An Implementation of a Camputational Model
for the Analysis of Arguments
An Introduction to the First Attempt

Trevor J. Smedley

Research Report CS-86-26
July 1986

An Implementation of a Computational Model for the Analysis of
Arguments
An Introduction to the First Attempt

Trevor J. Smedley

University of Waterloo

Introduction

The following is a description of a first attempt at a Prolog implementation of a computational
model for the analysis of arguments. The implementation of the model can be found in /u/tjsmediey on
watdragon. For a detailed description of the algorithms, and other theoretical details see the papers and
thesis by R. Cohen!> 2:3. The three different algorithms have been implemented; pre-order, post-order
and hybrid. The code particular to each algorithm can be found under the directories; super_pre,
super_post and super_hybrid. The directory front_end contains code which is common to all three, and
there is a symbolic link to this directory in each of the three directories mentioned above.

Directory front_end

The predicates in this directory handle all the common stuff, and are pretty self explanatory. It is
assumed that the argument tree is represented by a collection of father (father ,son) relations, and a sin-
gle root (root) relation. Recall that, for an argument, a proposition is recorded as son if it is found to be
evidence for the father (claim). Thus, after the analysis, these relations will reflect the tree structure of
the argument, with the overall claim as the root, and each evidence propostion a son to its father claim.
These relations will be put into the database by the algorithm for building the argument tree. The evi-
dence oracle, which is described in the next section, is contained in this directory.

2.1. The Evidence Oracle

The evidence oracle decides whether one sentence in an argument is evidence for another. It is
probably the section of the implementation which is most open to modifications and improvements.

In this first implementation, the evidence oracle was made as simple as possible. It simply asks the
user if one sentence is evidence for another, and makes no use of any knowledge base. It succeedes if the
user replies ’y’, and fails if the user answers Which questions it asks is determined by the algorithm being
use for the analysis. This is normally a small subset of all possible questions. It is not entirely stupid in
that it will not ask the same question twice. It stores the data from previous questions in the form of
asserted_evidence (claim evidence) and unasserted_evidence (claim non —evidence) clauses. It will always
check if the question has already been answered before asking it. One remaining possible modification
which would be easy to implement would be the following. If it already knows that sentence sl is evi-
dence for sentence s2 then it could decide that s2 is not evidence for s1. However, since in the current
model this question is never asked, this modification would not be of any use. Any other modification
would most likely involve a considerable amount of work. '

2.2. Other Predicates

The other predicates in this directory are fairly self-explanatory. There are a few predicates which
do not appear in the front_end directory but which will be mentioned here as they appear in each of the
other directories, and although the implementations are not the same for each algorithm, the functions
are.

2.2.1. Predicate special

This predicate handles any special processing which is to be done when an answer other than ’y’ or
'n’ is given to the evidence oracle. Examples are; for the post-order algorithm the stack can be printed
out by replying with ’s’, and in the hybrid analysis the tree which has been created so far will be displayed
if ’t’ is entered.

2,22, Predicate get children

This predicate will get a list of the children of a node ordered from left to right. This is used when
printing out the argument tree.

Directory super_pre /pre_order
In this directory are the predicates which do the analysis for pre-order type arguments. The only

predicate of any importance, pre_order_ , is quite easy to understand when you see the algorithm which it
is based upon.

3.1. Predicate pre_order_

This predicate has two arguments. The first is a list of sentences yet to be processed, and the second
is what R. Cohen refers to as L , for "last", in her description of the algorithm.

The predicate will initially set L to be the first sentence in the list, and make it the root of the argu-
ment by placing a root relation in the database.

For each sentence in the list it checks with the evidence oracle whether this sentence is evidence for
L . If it is, this information is placed in the database with a father relation, and the predicate calls itself
with the sentence which was the head of the list as L , and the list with the first sentence removed as the
new sentence list. If the first sentence is not evidence for L , then the predicate is called again with the
same list of sentences, and the father of L as the new L . It will finish when there are no new sentences
to be processed.

Directory super_post /post_order

This directory contains the predicates for analysing post-order type arguments. The two predicates
of concern are post_order_ and remove_sons .

4.1. Predicate post_order._

This predicate preforms the algorithm for the post-order analysis. It has two arguments. The first is
the list of sentences not yet processed, and the second is the stack of subtrees for which fathers have not
yet been found.

The predicate will initially push the first sentence onto the stack, and will finish when there are no
sentences left to be processed and there is only one sentence left on the stack. This one remaining sen-
tence will be made the root of the argument tree.

