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ABSTRACT

A prototype compiler for the language ForceOne is described. ForceOne gives the
programmer the ability to define formal parameters whose corresponding actual param-
eters may be of arbitrary type. In addition, identifiers and operators may be overloaded,
with the appropriate definition being selected using available type information. Finally,
routines may be defined by the user to convert automatically between types. Each of
these language features facilitates polymorphic programming. ForceOne differs from
competing languages in that it has all of these facilities and in that it is truly compiled —
it does not rely on the ability to enumerate all possible types during compilation; it does
not require a separate “generic" parameterization mechanism and compilation pass; it
does not require run-time name and type resolution. Here we present a brief descrip-
tion of ForceOne, and of the techniques used in compiling it.

1. Introduction

A type system in a programming language is a set of rules that determine what values each symbol may
represent, and how these values may be manipulated. In a statically typed language, we attempt to assert
at compile time that these rules are not violated. Static typing offers a number of advantages in execution
efficiency and security: we believe it is the essence of what is commonly known as a compilable
language. However, traditional static typing exacts a large price because of its lack of flexibility. This
lack of flexibility is evident when the programmer frequently has to re-express essentially the same pro-
gram fragment because the type system prevents him from abstracting it.

Polymorphism is the ability to define an abstraction that transcends traditional static typing [cf. Mil
78]. For example, the FORTRAN symbol + is polymorphic in that it applies equally well to INTEGERS
and REALs. In this paper we describe three language facilities that enable the user to define his own
polymorphism, namely: overloading, automatic type conversion, and parameters of arbitrary type. These
facilities are found in the statically typed language ForceOne, for which a prototype compiler has been
written. While each of these facilities exists in various forms in existing languages, we feel that the par-
ticular approach described here is a novel combination of simplicity, expressive power, and straightfor-
ward implementation.

The following section describes briefly the programming language ForceOne. The next section
addresses implementation considerations in compiling ForceOne. The final sections contrast the design
and implementation of ForceOne with related efforts, and offer some closing remarks.



2. The language ForceOne

This section describes the features of ForceOne that are relevant to polymorphic programming. While
ForceOne is a new language, the features described here could be added cleanly to a number of type
secure languages like ISO Pascal [Pas 80]. Features of ForceOne that are not germane to polymorphism
are not described. In particular, the facility for modular structure and information hiding is not described:
this facility is completely separate from the type structure, in contrast to many other modern languages.
A more complete description of ForceOne is found in [Wri 86], and a rationale appears in [Cor 86].
ForceOne is a successor to the languages L [Cor 81, Cor 83, Lec 84] and M [Jud 85], and is a sibling of
the language Zephyr [Cor 85].

Some very simple examples are presented to illustrate the basic features of the language. We hope
that these are sufficient to whet the reader’s imagination to discover interesting applications. A grammar
describing the relevant parts of ForceOne appears in the appendix.

2.1. Type overview

Each object in ForceOne has a type which describes the set of values it may take on. The functions which
operate on objects of a particular type are not considered to be part of that type. Types are not first-class
values; they are manipulated only at compile time.

A type declaration introduces a new type which is implemented as some base type, but is neverthe-
less unique. The type declaration also defines three functions, :=, retype and detype. := is the
assignment operator; retype and detype convert from the base type to the new type and from the new
type to the base type respectively. These functions are overloaded (see section 2.7). By restricting access
to retype and detype, the programmer can make the new type opaque. By providing automatic
conversions (see section 2.8), the programmer can make the new type essentially interchangeable with the

base type.

2.2. Basic types and declarations

Primitive types in ForceOne include int, real, bool, char, and void. ref types describe storage that
holds a value of a particular type, e.g. ref int. proc types describe executable procedures that yield a
particular type as a result, e.g. proc bool. record types contain fields of various types; declaration of
a record type also defines functions to access these fields.

Declarations have the form
identifier : type == expression

This declaration binds to identifier the value yielded by expression. The value associated with identifier
does not change throughout its lifetime. However, if type is a ref type, the storage referenced by identif-
ier may be assigned various values. In this instance, expression is typically a call to the stack storage allo-
cator new (in fact, if == expression is omitted, == new is assumed).

