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ABSTRACT

Perfect hashing refers to hashing with no overflows. The use of perfect
hashing functions has previously been studied only for small static sets stored in
main memory. All known systematic methods of finding perfect hashing func-
‘tions are conceptually complicated, and most methods need exponential time to
determine a perfect hashing function for a given set of keys.

In this thesis we propose and analyze a perfect hashing scheme for large
external files. The scheme guarantees retrieval of any record in a single disk
access. Insertions and deletions are simple, and the file size may vary consider-
ably without adversely affecting the performance. A variant of the basic scheme
gives a completely dynamic file organization which also supports efficient range
searching. These advantages are achieved at the cost of a small amount of sup-
plemental internal storage and increased cost of insertions.

An ordinary hashing function is used to divide the records of the file into a
number of groups. The records in each group are then hashed over a number of
contiguous pages of external memory by a perfect hashing function. A perfect
hashing function for a group can be found by repeated random selection from a
suitable class of hashing functions. We analyze the probability of a randomly
chosen function (from the set of all functions) being perfect. We then describe a
policy that limits the cost of finding perfect hashing functions. The resulting
tradeoff between the storage utilization and the cost of finding perfect hashing
functions is investigated. Results of experiments with a simple and practical class
of hashing functions are reported. They indicate that the relative frequency of
perfect hashing functions within the class is statistically the same as predicted by
the theoretical analysis for the set of all functions. The performance of the new
scheme is also compared with other hashing schemes. We conclude that the pro-

posed perfect hashing scheme is a practical and competitive technique for organ-
1zing external files. :

It’s not easy being perfect ...
But somebody has to do it!
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Chapter 1
Introduction

Hashing is an efficient and popular technique for organizing internal tables
and external files. The fundamental idea behind hashing is to perform some
transformation on the key associated with a record to produce an address within
the range of the table where the record is to be stored. If the address is already
full, we say that a collision has occurred. If each address is capable of holding
more than one record, as typically is the case with external files, over flow is a
more appropriate word for collision. A key concern of hashing is the presence of
overflow records. Various schemes have been proposed to handle the overflow
problem. This thesis takes a different approach by trying to eliminate overflow
records altogether.

A hashing function is said to be perfect (for a given set of keys) if it causes
no overflow records. In this thesis, we propose and analyze a perfect hashing
scheme for large external files and show that the scheme is indeed practical. A
key feature of the scheme is that any record can be retrieved in a single disk
access.

A significant amount of the research on hashing is dedicated to the problem
of handling overflows. The basic approach has been to accept the inevitability of
overflow records and try to handle them as efficiently as possible. The.quota-
tions below illustrate this point:

“In order to use a hash table, a programmer must make two almost
independent decisions: He must choose a hash function k(k), and he
must select 2 method for collision resolution”. [KN74]

“One of the key concerns when designing hashing schemes and hash
files is the choice of a method for handling overflow records”. [LR80]

“When héshing is used for organizing files and tables some method
for solving the problem of overflow records must be devised”. [LR79]

“Handling collisions is the central issue in hashing and the subject
of this thesis”. [CP86]

Knuth explains the reasons for this traditional approach with the following
example[KN74]. Consider storing the 31 most common English words in a hash
table having 41 locations. There are a total of & 10® possible functions and only
~ 10*® of them will give distinct addresses for the 31 words, i.e. no overflows;
thus only one in 10 million functions will be perfect.

Perfect hashing functions are rare, even when the table is fairly large com-
pared to the number of keys. The famous “birthday paradox” asserts that if we
select a random function which maps 23 keys into a table of size 365, the proba-
bility of the function being perfect is less than one-half (0.4927).

For external files stored on disk, typically, each addressable unit of memory
is capable of holding more than one record. Each addressable unit is called a
page or bucket. (In the above examples, each address is capable of holding at
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most one record; the page size is 1.) It is easier to find a hashing function causing
no overflows when keys are hashed into larger pages. This fact is exploited in
this thesis to obtain a practical perfect hashing scheme for external files. The
proposed scheme is an extension of a scheme proposed by Cormack, Horspool and
Kaiserswerth [CH85] to external files .

The research reported in this thesis is the first attempt at applying perfect
hashing to external files. Some early results were reported in [LR85]. We wish
to emphasize that the main goal of the research was to determine whether the
idea of using perfect hashing to organize large external files is practical. The
next section outlines what we consider practical, given current technology.

1.1. Definitions and assumptions

Consider a hash table (or hash file) consisting of m buckets (pages), each
with a capacity of b keys (records). A set I = {z,,z,,..., z,}, of n keys,
- n < mb, are to be stored in the table. A hashing function kh, h: I — [0, m—1],
assigns each key an address in the range 0,1, ..., m—1. The hashing function
h is said to be a perfect hashing function if no address receives more than b
records. It is a minimal perfect hashing function if the table is of minimal
size, m = [n /b].

We make the assumption that the keys are integers. An implicit assump-
tion in all research on hashing is that the hashing function is simple, both in
terms of the space required to store the parameters of the hashing function and
the cost of computing the hash address for a key. Using the RAM model of
analysis|AH74], let a key occupy a unit of memory and the cost of a simple arith-
metic operation involving integers of unit length be unity. Under this model, it is
reasonable to require that a hashing function use O(1) storage for its parameters
and the cost of computing a hash address is O(1).

The term practical range is frequently used in this thesis. It is difficult to
give an absolute definition of practical. The following outlines what we consider
practical with respect to various parameters.

1. Permanent internal memory: A few bytes per hundred records stored in the
file. For example, 5 to 50 kilobytes for a file of one million records.

2. Temporary space: The temporary use of a fairly large amount of internal
storage does not cause any serious problems in modern computer systems.
We consider temporary buffer space (used during an insert or delete opera-
tion) for a few hundred records reasonable.

3.  Page size: Given current disk technology, using pages capable of storing 10
to 50 records seems reasonable.

4, Hash address computation: Computing a hash address should require a
small, constant number of operations, independent of the file size. How-
ever, the number of operations may depend on the key length.

5. Insertion and deletion costs: A few hundred hash address computations, on
the average, is considered reasonable. The minimum disk I/O cost is 2.0
accesses for any file organization. An average of up to 2-3 times the
minimum I/O cost seems acceptable.
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6.  File size: We are mainly interested in files having a few thousand to a few
million records.

Although the techniques and the analysis presented are general and appli-
cable to any parameter range, we concentrate on the above ranges when present-
ing numerical results.

We use the terms disk and secondary storage synonymously. It is impli-
citly assumed that accessing secondary storage is much slower than accessing
internal memory. This is true in practice for all mass storage devices.

1.2. Background

Greniewski and Turski were the first to describe a method for constructing
perfect hashing functions [GT63]. Their method is not general, and the resulting
hashing functions are complicated. Systematic methods for finding perfect hash-
~ ing functions were first reported by Sprugnoli in 1977 [SP77|. Since then, several
other researchers have reported new methods for finding perfect hashing func-
tions. The various methods can be grouped into two classes:

a)  Direct perfect hashing
b)  Composite perfect hashing (which need some form of a lookup table)

All the methods for finding direct perfect hashing functions found in the
literature deal only with small static sets of 10 to 15 elements. Those which can
handle larger sets are all composite.

1.2.1. Direct perfect hashing

Sprugnoli dealt only with small static sets (10-15 elements, no insertions or
deletions allowed)(SP77]. He proved the existence of a perfect hashing function
of the form h(z) = | (z+s)/N ], where s and N are constants, for any given set
of keys I = {z,,25, - - * ,z,}. He described an algorithm, called the Quotient
Reduction Method, for finding & and N. The algorithm involves sorting, and
finding the (n—1)st differences of the elements of the set I, n = |I|. The com-
plexity of the algorithm is at least O(n®) with a large constant. The space utili-
zation may be poor, especially if the keys are not uniformly distributed. This is
illustrated by a simple example: given the key set I = {0, 9, 10, 11}, the best per-
fect hashing function is h(z) = |(z + 0)/1], yielding a storage utilization of only
33%.

When the keys have a nonuniform distribution, Sprugnoli reports that
hashing functions of the following form yield better results:

h(z) = | ( (eg+d) mod m) /N ] .

He described a method, called the Remainder Reduction Method, for finding
the constants q, d, m and N so that h is a perfect hashing function for the given
set of keys. However, he was unable to prove that the method always succeeds
in finding a perfect hashing function.

Jaeschke [JS81] proposed Reciprocal Hashing, which he claimed to be
superior to Sprugnoli’s methods. The hashing functions are of the form:
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h(z) = |C /(Dz + E) | mod n,

where C, D and E are constants. D and E are chosen so that for all pairs
z;, z; €1,1 #7, (Dz; + E) and (Dz; + E) are relatively prime. Jaeschke gave
constructive proofs for the existence of C, D and E for any given set of keys.
However, the values of the constants obtained are too large to be useful in prac-
tice. The choice D = 1, F = 0 was reported to be satisfactory in most cases; C
can be calculated by a trial and error search. The theoretical upper bound for
the complexity of the search procedure is z,,"*' where z, is such that
Vz; €1, z; < z,,- However, Jaeschke reports that experimentally the average
complexity is 1.82" forn < 15and I C {1,2,3, ..., 1000000}. For n < 15 the
time complexity is roughly the same as that of Sprugnoli’s methods, but Recipro-
cal Hashing yields minimum perfect hashing functions. When n > 15, neither
method is practical because of the prohibitively high cost of finding perfect hash-
ing functions.

Chang [CH84] proposed a perfect hashing scheme based on the Chinese
Remainder Theorem. The space required to store the hashing function is O(n)
and given a key the cost of evaluating its hash address is O(n). Moreover, his
method works only for small key values {less than 100) and hence we will not go
into further details.

1.2.2. Composite perfect hashing

It is impractical to find direct perfect hashing functions for sets larger than
10 to 15 elements. Sprugnoli suggested the use of segmentation to handle larger
sets. Use a function hg, to divide the given set into a number of segments: S; = {
z |ho(z) =14 and z €I }. hg can be an ordinary hashing function. If each seg-
ment has no more than 10-15 elements, direct perfect hashing can be used to
store the segments separately. The parameters of the perfect hashing functions
must be stored in a table and hence retrieval involves two levels of access: one to
obtain the parameters of the perfect hashing function for a segment and the
other to get to the key. This idea is the basis for most of the recent research on
perfect hashing, including the research reported in this thesis. We call such a
two-level hashing function, a composite perfect hashing function.

Fredman, Komlos and Szemeredi [FK82] proposed a scheme which imple-
ments Sprugnoli’s idea of segmentation. The hashing functions are of the form
h(z) = (kz mod p) mod m, where p is a prime number such that Vz €I,z <p
and k is a constant, k < p. For any given set J, r = |J|, they show that there
always exists a perfect hashing function of the form h(z) = (kz mod p) mod m,
where m = rZ. '
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Figure 1.2.1 Ilustration of the hash table construction -

Figure 121 illustrates their construction for
I={2,45,5,1830},n =6,p = 31. Ty[-1..n—1] is an array of length (n+1)
which stores the first-level structure. Ty[—1] contains the value of k used forthe
segmentation function H: in this case H(z) = ( (22 mod 31) mod 6) . All the
keys hashing to location ¢ under H form the set w;. The entry Ty[¢] points to
an array T;[-2 .. bo;P—1] of length ho;F+ 2 in which the set w; is stored.
hi(z) = (k; £ mod p) mod h;F is a perfect hashing function for the set w;. k; is
found by trial-and-error. fw;|and k; are stored in T;[—2] and T;[—1], respectively.
The elements of w; are stored in T; at the addresses given by k;. This scheme
requires five accesses for retrieval and uses O(n) storage. The table can be con-
structed in random expected time O(n).

Du, Hsieh, Jea and Shieh [DH83] proposed another composite perfect hash-
ing scheme. Their first-level structure is called a Hash Indicator Table (HIT). A
perfect hashing function is constructed as the composition of a set of hashing
functions H = {h,, hy, ..., h,}. The algorithms for constructing the table
given the set I and for retrieving a given key z are given below.
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HIT, T : array 1 .. mof integer;

procedure store {I);
I : set of integer;
begin
for .= 1to s do
for all elements z in I do
d:= hyz); ,
if HIT [d] = O for one and only one z €] then
begin HIT [d] := j; T[d] == z; I :== I — {z}; end
else no perfect hashing function can be found ;
endloop;
endloop;
end;

function Retrieve (z): integer;
z: integer;
begin
for i := 1 to s do
d := h(z);
if (HIT[d] = ¢) then return (T(d]);
endloop;
end;

This scheme needs up to s address calculations and accesses to the HIT to
retrieve a key. If both the HIT and the data array are in the same storage
medium, this can hardly be called a perfect hashing scheme. One may as well
use any other scheme, such as double hashing, which needs s or less accesses for
each retrieval.

Yang and Du [YD84] extended this scheme to handle dynamic key sets
stored in external memory. Their scheme resembles Larson’s dynamic hashing
[LR78]. They report that about 1.6 kilobytes of internal memory is required to
store 1,000 records. The internal space requirement is much higher than other
schemes which guarantee single access retrieval [GL82, LR78].

Retaining the same basic structure, Cormack, Horspool and Kaiserswerth
[CH85] extended the scheme of Fredman et. al. [FK82] to handle insertions and
deletions. They called the resulting scheme “practical perfect hashing”. The
external perfect hashing scheme presented in chapter 2 of this thesis is an exten-
sion of their “practical perfect hashing” to external files. We will not go into
further details of the scheme here.

Cichelli[CC80] described a simple method of computing perfect hashing
functions. The first-level structure he used is basically a mapping function as
described below. In his scheme keys are treated as strings over an alphabet,
rather than as integers. The hashing functions used are of the form:

h(key) = length(key) + g(first letter of key) + g(last letter of key)
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g : {set of first a.nd last letters of keys} — {set of natural numbers} .

The function g is stored in a table and constructed so as to make h a perfect
hashing function for the given set of keys. Cichelli described a backtracking
method based on trial-and-error to construct the function g. In the worst case,
this search procedure takes exponential time. It worked well for a few examples
given in [CC80]. There are infinitely many trivial cases for which this method
fails, for example, when the key set contains both the keys FOR and FAR. Oth-
ers have worked on this scheme, improving its performance to some extent by
taking into account additional letters of the key [CK83, CB85, SG85]. Depending
on the size of the table for the function g, sets of up to a few hundred keys can

be handled.

1.2.3. Single access retrieval from external files

_ The dynamic hashing scheme proposed by Larson is one of the earliest

hashing schemes which uses an index and avoids overflows [LR78]; it may be
regarded as a perfect hashing scheme for external files if the full index is stored
in internal memory. Similarly, extendible hashing [FN79] guarantees single access
retrieval, if the directory structure is stored in internal memory. We have
already mentioned another perfect hashing scheme for external files using a Hash
Indicator Table [YD84]. All these methods use too much internal memory to be
of any interest in practice.