The algorithm takes the first sentence from the list and checks if it is evidence for the sentence on
the top of the stack (with the evidence oracle). If it is not it simply places the sentence on the stack, and
calls itself with the new stack, and the list of sentences with the first one removed. If it is evidence, that
fact will be placed in the database in the form of a father relation. Then any other members of the stack
which are also evidence for the sentence are removed from the stack by calling the predicate remove_sons

-3

(see next section). The predicate will then call itself as above.

4.2. Predicate remove_sons

This predicate takes three arguments; Father , Old_stack , and New_stack . It will pop all the ele-
ments of Old_stack which are evidence for Father , place the information in the database in terms of
Jather relations, and succeed when a sentence which is not evidence for Father is on the top of the stack.
New_stack will be Old_stack with the above elements removed.

Directory super_hybrid [hybrid

The predicates in this directory are for hybrid analysis of arguments. This is considerably more
complicated than the previous algorithms, and also involves keeping track of some additional data.

5.1. Additional Data Relations

In the hybrid algorithm, the rightmost child of a node is of importance, and thus the order in which
sons are added must be kept track of. This is done with relations of the type rightmost_child (Father Son)
and left_brother (Left Right) where the rightmost child of Father is Son , and Left and Right are chil-
dren of the same father with Left to the left of Righr . This information is used when printing out the
tree so that the sons of a node are printed out in the correct order. It is also used in the predicates
attach_sons and no_sons_evidence .

5.2. Predicate hybrid_

This is the predicate which actually performs the algorithm for the analysis of an argument. It has
three arguments. The first is the list of sentences yet to be processed, the second is what R. Cohen refers
to as New in her papers, and the third is her L for "last”. When this predicate is first called its first argu-
ment is a list of sentences without the first sentence of the argument, the second argument is the first sen-
tence of the argument, and the third is the value dwnmy . Before the predicate is called, an assertion is
placed in the database indicating that anything is evidence for dummy . This is the dummy node at the top
of the tree referred to by R. Cohen. Once the predicate hybrid_ returns, the top level predicate
build_tree checks that dummy has only one son, and then this son is asserted to be the root of the argu-
ment tree.

The last clause in the predicate handles the case when New is not evidence for L . In this case the
predicate hybrid_ is executed with the same list of sentences, the same New and the father of L as the
new L . In all the other clauses, it is first checked that New is evidence for L .

The first two clauses handle the processing when there are no more sentences besides New and L .
The first is executed when the rightmost child of L is not evidence for N, and in this case L is asserted
to be the father of New . The predicate then succeeds. The second is for when some sons of L are evi-
dence for New . In this case the sons of L which are evidence are asserted to be sons of New using the
predicate atrach_sons , and the predicate returns.

The next two clauses are similar to the first two, except they handle the cases when there are sen-
tences left to be processed. In the third clause, after the same processing as in the first one is done, the
predicate hybrid_ is called with the list of sentences being the original list with the first sentence removed,
the new New being the first sentence on the original list, and the new L being the old New . For the
fourth clause, the processing is the same as the second one, and then hybrid_ is called again with the
arguments as above, except the new L is the same as the original L .

Referring to R. Cohen’s thesis we see that the first and third clauses correspond to step B 1 of the
algorithm; the second and fifth clauses refer to step B 2, and the last clause is step B 3.

5.3. Predicate no_sons_evidence

This is the predicate called by clauses one and three of Zybrid_ . It checks if any sons of a node are
evidence for some sentence. Note that it checks only if the rightmost child of a node is evidence, as indi-
cated in the comments to the algorithm by R. Cohen.

5.4. Predicate attach_sons

This is the predicate called by clauses two and four of the predicate Aybrid_ . It has two arguments,
Father and Son . It will go through the sons of Father from right to left, attaching all those which are
evidence for Son below Son until one is encountered which is not evidence. When attaching a son of
Father below Son we must make sure that the left-right ordering of both the sons of Farher , and the
sons of Son is preserved. In order to ensure this two predicates are used; asser:_father_on_left , which
adds a son to Son which is to the left of all the other sons, and remove_rightmost , which takes the right-
most son of Father and makes it no longer a son, updating the rightmost_child relation to indicate the
new rightmost son of Father . For a more detailed description of these predicates, see the comments in
the code.

5.5. Other Predicates

The other predicates in this directory deal mainly with the handling of the information in the data-
base. See the code for information on these predicates.

