Types are not Classes

G.V. Cormack, M. Judd and A.K. Wright

CS-86-28

Types are not Classes

G.V. Cormack,* M. Judds and A.K. Wright*

1. Introduction

In contemporary language design, it is widely accepted that a data type is a set of values combined with a
set of operations on those values. Such types are specified using a mechanism akin to the class in Simula
67 [Dah 70]. In this paper we argue that this notion of type is inflexible, and frequently imposes an unna-
tural structure on programs. Classes are particularly inflexible in defining polymorphic operations —
operations that apply to more than one type.

As an alternative we propose a more primitive type structure in which the notion of fype does not
include a set of available operations: a type is merely a type mark and a representation. The type mark is
used in selecting from a space of available operations; this space is organized by scope and visibility-
control mechanisms that are independent of the type structure. The type structure described here has
expressive power and abstractive ability that compare favourably with that of other languages. We have
designed and implemented the language ForceOne [Cor 86, Wri 86] that embodies the type structure. In
this paper we describe the shortcomings of class-oriented types, and how our type structure addresses
these shortcomings.

2. Shortcomings of Classes

Our criticism of class-oriented types derives from the fact that whenever a new type is created, we must
enumerate the operations that may apply to the type and include them within the type’s definition. This
requirement conflicts with our view that programming is the incremental process of building new opera-
tions in terms of existing ones. Furthermore, it is often not obvious to what type a particular operation
belongs; sometimes we can make an arbitrary choice but in other instances no choice is appropriate. This
problem is particularly apparent if the operation is intended to be polymorphic: how can it be defined
within a type if it is meant to apply to many types?

2.1. Non-polymorphic Examples

Suppose that there exists the previously defined type integer which has the operations +, -, *, and /,
but not *x. If a program were to require the use of this exponentiation operator on integers, in many
languages it would be necessary to modify the definition of integer to include it. Such a modification is
likely to be infeasible, and is certainly undesirable, as it defeats modularity: ** can be implemented easily
using existing operations; access to the internals of the type integer is not required. It is possible to
define a new type powerable_integer that has the operations of integer plus **, but ** could be
applied only to values specifically declared as powerable_integer.

Further limitations of class-oriented types arise in defining related types. In the code generator of a
compiler, we may require two types pointer and offset. A pointer is the address of a storage location
and an offset is the distance from one location to another. We wish to define the following six opera-
tions.

* Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
+ Softech Inc., 460 Totten Pond Rd., Waltham MA 02254 U.S.A.

2

1. + offset X offset - offset
2. + offset X pointer -+ pointer
3. + ! pointer X offset - pointer
4. - : offset X offset - offset
5. - . pointer X offset - pointer
6. - : pointer X pointer -+ offset

First, we note that there are three definitions for each symbol but only two types: there is necessarily an
overloading problem if each type is allowed to contain one definition of each. Even if we rename each
operation to avoid this conflict (an unacceptable concession, in our opinion) a fundamental problem
remains: to which type does each operator belong? Only the first properly belongs to of fset. It is com-
mon to choose the type based on the first parameter; in this example, 1, 2, and 4 would belong to
offset, and 3, 5, and 6 would belong to pointer. However, except for 1, none of the operators can be
implemented without access to the representation of the other type. There is no assignment of operators
to types that makes this possible. The new types pointer and of fset interact not only with each other:
in order to have operations such as array subscripting, multiplication of offsets by integers is necessary:

7. * : offset X integer -+ offset
8. * : 1integer X offset -+ offset
9. / : offset X offset -+ integer .

As we define more operators it becomes increasingly difficult to classify them according to type: all types
used in a program are related by the operations on them.

2.2. Polymorphic Examples

Polymorphism in a class-oriented type system is achieved using one of three devices: class hierarchies (as
in Simula 67 and Smalltalk [Gol 83]), generic classes (as in Clu [Lis 77]), and class parameters (as in
Russell [Boe 86, Don 85]). We describe a number of problems and how they may be addressed using
these techniques.

From the previous section, recall that the new operator ** was defined for integers in terms of
the existing operation *. The operation

¥k : t X integer -+ t
can in fact be defined for any type t provided that the operation
¥ . t Xttt

exists. Using a class hierarchy, this problem is addressed by defining ** to belong to a super class, say
powerable_objects. The class powerable_objects would contain a virtual function * requiring that
all subclasses derived from it define the operation *. Then, the operation ** could be applied to any
subclass of powerable_objects. In order to have ** apply to integers and reals it would be neces-
sary to define the classes integer and real both to be subclasses of powerable_objects.