An external hashing scheme developed by Gonnet and Larson [GL82]
achieves the goal of retrieval in a single disk access. However, it is not a perfect
hashing scheme; it does allow overflows. There is an index table stored inter-
nally, with one entry per (external) bucket. Each entry contains a separator of
length k bits: for a full bucket, the maximum of the hash signaturest of the keys
stored in the bucket; for non-full buckets, the value 2¥*—1. The number of bits
per entry determines the maximum load factor possible for a given bucket size.
Normal double hashing is used to store the keys. To retrieve a record, the pri-
mary hash address and the signature of the key are computed. If the computed
signature is less than or equal to the separator of the bucket, the required bucket
has been found. Otherwise, proceed by calculating the next address and signa-
ture of the key until a bucket whose separator is greater than the signature of
the key is found. Insertion into non-full buckets is straightforward. When an
insertion causes z bucket to overflow, the keys are partitioned according to their
signatures. A separator s is determined so that the number of keys having signa-
tures less than or equal to s is as close to the bucket size as possible: those
records are retained in the bucket. Keys whose signatures are strictly greater
than s are moved to their subsequent secondary addresses. In essence, external
probing has been replaced by internal probing and the separator table contains
enough information to terminate the probing at the correct address. The results
reported for this method are quite impressive: with just 2 bits of internal memory
per bucket, about 84% storage utilization can be attained with a bucket size of

t A hash stgnature of length k, is the first k bits produced by a secondary hashing function
operating on the key.
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20 records. Larson has extended this scheme to handle dynamic files [LR84].

1.3. Thesis outline

In this chapter we have discussed several perfect hashing schemes. All the
methods for finding perfect hashing functions involve some form of trial-and-
error searching. Unless the set is very small (10-15 elements), some form of inter-
mediate table is essential. All the methods are intended for internally stored
tables, and none consider perfect hashing for external files where each address is
capable of storing more than one record.

In chapter 2 the proposed perfect hashing scheme for large external files is
described. It is based on Sprugnoli’s idea of segmentation: divide the file into
smaller groups and use perfect hashing to store each group separately. The basic
scheme uses hashing to achieve segmentation; an extension using a B-tree to
achieve segmentation is also described. There are several questions related to the
practicality of the proposed scheme. The rest of the thesis is devoted to answer-
ing these questions.

In chapter 3 we propose a method for finding perfect hashing functions and
analyze its performance. The method simply consists of making trials by choos-
ing functions at random from the set of all possible functions. The main contri-
bution of the chapter is an analysis of the cost of the trial-and-error approach of
finding perfect hashing functions when each bucket can hold more than one
record. We give a simple recurrence relation for computing the probability of a
randomly chosen function being perfect. Previously known methods of comput-
ing these probabilities are several orders of magnitude slower.

The results presented in chapter 3 show that there is a sharp trade-off
between the cost of finding perfect hashing functions and the required load fac-
tor. In chapter 4 we consider policies for balancing the trade-offs. We define an
optimal policy which attempts to limit the cost of finding perfect hashing func-
tions. Formulation and solution of a nonlinear integer optimization problem to
obtain the optimal policy is then discussed.

In chapter 5 we study the effect of the optimal policy on the load factor of
a group and a file. Numerical results are given for different file sizes. The two
main costs of external perfect hashing schemes (cost of insertions and amount of
internal memory space required) are also analyzed.

The analysis in chapters 3-5 assumes that perfect hashing functions are
found by trial and error, choosing functions at random from the set of all func-
tions. Choosing functions from the set of all functions is highly impractical and
in chapter 6 we propose and study a simple class of hashing functions from which
functions can be chosen for trials. Experimental results using this class of func-
tions are presented.

Chapter 7 deals with various implementation considerations. Since it is
impractical to solve a nonlinear integer optimization problem as described in
chapter 4, we give a simple heuristic to determine the rehashing policy. Several
other practical aspects such as the organization of header table, etc. are dis-
cussed. We also show how the basic scheme can be extended to make it fully
dynamic.
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In chapter 8 we compare the performance of the proposed external perfect
hashing scheme with other hashing schemes for external files. Several open prob-
lems arising from the thesis are also discussed.
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Chapter 2
An external perfect hashing scheme

2.0. Chapter overview

In this chapter we describe a perfect hashing scheme for external
files. It is an implementation of Sprugnoli’s idea of segmentation:
divide the given set of keys into small groups and use perfect hashing
to store each group separately. The basic scheme uses a hashing
function for segmentation. Procedures for retrieval, insertion, and
deletion of a record are presented. A variant of the basic scheme
using a B-tree for segmentation is also outlined along with its advan-
tages. We conclude the chapter by stating the basic problems that
must be solved to make the proposed scheme viable. The rest of the
thesis is devoted to answering these questions.
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2.1. Introduction

Sprugnoli suggested the idea of segmentation to store large static sets using
perfect hashing: divide the given set into a number of small groups and store
each group separately using perfect hashing. Both the schemes proposed by
Fredman et. al. and by Cormack et. al. make use of this idea [FK82, CH85]. The
basic external perfect hashing scheme proposed in this chapter is an extension
of the two level data structure suggested by Cormack et. al.[CH85]. It uses their
basic data structure but each group is stored in a number of contiguous pages on
secondary storage.

The data structure consists of a header table stored in internal memory.
Each entry in the header table corresponds to a group. Each group of records is
stored separately on external storage by a perfect hashing function. The infor-
mation stored in an entry of the header table is the corresponding group’s start-

ing location on external storage, its size, and the parameters of its perfect hash-
~ ing function.

The set of keys must be partitioned into subsets or groups. The main
requirement of the partitioning is that, given a key, it should be possible to easily
identify the group to which the key belongs. There are various ways in which
partitioning can be accomplished and correspondingly the header table can be
organized in several different ways. The simplest way of partitioning a set of
keys is by using a hashing function. This corresponds to organizing the header
table as a hash table whose size is determined by the number of groups desired.
However, by organizing the header table as a tree we can retain ordering
between the keys in different groups. Obviously, the header table may be organ-
ized using various other data structures.

We first describe in more detail the external perfect hashing scheme
assuming that the header table is organized as a hash table. Procedures for
retrieval, insertion and deletion are given. A variant of the scheme in which the
header table is organized as a B-tree is then outlined. The extra costs and
advantages of using a B-tree are discussed.

2.2. The basic scheme

Figure 2.2.1 illustrates the basic external perfect hashing scheme. H is an
ordinary hashing function mapping keys into a header table with s entries. Let
key group t denote the set of keys {z |z € the given key set and ¢t = H(z)} for
0 <t <s — 1. Each entry in the header table is of the form (p, m, R), where p
is a pointer to a group of m contiguous pages on secondary storage and F is the
set of parameters defining the perfect hashing function used to store the group of
keys. Let (p;, m;, R,) be the header table entry for the key group ¢t. Let page
group t denote the set of m, contiguous pages p,, p,+1, p;+2, ..., py + m;—1.
The address of a record with key z belonging to group ¢, t = H(z), is given by
p: + h(z, R,), where h is a perfect hashing function for group ¢ with parameters
R,. '
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Figure 2.2.1 The external perfect hashing scheme

Algorithms for retrieval, insertion and deletion of a record with key

z are outlined below:

Retrieval of a record with key z -

Compute the group to which z belongs : t := H(z).

Extract < p;, m,;, R; > from entry ¢ of the header table .

Compute the page address of z : A, := p;, + h(z, R,).

Read in page A;.

Search page A, for key z (if key z is not found, z is not in the file).

Insertion of a record with key z
Compute A, as above and read in page A,.
If the page is not full then
Insert the record into page A, and write back the page.

else Perform a rehash as follows:
Read in all the pages of the group ¢; i.e., pages p, p,+1, - -, p, + m;—1.
Find 2 new perfect hashing function for all the keys in the group, including
the new key z, using m,, pages (m, not necessarily equal to m,).
Let R, be the parameters of the new perfect hashing function.
Find an address p, on secondary storage having space for
m, contiguous pages (p, may be equal to p,).
Redistribute all the keys (including z) using the new perfect hashing function
and store the records on pages p,, p,+1, py+2, ..., p, + m,—1.
Update the header table entry of group ¢ to (p,, m,, R,).
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Deletion of a record with key z

Compute A, as above and read in the page.

Search for key = within page A,.

If key z is found then delete the record and write back the page
else the desired record is not in the file.

(If there are too many deletions from a group, in order to maintain
the storage utilization above a certain lower limit, we may want to
rehash the group into fewer pages using a procedure similar to the
one outlined for insertions.)

The external perfect hashing scheme described above guarantees retrieval
of any record in a single access to secondary storage, provided that the header
table is in internal memory. Deletions are straightforward and pose no problem
(because there are no overflows). Since the header table is organized as a hash
table, there is no ordering between the keys of adjacent groups. Range searches
on primary keys cannot be efficiently carried out. A variant of the basic scheme
in which the header table is organized as a B-tree has many of the advantages of
a standard B-tree file organization, in addition to single access retrieval capabil-
1ty.

B-tree based scheme

Figure 2.2.2 illustrates a variant of the basic external perfect hashing
scheme in which the header table is organized as a B-tree. The B-tree is similar
to an ordinary B-tree index [KN74|, except for the nodes at the lowest level (level
1 in figure 2.2.2) which have entries of the form (p, m, R). Let group ¢t denote
the set of keys {x | z3 <z < z,} and the entry stored between z; and z, be
(p¢, my, R;). p; is a pointer to a group of m, contiguous pages on secondary
memory in which the keys of group ¢ are stored using a perfect hashing function
with parameters R,. The page address of a key z belonging to group ¢ is given
by p; + h(z, Ry).
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Figure 2.2.2 B-tree based external perfect hashing scheme

Given a key z, the group to which it belongs is found by using the stan-
dard B-tree search procedure. Once the group is found, retrieval, insertion, and
deletions can be performed using the procedures outlined in the previous section.

There are no rigid bounds on the number of keys in a group. Hence the
conditions for splitting a node on the lowest level, level 1, are flexible. One possi-
bility is to fix the maximum number of keys per group, say np,.. A group is split
into two only when an insertion into the group causes rehashing and the number
of keys in the group exceeds n,,. The group is not split if the insertion does not
cause a rehash. The group is split into two approximately equal groups with a
separating key z;, and the two groups are stored separately by two perfect hash-
ing functions. The original (p, m, R) entry in the node of the header table is
replaced by (p;, m,, R;) z; (ps, mo, R,) increasing the number of entries in the
node by one. If this causes the node to overflow, it is split as if it were a normal
B-tree node.

A prefix B-tree could be used instead of an ordinary B-tree to reduce the
space required to store the separating keys [BU77]. Other forms of B-trees can
be used to further reduce the overall memory requirement. As the order of the
tree increases, the amount of internal memory required to store the header table
for a given number of groups decreases. A 2-3 tree may be used as one extreme
case of a B-tree. At another extreme, a simple sorted table could be used.

In addition to guaranteeing single access retrieval of any record, the B-tree
based scheme has almost all the advantages of a B-tree file organization.
Although there is no ordering of keys within a group, the keys in adjacent groups
are ordered. This implies that range searches are more efficient than with a
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regular B-tree file structure. The reason is that the pages of a group are contigu-
ous and hence can be read in a single access. However, any range search, no
matter how narrow the range, involves at least searching an entire group.

The B-tree based external perfect hashing scheme is completely dynamic; it
allows an unlimited number of insertions and deletions, and the file size may
grow or shrink without any adverse effects. However, as we shall see later, even
the hash table based scheme allows the file size to vary by a considerable amount
without adverse effects on the performance. The advantages of the B-tree based
scheme are achieved at the cost of increased header table size compared with the
primary (hash table based) scheme.

2.3. Open problems

The external perfect hashing schemes outlined above are conceptually sim-
ple and straightforward to implement. However, their usefulness depends on the
costs involved: computational cost and storage space. The major issues to be
considered are:

1. How to find perfect hashing functions or rather, how difficult is it to find
perfect hashing functions?

2. How often will it be necessary to rehash a group and what are the costs
involved?

3. How large a header table is required? For example, how many kilobytes of

internal memory is required to store a file of one million records?
4. What storage utilization (of secondary storage) can be achieved?

Although we have posed four different questions, it is obvious that they are all
interrelated. The rest of the thesis attempts to answer these questions. The goal
is to show that the external perfect hashing scheme is indeed practical, and that
all the costs involved are within reasonable ranges.

The following typical performance result is included here to give a first
indication of the performance level that can be achieved. Using a page size of 40
records, a file of 10° records can be stored using only 6 kilobytes of internal
memory and achieving 80% storage utilization. The file organization allows any
record to be retrieved in a single access to secondary storage, and also allows
insertions and deletions. The file size may vary by a factor of about 4 without
any significant degradation of performance. About 96% of all insertions involve
minimum cost: one read followed by one write. The other 4% of insertions are
more costly, involving computation of about 8,000 hash addresses of the form
h(z) = (c*z + d) mod p mod m, and requiring internal buffer space to store
about 800 records for the duration of the computation. In addition, one read
access to about 30 contiguous pages followed by one write access is required.
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Chapter 3
Finding perfect hashing functions

3.0. Chapter overview

In this chapter we propose a method for finding perfect hashing func-
tions and analyze its performance. The method simply consists of
making trials by selecting functions at random from a suitable class
of hashing functions. We explain the motivation for choosing this
method over other methods reported in the literature.

The main contribution of this chapter is an analysis of the perfor-
mance of the trial-and-error approach for the case when each bucket
can hold more than one record and functions for trials are chosen
from the set of all functions. We give a simple recurrence relation for
computing the probability of a randomly chosen function being per-
fect. Previously known methods of computing these probabilities are
impractical and several orders of magnitude slower. Based on the
numerical results obtained we claim that the cost of finding perfect
hashing functions is within a practical range.

The final section deals with limits and approximations. The effect on
the expected load factor is examined as the number of pages is
increased. Approximate closed form expressions are obtained for the
relevant probabilities.
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3.1. Introduction

In the previous chapter we proposed a hashing scheme for external files
based on perfect hashing. The key question to be answered was how to find per-
fect hashing functions and the costs involved. In this chapter we propose a solu-
tion and analyze its cost.

We make the following observations regarding methods for finding perfect
hashing functions proposed in the literature:

(1) All methods proposed so far are rather complicated and their implementa-
tion is non-trivial.

(2) They all employ some form of trial-and-error search at one point or the
other.

(3) Every method is closely tied to some particular class of functions.
Sprugnoli[SP77] considers functions of the form [(z+s)/N| and
Jaeschke[JS81] considers {C Dz +FE)] mod n.

Can we somehow simplify and generalize the methods for finding perfect hashing
functions? Why not choose a general class of functions, and use a simple trial
and error approach? If the cost of a trial is low, it may not be worthwhile to
spend much time trying to reduce the number of trials. These observations led
us to consider the following trial-and-error procedure for finding perfect hashing
functions: '

Given n keys to be hashed into m buckets (pages), each capable of

holding up to b keys, choose a function at random from the set of

all functions mapping n objects to m objects. Hash all the keys .
using the chosen function. If none of the pages receive more than b

keys then we have found a perfect hashing function. Otherwtse,

choose another function at random and repeat the process until a

funetion which ts perfect for the given set ts found.