AT ST 3V ITIT MR AW AW AWIW RS

Code from the Front_end Directory

This is the user level predicate of the agrgument analysis
package. The argument is passed as a list of sentences, each
sentence being a list of words. The predicate will first clear
the auxillary database and insert three assertions in order
that "unknown predicate" errors do not occur, then print out
the argument, and call the predicate for buliding the argument
tree. Which method is used (pre_order, post_order or hybrid)
depends upon which module is used. The predicate build_tree
will place assertions in the database. These will be of the
form root(X) or father(X Y) where these assertions define the
argument tree. Finally, the argument tree is printed out.

analyse(Argument) <-

AR 3T AR a0 ST AT M AT W W X

clear_aux(usr)

assert(usr asserted_evidence([] [1) [1)
assert(usr unasserted_evidence([] [1) [1)
assert(usr father([1 [1) [1)
print_argument (Argument)
build_tree(Argument)

printf ("Argument tree;* [])

nl

root(X)

write (X)

nl

print_tree(X,1);

This is the preliminary evidence oracle. The first clause
checks that the information is not already in the database.

The second clause will first make sure that the information

is not already in the database. Then it asks the user whether
the first sentence is evidence for the second, does any special
processing which may be indicated by the input character,
places the information in the database (with the predicate
assert_evidence) and then fails if the input character is not

)yl .

evidence_oracle(E A _) <-

asserted_evidence(E A);

evidence_oracle(E A SpecialArg) <-

not(asserted_evidence(E A4))
not (unasserted_evidence(E A))
printf(*Is 0 [])

write (E)

nl

printf (“evidence for 0 [])
write (A)

nl

printf(*(answer y or n) * [1)
get_first_char (X)

AT 2T AT A% AR N

nl

special (X OutX SpecialArg)
good_answer (QutX GoodX)
assert_evidence(GoodX E A)
I

eq(GoodX ’y’);

This predicate puts the information from the evidence oracle
into the database. This prevents redundant questions from
being asked. It also stores the information that one sentence
is *not* evidence for another.

assert_evidence(’y’ E A) <-

assert(usr asserted_evidence(E A) [1);

assert_evidence(’'n’ E A) <-

%
%
%
%

assert(usr unasserted_evidence(E A) []);

This predicate will print out the input agrument using the
predicate print_argument_

print_argument (X)

%
%
%

nl

printf (*The argument is;0 [])
print_argument_(X)

nl;

This predicate will print out the sentences in the argument

print_argument_([1);
print_argument_([H | T]) <~

3R 3T 3T 3T AT 3T M MW 3%

write (H)
nl
print_argument_(T) ;

This predicate will print out the completed argument tree. It
assumes that the root (Root) has beed printed, finds all the
children of the root, and then calls the predicate print_children
which prints out the chidren, and the subtrees beneath them.

The predicate get_children is specific to the routines for the
type of analysis being done in order to make sure that the

list is returned in the correct order.

print_tree(Root Depth) <-

AR W R AR

get_children(Root Children)
print_children(Children Depth);

This predicate prints one child of a list, then prints the tree
below that child (at one more level of indentation), and then
prints the remaining children in the same way.

print_children([] _);
print_children([H | T] Depth) <-

tab(Depth)
write (H)

nl
plus(Depth 1 New_Depth)
print_tree(H New_Depth)
print_children(T Depth);
%
% Repeatedly prompts until either a 'y’ or a ’'n’ is input
%
good_answer (’y’ 'y’);
good_answer(*n’ 'n’);
good_answer (X GoodX) <-
ne(X 'y")
ne(X 'n’)
printf (" (answer y or n please) “ [])
get_first_char(NewX)
good_answer (NewX GoodX) ;

%

% This reads in all remaining characters on a line and discards them

%

end_of 1ine(’0);

end_of _line() <-
geto(X)
end_of_line(X);

%

% This returns the first character which is input on a line

%

get_first_char(X) <-
geto(X)
end_of_line(X);

Code for the Pre-order Algorithm

%
% This calls the predicate which builds the argument tree
%
b

uild_tree(Argument) <-
pre_order_(Argument nil);
%
% This predicate will get the list of children of Root in the
% order in which they are to be printed out
%
get_children(Root Children)
all_of (Children X father (Root X));
% .
% This will build a pre-order argument tree. The algorithm is by
% R. Cohen. See the documentation for a detailed description.
%
pre_order_([] _);
pre_order_([H | T] nil) <-
assert(usr root(H) [])
pre_order_(T H);
pre.order_([H | T] L) <-
ne(L nil)
evidence _oracle(H L _)
assert(usr father(L H) [])
pre_order_(T H);
pre_order_({H | T] L) <-
ne(L nil)
not(evidence_oracle(H L _))
father (New_L L)
pre_order_([H | T] New_L);

This will perform any special functions required. There are
none at this time.

