A.

If only one-way cellular automata are considered, the above construction
can be simplified using only three different powers of B for the colouring of the

cells, whereby the one-way property of the given automaton is preserved.

Corollary 4.3 For every one-way cellular automaton A there exists a one-way
totalistic cellular automaton A which simulates A without loss of time and has at

most three times as many states as A.

For the more general case of an arbitrary (regular) systolic network this
technique of coloring its underlying graph is used in [23] to show that actually

every systolic network can be transformed into a totalistic one.
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5. Informal description of construction

In the previous section we have shown that any cellular automaton can be

simulated by one which is one-way and totalistic and such that the expansion of

the nonquiescent part to the left can be delayed by any constant factor. We

choose m=3 to achieve expansion to the left at most at half speed.

Our universal cellular automaton U will simulate any given one-way totalis-

tic cellular automaton A ( which expands at most at half speed to the left) with

any given initial configuration. We will encode this pair as an initial configuration

of the universal cellular automaton U. A constant number (depending only on

the number of states of A) of steps of U is needed to simulate one step of A.

The time-space diagram (unrolling) of the given one-way automaton then looks

like

]

O

'™
O

ANAN

WO\

AN

N\

o)
)
Ye)

AN

AN

Q,
o
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This unrolling is obviously equivalent to the following

AVAVAVAVAVAVAVAVAN
/\ /\/</\/\ //
AVAVAVAVAVAVAVA

INNVNVNVNY

which will be the basis of our construction of the universal cellular automaton U.
Note that the computations which took place in one cell of the first automaton
therefore being depicted in vertical lines in the first figure, are now shifting to

the right in each step.

Example: Let A be a totalistic one-way cellular automaton with set of states

Q@ = {0,1,2,3,4} and transition function d given by

i |lo 1 2 3 4 5 6
déi)|o o 1 3 2 3 3

Since A is one-way the nonquiescent states expand to the right only. An exam-

ple of a computation of A follows.

AVAVAVYAVAVAY
\/\/\/\/\/\/\
VAVAVAVAVAVAVAN
\VAVAVAVAVAVAVAN
YAVAVAVAVAVAVAVAY
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In the simulation of the automaton A each of the nonquiescent cells of A will be
encoded as a block of constant size of cells in U. This block contains the given
transition-table for the cells of A, and by the marking of the appropriate table-
entry also the encoding of the current state of a cell, i.e. if a transition
d(i+j) = k takes place in a cell of A, in the corresponding block the (i+7)th

table-entry - which holds an encoding of the number  k-becomes marked.

So in our automaton U the main actions to simulate one time-step of the given

automaton A will be grouped into three phases

phase 1: send information about current state to left neighbor block
phase 2: send information about current state to right neighbor block
phase 3: process information to look up next state.

6. Outline of construction

As shown above the next states are always computed between the two cells
whose states are to be considered for the table-lookup. Therefore it is convenient
to use alternatively “activated” blocks and “empty” blocks and to change the
roles of both in the odd and even steps (beats) of the computation. This is
achieved by sending messenger signals over these blocks where the signals have

to complete various tasks during the three phases mentioned above.

phase 1: start from the right end of an active block and find the table-entry
representing the current state; activate a number of signals according
to the current state which are moving to the empty block to the left;

continue to move to the left end of the block.

phase 2: bounce at the left end of the block and find once more the table-
entry representing the current state; accordingly activate signals
which are now moving to the empty block to the right; while clearing
all temporary marks continue to move to the right end of the block,

leaving an empty block behind.



A Simple Universal Cellular Automaton 11

phase 3: cross over to the block to the right; while moving to the right end of
this block process the signals which have been accumulated here dur-

ing the previous phases; bounce at the right end.

The flowing of messenger signals over some adjacent blocks during the phases of

two consecutive beats can be depicted as follows:

block ¢ block i+1 block i+2 block i+3 block i+4

phase 1

phase 2

phase 3

phase 1

phase 2

phase 3

Furthermore we have to take care that after each beat a new block at the right-
hand end of the nonquiescent part can be activated to simulate a possible expan-
sion to the right. This is achieved by copying (at least) one complete block to the
right during each beat and by activating one new block which starts in the

' encoding of the quiescent state.

By our construction we can assume that there is no expansion to the left and so
we only need to activate the leftmost block at each second beat. This is realized

by a special block and messenger signals.
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Details of these constructions and encodings, the transition-table for U and

examples are found in the appendix.