Given a set of n objects to be mapped into a set of m objects, there are a
total of m™ different mappings. We will refer to this set of functions as the set
of all functions. In the rest of this chapter a trial refers to this process of
choosing a function at random (from the set of all functions, unless otherwise
stated) and hashing the keys using the chosen function to verify if it is perfect.

The rest of this chapter deals with the analysis of the trial-and-error
method. It is not practical to choose functions from the set of all functions,
because nlogm bits would be required to represent a function from this class. In
practice, we must restrict the choice to a smaller class of functions. However,
there exist simple (to represent and evaluate) classes of functions which have the
same behavior (with respect to the relative frequency of perfect hashing func-
tions) as the set of all functions. One such class of functions and experimental
results showing that it has the desired behavior are described in chapter 6.
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3.2. Probability of a randomly chosen function being perfect

Let F(n,m,b) denote the number of ways in which n keys can be distri-
buted among m pages each having a capacity of b keys, so that none of the
- .y . -
pages overflow and let P(n,m,b) denote the probability of a trial succeeding.
Then

Pnmb) = M (3.0)

m

We will often express the number of records in terms of load factor
a (a = 100n /mb percent).

The above situation can be modeled by a traditional urn model. Consider
the case where n balls are to be distributed into m urns, each with a capacity of
b balls. Let each ball be randomly tossed into an urn so that the probability of a
ball falling into any particular urn is 1/m independent of the outcome of other
tossings. The probability that such a random distribution does not cause any urn
to overflow is precisely P(n,m,b) defined above.

P(n,mp) is a measure of the performance of the proposed trial-and-error
method for finding perfect hashing functions. For the sake of simplicity, let @
denote P(n,m,b). The trial-and-error process is a sequence of Bernoulli trials,
and the probability of the ith trial succeeding is given by §(1—6)~'. The

expected number of trials required to find a perfect hashing function is
o0

S o1 -6yt = % That is, the reciprocal of P(n,mb) gives the expected
i=1

number of trials required to find a perfect hashing function.

We first analyze the simple case when b = 1, and compare the results with
other approaches of direct perfect hashing. Later we analyze the more interest-
ing case when b is greater than one.

Case b = 1

Consider the urn model. There are n balls and m urns; the first ball may
occupy any one of the m urns. The second ball has m—1 choices and so on.
The nth ball may occupy any one of the m—n-+1 free urns. There are a total of
m”" possible distributions of the n balls into m urns. P{n,m,1) is then given by

m(m—1) - - - (m—n+1)

P(n,m,1) = — (3.1)

Table 3.2.1 compares the performance of the trial-and-error method with that of
Jaeschke’s[JS81] reciprocal hashing method.
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n | Expected number of trials; m Reciprocal hashing Load factor which can be

number of trials; m | obtained by the trial-and-error
method for the same cost

as that of reciprocal hashing

5 | 1.7;20 | 33;10 26; 5 21;5 100%
10 | 3.4;40 | 15.3; 20 649; 11 408; 10 87%
15 | 6.7; 60 71; 30 6322; 18 7710; 15 83%

Table 3.2.1 Comparison of the trial-and-error method with reciprocal hashing.

The first column represents the number of keys. In columns 2, 3 and 4 the
first number represents the expected number of trials required to find a perfect
hashing function by the trial-and-error method (computed using (3.1)). The
second number gives the number of locations used (table size). The 5th column
. lists the number of trials required to find a perfect hashing function using
Jaeschke’s reciprocal hashing. Note that they are experimental averages as
reported in [JS81]. The value of m in column 4 has been chosen so that the
expected number of trials required is as close as possible to that of reciprocal
hashing.

Jaeschke points out that for n greater than 10 to 15, all methods of finding
direct perfect hashing functions are impractical because of the high cost. He also
claims that for small n his method is faster than Sprugnoli’s methods. We see
from table 3.2.1 that the trial-and-error method compares well with reciprocal
hashing, which leads to a rather surprising conclusion: The performance of the
simple-minded trial-and-error method is close to that of other known methods for
finding (direct) perfect hashing functions. A load factor of 83% to 100% can be
obtained with the trial-and-error method when the computation cost is approxi-
mately equal to that of reciprocal hashing.

With reference to the proposed external perfect hashing scheme, our aim is
to find perfect hashing functions for large sets of keys when each page is capable
of holding several keys. Suppose that the group size is in the range of 500 to
1000 keys. Known methods of finding perfect hashing functions have a complex-
ity of at least O(n®). A complexity of n® corresponds to n? trials with the trial-
and-error method (because each trial requires €I(n) computations), which
translates into several hundred thousand trials. In view of this, intuitively it
appears that one can expect a better performance of the trial-and-error method
when the page size is greater than one.

Caseb > 1

The analysis for the case b > 1 is more difficult. David and Barton give
the following expression for F(n,m ,b) [BD59, DB62]:

Fnmpb)= ), n!/ﬁf,-] (3.2)

0<1,<b i=1

. m

where the summation is over all possible combinations of f; such that Y, f; = n.
=1

An example makes the above expression clear. F(4,3,2) denotes the number of
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ways in which 4 balls can be distributed among 3 urns, each capable of holding at
most 2 balls:

4 4! 4 4 4! 4
ot T 2o T omter T et oot T T

David and Barton point out “F(N) [= F(n,m,))] does not posses a simple
form”[DB62, pp221]. The formula is clearly not suited for numerical evaluation
of F(n,m,,). However, there is a generating function which may be used to com-
pute F(n,mb):

F(n,m,b) = Coefficient of (z* /n!) in [G,(z)]

Gi(z) = (1+z/1+22M - - - +2° /bl).

The use of the above generating function requires routines capable of handling
very large integers (of the order b!™ ). Computation of F(n,30,30) took several
- hours of CPU time on the MAPLE symbolic algebra system running on a VAX-
780 [CG83]. For larger values of m and b, it is prohibitively expensive to com-
pute F(n,m,b) using the generating function. However, as explained below we
were able to derive a very simple recurrence relation to compute the probabili-
ties.

F(4,3,2) = = 54

m
H

where

Recurrence relation for P(n,m,b)

Suppose that n balls have already been randomly distributed among m
urns and no overflow has occurred. Let the next ball, the (n+1)st, be tossed into
a randomly chosen urn. Let p, denote the conditional probability that the
(n+1)st ball will not overflow. Then p, can be expressed as

P(n+1,mb)
= . 3.3
Po P(ﬂ m ,b) ( )
The numerator represents‘the joint probability that none of the n balls have
overflowed and the (n+1)st does not overflow. The denominator is the probabil-
ity that none of the n balls have overflowed.

The {n+1)st ball will overflow if and only if it falls into an urn already full
(i.e., one containing b balls). The probability of this event is the same as the pro-
bability of a rondomly chosen urn being full. This in turn is the same as the pro-
bability of an arbitrary but fixed urn being full (without loss of generality, we
may consider the probability of urn number 1 being full). Hence, the probability
of the (n+1)st ball overflowing, (1—pg), can be expressed as

— (g) F(n—b,m—1,)
Po= F(n,mb)
The numerator represents the total number of ways in which the fixed urn will

be full (out of the total possible F(n,m,b) ways). It consists of two terms. (2’)

represents the number of ways in which b balls (those in the full urn) may be
chosen from n balls. F(n—b,m—1,) is the number of ways in which the remain-
ing (n—b) balls may be distributed among the other (m—1) urns so that none of
the urns overflow. The denominator, F(n,m,b), represents the total number of

(3.4)
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ways in which n balls can be distributed among m urns so that none overflow.
By combining equations (3.0), (3.3) and (3.4) we obtain

1 Pn+lmpb) ™ P(n—bm—1b)m—-1)""*
Y

P(n,mpb) P(n,mb)m"
_1\yn—?
Pn+1,mpb) = P(n,mb) — (2) P(n—b,m—1.) j'm_lnL_ (3.5)
m
It is clear from equation (3.5) that to evaluate P(n,m,b) we need to calcu-
late P(i,7,b) for j=12,---m, and i =12, - ,n—(m—7)(b+1). Similar

computations are required implicitly by the generating function approach.
Although the above recurrence relation looks complicated, involving large
numbers of the order of m"™, the computation can be organized so that the
evaluation of each new value of P(n,m,b) requires only 5 floating point opera-
tions. The following algorithm computes a table of P(n,m ) for a fixed b and
1<m <mmaz,1 <n <bs*mmaz. The procedure is based on (3.5) and the
following identity:

et (- )(’”“‘){(";I)L—L’";{.T‘l}

m (n-—b m

The iterations start with the initializations P(n,mb) = 1.0, for 0 <n <,
m < mmazx.

Algorithm to compute a table of P(n,mb).

procedure pnmb (mmax, b, P)
b, mmax : integer ;
P: array[0..b * mmax, 1..mmax] of real;

begin
m, n, deficit : integer;
term, skew : real;

for m := 1 to mmax do
forn:=0to b do
P{n,m] := 1.0;

for m := 2 to mmax do
deficit := b;
term := 1.0 ;
skew = (m-1.0)/m;
forn:=b+ltom=x*bdo
divide(term, m, deficit);
P[n,m] := P[n-1,m] - term * P{n-b-1,m-1] ;
term = term #* skew * n/(n-b);
endloop;
endloop;
end;



292 M.V. Ramakrishna

proéedure divide(term, m, deficit)
term : real; :
m, deficit : integer;

begin
while( deficit>>0 and term>mcepsilon) do
term := term/m;
deficit := deficit - 1;
endloop;
end;

The above procedure is a direct implementation of the recurrence relation
(3.5). The initial value of term should actually be 1/m’. For large values of m
and b, this may lead to term having a value too small to be represented by a
floating-point number. However, as the iteration progresses, the value of term
increases slowly. The procedure divide handies this problem by not allowing the
value of term to go very much below machine epsilon. The incorrect value of
term at the start of the iteration does not cause any error because in the main
procedure the product of term and a probability is subtracted from another pro-
bability (P[n,m] := P[n~1,m] — term * P{n-b-1, m~1]). Considering the range of
values of the probabilities at the beginning of the iteration (close to 1.0), if term
is less than machine epsilon it is as good as being zero for subtractions.

The numbers involved are well scaled and the procedure is computationally
stable. Roundoff errors do not cause any problems over the practical range of
load factors. When the load factor approaches 1.0, roundoff errors become signi-
ficant and P(n,m,) may become negative. This situation may easily be
corrected by an iterative correction procedure. In practice this problem arises
only when P(n,m,b) is so small that it can be assumed to be zero.

Figures 3.2.1 and 3.2.2 plot the probabilities P(n,m,b) against the load fac-
tor, computed using the procedure given above. The higher curves correspond to
lower values of m. The graphs indicate that the probability of a trial succeeding
drops very rapidly from almost 1.0 to almost 0.0 within a narrow load factor
range. This critical region shifts slowly towards zero as the value of m increases.

The plots of the results are somewhat surprising. For example,
P(320,10,40) = 0.49, meaning that we can expect to find a perfect hashing func-
tion to distribute 320 keys into 10 pages of size 40 (corresponding to a load fac-
tor of 80%) in little over two trials. However, if we want to find a perfect hash-
ing function for 1280 keys at 80% load factor (corresponding to 40 pages), we
need 30 trials on the average. For the range of n given in the examples, a cost
of about 10 trials corresponds to a complexity of nlogn hash address evaluations.
These results indicate that finding perfect hashing functions is not too difficult
and it appears that the proposed external perfect hashing scheme may be practi-
cal {of course, this is true only if the load factor is not too high).
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Figure 3.2.3 illustrates the effect on P(n,m,b) of increasing the page size.
Here the load factor is kept constant at 75% (m is varied so that n/mb=0.75)
and the resulting P(n,m,b) is plotted as a function of b. One curve is plotted for
each value of n (= 108, 162, 216, 324 and 648). It is clear that, for a given set
of keys, increasing the page size b while keeping the storage utilization constant,
improves the probability of success of a trial. There is a critical range of b for
any given key set. Too low a value of b results in a prohibitively high cost of
finding perfect hashing functions. On the other hand, very large values of b do
not result in a corresponding P(n,m,b) advantage.

3.3. Approximate formulae

In figures 3.2.1 and 3.2.2, as the value of m is increased, the space between
adjacent P(n,m,b) curves narrows. One would expect that as m tends to infin-
ity, the critical region would approach zero. We wish to study the movement of
the critical region for increasingly large values of m. The practical significance
of this study is that it helps us understand the behavior of the trial-and-error
method for exceptionally large groups.

We first obtain an approximate, closed form expression for P(n,m,b). The
analysis is based on the urn model described at the beginning of section 3.2. The
first approximation is to assume that pages overflow independently when keys
are distributed randomly over the pages. In reality, for a given number of pages
and keys, when one of the pages overflows there are fewer keys left for other
pages and hence the probability of some other page overflowing is reduced. As
we shall see, the error due to this simplification is significant only when the load
factor is close to 1.0. .
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Let Pov(n,m,b) denote the probability of an arbitrary but fixed page over-
flowing when n keys are randomly hashed into m pages, each having a capacity
of b records. Pov may be expressed as the following sum:

Pov(n,mb) = zn) [r:} [—1—]‘ [1 - L]n—' (3.6)

§ b1 m m

Under the assumption that pages overflow independently of each other, the pro-
bability that none of the pages overflow, P(n,m b}, is given by

m

Pnmb) = [l - Pov(n,m,b)] . (3.7)

Although the above equations may be used to compute P(n,m,b) approximately,
they are rather complicated and do not help us to understand the behavior of
P(n,mb) for increasingly large values of m. However, using the customary Pois-
_ son approximation of the binomial distribution we obtain the following (This is a
good approximation for moderate values of ba - in our case 5 < ba < 50)[FL68]:

n —ba N
Pov(ab)~ 3 e—}fﬂL (3.8)
fa=b 41 *

where ba = n/m is the average number of records per page, and Pov(e,b) is
same as the probability Pov(n,m,b) with the parameter & = n/mb. For large
values of b and o not too close to 1.0, the summation may be approximated as
follows: '

b+1 2
Pov(a,b) = {bo)™ e""’{l + bba (be) I }

’ (b+1)! 32 F (b+2)(5+3)
b b+1 —deo ba (bgl2
=1 1 een
1) © { T oz T (ba2p

bo)t+! o ba
= T(b+1) e {1/(1_ b+2 }
N I e
Pov(a,b) ] i(a)ﬁ e {m} (3.9)

For large values of m the expression (1—Pov)™ can be approximated by e
Since Pov is a function of o and b only, it is appropriate to express P(n,m,b) as
a function of @, m and b. Hence from (3.7) we have,

Plo,m b) a2 e FPoviad), : (3.10)

—mPov
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Figure 3.3.1 Probability of a page overflowing, Pov(a,b)