AT AW AW ST

special(X X J);

Examples of the Pre-order Algorithm

These two examples will be used to describe how to use the system. Things printed by the system

are in normal type, and things entered by the user are in bold.

To start the system, call wup with the name of the directory for the type of analysis you want to do
as the argument. In this case the directory name was super_pre . The system will respond with a question
mark. When you get this prompt you must call the predicate analyse . This predicate takes one argument
which should be a list whose entries are lists of words. Each list of words corresponds to a sentence in the
argument. Be sure to end with a semicolon, as shown in the examples. The program will then ask ques-
tions about the evidence relations between the sentences. Answer each question with y or n. When the
program has determined the argument structure it will be printed out. The printout corresponds to the
argument tree with each level of indentation being a level in the tree. Refer to the examples to see how

this works.

—9_

Note that when doing post-order analysis it is possible to view the stack by answering s when asked
a question by the evidence oracle, and in hybrid you can view the tree constructed so far by responding

with a 7 . See the examples in the appropriate sections.
Example 1

[1]1% wup super_pre

Waterloo Unix Prolog

? analyse([[jones,is,a,good,president],
[he,has,lots,of ,experience],
[he,was,on,the,board,ten,years],
[and,hes,honest],
[he,refused,bribes,many,times]});

The argument is;
[jones,is,a,good,president]
[he,has,lots,of ,experience]
[he,was,on, the,board, ten, years]
[and,hes,honest]
[he,refused,bribes,many, times]

Is

[he,has,lots,of ,experience]
evidence for
[jones,is,a,good,president]
(answer y or n) y

Is

[he,was,on, the,board, ten,years]
evidence for

(he,has,lots,of ,experiencel
(answer y or n) 'y

Is

[and,hes,honest]

evidence for
[he,was,on,the,board, ten,years]
(answer y or n) n

Is

[and, hes,honest]

evidence for
[he,has,lots,of ,experience]
(answer y or n) n

Is

fand, hes, honest]

evidence for
[jones,is,a,good,president]
(answer y or n) y

Is
[he,refused,bribes,many, times]
evidence for

[and, hes,honest]

(answer y or n) y

Argument tree,
[jones,is,a,good,president]
[he,has,lots,of ,experience]
(he,was,on, the,board, ten,years]
Land, hes,honest]
[he,refused,bribes,many, times]
yes
? quif;

Example 2

(11% wup super_pre

Waterloo Unix Prolog

? analyse([[the,city,is,a,mess],
[the,parks,are,a,mess],
[the,playground,area,is,run,down],
[the,sandboxes,are,dirty],
[the,swings,are,broken],
[the,highways,needs,revamping]]);

The argument is;
[the,city,is,a,mess]
[the,parks,are,a,mess]
[the,playground,area,is,run, down]
[the,sandboxes,are,dirty]
[the,swings,are,broken]
[the,highways,needs,revamping]

Is
[the,parks,are,a,mess]
evidence for
[the,city,is,a,mess]
(answer y or n) y

Is
{the,playground,area,is,run,down]
evidence for
[the,parks,are,a,mess]

(answer y or n) y

Is

[the,sandboxes,are,dirty]
evidence for
[the,playground,area,is,run, down]
(answer y or n) y

Is
[the,swings,are,broken]
evidence for
[the,sandboxes,are,dirtyl
(answer y or n) n

Is

[the,swings,are,broken]

evidence for
[the,playground,area,is,run,down]
(answer y or n) ¥y

Is
[the,highways,needs,revamping]
evidence for
[the,swings,are,broken]
(answer y or n) n

~10 -

% Note that only the last son is eligible as evidence

Is

[the,highways,needs,revamping]
evidence for
[the,playground,area,is, run,down]
(answer y or n) n

Is
[the,highways,needs,revamping]
evidence for
[the,parks,are,a,mess]

(answer y or n) n

Is
[the,highways,needs,Tevamping]
evidence for
[the,city,is,a,mess]

(answer y or n) y

Argument tree;
[the,city,is,a,mess]
[the,parks,are,a,mess]
[the,playground,area,is,run,down]
{the,sandboxes,are,dirty]
[the,swings,are,broken]
(the,highways,needs,revamping]
yes
?quit;

%
%
%
b

%

- 11 —

Code for the Post-order Algorithm

Calls the predicate for building the argument tree

uild_tree (Argument) <-

post_order_(Argument []);

% This predicate will get the list of children of Root in the
% order in which they are to be printed out

%

get_children(Root Children)

%
%
%
%

all_of (Children X father(Root X));

This builds a post order argument tree. The algorithm is by
R. Cohen. See the documentation for a detailed explanation.