In place of rype we may use the keyword type; in this case expression must be some type t, and
identifier names a new type whose base type is t. For example,

intvar: type == ref int

2.3. Parameterization
A typical parameterized procedure is declared thus:

scale: [ i: real, scalefactor: real ] proc real ==
{ return scalefactor * i }

Here, scale is of type
[ real, real ] proc real

An application of scale has the form
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scale [ actual parameter, actual parameter ]

where actual parameters are expressions of type real. The same notation is used for arrays.

2.4. Implicit parameters
In the example above, i and scalefactor are both explicit parameters to scale. In the following
declaration, scalefactor is made an implicit parameter:

scale: [ i: real | scalefactor: real ] proc real ==
{ return scalefactor * i }

As far as the definition of scale is concerned, implicit parameters differ from explicit parameters only in
that they are separated by |. However, the caller does not specify an actual parameter to correspond to
scalefactor; there must exist in the calling scope a definition of the name, and it is passed automati-
cally as the actual parameter. Implicit parameters allow the caller to create a local environment that
affects the way the procedure behaves.

2.5. Parameters of arbitrary type

It is not necessary to specify completely the type of a formal parameter. All or part of the formal type
may be replaced by

? identifier
where identifier is a user-specified name. For example,
cube: [ x: ?t ] proc t

declares a procedure cube that accepts an argument of arbitrary type t and returns a value of type t. t
is in fact a parameter to cube (t is of type type), and may be used anywhere a-type is required (for
example, it is used as the result type). t is called a query parameter. Like implicit parameters, query
parameters are not specified explicitly at the call site, but are used like any other parameters within the
definition of the parameterized procedure.

Like all types, type parameters carry with them no operations. In order to define the body of
cube, we require the operation * on values of type t. This operation is typically supplied as an implicit
parameter to cube:

cube: [ x: ?t | “*‘: [t, t] proc t ] proc t ==
{ return x * x * X }

Thus, cube provides an abstraction that will cube the value of its argument, provided that the operation *
is available at the site where cube is called. Typical applications of cube might be:

cube [2] -- 8
cube [3.0] -—- 9.0

cube would not normally accept parameters of type string, for example, because a * operation is not
defined for strings. However, we could define such an operation, and be able to use cube with the scope
of the declaration:

{
‘x‘: [ a: string, b: string ] proc string ==
{ return concat([a,b] }
cube[ "xyz" ] -— "XyzXyzxyz"
}
cube[ "abc" ] —-- invalid; no * defined

We wish to contrast this approach with those that require adding * to the definition of the type string,
to which we have no ready access.



2.6. Parameters of constrained type

We may constrain the set of possible actual types matched by a formal parameter. If we wish to match
only references to storage, but the storage referenced may be of any type, we may specify the formal type

ref v?identifier
If we wish to match parameterless procedures, regardless of their result type, we specify the formal type
proc ?identifier

When an actual procedure is passed as a parameter, identifier will represent its result type. A formal
parameter that matches procedures that have a parameter of arbitrary type is:

[ ?identifier ] proc void

It is also possible for a formal parameter to match an actual parameter whose type contains a query
parameter:

[ ??identifier 1 proc void
Here, the double ? indicates that identifier belongs to the nested parameter list. In this example

fred: [ i: int ] proc int == ...
john: [ j: real ] proc real == ...
dick: [ k: ?t ] proc t = ...

polyi: [ z: [ ?q ] proc q] proc void == ...
poly2: [ w: [ ??r ] proc r] proc void == ..

poly1 will accept fred or john as an actual parameter, while poly2 will accept dick. In other words,
the ?? notation allows us to pass polymorphic procedures as parameters to other procedures. ?q is a
parameter to polyl where ??r is a parameter to w, which is in turn a parameter to poly2. In general,
the number of ? symbols determines the level of parameter nesting to which the query parameter
belongs.

2.7. Overloading

When a user defines a new type, it is essential that he be able to extend existing notations to apply to this
new type. For example, if we add the type complex to a language that does not have it already, we must
be able to define the operations +, -, /, etc. for complex numbers. Furthermore, it is perfectly sensi-
ble to wish to define these same operations between the existing type real and the new type complex.
Essentially, all the definitions of + form a common abstraction*.