These simple equations help us understand the behavior of P(a,m,b) for
increasingly large values of m. Because of the number of assumptions involved,
first we investigate how closely equations (3.9) and (3.10) approximate the correct
values. Figure 3.3.1 plots Pov(a,b) for b = 10, 20 and 40. The solid lines
correspond to Pov given by (3.9) and the dashed lines correspond to Pov given
by (3.8). For a given load factor, a higher value of b increases the accuracy of
(3.9). Later it will be clear that we are interested in (3.9) when Pov(e,b) values
are low. As can be seen from the graph, (3.9) is a good approximation of (3.8)
when the load factor is below a certain value. ( (3.8) itself is a very good approx-
imation to (3.6) ). In figure 3.3.2, P(a,m,b) is plotted against the load factor «
for different values of m. The solid lines correspond to the approximate probabil-
ities computed using (3.9) and (3.10). The dashed lines represent the exact values
obtained using the procedure given in section 3.2. The solid lines almost coincide
with the dashed lines and hence we conclude that equations (3.9) and (3.10) are
acceptable approximations (later it will be clear that we are especially interested
in the case when m is over 50 and P(e,m b) is around 0.05 to 0.20).
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Figure 3.3.2 Comparison of exact and approximate values of P(n,m,b)

In figure 3.3.2, roughly every 4% drop in the load factor « allows a dou-
bling of m while keeping the probability P(a,m,b) constant at 0.1. This implies
that Pov(a,b) is halved for every 4% reduction in @ when « is around 65% to
70%. Consider equation {3.9), and take its derivative: ’

ba b+1 e—ba b+2
(b+1) b+2—-ba

b+1
< Pov(ab) = ba et b+2 {b+1 -b+ b }

Pov(a,b) =

da (5+1) b+2—ba | « b+2—ba

= Pov(e,b)

b+1 b+1-bo
a b( b+2-ba )}

—dg;- Pov(a,b) = Pov(a,b) [b (Lo — 1)] (for large b and a not too near 1.0)
The above derivative explains the behavior of P(a,m,b) = e™™ 7*(*#) for increas-
ingly large values of m. A small change in o affects Pov(a,b) by a large factor of
b(1/ax — 1). For example, with b = 20 and « = 0.6, a reduction of 4% in the
value of the load factor (Aa = 0.04) reduces Pov(e,b) to half its value,
(A Pov(6,20) = Pov(0.6,20)%(20(1/0.6 — 1)) + 0.04 = 0.5 Pov(.6,20)).  This
implies that, the effect of doubling the value of m on the probability of success
of a trial can be compensated by reducing the load factor by only 4%. For
increasingly larger values of m, a would be decreasing gradually (keeping
P(a,m b) constant) thereby increasing the value of the factor b(1/@ — 1). Thus
for each successive doubling of m, smaller and smaller sacrifices in the load fac-
tor will suffice to maintain the value of P(a,m,b) constant.
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This result is useful in explaining the worst case behavior of the proposed
external perfect hashing scheme. Suppose we have designed a scheme with a cer-
tain expected number of keys per group, but because of a skew in the main hash-
ing function, some groups are very large (twice the expected size, say). We now
claim that the load factor of the group would decrease very little. In other
words, having a few very large groups does not cause serious problems.

3.4. Conclusions

In this chapter we proposed using a simple trial-and-error method for find-
ing perfect hashing functions. The analysis indicate that the performance of the
method is comparable to that of other methods for small static sets stored in
internal memory. The main contribution of this chapter is the derivation of a
recurrence relation for computing the probability of a random distribution of n
balls into m urns resulting in no overflows (which is the probability of a trial
succeeding in finding a perfect hashing function). The results indicate that, on
the average, one can find a perfect hashing function to distribute several hundred
keys within a few trials, provided that the load factor is not too high. We also
derived an approximate closed form expression for the above probability. These
approximate formulae are of general interest in themselves. They also help us
understand the limiting behavior of the probabilities.

All the results were obtained assuming that hashing functions are chosen at
random from the set of all functions. This is clearly impractical. In chapter 6 we
show that there exist practical classes of hashing functions which behave as
predicted by the theoretical analysis of this chapter.
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Chapter 4
Space-time tradeoff and rehashing policies

4.0. Chapter overview

In the previous chapter we studied a method for finding perfect hash-
ing functions and the relationship between its cost and the load fac-
tor of the group. In this chapter we consider policies for balancing
this tradeoff. For a detailed study, we have chosen a policy that
attempts to limit the cost of finding perfect hashing functions and the
reasons for this choice are explained. Determining the optimal policy
involves solving a nonlinear integer programming problem. In gen-
eral, such problems are very expensive to solve. Thus, a heuristic
procedure based on dynamic programming is introduced to give an
approximate solution.

29
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4.1. Difficulty of balancing the cost of finding a perfect hashing
function '

When a record is to be inserted into a file organized using the proposed
external perfect hashing scheme, first the group to which it belongs is deter-
mined. Then the page address is computed using the perfect hashing function
associated with the group. If that page is not full, the record is inserted into the
page. In this case the current hashing function for the group remains perfect for
the enlarged group. If the page is full, a new perfect hashing function must be
determined for the enlarged group. The records are then redistributed using the
new perfect hashing function and the group is relocated if necessary. We call
this operation a rehash.

In the previous chapter we analyzed a trial-and-error method for finding
perfect hashing functions. The analysis indicated that there is a sharp tradeoff
between the cost of finding a perfect hashing function and the load factor
© (number of pages) of the group. There is a critical load factor range in which the
probability of success of a trial falls rapidly. Generally, the aim is to achieve as
high a load factor as possible. However, it is clear that we need to operate
within the critical region: if the load factor is too high, the probability of success
of a trial is close to zero and the cost of rehashing is prohibitively high. The
question is then how to choose an operating point in practice? In other words,
given a set of keys how does one choose the number of pages for making trials in
finding a perfect hashing function? Since the critical region depends on the
group size, this is a nontrivial problem.

Suppose we fix the load factor at some desired value. This has the conse-
quence that rehashing becomes more and more expensive as the group size.
increases. As a matter of fact, the load factor cannot be fixed exactly but only
restricted to a narrow range, because only an integral number of pages can be
allocated to a group. This effect is well illustrated by Figure 4.1.1 in which the
expected number of trials required to find a perfect hashing function is plotted as
a function of the number of records in the group at a fixed load factor. (The
expected number of trials, 1/P(n,m,b), is plotted as a function of n, m is varied
so as to keep the load factor n/mb constant). The page size is 20, and there is
one curve plotted for each load factor of 76%, 80% and 84%. At a fixed load
factor, the cost of rehashing increases rapidly as the group size increases. For
example, suppose we choose a load factor of 80%. The expected cost of finding a
perfect hashing function is about 15 trials when the group size is 250. As the
group size increases to 320, the expected cost raises to 40 trials. If the group size
further increases to 400, the expected number of trials exceeds 100. Clearly it is
necessary to reduce the load factor to keep the cost of rehashing within reason-
able limits.
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Another alternative is to fix the expected number of trials. (Here again we
can only restrict the cost to a certain range but cannot fix it exactly.) A problem
with this approach is the large variance of the cost of rehashing. This is illus-
trated by figure 4.1.2, which also shows the dramatic effect of load factor varia-
tions on the cost of rehashing. For the sake of simplicity, let # denote P(n,m,b).
The probability of ith trial succeeding is given by 6 (1—8) " (refer to section 3.2
for details). 'It‘he probability of finding a perfect hashing function within ¢ trials
is given by Y,0(1—0)"). In figure 4.1.2, the probability of finding a perfect

=1

hashing function within ¢ trials is plotted as a function of t. The page size is 40
and the group size is fixed at 30 pages. There is one curve corresponding to each
of 72%, 76%, 80% and 84% load factors. Consider the curve corresponding to a
load factor of 80%. P( 80%, 30, 40) = 0.082, which corresponds to an expected
cost of 12.19 trials. Assuming that the expected cost of rehashing is acceptable,
 we see that the variation in the number of trials is very high. For example, in
30% of the cases only 3 trials are required to find a perfect hashing function,
whereas in 10% of the cases we may not have succeeded after 28 trials. Further-
more, in 5% of the cases more than 40 trials are required to find a perfect hash-
ing function. In practice, this wide variation in the number of trials may not be
acceptable. In an attempt to overcome the above mentioned problems, we sug-
gest a policy for rehashing in the following section.

4.2. Rehashing policies

Consider the problem of distributing 180 keys into pages of size 20. At
least 9 pages are required corresponding to a 100% load factor. The probability
of a trial succeeding in finding a perfect hashing function at 100% load factor is
extremely small and for-all practical purposes equal to zero. With 18 pages,
corresponding to a 50% load factor, the probability of a trial succeeding is close
to 1.0. Table 4.2.1 gives the values of P(180, m, 20) for values of m from 9 to
18 pages. To find a perfect hashing function for the given set of keys, it is not
necessary to make all the trials with a fixed number of pages. The trials may be
distributed over different group sizes; starting with a small number of pages and
gradually increasing the number of pages as trials progress until a trial succeeds.
This enables us to limit the cost of rehashing.

Number of pages(m) | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18
Load Factor (%) 9 |[818| 75 {692 | 643 | 60 | 563|529 | 50
P(180, m, 20) 005 | .100 | .331 | .578 | .758 | .867 | .929 | .962 | .980

Table 4.2.1 Probability of a trial succeeding

In general, given n, the number of keys, we suggest restricting the number
of pages, m, in the group to some interval m; < m < my;. The lower bound m;
is [n/b]. The upper bound m, is chosen so that P(n, m;, b) is close to 1.0. For
the range of n and b we are interested in, this can be achieved by choosing m,
to correspond to a load factor of around 50%. Let ¢, be an upper boundt on
the number of trials we are willing to make. We distribute these trials among r
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stages, where r = m;, — m; + 1, that is, we partition t ., into (¢,,%5,..., t,)
such that ¢, + t, + © ot = tpa

To find a perfect hashing function make up to ¢, trials with m; pages. If
there is no success, try up to ¢, functions with (m; + 1) pages and so on. If there
is no success even after making ¢, trials with m, pages, continue making trials
with m, pages until a perfect hashing function is found. When trying functions
with m, pages (corresponding to around a 50% load factor), the probability of a
trial succeeding is close to 1.0 and hence we can expect to succeed almost
immediately. However, there is no guarantee of success.

Every partitioning of t,, into ¢,,t;, ..., t, defines a policy of distribut-~

ing trials; hereafter referred to as a rehashing policy. Making all trials with a

fixed number of pages (constant load factor) corresponds to the partitioning

(0,0,..., tna, 0,0 - --,0). The problems resulting from such a policy were

discussed in section 4.1. Note that we use the terms policy and partitioning
" synonymously with rehashing policy.

Our aim is to define an optimal rehashing policy in the next section. How-
ever, we first discuss the general implications of a policy after introducing some
additional notation in table 4.2.2.

1 1 2 r
Number of pages: (m; + 1 — 1) my m+ 1| imy=m+r—1
Probability of failure of '
] a trial with (m, +1:— 1) pages, q, qs q,
q$'=1—P(n:ml+i"'11b)
Number of trials with t to t,
(my + 1 — 1) pages, t;
Probability of a policy succeeding Rl(n) Rz(n) R, (n)

with (m; + 7 — 1) pages: R;(n)

Probability of accommodating the P1o P20 Pro
(n + 1)st key without a rehash: p;q

Table 4.2.2 Notation used

Rows 1 - 3 need no explanation. In row 4, R;(n) denotes the probability
that the rehashing policy succeeds with (m; + 7 — 1) pages. We can obtain an
expression for R;(n) as follows:

The probability of all the ¢, trials with m; pages failing = qltl.

The probability of the policy resulting in m; pages, Ry(n) = (1 — tqlt‘).
The probability of all the ¢, trials with m; + 1 pages failing = g, >
The probability of the policy resulting in (m; + 1) pages, Ry(n) = qltl(l - qztz)

t tmax Will be a “soft” bound in the sense that there is a certain probability of having to make
more than ¥y, trials. However, the probability of this occurring can be made arbitrarily small.



34 M.V. Ramakrishna

Hence, we have R;(n) = ¢, '¢2% -+ gy (1 — ¢;"%), 1 <i < r—1 (4.1)
t, t b,
and Rn)=q1'q2° """ g1 (4.2)

. . . . Ly .
Because we continue trials with m, pages until success, the term (1 — ¢, ") is
absent in the expression for R,(n).

When n keys have been distributed over (m; + ¢ — 1) pages by some per-
fect hashing function, all the pages cannot be full (unless n is precisely equal to
b(m;+i—1) ). If the (n + 1)st key is hashed using the current perfect hashing
function, there is a certain probability that the new key will not overflow (i.e.,
the current perfect hashing function is also perfect for the enlarged set of n 4+ 1
keys). This probability is denoted, in row 4, by p;q, and can be computed as

Pn+1,m +1¢—1,b)
Pln,m +1i{—1,5)

Pio = (4-3)

. Implications of a rehashing policy

The main problem is how to partition t,,,. How to choose a rehashing pol-
icy? Before we answer this question in the next section, several implications of a
rehashing policy are discussed below.

1. Probability of success in ¢, trials

The probablhty of a rehashmg policy (¢),t5, ..., t,) succeeding in &,
trials is (1 — ql q2 IR X f) When using a trlal-and-error method of finding
perfect hashing functions, there is no strict upper bound on the number of trials.
However, the probability of a trial succeeding with m, pages is nearly 1.0. This
enables us to impose a bound on the maximum cost of rehashing. We can specify
a minimum probability (say 0.99) of success in finding a perfect hashing function
within ¢,,,, trials.

2. Expected number of trials

Every policy has associated with it a certain expected number of trials
required for success, E(t). A policy which favors trials with a higher number of
pages has a lower expected number of trials. FE(t) is given by the following
expression:

¢ -1
Et)=11-q)+2¢,(1-q1)+ - +t1¢;* (1 —qy)
¢ t, -1
+(t+ g (L —qa)+ - + (8 + ta)a; ‘g2 ° (1 — go)
t, ¢ t,—1
+"'+(tl+t2+'°'+tr)qllq22”'Qr (l—qr)

- g) (4.5)

b N
+ 4+ ta+ o+t + e el g,
i=1

3. Load factor
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The expected number of pages, E(m), resulting from a policy is given by
t t t ~
Em)=m(l—-q.") + (m + 1)g; (1 — g2 %) +
t, t t t,_
+ (my+r—2)9, 2% - G (1 — g Y

t, ot t_ t bt t
+mugy g2’ g (1 =g T) + magyge® g
The next to last term accounts for the result of ¢, trials with m; pages succeed-
ing. The last term accounts for trials made beyond t,,; q; '‘go 2 * - - q,t' is the

probability of none of the t.,, trials succeeding, in which case the trial-and-error
method continues making trials with m; pages until success. The last two terms
can be combined and E(m) may be written as follows:

E(m)=m(1 - ‘11‘1) + (my + 1)‘11t1(1 - q2‘2) + -

. t, ¢ t_
lineup+ m,q; ‘g, 2. Qi ' (4-6)

The corresponding load factor is then gi by E(If) = ———

e corresponding given by E(lf) = 75
A policy favoring fewer pages does not necessarily yield a higher load factor,
because the probability of success is also lower. It is not easy to see exactly what
policy will maximize the resulting load factor.