post_order_([H | T1 []J) <-

post_order_(T [H]);

post_order_([] [X]) <~

assert(usr root(X) [1);

post_order_([H | T] [Top | Stack]) <-

evidence_oracle(Top H [Top | Stack])
assert(usr father(H Top) [])
remove_sons(H Stack New_Stack)
post_order_(T [H | New_Stack]);

post_order_([H | T] [Top | Stack]) <-

SN AW WA

not(evidence_oracle(Top H _))
post_order_(T [H Top | Stackl);

This will print out the stack used when constructing the
argument tree

print_stack([]);
print_stack([H | T]) <-

AR AR a2

write (H)

nl
print_tree(H 1)
print_stack(T);

This recursively removes the sons from the stack. See the
description of the algorithm in the documentation.

remove_sons(_ [1 [1);
remove_sons{(Father [H | T] New_stack) <-

evidence_oracle(H Father [H | TJ)
assert(usr father(Father H) [])
remove_sons(Father T New_stack);

remove_sons (Father [H | T] [H | T]) <-

%
%

not(evidence_oracle(H Father [H | T]));

This will perform any special functions required. The only one

% so far is outputting the stack.

%
special(’s’ X Stack) <-
printf (“Stack is;0 [1)
nl
print_stack(Stack)
nl
printf (" (answer y or n) * [])
get_first_char(X);
special(X X J);

- 12 —

Examples of the Post-order Algorithm

Example 1

[1]1% wup super_post

Waterloo Unix Prolog

? analyse([[the,benches,are,broken],
[the,trails,are,choppy],
[the,trees,are,dying],
[in,sum,the,parks,are,a,mess]]);

The argument is;

[the,benches, are, broken]
[the,trails,are, choppy]
[the,trees,are,dying]

[in,sum, the,parks,are,a,mess]

Is
[the,benches,are,broken]
evidence for
[the,trails,are, choppy]
(answer y or n) n

Is

[the,trails,are, choppy]
evidence for
[the,trees,are,dying]
(answer y or n) n

Is

[the,trees,are,dying]
evidence for

[in,sum, the,parks,are,a,mess]
(answer y or n) y

Is

[the,trails,are, choppy]
evidence for

(in,sum, the,parks,are,a,mess]
(answer y or n) y

Is

[the,benches,are,broken]
evidence for

[in,sum, the ,parks,are,a, mess]
(answer y or n) y

Argument tree;

[in, sum, the, parks,are,a, mess]
[the,trees,are,dying]
[the,trails,are, choppy]
[the,benches,are, broken]

yes
?quit;

Example 2

[1]% wup super_post
Waterloo Unix Prolog

? analyse([[it,rained,all,may],
[it,snowed,all,february],
[there,was,no,sun,in,the,summer],
[the,weather,has,been,awful],
[i,lost,my,job],

[loads,of ,planes,crashed],
[many,volcanoes,erupted],
[there,have,been,lots,of,disasters],
[its,been,a,terrible,year]]);

The argument is;
[it,rained,all,may]

[1t,snowed,all, februaryl]
[there,was,no,sun,in, the, summer]
(the,weather, has,been,awful]
[i,lost,my, job]
[loads,of,planes,crashed]

[many, volcanoes, erupted]
[there,have,been,lots,of ,disasters]
[its,been,a,terrible,year]

Is
[it,rained,all,may]

evidence for
[it,snowed,all, februaryl]
(answer y or n) n

Is

[it, snowed,all,february]
evidence for
[there,was,no,sun,in, the, summer]
(answer y or n) n

Is
[there,was,no,sun,in,the, summer]
evidence for
[the,weather,hhas,been,awful]
(answer y or n) y

Is

[it,snowed,2ll, february]
evidence for

[the,weather, has,been,awful]
(answer y or n) y

Is

[it,rained,all, may]

evidence for

[the,weather, has,been,awfull
(answer y or n) y

Is
[the,weather,has,been,awful]
evidence for

[1,1lost,my, job]

(answer y or n) n

Is

[i,lost,my, job]

evidence for
[loads,of,planes, crashed]
(answer y or n) n

Is

[loads,of,planes, crashed]
evidence for
[many,volcanoes,erupted]
(answer y or n) n

Is

[many,volcanoes, erupted]

evidence for
[there,have,been,lots,of ,disasters]
(answer y or n) S

Stack is;

- 13—

[(many,velcanoes, erupted]
[loads,of,planes, crashed]
[i,lost,my, jobl
[the,weather,has,been,awful]
[there,was,no,sun,in, the, summer]
[it, snowed,all, february]
[it,rained,all,may]