In ForceOne, the same symbol may be overloaded to represent many values, provided each value
has a distinct type. The programmer specifies that a name is to be overloaded by prefixing its declaration
with the keyword overload. For example:

complex: type == ...

overload ‘+°‘: [a: complex, b: complex] proc complex == ...
overload ‘+‘: [a: complex, b: real ] proc complex == ...
overload ‘+‘: [a: real, b: complex] proc complex == ...

Only symbols so declared are overloaded; an overload declaration hides any previous non-overload
declarations and a non-overload declaration hides all overload declarations of the same symbol.

When an overloaded symbol is used, the appropriate definition is selected to match the type
required by context. This type information includes the number and type of any parameters, and the

result type.t

* At the moment, we have nothing but good faith to ensure that all overloaded definitions of + contribute to the same
abstraction. Ideally, there should be some formal specification of the meaning of + that all definitions should meet.
Such a formal specification is far beyond the scope of this paper.

t These rules are similar to those of Ada [Ada 83]. They differ in that overloading must be specified explicitly, and
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A number of other features of ForceOne rely heavily on overloading. The assignment operator :=
is merely an overloaded procedure, and may be defined by the user as he sees fit. Field selection func-
tions for records merely overload other definitions with the same name — the type of the record ensures
that the appropriate function is selected. Polymorphic parameters tacitly require overloading — the func-
tion cube (section 2.5) assumes that the appropriate overloaded definition is selected to match the impli-
cit parameter *.

2.8. Automatic type conversion

Automatic type conversions are defined by overloading the special names widen and narrow. The
intent is that widenings are conversions that involve no loss of information; narrowings may destroy infor-
mation. If the symbols in an expression cannot be matched without conversion, widenings will be done to
match actual parameters to formal parameters. If an expression cannot be matched with widenings alone,
narrowings will be used. Widenings are done as early as possible in the evaluation of an expression (as
deeply as possible in the expression tree) while narrowings are done as late as possible (as near the root as
possible). Only one conversion will be inserted by the compiler at any one point in the expression tree.

In the definition of complex above, we can avoid having to declare three versions of +, -, /,
etc. by providing a widening from real to complex:

overload ‘+‘: [a: complex, b: complex] proc complex == ...
overload widen: [a: real] proc complex == ...

In this example, providing one widening permits one definition of + (and —, /, etc.) to replace three.
Let us consider a slightly larger situation. It is reasonable to have each of the types int, real, long-
real, complex, and longcomplex, and to define all the binary arithmetic operations between any pair.
Without automatic conversions, this would require 15 separate definitions per operator. With the intro-
duction of 9 widenings this number is reduced to 5 (one per operation per type). With 4 widenings and 4
narrowings (to and from longcomplex,) a single definition is sufficient (if not efficient).

Automatic conversions also allow new types to be handled by existing routines. For example,
stream input and output are done only on strings; complex numbers can be printed once a widening from
complex to string is defined. Similarly, literals can be written as strings once a narrowing from
string to complex is defined.

3. Implementation of ForceOne

To compile ForceOne, we apply mainly standard techniques used to compile block-structured languages.
We rely heavily on the ability to have parametric procedures, and we require only the ability to allocate
stack storage whose size is not known at compile time; heap storage allocation is not used. Algorithms
for generating such code are fairly simple and are already well known.

3.1. Types and type parameters

Types in ForceOne have two roles: they determine the representation of a data object, and they control
the selection of overloaded symbols. The first role is played both at compile time and at run time; the
second role is purely a compile-time consideration. In this section we consider the first role.

The run-time value of a type is simply a representation specification (in the current implementation
it consists of size and alignment). Whenever a new type is declared, these values can be computed easily
from the base type or types. Parameters of type type, which form the basis for polymorphic procedures,
are passed as a single number indicating both size and alignment. Therefore, the following procedure is
implemented in the same way as a procedure with a single integer parameter and returning a pointer
result:

that symbols of any type may be overloaded (not just procedures). The sclection rules in ForceOne are further affected
by the presence of query parameters and automatic conversions.



f: [t: type] proc ref t == ...

In order to modify f to return a result of type t instead of ref t, our run-time system is required to
return a result whose length is determined by the parameter t:

f: [t: type] proc t == ...