4. Probability of the next insertion causing overflow

Suppose a key is to be inserted into a group for which a perfect hashing
function was found using the policy (¢,,t5, ..., ¢,). There is a certain probabil-
ity that the new key will overflow and cause a rehash. This probability, denoted
by RH(n), is given by

r
RH(n) =1 -] pio " Ri(n). (4.7)
$=]
The probability p;, increases as ¢ increases (number of pages = m; + ¢ — 1) and
hence a policy which favors trials with larger number of pages is preferable.

4.4. Optimal rehashing policies

In the last section we considered the effects of a policy on various factors.
In practice it is desirable to have as high a load factor as possible and at the
same time limit the number of trials required to find a perfect hashing function.
Accordingly we will define in this thesis an optimal policy as follows:

Given t,, P, and a set of keys, we say that a partitioning
(3,5 ta*, .. ., t,%) of toa ts optimal if the resulting number of
pages is minimized subject to the condition that the probability of
success tn finding a perfect hashing function within t,, trials s
at least P,.

Mathematically, the optimal rehashing policy is the solution of the following
nonlinear optimization problem:
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minimize »
E(m) = my(1 = ;") + (my + 1)a;"(1 = 2) +
+ magyigs® g™ (4.6)
subject to the conditions: "
ty+te+ 0+t =g (4.8)
02" - ¢ "<1-P, (4.9)

The solution (¢,*, t5*, . . ., t,%) defines the following policy. Try up to ¢,*
hashing functions chosen at random with m; pages. If a perfect hashing function
has not been found by then, try up to t,* hashing functions with (m; + 1) pages
and so on. Within a total of t,,, trials, a perfect hashing function will be found
with probability P, or higher. If there is no success in ¢, trials, continue mak-
" ing trials with m, pages until a perfect hashing function is eventually found.
The expected number of trials required beyond t,,, is very small. However, as
already mentioned, there is no strict upper bound on the number of
trials required.

The objective function (4.6) is a nonlinear function of the variables
ty,t2, ..., t. The constraint represented by (4.8) is linear, and later we will
show how (4.9) can also be converted into a linear constraint. The variables
t,ty,...,t represent the number of trials and hence have to be positive
integers. Thus the optimization problem is a nonlinear integer programming
problem. In general, such problems are very difficult to solve. However, before
discussing the solution procedure, we need to examine the usefulness of the solu-
tion.

In practice, our aim of solving the optimization problem is to determine the
optimal rehashing policy and then follow that policy in finding a perfect hashing
function. The combined cost of finding the optimal rehashing policy and follow-
ing it to find a perfect hashing function for a given ¢,,, and P, should not exceed
the cost of following some other, easily computable, rehashing policy for a higher
value of £,,. The cost of a trial is quite small. A trial involves choosing a hash-
ing function at random (for the moment assumed to be not too costly) and
evaluating at most n hash addresses. If the value of n is around a few hundred
and ¢, at most 20, the cost of finding the optimal rehashing policy by solving
the optimization problem will be much higher than the cost of a trial. To be use-
ful, the procedure for finding a rehashing policy has to be extremely simple and
cheap. This implies that we will eventually have to resort to some simple heuris-
tic procedure for finding good rehashing policies. However, we want to compare
the performance of the proposed external perfect hashing scheme under the
optimal rehashing policy with that under policies obtained by heuristic pro-
cedures. It is with this objective in mind that we proceed to discuss the solution
procedure for the optimization problem.
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4.4.1. Solution of the optimization problem

The constraint (4.9), which appears nonlinear, can easily be converted to a
linear constraint by taking the logarithm of both sides. All the constants are
rounded to integers after multiplying both sides by a large negative integer scale
factor(SF).t Then (4.9) may be written as

at, + agts + - + a,t, > hlimit
where hlimit = round (SFx* log(1-P,) )
a; = round (SF +log ¢;) for 1<i<r.
The optimization problem may now be written as
minimize E(m), where

E(m)=m(1—q,")+ (m + 1)g,(1 — g2 + -~

. +mugrt gy (4.10)
squé‘c't to the conditions
ty+to+ 0 b= g (4.11)
aity + agts + -+ + a,t, > hlimit. (4.12)

In general, integer programming problems are difficult to solve and prob-
lems encountered in practice are often INP-complete. Solution procedures for
linear integer programming problems normally involve solving linear optimization
problems treating integer variables as continuous. The solution so obtained is
then rounded to the nearest integer and the result is an approximate solution for
the given problem. Such an approximate solution may be far from the optimal
solution and it may even be infeasible. The solution of the linear optimization
(continuous variables) problem can be used to split a given problem into two sub-
problems with tighter bounds, each of which may be further split and so on.
This solution technique is known as branch and bound and basically it
enumerates a small fraction of all the possible solutions for the given problem.
Another method of enumerating a fraction of the feasible solutions is the
dynamic programming technique. This technique is not particularly efficient for
most integer programming problems [Section 18.2, HL80].

Solving a nonlinear optimization problem is difficult in general. Hence, the
methods mentioned above to solve linear integer programming problems cannot
easily be adapted to solve nonlinear integer programming problems. There has
been much less progress in developing algorithms for nonlmear integer program-
ming [Section 18.6, HL80).

t This simplifies the solution procedure. However the magnitude of SF should be sufficiently
large so that the errors introduced are negligible. SF' = —10,000 was used in all the computa-
tions reported in this thesis.
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In principle, dynamic programming does not distinguish between linear and
nonlinear objective functions. Exploiting the special structure of the problem at
hand, we have arrived at a method based on dynamic programming which gives
an approximate solution that is close to the optimal solution. The cost of the
solution procedure is dependent on the required proximity of the obtained solu-
tion to the optimal solution.

The optimal partitioning of ¢,, is basically a multistep allocation process.
We first outline briefly, the basic features which characterize multistep allocation
problems suitable for solution by dynamic programming [Section 7.2, HL80]. In
parallel we describe how our problem fits or does not fit the requirements of the
standard approach.

Characterization of multistep allocation problems suitable for solution
by dynamic programming:

1. The problem can be divided into stages, with a policy decision required at
each stage. Our problem consists of r stages, each stage corresponding to
trials with a certain number of pages. The number of trials to be allocated
to a particular stage is the policy decision required at that stage.

2. Each stage has a number of states associated with it. Here we face the
main difficulty in adopting the standard dynamic programming approach to
our problem. If we were to minimize the objective function taking into
account constraint (4.11) only, then we would have a classical dynamic pro-
gramming problem. The states associated with each step would have been
the number of trials (out of a total of #,,) left for allocation to the current
and further stages. The number of states for each stage would then be res-
tricted to t.,,. However, to take into account constraint (4.12), the state
associated with a stage must include the amount contributed to the left-
hand side of constraint (4.12) in addition to the resources (number of trials)
used in furthert stages. In other words, the state variable at any stage
needs to be a tuple < 7, h; >, where 7 is the number of trials available for
distribution to further stages and h; is the corresponding amount of the
left-hand side of (4.12) to be realized from further stages in allocating 7 tri-
als. 7 is bounded by t,,, and h; by hltmit, and the number of possible
states at each stage is ¢,,,, * hlimeit. This is a very large number to handle
at each stage as we shall see later.

3. Given the current state, an optimal policy for the remaining stages is
independent of the policy adapted in previous stages. In other words, the
knowledge of the current state of the system conveys all the information
about previous stages necessary for determining the optimal policy hen-
ceforth. This property is referred to as the principle of optimality. It is
obvious, by (4.16) or from the expression for E(m) given below, that the

+ We need to clarify the use of further and previous in this context. The trial-and-error
process starts at stage 1 and proceeds with stages 2,3, - - - ,2, - - - ,r. The dynamic programming
solution procedure starts at stage r and proceeds with stages 7—1, * - - %, - -+ 1. At stage ?,
further refers to stages 241, - + - 7.
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optimization problem satisfies this condition.

4.  There exists a recursive relationship that identifies the optimal policy for
each state at stage ¢, given the optimal policy for each state at stage
(¢ + 1). -

The recursive relationship can be identified by writing the objective func-
tion (4.10) in the following form:

E(m) = my(1 ~ ¢,") + ¢, (m+1)(1 — ¢29)

+ g2 ((m+2)(1 — g + -+ my)) - ).

Let f,f2, - fi, -+ f, denote functions of 3 variables: f;(7, h;, t;). 7 denotes
the number of trials available for distribution to stages 1,¢+1,---,r,
0 < 7 < tpag by is the corresponding amount of the left-hand side of (4.12) real-
ized, 0 < hy <hlimst; t; is the number of trials allocated to stage 7, 0<t; < 7.
Let f;* denote the minimum value of f; in the following sense:

Jif (7 )= og:fgff"( 7,k t). (4.13)
We now identify the following recurrence relations:
fo(7 b, t)=my (4.14)
(7, b)) =my " (4.15)
flr b, t)=(m + i = 1)1 - %) 4+ ¢ f (7 —t, ki —aits) | (416)
fif(7, by )=o§}f§f‘( T, hy , t5), 1<i<r.

The required minimum value of E(m) can then be written as

t t
fillr by t))=m(l —q; )+ q,  fo(7 — 8y, by — ayty )

minimum E(m)= . ;I;‘ig"_t-f 1( tmaws By )
(2hlimi

Outline of the solution procedure

After identifying the states and the recurrence relations, the solution pro-
cedure is straightforward. The computation starts at the last stage by finding
f.*( 7, by ) for all possible states <7, h;> and the results are tabulated.
fr‘( 7, hl ) = II}].II ff(T’ hl’ tr) = n:in(mh) =m,

t 4 L4
<7, hl> ‘ fr' tr‘
<1l,a,> my 1
< 2, 2m,> my 2

The procedure continues by computing similar tables for stages (r—1), (r—2) etc.
At stage 1, 1< ¢ < r, we have the following recurrence relation:
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film, by, t) = (my + ¢ = 1)(1 — 9:"‘) + Qetif'i+1( T —t;, by —a;t; )

fi‘(f:hl,)=0-1<_1};u_<1!fi(f:hl » 85), 1<i<r.
Our goal is to construct a table of f;%(r, h;) for each possible state < 7, h; >.
We have a table of f*;,; available from the (i + 1)st stage. This involves optim-
izing the value of f; for each of the states < 7, Ay >, which can be accomplished
by enumerating the value of f; for all values of ¢;, 0 < ¢t; < t,.,. At each stage
the results are tabulated as follows:
<r, hl > f," t,-‘ ’
<1, “ .. > .en .
<1, --

<tmu’ PR >
The solution procedure ends with the computation of a table for f,*, from which
the required minimum value of E(m) can be obtained for the state
< tpax, Blimit >,

Difficulty with using the basic solution procedure

The procedure outlined above is straightforward in principle but computa-
tionally expensive, because of the large number of states at each stage. The
states are represented as tuples of the form < 7, by > where 0 <7 < ¢, and
0 < hy < hlimsit, hence there are t_,, * hlimit different states at each stage.
The scale factor SF used to obtain {4.12) from (4.9) has to be sufficiently large to
limit the errors introduced during the conversion process. The value of hlim:t
will be at least several hundred, and hence the number of states may be several
thousand at each stage. Not all the states are meaningful at a given stage: at the
beginning of the computation, for stage r there are only ¢,,, possible states. At
the next stage, (r — 1)st, O(t%,,,) states are possible and so on. The number of
states grows exponentially. At stage ¢, we need to store‘O(tmu'_""'l) states (of
course this is bounded by t.,, * hlimit ). The storage space required and the
computational cost at each stage are proportional to the number of states at each
stage. We also need to store the intermediate partial policy (¢;*, t;4i*, .. ., %)
associated with each state of stage 7. (The alternative is to store only ¢;* at stage
i and retain all the tables up to stage r.) The large number of states is a serious
problem from a computational point of view and using standard dynamic pro-
gramming to find the optimal solution does not seem feasible. However, after
various experiments aimed at understanding the structure of the problem we
arrived at a simple modification to the basic solution procedure which enables us
to obtain approximate solutions to the optimization problem. There is some
degree of control over the accuracy and the cost depends on the accuracy
required. The modification involves a heuristic to reduce the number of states at
each stage. It should be emphasized that the heuristic is based on the particular
structure of the problem and is not generally applicable to nonlinear integer
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optiinization problems.

4.4.2. A heuristic for approximate solution of the optimization problem

The computational cost of dynamic programming depends strongly on the
structure and parameters of the problem. Before continuing, we present a typi-
cal problem.

Example:

Number of keys (rn) = 180

Page size (b) = 20

Maximum number of trials (¢,,,) = 10

Probability of success required in t,,, trials (P,) = 0.99

Minimum number of pages m; = 180/20 = 9

Upper bound on number of pages m; = 180/{.5%20) = 17
~ Number of stages (r)=17—-9+1=9
" Chosen scale factor (SF) = —10000

hlimit = —10000 * log (1 — .99) = 46052

The values ¢; = 1 — P(180, 8 + 7, 20) can be computed using the procedure
presented in chapter 4. The results are tabulated below. Note that
“a; = SF * log g;.

t | m | Pn,m,b) | ¢ a;
T 2000 1.00 0
2 110 .005 995 52
3§11 100 900 1046
4] 12 331 669 4023
5| 13 578 422 8629
6| 14 .758 242 | 14185
7115 867 133 | 20223
8| 16 .930 .070 | 26476
g | 17 .963 037 | 32797
Table 4.4.1 Values of the constants
We wish to determine (t,, ¢5, . . ., tg) so as to minimize f, where,
Fi=9(1 - 1) + 10x1"%(1 — 9957 + --- . 171" -+ x 0.070"%(4.17)
Subject to the constraints ¢, + t, + -+ + tg= 10 (4.18)
Oty + 52ty + - -+ + 32797 ty > 46052. (4.19)

There are a large number of states < 7, h; > possible for each value of
7,0 <7 < tp. Most of these states are not realizable. For example, at stage r
only t... states of the form < ¢, a, xt, >,0<1t, < {t,,. are meaningful i.e.,
only one state for each value of 7. The main idea behind the heuristic is to
reduce the number of states at each stage of the computation. The problem is,
how to decide which states to retain? The following heuristic has experimentally
been found to perform satisfactorily.
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Proposed Heuristic

At stage 1, store only a few of the states for each value of 7. QOut
of the possible h; states, the states corresponding to the best few
values of f;* are chosen to be retained. Let “depth” denote the
number of states retained for each value of 7.