(answer y or n) y

Is

[loads,of,planes,crashed]

evidence for
[there,have,been,lots,of ,disasters]
(answer y or n) y

Is

[i,lost,my, job]

evidence for
[there,have,been,lots,of ,disasters]
(answer y or n) n

Is

[there,have,been,lots,of ,disasters]
evidence for
[its,been,a,terrible,year]

(answer y or n) y

Is

[i,1lost,my, job]

evidence for
[its,been,a,terrible,year]
(answer y or n) Yy

Is
[the,weather,has,been,awful]
evidence for
[its,been,a,terrible,year]
(answer y or n) y

Argument tree;
[its,been,a,terrible,year]
[there,have,been,lots,of ,disasters]
[many,volcanoes, erupted]
[loads,of ,planes, crashed]
{i,lost,my, jobl
[the,weather,h has,been,awfull
[there,was,no,sun,in, the, summer]
[it,snowed,all, february]
[it,rained,all,may]
yes
?quit;

— 14—

The previous example illustrates how the
current stack can be printed out. It is done by
responding with s when asked a question by the
evidence oracle.

Code for the Hybrid Algorithm

This predicate puts the information that F is the father of C in
the database. It keeps the appropriate information for obtaining
the rightmost child of the father.

AT SR A 3T W

assert_father(F C) <-
not(rightmost_child(F _))
assert(usr father(F C) []1)
assert(usr rightmost_child(F C) [1);
assert_father(F C) <-
rightmost_child(F X)
delax(usr rightmost_child(F X))
assert(usr left_brother(X C) [J)
assert(usr rightmost_child(F C) [])
assert(usr father(F C) [1);

This predicate puts the information that F is the father of C in
the database. It keeps the appropriate information for obtaining
the rightmost child of the father.

3R 3T AT AW R

assert_father_on_left(F C) <-
not(rightmost_child(F _))
assert(usr father(¥ C) [])
assert(usr rightmost_child(F C) [1);
assert_father_on_left(F C) <-
rightmost_child(F X)
assert(usr left_brother(C X) [])
assert(usr father(F C) [1);
%
% This predicate will attach all the sons of L which are evidence for
% N below N. It will also make them no longer sons of L. The sons are
% added in "reverse* order so that the correct rightmost_child relations
% are preserved.
%
attach_sons(L .) <-
not(father(L .));
attach_sons(L N) <~
rightmost_child(L Somn)
not(evidence_oracle(Son N _));
attach_sons(L N) <-
rightmost_child(L Son)
evidence_oracle(Son N _)
assert_father_on_left(N Son)
remove_rightmost (L)
attach_sons(L N);

—15 —

Calls the predicate for building the argument tree.

The first call to assert is to prevent unknown predicate
errors from occurring. After building the tree with the
predicate "hybrid", the root is found (failing if there

is more than one root), and the proper assertion is put imn
the database.

T ST ST AT TN AN R

uild_tree([{H | T]) <~
assert(usr asserted_evidence(X dummy) [])
agsert(usr left_brother(nil nil) [1)
assert(usr rightmost_child(nil nil) [])
hybrid_(T H dummy)
1

all_of (Roots X father (dummy X))
eq(Roots [Root])
assert(usr root(Root) [1);

This predicate will get the list of children of Root in the
order in which they are to be printed out

A av av AR

get_children(Root Children) <-
get_children_(Root [] Children);
%
% This predicate gets the children of Root ordered with the leftmost
% first
%
get_children_(Root [] [1) <-
not(rightmost_child(Root _));
get_children_(Root [] Children) <-
rightmost_child(Root Child)
get_children_(Root {[Child] Children);
get_children_(Root [H | T] [H | T]) <~
not(left_brother(_ H));
get_children_(Root [H | T] Children) <-
left_brother(Left H)
get_children_(Root [Left H | T] Children);
%
% This builds the argument tree for hybrid type of arguments. The
% algorithm is from R. Cohen. See the documentation for a detailed
% description.
%
hybrid_([] N L) <-
evidence_oracle(N L)
no_sons_evidence(L N)
assert_father(L N);
hybrid_([] N L) <-
evidence_oracle(N L _)
attach_sons(L N)
assert_father(L N);
hybrid_([H | T] N L) <-
evidence_oracle(N L _)
no_sons_evidence(L N)
assert_father(L N)

—16 —

hybrid_(T H N);

hybrid_([H | T] N L) <-
evidence_oracle(N L _)
attach_sons(L N)
assert_father (L N)
hybrid_(T H L);

hybrid_(s N L) <-
not(evidence_oracle(N L _))
father(X L)
hybrid_(S N X);

This succeedes only if the rightmost child of L is not evidence for
N, or if L has no children.