Within f the parameter t is a new type distinct from all others. Therefore, the only things f can do with
t are to use it to declare a local of type t or to pass it to another procedure. Thus procedures with a type
parameter alone are useful in few applications.

In addition to a type parameter, functions that operate on values of that type are usually desired.
The type parameter may be used in the specification of subsequent formal parameters. At the call site,
when the type parameter is bound to an actual type, that actual type is substituted in the formal types of
the other parameters. In the following example, swap can interchange the value of two storage locations,
provided the values can be assigned.

swap: [ t: type, a: ref t, b: ref t, “:=‘: [ref t, t] proc void ]
proc void ==

{
temp: ref ¢
temp = a
a :=b
b := temp
}

A typical call to swap might be:
swap[int, x, y, ‘:=°]

Let us consider first the header information describing swap that is stored in the symbol table. As
for any procedure, the type of each formal parameter must be stored, as well as the type of the result.
However, the types of parameters a, b, and := refer to the previous parameter t. These dependencies
are represented by special back pointers in the list describing the formal parameters. The result type may
also contain such a back pointer. At the call site, the parameters are bound left-to-right, and therefore all
types represented by back pointers have been bound to actual parameters before they are used. In the
example, t is first bound to int, and then a, b, and := are bound to x, y, and := as if the formal
parameter list were:

swap: [ t:type, a:int, b:int, ‘:=‘: [ref int, int] proc void ]
proc void

Once this substitution is done, the actual parameters are passed in the normal way.

3.2. Implicit parameters and query parameters

Implicit parameters and query parameters are handled in much the same way as described above: the
executable code is identical. The only difference is that the compiler automatically supplies the
corresponding actual parameters. The natural way to write swap is:

swap: [ a: ref ?t, b: ref t | “:=‘: [ref t, t] proc void ]
proc void == ...

The corresponding call to swap would be:
swap [x,y]
Here the specification

a: ref ?t
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declares two formal parameters: t which is a query parameter of type type, and a which is of type ref
t. Only one actual parameter, x, is bound to such a double formal parameter; its value is bound to a and
part of its type (int) is bound to t. In the parameter type list for swap, t appears the same as any
parameter of type type, but with an indication that there is no corresponding actual parameter. The type
description for a has a back pointer to t, and an indication that this is a defining reference.

The implicit formal parameter := also appears in the formal type list much as before, except that it
also is marked as having no explicit actual parameter. Instead, its symbolic name becomes part of the
type entry. When it comes time to bind this parameter, the symbol table is searched (at the call site) to
find an entry with the same name and type. This definition is then used as the corresponding actual
parameter, and is passed in the normal way.

The roles of the three types of formal parameters can be summarized as follows: at the call site, the
set of available definitions must be searched using name and type to find the object to be passed. With
explicit parameters, the actual parameter contributes the name and the formal parameter contributes the
type. With query parameters, the actual parameter contributes both the name and the type. With impli-
cit parameters, the formal parameter contributes both the name and the type.

3.3. Nested query parameters

Query parameters prefixed by a single ? are treated as described above whether or not they appear inside
a nested parameter list. That is, they are parameters in the outer parameter list, and are filled in from
the type of the actual parameter. A query parameter with more than one ? serves merely to constrain
the type of the actual parameter — it must have a query parameter in the same place that is prefixed by
exactly one fewer ?.

Consider the procedure poly1 (section 2.6). polyl has two parameters z and q which are bound
to the actual parameters fred and int or john and real. On the other hand, poly2 has only one
parameter, w, which is bound to dick. The query parameter ??r indicates that dick must have a query
parameter, (?t) and must return a result of the same type. ??r and ?t are bound together only while
matching the type of dick with the type of the formal parameter w. r is not defined within the body of
poly2.

3.4. Overload and type resolution

The algorithm that resolves types and selects the appropriate definitions of overloaded identifiers is the
heart of the ForceOne compiler. In the process of type resolution, the algorithm inserts automatic widen-
ings and narrowings at the appropriate places. Because overloading must be requested explicitly by the
user, we expect there to be a large number of symbols that may be resolved directly from the symbol
table. There are also a number of contexts in ForceOne that have a precisely defined type. The test in an
if statement, for example, must be of type bool, and a statement delimited by ; must yield void.
These strong contexts are used as anchors; the selection algorithm is invoked to determine the meaning of
expressions between these anchors.