In some notations, concatenation of strings is denoted as multiplication:
*¥ . string X string -+ string

but such a definition is unlikely to be built into the class string. In order to define * and *x* for strings,
we would have either to redefine string to include * and make it a subclass of powerable_objects,
or to create a new class powerable_string that has the the operations of both strings and
powerable_objects. Such a definition requires that powerable_string be a subclass of both string
and powerable_objects, which is impossible in a class hierarchy. In either case, making a small addi-
tion to the set of available operators forces a major restructuring of the class hierarchy.

In Clu, the class hierarchy has been abandoned in favour of the generic class. A generic class
specifies a family of classes, and before being used a particular member of the family must be instan-
tiated. A generic resembles a superclass, but rather than deriving subclasses we supply parameters to the
generic to create an instance. For example, we could create the generic class powerable:

powerable : class -+ class

Instances of the generic class might be powerable [integer] or powerable[real]. The definition of
powerable would include the operator *%; hence ** is polymorphic. In order to define *x* it is neces-
sary to constrain the possible type that may be used to instantiate powerable: In Clu, the programmer
specifies the constraint that the parameter must have the operation *. Thus, we could not define
powerable [string] unless string were first modified to contain *. In Russell, classes are values and
there is therefore no distinction between generic and ordinary parameterization. One could therefore
define an operator

¥k : class X t X integer -+ t

where t is the value of the first parameter to **. The same structural constraint applies as with Clu: the
class that t is bound to must contain the operation *.

We can extend our example of the types pointer and of fset to make use of generic classes. The
type pointer can be parameterized by the length of object to which the pointer refers:

pointer : integer -+ class

Whenever an offset is added to such a pointer, its value is scaled by this amount. Thus, we wish to
define the operations

+ : pointer[n] X offset -+ pointer[n]
+ : offset X pointer[n] + pointer[n]

for all n. In order to do operations such as field selection in records it is also necessary to define arith-
metic between pointers that refer to memory blocks of differing lengths. Given a pointer to a record of
length n we wish to index this pointer with an offset to yield a pointer to a field of length m. To this end,
we define a class

field_offset : 1integer X integer - class

which is parameterized by two integer parameters, record_length and field_length. We wish to
define the operation

+ : pointer[n] X field_ offset[n,m] -+ pointer [m]

for all n and m. We know of no programming language other than our own that can express these types
and operations.

3. Types in ForceOne

In ForceOne types and operators are autonomous entities; in any given scope a set (or space) of these
entities is visible. Nesting and modules control the contents of a space; the type system controls the
interaction among entities within the space. Here we present only the type system; the modularity and
scope rules are unexceptional.

3.1. Basic types and declarations

The primitive types in ForceOne are int, real, bool, char, and void. Each has a pre-defined
representation and a unique type mark. From the primitive types, new types are constructed using built-
in and user-defined type generators. The built-in type generators are ref, proc, record, and [...]
(parameterization). A type generator constructs a new type mark and a new representation from the type
marks and representations of its parameters. A given type generator will always yield the same type
mark if its parameters are the same. Simple examples of generated types are ref int, proc bool, ref
proc bool, etc.. Function types are generated by prefixing a formal parameter list to a type. For
example, the type specification

[real, int] char
defines the type

real X int -+ char
It is sometimes necessary to name the formal parameters, but these names do not alter the type e.g.:
[x: real, y: int] char
A new type is introduced by a type declaration:
identifier : type == type

A type declaration always creates a unique type mark. Two functions are also defined by a type declara-
tion:

detype : [identifier 1 type
and
retype : [type 1 identifier

These functions allow the programmer to convert the type of a value to and from that of its underlying
representation, and are used in defining primitive operations on the new type. By restricting the visibility
of detype and retype, the new type can be made opaque.

Ordinary values (including functions) are declared thus:
identifier : type == expression

Here, identifier is a new name bound to the value yielded by expression. If identifier is a function with a
named parameter list, expression describes the function in terms of the names of the parameters, e.g.:

double: [i: int] int == 2 * 1
If the parameters are unnamed, expression must yield a function of the appropriate type, e.g.:
fred: [int] int == double

3.2. Type generators
Type generators are functions that build new types. For example, the built-in generator ref is a function

ref : type -+ type
The programmer may define a type generator via a parameterized type declaration, e.g.:
record_offset : [int , int] type == int
defines
record_offset : 1int X int -+ type
An example of a type created from this generator might be
record_offset[12,4]
or

ref record_offset[36,1]

3.3. Overloading

Overloading — the ability to have many definitions for the same identifier — is fundamental to the type
system. An identifier is overloaded only if each of its definitions is prefixed by the keyword overload,

e.g.:
overload + : [a: int, b: int] int == a - -b

Only identifiers so declared are overloaded; an overload declaration hides any previous non-overload
declaration of the same identifier and a non-overload declaration hides all previous declarations.