Theorem 6.1: There exists a universal cellular automaton U with 14 states
which can simulate any given totalistic one-way cellular automaton A with any

initial configuration.

In [16] it is shown (Theorem 4) that any Turing machine T with m tape-symbols
and n states can be simulated by a cellular automaton with m+2n states. Thus
either of the universal Turing machines with 6 symbols and 6 states or with 4
symbols and 7 states (cf. [12]) yields a universal cellular automaton with 18

states.

We can now apply the normal form constructions of our previous sections
to the universal cellular automaton U of Theorem 6.1 to generate universal cellu-

lar automata which are also one-way and/ or totalistic.

Corollary 8.2: For every universal cellular automaton U with n states there

exists a universal one-way cellular automaton U, with n% + n states.

Corollary 6.3: For every universal cellular automaton U with n states there

exists a universal totalistic cellular automaton U, with 4n states.

Corollary 6.4: For every universal cellular automaton U with n states there

exists a universal one-way totalistic cellular automaton U with 3(n? 4 n) states.

7. Appendix

For the encoding of the given transition-table as a block of cells in U we
can assume w.l.o.g. that for the given totalistic one-way cellular automaton A the
set, of states @ is defined as @ = {3,4,5,...,k}, where 3 is identified with the quies-

cent state in A.

Each block consists now of a sequence of 2k+41 sub-blocks of the form

#2000...000111...111
S—v—**—v— and a block-endmarker #, where 2z is in {0, 1},
i—times j—times

i+ = 2k+1 and if in the given transition function d we have d(m)=n then in
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the ndth sub-block of each block it holds j=n. For all other sub-blocks we have
25=3. Thus a block consists of (2k+2)® cells.

If in a cell of the original one-way totalistic automaton a transition d(r)=s
takes place then in the corresponding block in U exactly in the first r sub-blocks
from the left this z equals 1 and in all other sub-blocks 2=0.

The computation of the next transition in the simulating automaton U then
takes 3(2k+2)? + 7(2k+1) time steps which constitute one "beat" of U.

Example: Let @ = {3,4,5} be the set of states and the transition-function d be

defined as
) 6 7 8 9 10
dz) |3 4 4 5 4

Then a transition by d(9)=5 corresponds to the following situation in the block

at the beginning of the beat:

#lmlll#IOOOOOOOOlll#lOOOOOOOOlll#lOOOOO(K)Olll#IOOOOOOOOll1#100000000111
#woooooouu#xooooooouu#looooooum#oooooooouu#oooooooooxu#

Here az at the end of the block shows that this block is activated and that the

new state 5 has to be sent to left and right neigbors.
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It can also be seen easily that the transition-function has been extended to

i |1 2 3 4 5 6 7 8 9 10 11
dé) |3 3 3 3 3 3 4 4 5 4 3

An inactive, "empty” block then looks like

0000000001 1140000000001 § § #0000000001 1140000000001 1140000000001 1100000000001 11
#oooooooouu#oooooooom1#oooooooum#oooooooom|#ooooooooolu#

If a block is activated at the beginning of a beat, his right neighbor block will

become activated at the next beat.

In order to be able to expand, it is therefore necessary to start a new
activation from the left end at each second beat. This is done simply by sending
a synchronizing signal up and down over a sufficiently long sequence of 1’s. The
first block after this synchronizing left part contains only table-entries represent-
ing the quiescent state. So each second beat the "quiescent block™” at the left end

is activated and no expansion to the left can occur.

At the right end copying of a block is performed by pushing an encoded
form of a block to the right and simultaneously leaving an empty block behind,
which will be activated later as representing the original quiescent state. During
one beat a little more than a complete block is created at the right, but since .
activation of blocks is initiated from the left - synchronized with the beat - this
does 'not affect the simulation of the nonquiescent part of the original totalistic

one-way automaton.

Example: The following three snapshots show the simulation of two transitions

AVAN
FAVAY
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where the transition-table is given as

dé) [3 3 3 3 4 3 4 4 3

In this case one beat of U consists of 363 single transition-steps. The following
are the initial configuration of U, the configuration after the first beat {363

steps), and after the second beat (726 steps).