The selection algorithm operates on an expression-tree fragment rooted at an anchor whose leaves
are either anchors or identifiers. If the sub-expression is correct, each symbol is resolved to a unique
definition in the symbol table, and each edge in the tree may be labelled with the symbol table definition
for an automatic conversion function. There are two ways in which the selection process may fail: the
sub-expression may be inconsistent or the sub-expression may be ambiguous. In the case of incon-
sistency, we mark the set of two or more identifiers in the expression that are inconsistent. If the expres-
sion is ambiguous, we mark the identifiers that cannot be selected uniquely, and enumerate the possible
definitions of each.

It is nearly impossible to avoid introducing ambiguity along with polymorphism and automatic
conversions. We therefore define conversion costs and perform the selection so as to minimize this cost
(the selection is considered ambiguous only if there are two alternatives that yield the minimum cost).
The cost function is computed so as to implement the following rules.
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1. If a polymorphic procedure and a type-specific procedure both match, the specific procedure is
chosen.

2. A selection with no conversions is preferred to one that involves conversions.

3.  Widenings are always preferable to narrowings: any number of widenings may be used to eliminate
or reduce the number of narrowings.

4. Widenings are done as early as possible in the evaluation of an expression: it is always preferable to
widen all the leaves of a sub-expression than to widen its result (this ensures that all intermediate
results are calculated using the maximum precision in the expression).

5. Narrowings are done as late as possible in the evaluation of an expression (this ensures that inter-
mediate results are calculated using the maximum precision in the expression).

The cost of a selection is a triple
<poly_cost, widen_cost, narrow_cost>

The cost of matching an actual parameter to a formal parameter with exactly the same type is <0,0, 0>.
The cost of matching an actual parameter to a formal parameter whose type contains a query parameter
is <1,0,0>. The cost of widening an actual parameter to match a formal parameter is <0,n, 0>, where
n is the overall number of nodes in the expression tree representing the actual parameter. The cost of
narrowing is <0,0,m> where m is the path length from the parameter to the root anchor. The operations
on cost values are addition and comparison.

<a,b,c> + <d,e,f>
<a,b,c> < <d,e,f>

<a+d, b+e, c+f>

c < f or

c =f and b < e or

c =f and b = e and a < 4

We may find the overall minimum cost using dynamic programming. The intermediate results are
stored as attributes of nodes in the expression tree. For each subtree in the expression, we compute an
attribute typeset, which is a set of pairs:

{ <type, cost> }

type represents a possible result type that the subexpression might yield; there is one pair in the set for
each possible result type. cost is the minimal cost of achieving a result of type type.

There are three types of nodes in the tree: leaf anchor nodes, nodes representing overloaded iden-
tifiers, and interior nodes. Leaf nodes have a well defined type ¢ and a cost of <0,0,0> to achieve ¢ as a
result type. Thus, all leaves are labelled with

typeset = { <t , <0,0,0>> }

Overloaded identifiers have many possible definitions; each definition d; has a well defined type #; . Thus
we label such nodes with

typeset = { <, <0,0,0>> }

An interior node always represents the application of a A expression to an actual parameter list. The \
expression has the attribute X.typeset. We evaluate the result types and costs of applying each element of
\.typeset to the actual parameter list.* The union of these result types and costs forms the attribute
typeset for the node.

Once typeset has been computed for the root node, we can compare each <type, cost> against
the type required by the anchor. If there is an exact match on type, the overall selection cost is cost.
If a conversion is necessary, the overall cost is incremented by the cost of conversion. If no conversion is
possible, or if typeset is empty, selection is impossible. As stated, the algorithm does not detect

* Normally, there is exactly one result type for a given A type. However, a single X type may yield different result
types if its result type depends on a parameter. Furthermore, if there are any query parameters to the \ expression,
we try binding each query parameter to each possible actual type.



ambiguityt .