As a consequence of the above heuristic, we will not be able to compute f;(r, k)
for every required state < 7, h; > because we do not have the values of f*;, for
all states. The recurrence relations (4.13) and (4.16) have to be rewritten as fol-
lows, so that f; is computed only for those states for which the corresponding
f %41 is available:

Fi 7, bbaity ) = (my + i = 1)1 = ¢+ 6" [ 7 — 1, by ) (4.20)
Fi'(r, hitagt; ) = Oétm]tlslr fil 7, hitagt; ) 3). (4.21)

-3

The above equations enable us to compute f;* for a limited number of states as
dictated by the availability of f*,, from the table computed at stage (¢ + 1).
Out of the values for f;* so computed the best depth values, and their
corresponding states are kept. The table constructed at stage ¢, with depth = d,
has the following format: '

<r7,h > 514
<Lhg> | | -
< 1, h12 >

<1, hyy>
<2, kg >

<2 hoy >

< tmax: hma::d >

Because we do not have explicit control over the states for which we are comput-
ing f;*, it is possible that there may be no feasible solution by the time we reach
the first stage (f,). This problem may be overcome as follows. At any stage 1,
there are depth number of states <7, h > with 7 =t ... All these states
correspond to allocating all the ¢, trials to stages 2,7 + 1, ..., r and none to
stages 1,2, ..., t—1. So all the states < t,., by > should have h; > hlimit
for the states to be useful in subsequent stages. If this rule is enforced starting at
stage r we are guaranteed at least depth number of feasible solutions at stage 1.

Appendix A shows a few steps of the solution procedure for the problem
given by (4.17), (4.18) and (4.19).
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4.4.3. Performance of the heuristic solution procedure

When using the heuristic described in the previous section, it is desirable
from the point of view of accuracy to have depth as large as possible. However,
the complexity of the computation at each stage is O(tZ, * depth) and hence
depth should be small to keep the computational cost small. Reducing depth to 1
corresponds to ignoring constraint (4.19) completely. A number of experiments
were performed to study the effect of the value of depth on the accuracy of the
solution obtained. Each experiment consisted of finding the approximate optimal
rehashing policy for given values of page size (b), number of keys (n), and depth
using the heuristic solution procedure. The true optimal rehashing policy was
computed by exhaustive enumeration and the two results were compared. The
experiments were repeated with depth = 1, 3 and 5, and for n varying up to a
certain value Nmaz, which varied with the page size b. The results of these
experiments are tabulated in table 4.4.2. All the experiments were performed
~ with ¢, = 10 and P, = 0.99. ’

depth b 10 | 20 | 30 | 40 | 50

Nmazx 80 160 285 400 500
depth = 1 | No. of errors 30 11 7 2 0
max error 1.34 35 .07 007
depth = 3 | No. of errors 5 4 2 0 0
max error .093 A7 .028 :
depth = 5 | No. of errors 3 0 0 0 0
max error .063

Table 4.4.2 Performance of the heuristic solution procedure

In table 4.4.2, “No. of errors” corresponds to the number of cases in which
the heuristic solution procedure failed to yield the optimal rehashing policy (as
determined by exhaustive searching); “max error” is the maximum difference
(expressed as percentage) between the optimal value of E(m) and the obtained
solution. -

The results in column 3 correspond to a page size of 10. Experiments were
performed for n varying from 11, (b+1), to 80. Out of these 70 cases, only 30
failed to give the optimal solution with depth = 1 and the rest of the cases did
result in optimal policies. Out of these 30 cases, the maximum error in the
resulting F(m) was only 1.34 percent. When depth was increased to 5, there
were only 3 cases yielding non optimal solutions and the maximum error dropped
to 0.063 percent.

As the page size was increased, Nmaz was also increased to maintain the
same number of stages(approximately) in the optimization problem. In spite of a
larger number of experiments, the number of nonoptimal solutions is reduced as b
is increased. This should not be interpreted as resulting from some relationship
between the heuristic procedure and the page size . The reason is that
P(n, m, b) increases as b increases. With b = 10, all the 30 non-optimal solu-
tions were obtained for 48< n < 80. All the solutions obtained by the heuristic
procedure were optimal for n < 48. It may be noted that P(n, m, b) is quite
high for n < 50 even when b = 10. This leads us to conclude that the heuristic
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procedure performs well even for low values of depth when P(n, m, b) is suffi-
ciently high.

If constraint (4.19) is eliminated, the heuristic with depth = 1 would always
give the optimal solution. When the g;’s are low (i.e., P(n, m, b) are high) (4.19)
poses no real constraint to the optimization problem and hence the heuristic pro-
cedure works well.

The main observation drawn from table 4.4.2 is that for any b, as depth
increases the performance of the heuristic improves and that even with depth
= 1 the solution obtained is not far from the optimal solution. With depth = 3
the performance of the heuristic solution procedure seems quite satisfactory.
Hence, depth = 3 was used to compute most of the results presented in this
thesis. -

For the example problem given by (4.17), (4.18) and (4.19), the policy
obtained by the heuristic procedure with depth =3 is (0,0,4,4,1,0,1,0,0)
"corresponding to an expected number of pages of 11.9152. The exact optimal
solution is (0,0,3,5,1,1,0,0,0) corresponding to an expected number of pages of
11.8993. The error in the solution is only 0.134% (which translates into an error
of 0.101 percentage points in the load factor).

4.5. Conclusions

The analysis presented in the previous.chapter showed a sharp tradeoff
between the cost of finding a perfect hashing function and the load factor. There
are many possible ways of balancing this tradeoff. In this chapter we explained
the difficulty of choosing the number of pages while rehashing a group in prac-
tice. We suggested distributing the trials over different load factors and defined
an optimal rehashing policy which attempts to limit the number of trials required
to find a perfect hashing function. Computation of the optimal rehashing policy
involves the solution of a nonlinear integer programming problem. In general,
such problems are very difficult to solve and we therefore proposed a heuristic
solution procedure based on dynamic programming. We presented results of
several experiments performed to study the performance of the heuristic. They
indicate that solutions very close to the optimal solutions can be obtained at a
reasonable expense. ’

Even so, it is impractical to solve an optimization problem every time a
rehash is to be performed. In chapter 7 we propose a very simple heuristic to
compute rehashing policies. The results of this chapter are useful for comparing
the performance of this and other nonoptimal policies with that of the optimal
policy. ‘
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Chapter 5

Performance under the optimal rehashing policy

5.0. Chapter overview

In the previous chapter we defined an optimal rehashing policy which
attempts to limit the cost of finding perfect hashing functions. In
this chapter we study the performance of the proposed external per-
fect hashing scheme under this policy. The load factor of a group
under the optimal rehashing policy is computed as a function of the
number of records in the group, and the load factor of a file is com-
puted as a function of the average group size. Numerical results are
given for various parameter combinations. After a discussion of the
results obtained, we go on to consider the cost of perfect hashing.
The two main cost components are: cost of an insertion and header
table space. Insertion costs are affected by the probability of rehash-
ing and the actual cost of performing a rehash (internal processing
and disk I/O). The space requirements of the header table are

estimated for a file of one million records assuming that the header

table is organized as a hash table.

45
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5.1. Load factor under the optimal rehashing policy

In this section we study the load factor (storage utilization) that can be
achieved using the proposed external perfect hashing scheme. We are mainly
interested in the load factor of the overall file. To compute the overall load fac-
tor we must first consider the load factor of a group as a function of the number
of records in the group.

Consider a file organized using the external perfect hashing scheme. The
file may be built in one of two ways:

1. Making one insertion at a time starting from an empty file. We call such
a file an incrementally built file.

2. If all the records of the file are available, they are partitioned into groups
and individual groups are stored by perfect hashing. We shall call this
operation initial loading of the file.

5.1.1. Load factor of a group built incrementally

Consider an arbitrary but fixed group of an incrementally built file. Ini-
tially, when the number of records in the group is less than or equal to b, the
group requires only one page to store the records. When the (b + 1)st record is
inserted, a rehash becomes necessary. The group size will grow to two pages
(possibly 3 depending on the values of b and t,,,). In general, when inserting the
(n + 1)st record into a group already containing n records, one of two events
will occur: the record fits into the page to which it is assigned by the current per-
fect hashing function, or the page overflows if it already contains b records. In
the first case the insertion is simple: read in the page, insert the record some-
where on the page and write it back. In the second case, a2 new perfect hashing
function must be found for the (n + 1) keys of the group and all the records
must be redistributed using the new perfect hashing function.

In this section we compute the load factor of a group as a function of the
number of records n. Numerical results are presented for the case when the
optimalt distribution of trials is determined and followed whenever rehashing is
required.

Figure 5.1.1 illustrates the state transitions caused by the insertion of a
record into a group. When there are b keys in the group, and the page size is b
they all fit on one page. Hence, with probability 1.0 the group consists of one
page. (represented by the first row in the figure). When the (b + 1)st key is
inserted, rehashing is necessary. There is no possibility of the group size remain-
ing at one page, and with a very high probability the group size ends up being 2
pages. There is a small, but nonzero, probability that the group size will increase
to 3 pages. In general, after n keys have been inserted into the group, the state
of the group is represented by the 3rd row of Figure 5.1.1.

1+ All the numerical results reported in this thesis use the approximate solution of the optimiza-
tion problem obtained using the procedure described in section 4.4 (with depth = 3).
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b keys

......

Figure 5.1.1 State transitions caused by an insertion into a group

The following notation is used:

m; denotes the lower bound on number of pages
my denotes the upper bound on number of pages
r = m,—my;+1 is the number of different stages possible for trials

Although m;, m; and r are dependent on n, to simplify the notation we will not
make it explicit. If the insertion of the (n+1)st record causes rehashing, m; is
chosen as [(n+1)/4]. An upper bound for m, is such that P(n,m;,b) > P,, ie.,
the probability of success of a single trial with m, pages is greater than the
required probability of success in ¢,, trials. For the range of n and b we are
interested in, it is sufficient to choose m, corresponding to a load factor of 50%,
my, = (n+1)/{0.5+b). ‘

Qi(n) denotes the probability of having (m; + ¢ — 1) pages in a group with
n keys. @;(n) =0 fori > r
Pio denotes the probability of a perfect hashing function for n keys and

(m; + ¢ — 1) pages remaining perfect for (n + 1) keys

Given Q;(n) for 1 <i <r, the aim is to determine the corresponding
Qi(n+1). These can be computed as follows. Let RH(n) be the probability of
the (n + 1)st insertion causing a rehash. Then
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Pn+1,m +1—1,b)
Pln,m +t¢—1,b) '’

Pio = (5.1)

r
RH(n)=1—= 3 Qn) peo- (5.2)
k=1
If rehashing is necessary when inserting the (n + 1)st record, an optimiza-
tion problem represented by equations (4.10), (4.11) and (4.12) is solved with the
following parameters (using specified values of ¢,,, and P,):

my = [(n+1)4], my = (n+1)/05%b), r = my—m+1
g =1—Pln+l, m+i—1,b) for ¢ =1 --- r.

Let (¢4, to, . . ., t,) be a rehashing policy (we are actually interested in the
optimal rehashing policy, as defined in the previous chapter). Note that this
means trying up to t; hashing functions with m; pages. If not successful, try up
‘to ty functions with m; + 1 pages and so on. Finally, keep trying with m, pages
until success.

Let R;(n + 1) denote the probability that the above rehashing procedure
results in (m; + ¢ — 1) pages. R;(n + 1) can be computed as

Ri(n +1)=q,""g52 -+ ;31 — "), for i=1 --- (r—1),
r—1

Rn+1)=1-Y, R(n +1). ‘ (5.3)
$=]

We can now give an expression for @Q;(n + 1). Recall that Q;(n + 1) is the pro-
bability of having (m; + ¢ — 1) pages after the (n + 1)st key has been success-
fully inserted into the group. There are two ways a group can reach a state with
(m; + 1 —1) pages when the (n + 1)st key is inserted: i) there were
(m; + ¢ — 1) pages in the group with n keys and the insertion did not cause
rehashing and ii) the insertion caused a rehash which resulted in (m; + 7 ~ 1)
pages. Hence we have

Qi(n + 1) = p;Qi(n) + RH(n) Ri(n + 1), ¢=1 --- (r—1),
Qrn+1)=1- rZ_iQ,,(n+1) . ' (5.4)

This recurrence relation can be used to compute Q;(n) for any value of n, start-
ing from n = &, @,(b) = 1.0 and Q;(b) = 0 for ¢« > 1. The expected number of
pages in a group with (n + 1) keys, E,,,(n + 1), and the corresponding load
factort of the group Ey (n + 1) are then given by «

1 The load factor we are referring to is the average weighted load factor computed as
(number of records) / b x {expected number of pages). For brevity, we simply use the terms “load
factor”.
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Epp(n +1) =3 (my +i—1) Qin + 1)

Evl!(" +1) =

180th record is 0.094.

fa=]

n+1

b Epp(n + 1)

Table 5.1.1 illustrates the results of one step of the calculations. The
expected number of pages in a group with 180 records is 11.629 (the correspond-
ing load factor is 77.39%) and the probability of a rehash when inserting the

n=179,b = 20, t,, = 10, P, = 0.99
t | No.of pages | Q;(n) | pio | policy | Ri(n + 1) | @Q;(n + 1)
my + i —-1
1 9 .000 111 0 .000 .000
2 10 047 .750 0 .000 035
3 11 573 886 4 342 540
4 12 .264 943 4 .526 298
5 13 .057 970 1 .076 062
6 14 .028 984 0 .000 028
7 15 022 991 1 048 .026
8 16 .008 995 -0 .000 .008
g9 17 .002 997 0 007 002

Table 5.1.1 Results of one step of the calculations

Figure 5.1.2 shows the load factor of a group (computed using (5.6)) plotted
as a function of the number of records in the group. The results were computed
using the procedure described above. The oscillations at the beginning are due to
fragmentation. When there are exactly b records in the group, one page is suffi-
cient to store the records corresponding to 100% load factor. However, when
there are b + 1 records in the group, at least 2 pages are needed yielding a load
factor just over 50%. Similar situations develop when the number of records in
As the number of records increases, the effect
of fragmentation diminishes and the oscillations die out. We will see later that
fragmentation imposes a lower bound on the group size for achieving higher load

the group is around 25,30 , ...

factors.
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Fig. 5.1.2 Load factor of an incrementally built group

As the number of records in a group increases, the load factor of the group
decreases slowly. Because the maximum number of trials is kept constant, this is
to be expected. It is a result of the fact that P(n, m, b) decreases with increasing
m as explained in section 3.4. Note that the discussion in chapter 3 dealt with
load factors and probability of success of a trial. The situation here is somewhat
different: the maximum number of trials is fixed and the trials are distributed
according to the optimal rehashing policy.

Increasing ¢,, increases the load factor; every doubling of £, seems to
increase the load factor by a constant amount. This holds for a certain range of
t max, Put for increasingly larger values of ¢,, the effect of a doubling ¢,,,, gradu-
ally diminishes. This is again due to the behavior of P(n, m, b) at very high load
factors.