qqqal IR LI R I R R R L R LI LI I R B AL RN a0 00 IR RRa IR 2102l t1111
TN N R al 1L R A R LR R IR0 R R L I L R a0 00010000000 0210110000001
I I N R L R R R I L A0 0000 R 0aR 100000 200000000211¢
TN T I AT T I 1R S0 1 100010 RR0D0 04
1#00011111111#00000“1#0000000111#00000(l)111#0000000l11#0000000111#000w00111#0000000111#00000001ll#
#lmOOOOIII#IOOOOOOlll#IOOOOOOI11#1000000111#1000000111#1000000111#0000000111#0000000111#00000001u#
#0000000111#00000001l1#0000000111#0000000111#0000001111#0000000111#0000(”1111#0000001111#00000001ll#
#1000000111#10000001ll#1000000111#1000000“1#!000001111#0000000111#00000011ll#OOOOOOllll#OOO()OOOIaa#
#1000000111#1000000111#10m00011x#1000000111#1000001111#1000000111#1000001111#1000001111#10000001u#
10000001 11#1000000{g1g0h0h0hOg 1g1hohhhhhggg 1hohOhOg181g0hhohOhggzghhhOhOgig 1g0hOhOh1gg 1 9qqq999q99qg

EEEEEREEE) THHHAERYEEYEAG9999999999Y 1915 RR4HEYY RS AL R L L R EEEE)

qaaql I IV NI I I R L I N I N R IR R 13100100000 808 0023022000111
NI N I R R I T AR I L LR 1R B2 E R0 0R1202200011000101
TN R LA L R I I g I I R a0 R R 0 0a iRt 1000012000112201101
TN T N R R L LI BRI R R R D211 0000

14000111111114000001 114000000018 114 10000001114 10000001 1 141000000111 % 1000000111 100000011 1410000001114
#00000001 114000000011 140000000111 #00000001 1 14400000001 1 1400000001 1 1 00000001 1 1 00000001 11400000001 11§
410000001 1141000000111# 10000001114 10000001 11410000011 11410000001 I 14100000111 1000000111 100000001 aas#
#000000011140000060111 400000001 114400000001 1140000001 111400000001 1 1440000001 111 #000000111 1400000001114
#lOOOOOOlll#lO(X)OOOlll#lOOOOOOlll#lOOOOOOI11#0000001111#0000000111#0000001111#0000001111#0000000133#
#10000001 1141000000111 100000011 141000000111 1000001 1111000000111 1000001 111 10000011114 1000000111 #

#10000001 11% 10000001114 1000000111 #bjchOhbglgghhhhhhlg1g1h0hohOh1glghhhhhhg1g1g0hOhOhlgligihhhhhhhglgl
h1hoj

N M R AR R YRR ST ARG GaaeGaaaaaaS99499494999949q qHRAY

qqqql1111E LI N I ERI T 10 I IRE0 000000 R0 0000000000000 0 0000 1800400 00011010031100000211111
IIIEIIIIIEII IR0 0100000l 1 LRRE a3 DR RERRRT000II0000010003 00000 0 000 R1 10118t RtatRl1118121]
I I I TR LT R R IRRRI A0 100 11 1 T 110 0 0000 0 I  II R R E AL ALIsIIIN
SURRRS RN R R R YRR RO R Ay e Ry s R UUURRE e TOTReRRessssusesassey ;

14000111111114000001 11400000001 11400000001 114400000001 1100000001 114400000001 1 1 000000011 1%00000001 1 1 ¢¢
#10000001 114 10000001 114 10000001 114410000001 1 14 10000001 1 1410000001 114000000011 1 400000001 1100000001 aast
400000001 1 1400000001 1 1 4600000001 11400000001 1 1440000001 111400000001 1 140000001 111400000011114400000001 11
#1000000111410000001114 10000001 11# 10000001 111000001 1114 10000001 114 1000001 1114:0000001111400000001 s
#00000001 11400000001 114000000011 14400000001 1140000001 1 114:000000011140000001 11 1§0000001 111 400000001114
# 1000000111#100000011 1410000001 11400000001 1 10000001 1114400000001 1160000001111 440000001 111400000001 aast
#100000011 14100000011 141000000111#10000001 1 1410000011114 10000001 1 1441000001 1114 10000011114 10000001 1 1%
#1000000111410000001 11410000001 114 10000001 111000001 1qgghhhh0hOg 1§ 1h0hOhOggggghhhOhOg 1g1g0h0h0hOgege

hghhOhOh1g1g0hOLOhOgg 1

THHTHEEEYHAGaINIaIaaYY T INE TR gaaay 194Q04 4
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The following table of state transitions for our universal cellular automaton

U will need some explanations. In the transition-table for U the upper row shows

the state of the considered cell and the first two columns display the states of the

left and right neighbor cells. Blank table-entries mean that these combinations

never occur during a simulation, thus any of the states could be entered instead

of the blank.
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