5

When an overloaded identifier is used, the appropriate definition is chosen so as to match its type to
that dictated by context. If there is no match, or if several match equally, an error results. This selection
process is like the one for Ada [Ada 83], but is slightly more general in that identifiers of any type may
be overloaded, functions may yield functions as results, and automatic conversions are allowed (automatic
conversions are not essential to the type system and are not discussed further).

3.4. Implicit parameters

An implicit parameter is a parameter to a function that is not specified explicitly when the function is
applied. Rather, the corresponding argument is selected by name at the application site. Without impli-
cit parameters, a general function to take logarithms might be defined:

log : [a: real, log_ base: real] real

Using this definition, an engineer might apply 1og[x,10.0]; a mathematician might specify log[x,e];
and a computer scientist might use log[x,2.0]. log_base is made an implicit parameter by separating
it from the rest by a |:

log: [a: real | log base: real] real

All applications of 1log [expression] are equivalent to log [expression,log base], and so the user can
define the base to which logarithms are taken (within his environment) by declaring, for example

log_base: real == 2.0

A particular definition of 1og_base affects applications of log only within its static scope (that is, a
computer scientist with 1og_base = 2 could correctly call a function in a mathematical library in which
log base = e).

Implicit parameters are fully typed statically and are implemented exactly as explicit parameters.
They give a function the ability to inspect the space of names and values available at the application site,
and are a necessary facet of the polymorphic facilities in ForceOne.

3.5. Query parameters

In a function definition, it is not necessary to specify completely the type of a formal parameter. Instead,
we give a template consisting of types, type generators, and query parameters. A query parameter has
the form

? identifier

and appears in place of a type or in place of a parameter to a type generator: a query parameter is a wild
card that matches anything. identifier is bound to the actual type or value that is matched by the wild
card. For example, we may define a function that takes a parameter of any type and returns the same

type:
echo: [x: ?t] t ==X

echo as defined here is necessarily very simple: t is treated as a new type within echo, and hence has no
operations (not even detype and retype). Any operations must be defined locally or passed as parame-
ters; typically these parameters are implicit. For example, we may define exponentiation: t

**: [x: ?t, 1i: int | *: [t,t] t] ==
if 1 = 1 then x else x ** (i-1) * X

Typical applications of ** might be:

+ This definition of #* works only for exponents greater than zero. To handle zero exponents, it is necessary that a
value multiplicative_identity be defined. For negative exponenents, amultiplicative_inverse function is
also required. These values could be specified as additional implicit parameters.

2 x%x 3 -- 8
1.5 %% 2 -— 2.25
"abc" *x 3 -- 1llegal; no *: [string,string] string

The third application could be made possible by defining a new *:
x: [a: string, b: string] string == comncat[a,b]

"abc" *%x 3 —— "abcabcabc®

Using query parameters, we can define the types pointer, offset, and field_offset, and the
operations among them:

offset: type == int
pointer: [i: int] type == int
field offset: [i: int, j: int] type == int

overload +: [o: offset, oo: offset] offset ==
retype [detype[o] + detypel[oo]]
overload +: [o: offset, p: pointer[?n]] pointer([n] ==
retype [detype [o]*n + detype[p]l]
overload +: [p: pointer[?n], o: offset] pointer[n] ==
o+ p
overload +: [p: pointer([?n], f: field_offset([n,?m]] pointer[m] ==
retype [detype[p] + detypel[f]]

overload —: [o: offset, oo: offset] offset ==
retype [detype[o] - detypeloo]l]
overload -: [p: pointer[?n], o: offset] pointer[n] ==
retype [detype [p] - n*detype[o]]
overload -: [p: pointer([?n], pp: pointer[n]] offset ==

retype [(detype [p]-detype[pp]) / nl

overload *: [o: offset, i: int] offset ==
retype [detype[o] * 1]

overload *: [i: int, o: offset] offset ==
o *x 1

overload /: [o: offset, oo: offset] int ==
detype[o] / detypeloo]

3.6. Nested query parameters

Nested formal parameters occur in defining functions that take other functions as arguments. In this
situation, query parameters may be used in two senses that are best introduced by an example. Given the
three functions

fred: [i: int] int ==
john: [j: real] real == ...
dick: [k: ?t] t == ...

we wish to define the function takes_fred_or_john that will accept as a parameter a unary function on
any specific type, like fred or john. We wish also to define takes_dick that will accept as a parame-
ter only a polymorphic function like dick. The first is defined using an ordinary query parameter:

takes_fred_or_john: [z: [?q] q] int == ...

but the second is defined using a nested query parameter:

takes_dick: [w: [??r] r] int == ...