5.1.2. Load factor of a group built by initial loading

For an incrementally built group, the load factor{computed as n /bE(m)) is
not only dependent on the rehashing policy but also on the state of the group .
This may be regarded as a certain kind of memory, or inertia, in the system. In
the case of a group built by initial loading, only rehashing (more specifically, the
policy of finding perfect hashing functions) determines the load factor. For this
case, all the equations obtained in the last section are applicable with the modifi-
cation that p;o should be set to zero in equation (5.2) and (5.4).
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Fig. 5.1.3 Load factor of a group built by initial loading

In Figure 5.1.3 the solid line is a plot of the load factor of a group built by
initial loading as a function of the number of records in the group. The page size
is 40 and t,, is 10. The dashed line corresponds to the load factor of an incre-
mentally built group, drawn for comparison purposes. The solid line lies below
the dashed line because in an incrementally built group the load factor increases,
when an insertion does not cause rehashing. If an insertion does cause rehashing,
the resulting load factor is the same as that for a group built by initial loading.
Hence the load factor of an incrementally built group is never less than that
achieved by initial loading, and on average, slightly higher.

5.1.3. Load factor of a file

Given the distribution of the expected number of pages of a group for dif-
ferent group sizes, the overall load factor of a file depends on the distribution of
the number of records in a group. This in turn depends on the way in which the
header table is organized. The expected number of pages per group in a file,
E,,, is given by the summation

E;, = Y, PGR(n) E,, (n) . (5.7)
n =0
where PGR(n) is the probability that a group in the file consists of n records,
and E,,,(n) is the expected number of pages in a group having n records.

PGR(n) depends on the header table organization. For the case when the
header table is organized as a hash table, these probabilities can easily be com-
puted. Let A\ be the expected number of records per group in a file whose header
table is organized as a hash table. Using the Poisson approximation of the bino-
mial distribution, PGR(n) is given by
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A yn
A
YR (5.8)

The expected number of pages per group in the file is then dependent on X and
not on the total number of records in the file and is given by

0 =i yn
Ep(Z) =3 % Epp(n), (5.9)

n=0

PGR(n) = =

and the corresponding load factor of the file by

A
Eﬂf()‘) - bEjgp(x) .

Figure 5.1.4 is a plot of the load factor of an incrementally built file com-
puted using (5.9a) and the results obtained in the last section. ¢p,, is 20 in all
the cases and there is one curve plotted for each value of b (10, 20, 30, 40, 50).
The effect of the page size on the load factor of a file is very significant. Clearly,
it is desirable to have as large a page size as possible for a given group size. Page
sizes below 20 seem impractical because of the resulting low load factor. It may
be noted that for a given file, the size of the header table determines the average
group size.

(5.92)
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Fig. 5.1.4 Load factor of a file as a function of a.verage group size

For a given page size, the load factor falls slowly as the group size
increases. This is a direct consequence of the decreasing group load factor with
increasing number of records in the group. The slowly decreasing load factor
gives a significant advantage to the external perfect hashing scheme in practice.
Suppose a file is designed with an expected group size of 500 records, page size of
40 and hence a load factor of 82%. If the file size shrinks to half-its original size,
the average group size falls to 250 and the load factor of the file improves to
85%. In most hashing schemes, shrinking files lead to wasted space and a
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corresponding drop in the storage utilization, while on the other hand expanding
files lead to deteriorating performance. In the above example, if the file size is
doubled gradually, the group size gradually increases to 1000 records and the
load factor falls to 80%.

As already noted in section 5.1.1 fragmentation is significant when the
group size is small. Hence, the load factor of the file starts to fall when the group
size decreases beyond a certain point (with ¢,,, = 20, maximum load factor is
achieved when X = 5b). For a given page size, there is an upper limit on the
load factor of the file for a given value of ¢,,,. This upper limit is not very sensi-
tive to the page size. This is because the fragmentation problem is more pro-

nounced for larger pages and offsets the advantage of higher values of
P(n, m, b).

In summary, the load factors achievable by the proposed external perfect
hashing scheme appear to be in a practically acceptable range. The scheme can
" also gracefully accommodate varying file sizes.

5.2. Cost of insertions

We have covered the performance and benefits of the external perfect
hashing scheme in the last section. The advantages of the scheme compared with
other hashing schemes are obtained at certain extra costs. In this section we
study the costs associated with insertions: computational cost of finding perfect
hashing functions and I/O cost for redistributing the records. Since deletions as
such do not necessarily involve extra costs, we will not consider deletions here,
and postpone further discussion to section 8.3.

5.2.1. Probability of an insertion causing a rehash

Insertion of a record may cause rehashing of a group. If the page assigned
to the record by the current hashing function is already full, a new perfect hash-
ing function must be found and the records of the group redistributed according
to the new hashing function. The expected cost of an insertion depends on the
relative frequency of rehashing and the cost of rearranging the records of a
group.

The probability of the insertion of the (n + 1)st record into an incremen-
tally built group causing a rehash was derived in section 5.1.1 and is given by

RH(n)=1- 3} Qi(n) pio, (5.2)
§=1
Pln+1,m +17—1,5b)

where p;p = - for 1 =1, ---,r.
Pio Pln,m + 1 —1,b) or ¢ ’ T
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Figures 5.2.1 and 5.2.2 are plots of the probability of an insertion causing a
rehash as a function of the number of records in an incrementally built group.
The oscillations at the beginning are due to fragmentation as already discussed in
section 5.1.1. For practical ranges of the group size, the probability of rehashing
is quite small. With b = 40 and ¢, = 10, the probability of rehashing is only
0.0257 when the group size is 1000, i.e., approximately one in forty insertions
triggers a rehash. The upper curve in figure 5.2.1 corresponds to t,, = 20 and
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the lower one to t,, = 10, which appears counter intuitive. With ¢, = 20,
more work is spent on finding perfect hashing functions and why should this lead
to doing so more often? The reason is that, on average, we find better hashing
functions (higher load factor) with a higher value of ¢, and the probability of
rehashing is higher when there are fewer non-full pages. This is well illustrated
by figure 5.2.3 which is a plot of the probability of an insertion causing a rehash
as a function of the load factor of the group. When ¢, is increased, the load
factor of a group increases which in turn increases the rehashing probability.
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Fig. 5.2.3 Probability of an insertion causing rehashing

For a file whose header table has been organized as a hash table, the pro-
bability of an insertion into the file causing rehash of a group, FRH, is given by

0 —A \n
FRH() = 3 ¢ n!* - RH(n). (5.10)

Figure 5.2.4 is a plot of the probability of an insertion into a file causing a
rehash, plotted as a function of X\, the average group size. The page size is 40
and there is one curve for each ¢ ,, of 10 and 20. Because of the distribution of
the group size in a file, the oscillations seen in Figure 5.2.1 are eliminated.
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5.2.2. Cost of rehashing

In the previous section we have seen that the probability of an insertion
-causing a rehash is quite small. However, should it become necessary to rehash,
it is an expensive operation: all the pages of the group have to be read in, a new
perfect hashing function found, and all the pages written back after redistribut-
ing the records. Thus rehashing involves considerable internal processing and

1/0.

Expected number of trials

The optimal rehashing policy limits the cost of finding perfect hashing func-
tions. Given a policy (f),%3,..., ) the expected number of trials, E(t),
required to find a perfect hashing function is given by

t,—1
Et)=11-q)+2¢,(1 —q))+ --- +t1g,* (1 —q)
t £ t~1

+({t+ g (=g + - +(t+t2)a1'g2® (1—qp)
bt t —~1

+...+(t1+t2+”'+tr)QIIQ22”.qr' (I—Qr)

3 NEEA ¢ +i—1
+ 2ttt o+t +i)a e g (1-g) (5.11)
7=1
The above expression can be simplified but it is computationally convenient
to use the above form. Figure 5.2.5 is a plot of the expected number of trials
required to find a perfect hashing function in an incrementally built file, using an
optimal rehashing policy. The page size is 40 and t_,, = 10. The numerical
results indicate that, roughly, 40% to 60% of ¢, trials on average are required
to find a perfect hashing function when the page size is. in the range 10 to 50
records.
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Expected cost of a trial

Choosing a hashing function at random for a trial will be discussed in
chapter 6. Once a hashing function has been chosen, a trial consists of comput-
ing all the hash addresses until one of the pages overflows. If the chosen hashing
function is perfect all the n hash addresses have to be evaluated. If the trial is
unsuccessful, we need not compute all the n hash addresses. Let E_(n, m, b)
denote the expected number of hash function evaluations required for verifying if

a hashing function (to distribute n keys into m pages of size b) is perfect. E,; is
given by

n Probability that the zth key
E.(n, m,b) =Y, i * { overflows and none of the

i=1 keys1,:--, (i — 1) overflow

Probability that none
+ n * } of the keys 1,2,....n - (5.12)
overflow ‘

Let p(i, m, b) denote the probability that the ith key is the first one to overflow
when keys are being hashed one at a time. Recall that P(i, m, b) is the proba-
bility of a random distribution of ¢ keys causing no overflow. This means that

1 — P(i, m, b) is the probability that one of the keys 1, 2 ,... 7 overflows. Hence
we have:
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1—P(i,m,b)= 2 p(k, m,b)

k=l
i=1
1—-P@E—1,m,b)= ), p(k, m,b)
k=1
which by subtraction yields
P(1 —1,m,b) — P(i, m, b) = p(¢, m, b). (5.13)
Eqn. (5.12) can now be written as,
E.(n,m,b)= Y, i p(t,m,b)+ n Pn, m, b)
i=l
=Y, i{P( — 1, m, b) — P(i, m, b)} + nP(n, m, b)
i=1 :
= P(0, m, b) — P(1, m, b) + 2{P(1, m, b) — P(2, m, b)}
+3{P(2:m!b)_P(3:m;b)}+ .
n{P(n — 1, m,b)— P(n,m, b)} + n P(n, m, b)
= P(0, m,b)+ P(1, m,b)+ -+ + Pln —1,m,b)
n—l1
E,(n,m,b) =Y, P(i, m,b). , (5.14)
i=0
E,(n, m, b) can be viewed as the area under the plot of P(n, m, b) against n.
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Fig. 5.2.6 Expected cost (number of hash address evaluations) of a trial

Figure 5.2.6 is a plot of E(n, m, b) as a function of n for b = 20 and m
varying from 10 to 50. Both n and E,,(n, m, b) are expressed as a percentage of
the full capacity of m pages, i.e., mb. The expected number of hash addresses to
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be evaluated is almost constant (depending on b and m) when the load factor is
above 70%. This is a direct consequence of the shape of the P(n, m, b) curve.

Cost of successful and unsuccessful trials

Let E_(n, m, b) denote the expected number of hash address evaluations
of a successful trial. Since all the keys have to be hashed in a successful trial,
E,, is given by

E,n,m,b)=mn (5.15)

Let E,,(n, m, b) denote the expected number of hash address evaluations of an
unsuccessful trial. E,, is readily obtained from (5.12). The first term in (5.12)
corresponds to the product of E,, and the probability of a trial being unsuccess-
ful. (The second term is precisely E,,(n, m, b) * P(n, m, b)). Thus from (5.14)
we obtain: :

n—l
M. P(i, m,b) — n P(n, m,b)

=0
Eeuln, m, b) = 1-P(n, m, b)
n—1
E {P(ix m, b) - P(n: m, b)}
=0
= Ty (5.16)

Expected cost of a rehashing policy

Let E,,,(n, b) denote the expected number of hash address evaluations of a
rehashing policy (t; tg - --,t,), that is, ¢; trials with m; pages, t, trials with
m; + 1 pages and so on, until success with m, pages. E,,, may be written as,

Eupl, b) = (1=21)Bur(r, m1, 8) + 0:(1~) (Bl w1, 8) + Euo(, i, 0)]
+ 0+ a1 (0= D) Baln, my, b) + Euln, m, b))

+ 0{(1~g0) (1Bl 7, 8) + Bl mi+1,5) |

+ go(1—¢) [tlEc..(n, 1, D)+ B, L, b} B, mi+1, b) ] +

+ Q2t2—1(1'_q2) [tlEcu(n: my, b) + (tZ_I)Ecu(n’ ml+1r b)+Ecs(na ml+1’ b) ]}

., ot t,_
+ g9 g ‘{} : (5.17)

The above expression can be simplified using the following identities for
geometric series:

F,(qt) = (1—-q)g + 2(1—q)¢* + - -~ + (t—=1)(1—g)¢"™

= {J———l‘l 1-¢'"7) _ (t—1)q‘}, _ (5.18)

(1—g)
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Folgt) = (1-9) + (1-g)a + -+ + (1—q)¢"”
= (1—¢") . (5.19)
E.., can now be written as:
E.p(n, b) = Fo(q1,t1) Ee,(n, my, b) + Fo.(q1,t1) Ecu(n, my, b)
+ 0 Fulaats) [1Buln, m, 8) + Buln, mi+1,8) |
+ Fuo(g2to) Eculn, m+1, b)}
+ ‘I1t142t2{Fu(93»t3) (t1Eeu(n, my, b)
+ toEu(n, mi+1, 8) + Eq(n, m+2,5) )
+ Fue(gsts) Eu(n, m+2,8) + -
+ (11t19212 T Qr—ltf—l{tl Eu(n, my, b)
+ tp Ey(n, m+1,8) + - - - + t,_1Eeu(n,mp—1,b)
a,

(1-¢,)

It is very cumbersome to compute E,,, using (5.20). For practical purposes
the following approximation seems adequate:

E., = E(t)+E,(n,em b),

where E(t) is the expected number of trials of the policy, and em is the integer
nearest to the expected number of pages resulting from the policy.

+ Ecc(n ’mll ’b) + Ecu(n 7mh 7b)} (5'20)

1/0 cost

Because the pages of a group are contiguous, a rehash does not necessarily
involve a large number of disk accesses. The cost of accessing a group of con-
tiguous pages is only slightly higher than the cost of accessing a single page (a
characteristic of disks). If we can afford enough buffer space to store all the
pages of a group in core, redistribution of the records can be accomplished in a
single read access followed by a single write access. However, if buffer space is
scarce, rehashing can be accomplished with as few as 3 page buffers, but at an
additional I/O cost. Further discussion on this is postponed to chapter 7.

5.3. Internal storage requirements

In order to achieve one access retrieval, the header table must be stored in
internal memory. The header table should be small enough to make this feasible.
In this section we will consider only the number of entries in the header table
rather than the exact memory requirement, because we have not yet considered
the exact size of header table entries. The header table size depends on the file
size. As an example we consider a file of one million records for comparison pur-
poses.