The next step in the selection process is to mark the parse tree to indicate the appropriate defini-
tions of overloaded symbols, and to insert necessary conversions. This labelling is accomplished by pass-
ing down the tree the attribute

actual_type = <type, cost>

When actual_type is passed down an edge of the tree, it is compared element by element with
typeset of the lower node. It can easily be determined whether a conversion is required, and which ele-
ment of typeset is the actual_type of the lower node. This information is marked in the tree. In
order to propagate actual_type from an interior node to its children, we re-execute the matching algo-
rithm, looking for the choice that yielded actual_type. This choice is marked; the selection becomes
the value of actual_type that is passed to the A expression, and the types of the formal parameters
become the actual_type values that are passed to the actual parameters. When actual_type is
passed down to a node representing an overloaded identifier, that reference is set to the definition whose
type is actual_type.

3.5. The actual implementation

The ForceOne compiler is written in C and runs on the UNIX system. A ForceOne program is
represented as a tree in the UNIX file system; VAX object code is generated and stored with the tree. In
addition, the symbol tables and abstract syntax trees are stored in the tree. When a tree is recompiled,
only those modules that have been modified are recompiled initially. Changes to declarations are
detected by comparison with the old symbol table, and it is determined which, if any, modules are
affected by the change in such a way as to require recompilation. Then these modules are recompiled.

The ForceOne compiler is approximately 12,000 lines of C code*: 3000 lines are devoted to lexical
analysis, parsing, and building the abstract tree; 2200 lines are dedicated to the symbol table and overload
algorithms; 2200 lines are for code generation; 1100 lines are devoted to debugging, error handling, and
header files; the remaining 3500 lines implement the separate compilation facilities described above.

The front end of the compiler is complete; all the features described in this paper are handled. The
code generator has been implemented only to the point necessary to run simple examples. Only a very
small number of primitives are built-in: most functions result in calls to C library routines or must be
implemented in ForceOne itself.

4. Comparison with related work

User-defined overloading is available in PL/I [PLI 76], Algol 68 [Wij 76], Ada [Ada 83], and C++ [Str
86]. In PL/I, a generic statement groups together a number of procedures under a common name.
When the generic name is used, the appropriate definition is selected according to the types of the actual
parameters. These types are not matched against the formal parameter types of the function definition,
but are matched instead against abstract type specifications in the generic statement. After the selection
is done, conversions are applied if necessary to match the formal and actual types. A disadvantage of the
generic statement in PL/I is that all of the overloaded functions must be specified in one common place;
there is no method to add another definition elsewhere. In Algol 68, operators may be defined by the
user and may be overloaded. Selection is done by matching formal and actual types. Automatic conver-
sions (which are normally available) are not done in matching operator parameters. Operators (unlike
procedures) are not first-class in Algol 68; they may not be assigned or passed as parameters. In Ada,
any operator or function may be overloaded by the user. In fact, there is no way of preventing functions
that have the same name from overloading one another. The types of the parameters and the desired
result type are used in selection. There are no automatic conversions in Ada. Neither functions nor
operators are first-class; they may not be assigned or passed as parameters. The selection algorithm for
ForceOne resembles those designed for Ada [cf. Aho 86].

+ It is easily modified to detect ambiguity; a flag ambiguous is added to each sypeset element. Whenever there are two
equal-cost ways of yielding the same result, the flag is set.
* The source listing weighs 4.5 pounds, including the binder.
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Overloaded operators in C+ + are resolved bottom-up as in Algol 68, but user-defined conversions
are allowed. At each step, a particular definition will be selected if no conversions are required to match
its arguments. If no such definiton exists, there must be only one definition that can be matched by
applying conversions to some of its arguments.* We know of no language that takes the type of the even-
tual result into account. In FORTRAN, for example, the assignment

X=1/3

gives X (a REAL variable) the value 0.0. The equivalent expression in ForceOne would yield 0.333...
(assuming the widening from integer to real were defined). While it has no user-defined conversions,
PL/T has a wide variety of built-in automatic conversions: almost any type can be converted to any other
type. The conversion rules in PL/T often yield unfortunate results (the integer 123 when converted to
CHAR(3) yields * ). We think these unexpected results may be attributed to the fact that many
conversions will be applied transitively to match two types, and that the final result type is not taken into
account in selecting the conversions.

Traditionally, polymorphism in compiled languages has been achieved either through loopholes in
type checking, or by the use of macro processors. C [Ker 78] and PL/T are notable examples of languages
that use both. Each mechanism has its own disadvantages, though both mechanisms involve leaving the
domain of statically typed languages.