The difference is that q is a parameter to takes_fred_or_john and is therefore bound to a particular
value for its entire scope; r specifies a parameter to w, which is in turn a parameter to takes_dick: w
does not take on a particular value within takes_dick (in fact its visibility is confined to the type specifi-
cation of w).

4. Discussion

Our type system is amenable to solving not only these problems: from the primitives it is possible to build
structures that are analogous to classes and class hierarchies, mutually dependent classes, and generic
classes. In addition, without resorting to separate generic instantiation, we achieve very flexible polymor-
phism within a statically typed language. A compiler for ForceOnet has been implemented: all binding
and type checking is done statically and all functions generate straightforward reusable object code.

We do not wish to claim that all class-oriented languages suffer from all the shortcomings described,
but all of which we are aware have some. Those that fare best have done so by partially abandoning the
notion that types are classes. Ada is perhaps the best example: by (partially) separating the notions of
package and type, Ada handles the non-polymorphic cases described. However, to provide polymor-
phism, Ada reverts to generic modules, which re-couple the notions of type, parameterization, and pack-
aging. Other languages that circumvent the class structure include C++ [Str 86], in which the friend
facility allows a class to expose its representation to a procedure not defined in the class. A number of
language designers have proposed the notion of multiple inheritance [Myl 80] in an attempt to make a
class hierarchy fit the desired program structure. Highly polymorphic languages like Russell, Poly [Mat
85] and Smalltalk seem to adhere rigidly to the notion that a type is a class, and our structural criticism
applies. Smalltalk also sacrifices static type checking in providing polymorphism.

In conclusion, we believe wholeheartedly that the purpose of types in programming languages is to
control the operations that may be applied to particular values. However, the type need not contain these
operations: we advance the type structure described here as being more fundamental.

Acknowledgements

The work of the first and second authors was supported by the Natural Sciences and Engineering
Research Council of Canada. The work of the first and third authors was supported by COGNOS inc..

References

[Ada 83] Reference Manual for the Programming Language Ada, U.S. Department of Defense,
ANSI/MIL-STD-1815-A (1983)

[Boe 86] Boehm, H. and Demers, A., Implementing Russell A.C.M. Sigplan Not. 21:7 (1986), 186-
195.

[Cor 86] Cormack, G.V., and Wright, A.K., Polymorphism in a Compiled Language, Univ. Waterloo
CS-86-27 (1986)

[Dah 70] Dahl, O.J., Myhrhaug, B. and Nygaard, K., The Simula 67 Common Base Language,
Norwegian Computing Centre S-22 (1970)

[Don 85] Donahue, J. and Demers, A., Data Types are Values, A.C.M. Trans. Prog. Lang. Syst. 7:3
(1985), 426-445.

[Gol 83] Goldberg, A. and Robson, D., Smalltalk-80, the Language and its Implementation, Addison-
Wesley (1983)

[Lis 77] Liskov, B.H., Snyder, A., Atkinson, R. and Schaffert, C., Abstraction Mechanisms in Clu,
Commun. A.C.M. 20:8 (1977), 564-576.

t We compile implicit parameters, query parameters, and built-in type generators; user-defined type generators are not
yet included, but their implementation does not differ in essence from that for built-in type generators.

—8—

[Mat 85] Matthews, D., Poly and Standard ML, A.C.M. Sigplan Not. 20:9 (1985), 52-76.

[Myl 80] Mylopoulos, J., Bernstein P.A. and Wong, K.T., A Language Facility for Designing
Database-Intensive Applications, A.C.M. Trans. Prog. Lang. Syst. 5:2 (1980), 185-207.

[Str 86] Stroustrup, B., The C++ Programming Language, Addison Wesley (1986)
[Wri 86] Wright, A K., Reference manual for the language ForceOne, unpublished (1986)

	
	
	
	
	
	
	
	
	