AR AR awaR

no_sons_evidence(L _) <-
not(father(L _));
no_sons._evidence(L N) <-
rightmost_child (L Son)
not(evidence_oracle(Son N _));
%
% This predicate will remove the rightmost child of L. If it has no
% children, then it succeedes automatically. Otherwise the assertions
% making the sentence the rightmost child of L are removed, and the next
% to rightmost (if it exists) is made the rightmost.
%
remove_rightmost (L) <-
not(rightmost_child(L _));
remove_rightmost(L) <-
rightmost_child(L Son)
not (left_brother(_ Son))
delax(usr rightmost_child(L Son))
delax(usr father (L Son));
remove_rightmost(L) <-
rightmost_child (L Son)
left_brother(New_son Son)
delax(usr left_brother(New_son Son))
delax(usr rightmost_child(L Son))
delax(usr father(L Somn))
assert(usr rightmost_child(L New_son) []);

This will perform any special functions required. The only one
so far is outputting the tree as it stands.

SR SR 3T R

special ("t X _) <-
printf ("Tree is;0 [])

nl

print_tree(dummy O)

nl

printf(*(answer y or n) " [1)

get_first_char(X);
special(X X _);

_17 -

Examples of the Hybrid Algorithm

Example 1

[11% wup super_hybrid

Waterloo Unix Prolog

? analyse({[the,city,is,a,mess],
[the,playground,area,is,run,down],
[the,sandboxes,are,dirty],
[the,swings,are,broken],
[the,parks,are,a,disaster],
[the,highway,system,needs,revamping]]);

The argument is;
[the,city,is,a,mess]
[the,playground, area,is,run,down]
[the, sandboxes,are,dirty]
[the,swings,are,broken]
[the,parks,are,a,disaster]
[the,highway,system,needs,revamping]

Is
[the,playground,area,is,run,down]
evidence for

(the,city,is,a,mess]

(answer y or n) y

Is

[the, sandboxes,are,dirty]
evidence for

[the,playground, area,is,run, down]
(answer y or n) y

Is
[the,swings,are,broken]
evidence for
[the,sandboxes,are,dirty]
(answer y or n) n

Is

[the,swings,are,broken]

evidence for

{the,playground, area,is,run,down]
(answer y or n) Yy

Is
[the,sandboxes,are,dirty]
evidence for
[the,swings,are,broken]
(answer y or n) n

Is
[the,parks,are,a,disaster]
evidence for
[the,swings,are, broken]

(answer y or n) n

Is

[the,parks,are,a,disaster]
evidence for
[the,playground,area,is,run,down]
(answer y or n) n

Is
[the,parks,are,a,disaster]
evidence for
[the,city,is,a,mess]
(answer y or n) ¥y

Is
[the,playground,area,is,run,down]
evidence for
[the,parks,are,a,disaster]
(answer y or n) 'y

Is

[the,highway,system,needs, revamping]
evidence for

[the,city,is,a,mess]

(answer y or n) y

Is

[the,parks,are,a,disaster]

evidence for
[the,highway,system,needs,revamping]
(answer y or n) n

Argument tree;
[the,city,is,a,mess]
[the,parks,are,a,disaster]
[the,playground,area,is,run,down]
[the,sandboxes,are,dirty]
{the,swings,are,broken]
[the,highway,system,needs, revamnping]
yes
?quit;

Example 1 (Annotated)

[11% wup super_hybrid

Waterloo Unix Prolog

? analyse([[the,city,is,a,mess],
[the,playground,area,is,run,down],
[the,sandboxes,are,dirty],
[the,swings,are,broken],
[the,parks,are,a,disaster],
[the,highway,system,needs,revamping]]);

The argument is;
{the,city,is,a,mess]
[the,playground,area,is,run, down]
[the,sandboxes,are,dirty]
[the,swings,are,broken]
[the,parks,are,a,disaster]
[the,highway, system,needs,revamping]

Is
[the,playground,area,is,run,down]
evidence for

[the,city,is,a,mess]

(answer y or n) y

Is

[the, sandboxes,are,dirty]
evidence for
[the,playground,area,is,run,down]
(answer y or n) 'y

Is
[the,swings,are,broken]
evidence for

[the, sandboxes,are,dirty]
(answer y or n) n

Is

[the,swings,are,broken]

evidence for

[the,playground, area,is,run,down]
(answer y or n) y

% Here the algorithm will check for
% possible reattachment of sons.

Is

[the, sandboxes,are,dirty]
evidence for

[the, swings,are,broken]
(answer y or n) n

% [the,swings,are,broken] is still
% the last eligible son.