A more controlled approach is to have a type union. Functions that operate on union types are in
a sense polymorphic, though they must enumerate all possible types on which they operate. Algol 68 pro-
vides an automatic uniting coercion that allows actual parameters to match the more general formal
parameters. When the union type is used, a form of case statement called a conformity clause is
used to determine the actual type of the parameter. Algol W [Sit 72] has unions only for reference types.
EL1 [Weg 74] is a language that allows type manipulation and operations to be specified on objects whose
type is known only at run time. However, these objects behave like unions: the set of possible types
must be known in advance, and polymorphic operations are akin to case statements.

A large number of contemporary languages are based on the class concept of Simula 67 [Dah 70].
In Simula 67, a class describes a set of values and a set of operations. Each instance of the class has its
own value, and its own set of operations. Simula 67 provides a polymorphic facility via class hierarchies.
A general class may be defined that has a number of operations defined on it. These operations then
automatically apply to any subclasses that are derived from this class. The superclass may also specify
virtual functions that must be defined in the subclass. The Simula 67 class structure requires that all
classes (and hence functions) be organized into a strict hierarchy, which severely restricts the nature of
polymorphism that can be expressed in this way. Some languages (Taxis [Myl 80], for example) have
"multiple inheritance” which allows a subclass to be derived from more than one superclass. Multiple
inheritance ameliorates the restrictive nature of class hierarchies. Nevertheless, the philosophy of Force-
One is quite different; we do not require that all functions on an object be defined within the class of that
object; we instead allow groupings of types and functions to be made at will. For example, in Simula 67,
to write the polymorphic function cube (section 2.5), it would be necessary to create a class
cubable_objects that contained the definition of cube. Then, to be able to apply cube to integers, we
would have to modify the class integer to make it a subclass of cubable_objects.

Clu [Lis 77] reinforces the Simula 67 notion that a cluster (a.k.a. class, type) contains the defini-
tions of all permissible functions. However, the notion of hierarchies is abandoned in Clu in favour of
generic clusters. A generic cluster is a template that describes an infinite set of clusters. A generic clus-
ter cannot be used directly; a specific member of the set must first be instantiated at compile time. Upon
instantiation, constant parameter values are substituted and a new cluster (and a copy of each of its
operations) is created. There is no way of "customizing" a cluster as in Simula 67. Clu supports over-
loading only in that each cluster may contain one definition of a particular function. When this function
is applied the first parameter determines the cluster to which the function belongs. Ada provides
polymorphism by special generic program units that resemble generic clusters.

* These rules could not handle the example of conversions between numeric types described in section 2.8.
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Russell {Don 85] is a language that uses full run-time typing to achieve considerable expressive
power: types are first-class values that are computed by procedures and may be stored in variables. A
recent implementation of Russell [Boe 86] attempts to verify statically the type consistency of the pro-
gram. The algorithm is complex and may fail (the problem is undecidable in general). With suitable res-
trictions* the algorithm is claimed to succeed in most cases. The notion that a type is the set of all per-
missible operations is essential to Russell — the run-time representation of a type is a list of procedures
and a reference to a procedure is an index into this list.t The language Poly [Mat 85], based on Russell,
has sacrificed some expressive power to simplify the language and its implementation; the essential philo-
sophy is unchanged.

5. Final remarks

On the whole we are happy with ForceOne; it is remarkably adaptable to diverse applications and pro-
gramming methodologies. Its use comes as a natural extension to programmers familiar with ordinary
languages such as Pascal, C, or Ada. We believe that ForceOne has the power to express the essential
elements of object-oriented programming, and of functional programming. We plan to examine real appli-
cations that are written using these methodologies to determine how easily they may be expressed in
ForceOne. Adaptability is one payoff of the features of ForceOne; another is that it facilitates the creation
of reusable libraries of very general purpose software.
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Appendix
Following is that part of the grammar for ForceOne relevant to declarations and polymorphism.

declaration =  identifier : type [ == expression ]
type = ref pHpe

= routine fpe

= [ param_list ] type

= bound .. bound

= type

= void

= [ ? ]* identifier
param_list =  param [ , param ]*
param = identifier : type

= npe
bound = integer

[ ? ]* identifier



	
	
	
	
	
	
	
	
	
	
	
	
	
	