Is
[the,parks,are,a,disaster]
evidence for
[the,swings,are,broken]
(answer y or n) n

% The previous brother is not
% checked.

Is

{the,parks,are,a,disaster]
evidence for
[the,playground,area,is,run,down]
(answer y or n) n

Is
[the,parks,are,a,disaster]
evidence for
[the,city,is,a,mess]
(answer y or n) Yy

% Re-attachment of sons is done in
% this case.

Is
[the,playground,area,is,run,down]
evidence for
[the,parks,are,a,disaster]
(answer y or n) Yy

% [the,parks,are,a,disaster] is no longer
% eligible since it was included in the
% re-attachment.

Is

[the,highway,system,needs, revamping]
evidence for

[the,city,is,a,mess]

(answer y or n) 'y

% Re-attaching sons check

Is

[the,parks,are,a,disaster]

evidence for

[the,highway, system,needs, revamping]
(answer y or n) n

Argument tree;
[the,city,is,a,mess]
[the,parks,are,a,disaster]
[the,playground,area,is,run,down]
[the,sandboxes,are,dirty]
[the,swings,are,broken]
[the,highway, system,needs,revamping]
yes
?quit;

Example 2
[11% waup super_hybrid

Waterloo Unix Prolog
? analyse([[its,been,a,good,winter],

[i,made,progress,on,my,thesis],
[i,found,a,new,apartment],
[it,wasnt,too,cold],
[and,it,didnt,rain,too,much],
[actually,the,weather,was,good]]);

The argument is;
[its,been,a,good, winter]
[i,made,progress,on,my, thesis]
[1,found,a,new,apartment]
[it,wasnt, too, cold]
[and,it,didnt,rain, too,much]
[actually, the,weather,was, good]

Is
[i,made,progress,on,my,thesis]
evidence for
{its,been,a,good,winter]
(answer y or n) Yy

Is

[1,found,a,new,apartment]
evidence for
[1,made,progress,on,my, thesis]
(answer y or n) n

Is
[i,found,a,new,apartment]
evidence for
[its,been,a,good,winter]
(answer y or n) y

Is
[1,made,progress,on,my, thesis]
evidence for
fi,found,a,new,apartment]
(answer y or n) n

Is

[it,wasnt, too, cold]
evidence for
[i,found,a,new,apartment]
(answer y or n) n

Is

[it,wasnt, too, cold]
evidence for
[its,been,a,good,winter]
(answer y or n) Yy

Is
[i,found,a,new,apartment]
evidence for

[it,wasnt, too,cold]

(answer y or n) n

Is
[and,it,didnt,rain,too,much]
evidence for
[it,wasnt, too, cold]

(answer y or n) n

1Is

[and,it,didnt,rain, too,much]
evidence for
[its,been,a,good,winter]
(answer y or n) y

Is

[it,wasnt, too, cold]

evidence for
[and,it,didnt,rain,too,much]
(answer y or n) n

Is
[actually,the,weather,was, good]
evidence for
[and,it,didnt,rain, too,much]
(answer y or n) t

Tree 1is;

[its,been,a,good,winter]
[i,made,progress,on,my,thesis]
[i,found,a,new,apartment]
[it,wasnt, too,cold]
(and,it,didnt,rain,too,much]

(answer y or n) n

Is

[actually, the,weather,was, good]
evidence for
[its,been,a,good,winter]
(answer y or n) y

Is

[and,it,didnt,rain, too,much]
evidence for

factually, the,weather, was, good]
(answer y or n) ¥y

Is

[it,wasnt, too, cold]

evidence for

[actually, the,weather, was, good]
(answer y or n) y

~20_

Is

[i,found,a,new,apartment]
evidence for
[actually,the,weather,was, good]
(answer y or n) n

Argument tree;

[its,been,a,good,winter]
[i,made,progress,on,my, thesis]
[1,found,a,new,apartment]
[actually, the,weather,was, good]
[it,wasnt, too, cold]
fand,it,didnt,rain, too,much]

yes

?quit;

The previous example illustrates how the
current argument tree can be printed out. The is
done by responding with r when asked a ques-
tion by the evidence oracle.

References

R. Cohen, Investigation of Processing Strategies for the Structural Analysis of Arguments, Proceed-
ings of ACL Conference, pp. 71-75 (June, 1981).

R. Cohen, A Computational Model for the Analysis of Arguments, University of Toronto Technical
Report CSRG-151, (October, 1983).

R. Cohen, A Theory of Discourse Coherence for Argument Understanding, Proceedings of
CSCSI/SCEIO Conference, pp. 6-10 (May, 1984).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