Figure 5.2.7 plots the load factor of a file of one million records as a func-
tion of the number of entries in the header table. For a given file size, the aver-
age group size determines the number of groups and hence the header table size.
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(If a file has IN records and X is the average group size required, the size of the
header table is IN/\.) Figure 5.2.7 is plotted using the same data as that for fig-
ure 5.1.3. :

The page size affects the load factor more than the header table size. A
header table of 2000 entries with a page size of 50 yields an 85% load factor.
Doubling the header table to 4000 entries increases the load factor to only 86%.
But if the header table size is kept at 2000 entries and the page size is reduced to
30, the resulting load factor drops to 77%. As we have already mentioned, page
sizes below 20 appear to be impractical due to the large header table required to
maintain a reasonable load factor. '

Increasing the header table size beyond a certain point results in decreasing
load factors due to fragmentation. Larger header tables correspond to smaller
groups and cheaper individual rehashing. However, it is clear from Figure 5.2.2
that smaller groups require rehashing more often.

5.4. Conclusions

In this chapter we analyzed the performance of the external perfect hash-
ing scheme under the optimal rehashing policy and reported numerical results for
a few different page and group sizes. The results indicate that the external per-
fect hashing scheme is practical with reference to the resulting load factor and
costs involved. The probability of rehashing is quite small and when rehashing is
required, the costs involved are not prohibitively high. The scheme gracefully
accommodates varying file sizes. For example, a file of one million records can be
stored on a disk with 40 records per page at a load factor of over 82%. The
header table then needs internal memory space to store 2000 entries. With this
organization about 94% of the insertions can be handled at the minimum cost of
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a single read access followed by a single write access. The other 6% of the inser-
tions involve some extra computation and internal space: about 4,000 hash
addresses need to be evaluated, and during this period about 500 records need to
be stored in internal memory. However, there are several practical problems to
be addressed before the scheme can be implemented in practice. The next two
chapters address these problems.
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Chapter 6

A practical class of hashing functions

8.0. Chapter overview

The analysis in chapters 3-5 assumed that hashing functions were
chosen at random from the set of all functions. This is clearly
impractical. In this chapter we propose and investigate a simple and
practical class of hashing functions. The results of the experiments
with this class of hashing functions indicate, that the relative fre-
quency of perfect hashing functions within the class is statistically the
same as predicted by the theoretical analysis for the set of all func-
tions. This indicates that the predicted performance can be achieved
in practice. The problem of converting alphanumeric keys into
integers is also investigated.

63
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8.1. Introduction

Our analysis of the proposed external perfect hashing scheme was based on
the assumption that hashing functions were chosen at random from the set of all
functions. Given n keys to be mapped into m addresses, there are m?® possible
mappings: each key may be mapped to any one of the addresses independently.
Choosing a function at random from this set of all functions is expensive:
[nlogm] random bits need to be generated. Also, [nlogm] bits are required to
represent a function from this set. An implicit assumption in all work on hashing
is that computing the hash address should be fast, and require O(1) operations.
It appears that this can not be achieved by using the functions chosen at random
from the set of all functions. (Under RAM model of computation, arithmetic
operations involving n bit numbers requires £2(n) operations [AH74]).

6.2. Universal classes of hashing functions

Consider two sets of integers A ={0,1,2,... ,a—1} and
"B=1{0,1,2,..., m — 1} where a > m. We refer to the integers in A as
keys and those in B as addresses. Let H be a class of hashing functions,
H = {h,y, hy, hs3, ...}, where each h; is a function A — B. Let z and y be two
distinct integers, z, y € A, and h; € H, a hashing function. If hi(z) = hi(y), =
and y are said to collide under the hashing function h;. Now define

1 if z 3 y and hy(z) = hy(y)
Sz, 9) =g otherwise

H is said to be a universal, class of hashing functions if for any z,y €A,

L 6u(z,y) < |[H|/m. In other words, H is said to be a universal, class of
hEH i

hashing functions if for every pair z,y €A, they collide under no more than
|[H|/m of the functions. If a function is chosen at random from this class of
hashing functions, the probability of a pair of keys colliding is less than or equal
to 1/m.

If two keys from the set A are distributed at random over m addresses, the
probability that they collide is 1/m. This implies that the collection of all funec-
tions from A to B (whose cardinality is m®) is wuniversal, [SD8O.

Consider the universaly, class H,, defined as follows by Carter and Wegman
[CW79]:
Z, denotes the finite field {0,1,2,..., p — 1} where p is a prime
number, p > a. Without loss of generality, assume a = p.

fc,d tA _*ZP
fea(z) = (cz + d) mod p where ¢ >0,d >0 and ¢,d <p.
g:2,—+B

g(z) = z mod m.

H, is the set of functions {h. 4 |c,d € Z, and ¢ 0}, where h.y:A—B
is given by,
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hc,d(x) = g(fc,d(x))'
The following properties of H; can be proven [CW79]:

(1) For any given z € A, there are ||H;|/m] (or ||H,|/m]+1 depending on
the address) functions in H,; which map z to a given address.

(2) Any two keys belonging to the set A collide at most under |H,|/m func-
tions.

The class H, and the set of all functions are equivalent as far-as the above two
properties are concerned. In addition the functions in the class H, have the fol-
lowing property:

(3) If all the keys in the set A are hashed using an arbitrary but fixed function
in H,, each of the addresses 0, 1, ..., m—1 will receive exactly la/m] or
la /m}+1 keys.

This means that every function h € H, is perfect for a large number of subsets of
A, and that there are no “uniformly bad” functions in H,. This is not true for
the set of all functions. For example, a constant function mapping all the keys to
a single address is perfect only for subsets of size b or less. These three observa-
tions and the fact that a function is uniquely specified by only two parameters
led us to consider the class H; as a candidate for a practical class of hashing
functions.

6.3. Description and results of the experiments

In view of the above observations regarding the class H; and the set of all func-
tions, we performed a series of experiments using several test files to determine if
the class H, could be used for selecting functions for trials. Our hypothesis is:

The relative frequency of perfect hashing functions mapping n keys
into m pages of size b in the class H, is the same as that predicted
by the analysis for the set of all functions.

The experiments were aimed at testing the above hypothesis. Choosing a func-
tion at random from H, can be done simply by choosing the parameters ¢ and d
using a pseudo random number generator.

The key sets for the experiments were obtained from the following ASCII

files:

(A) Dictionary of words on UNIX (24,000 keys) (used for spelling checking,
etc.).

(B) Userids from the IBM/CMS System at the University of Waterloo (12,000
keys). '

(C) Keywords from a library database at the EMS Library, University of
Waterloo (3,000 keys).

(D) Part of a file containing titles from the EMS Library, University of Water-
loo (10,000 keys).

(E) Call numbers from the Physics Department Library, Washington University
(6,000 keys). :
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All the data was in alphanumeric form and the length of the individual
keys varied from 2 to 25 characters. The keys were converted into integers (4
bytes long). Since the analysis assumed that the keys were distinct (this is the
standard assumption in all work on hashing), if two distinct keys mapped to the
same integer then one of the keys was eliminated. The problem of converting
ASCII strings into integers so as to avoid collisions of this type will be discussed
in section 6.4.

The keys in each test file were divided into groups using hashing functions
of the form H(z) = (cz + d)mod p mod s, where s is the number of groups
desired, group ¢ = {z | H(z) =17 }. This was done to partially simulate the
organization of a file using external perfect hashing. For each file, s was chosen
so as to obtain groups containing about 1000 keys. Eight groups of keys as indi-
cated by table 6.3.1 were selected for detailed experiments.

Key set | File from which Hashing functions used to Size of
number obtained separate groups the group

1 group 3 of file A | (314159z + 27182)mod 2100000011 mod 19 1475

2 group 9 of file A | (314159z + 27182)mod 2100000011 mod 19 1507
3 group 3 of file B | (314159 + 27182)mod 2100000011 mod 11 965
4 group 6 of file B | (314159 + 27182)mod 2100000011 mod 11 981
5 group 2 of file C | (27182z + 314159)mod 2100000011 mod 3 1120
6 group 2 of file D | (271822 + 314159)mod 2099999999 mod 11 901
7 group 0 of file E | (3141592 + 27182)mod 2100000011 mod 7 855
8 group 1 of file E | (3141592 + 27182)mod 2100000011 mod 7 880

Table 8.3.1 Key sets selected for experiments

Each experiment was performed as follows. The page size b, the number of
pages in the group m, and the load factor a were specified. A set of 500 hashing
functions was created by randomly generating 500 (c, d) pairs. The standard
random number generator RANDOM( ) supplied with UNIX was used (seed
= 314159). The prime number p was chosen as 2100000011. Since ¢ and d
should be less than p, all random numbers above the value of p were ignored.
The number of records was then computed as n = amb and the first n keys of a
group were read in. The n keys were hashed by each of the 500 hashing func-
tions and the number of perfect hashing functions was recorded. The same pro-
cedure was repeated for each of the groups indicated in table 6.3.1. The same
set of hashing functions was used for the first four groups. A different set of
hashing functions was generated and used for the last four groups (seed =
951413, p = 2100000017). The experiment was then repeated for various values
of a. The key sets used from a group at different values of o are not indepen-
dent of each other. To reduce the dependence of the results at different load fac-
tors, a different set of hashing functions was generated for each value of c.
Ideally, at each different load factor, a different key set should be used for the
experiment. This experiment was repeated for various values of m and b, in that
order.

Figure 6.3.1a plots the results of one set of experiments with b = 10 and m
= 15. The solid line is a plot of P(n, 15, 10) computed using the recurrence
relation given in chapter 4. For each value of the load factor varying from 50%
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Fig. 6.3.1b Difference between observed and computed frequencies

to 85%, eight points are plotted using symbols 1,2, ..., 8, corresponding to the
eight data sets. Each point represents the relative frequency of perfect hashing
functions (among the 500 generated for that load factor) for the corresponding
key set.

The dashed lines enclose a critical region [FR71]. This critical region
represents the central 95% of the sampling distribution, when the sample size is
500, for the relative frequency of perfect hashing functions within the set of all
functions. For a particular value of the load factor «, the point on the solid line
represents the probability P(amb, m, b), which we shall denote by § for conveni-
ence. Let § and # denote the corresponding points on the dotted line above and
the dotted line below the solid line. This means that, if 500 functions are chosen
at random from the set of all functions, the relative frequency of perfect hashing
functions will fall within the range § to § with 95% probability. For a given
value of §, the approximate values of § and § may be obtained using the
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relations 0 ~ 0§ + 1960 and § =~ 6 — 1.960 where o0 = V(1—0)/500. The exact
values of 6 and 9 were obtained using the statistical tables [BR71].

Figure 6.3.1b shows the same results on a magnified scale. It shows the
difference between the observed and the expected frequencies, that is, a point
< a,y > in figure 6.3.1a is mapped onto < a, y—P(amb, m,b) > in figure
6.3.1b. The z axis in figure 6.3.1b corresponds to the solid line in figure 6.3.1a.
We observe that all the experimental values fall within the critical region, except
for one point at 70% load factor.
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i
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Fig. 8.3.2 Observed and computed probability of a trial succeeding

Intuitively, it appears that the addition of d to the product ¢z in the hash-
ing function plays an unimportant role. Carter and Wegman [CW79] showed
that the class of functions resulting from setting d to zero comes within a factor
of 2 of being universal, (i.e. any z, y collide under no more than 2|H |/m of the
functions). However, this does not seem to influence the relative frequency of
perfect hashing functions as indicated by figure 6.3.2. The data for figure 6.3.2
was obtained by experiments exactly similar to those for figure 6.3.1a. The same
sets of keys and hashing functions were used except that d was set to zero for all
the hashing functions. We observe that all relative frequencies of perfect hashing
functions fall within the critical region, except for key set 1 at 65% load factor.
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Figures 6.3.3 to 6.3.5 plot the results of experiments with different values of
b and m. The same set of eight key sets were used for all experiments. Note
that the required number of keys used for a given experiment depends on the
value of o, m and b. The value of the seed used to initialize RANDOM( ) for
generating hashing functions and the value p are also shown on the graphs.

We observe that only a few experimental results fall outside the critical
region. In addition to the results shown, we have experimented with a number of
other sets of keys and hashing functions for various values of b and m, and the
results were similar to those shown here. Table 6.3.2 summarizes some of the
statistics gathered. Column 1 and 2 show the page size and the number of pages.
Columns 4 and 5 show the number of observations falling outside the critical
region and column 3 the total number of observations. Out of a total of 344
observations shown in column 3, 11 observations (3.2%) fall outside the critical
region. Columns 6 and 7 show the corresponding results when d is set to zero in
the hashing functions. For this case 9 out of 344 (2.6%) observations fall outside
the critical region. The expected number of observations which should fall out-
side the critical region is 17.2 (5%). The results of the experiments provide no
evidence to contradict our hypothesis. Subject to the limits of the sampling vari-
ability, the relative frequency of perfect hashing functions within the class H; is
the same as that predicted by the analysis for the set of all functions. This holds
for both the case when d 7 0 and for the case when d = 0.
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b m Number of d#0 =0
observations | No. above | No. below | No. above | No. below

10 15 48 0 1 1 0
10 | 20 40 1 1 0 1
20 10 48 0 2 2 1
20 | 15 40 1 0 1 0
30 { 15 40 1 0 1 0
30 | 20 43 1 0 0 1
40 | 20 40 1 1 1 .0
40 | 25 40 1 0 0 0

Table 8.3.2 Summary of the experimental results.

To ensure statistical independence in the above experiments, a different set
of hashing functions were used for each different load factor. It is also interest~
"ing to see how a single set of functions behave for different load factors. When
the load factor is around 50%, almost all the functions (500 of them) are perfect.
What happens if the number of records is increased gradually? Does the number
of perfect hashing functions for the key set decrease as predicted by the theoreti-
cal model?

Figures 6.3.6, 6.3.7, 6.3.8 plot the results of experiments in which the same
set of 500 hashing functions was used for all load factors. We observe that the
behavior is again close to that predicted by the theoretical model. These results
also show that when using the class H,, the probability of an insertion causing a
rehash given by (5.1) and (5.2) is very close to that predicted by the analysis.
Rigorous statistical testing is difficult in this case because of the high correlation
between observations for the same key set at different load factors.
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In conclusion, we have exhibited a class of simple functions from which
hashing functions can easily be chosen for trials. The experiments reported
above indicate that the relative frequency of perfect hashing functions in this
class is the same as that predicted by the theoretical analysis for set of all funec-
tions. These probabilities were the basis for all the performance results in
chapters 3 to 5. Hence the results of the theoretical analysis can be used to
predict the performance of the proposed scheme when the hashing functions are
drawn from the class H,.

6.4. Conversion of alphanumeric keys into integers

In the literature on hashing, the keys are usually assumed to be integers.
However, in practice keys are often in alphanumeric form: a string of ASCII
characters. Since information is loosely packed in the ASCII representation,
treating the binary representation of ASCII strings as unsigned integers results in
very large numbers for the key values.

One method used for converting an ASCII string into an integer key is
given below [LK84]. The least significant 5 bits of each character are extracted
and concatenated. Six such characters yield 30 bit integers which can fit into a
single word. If the string is longer, the successive 30 bits obtained are XORed
together. The algorithm is given in a Pascal-like notation below. In the follow-
ing procedure, “ord” is a function which returns the integer corresponding to an
ASCII character.

Algorithm to convert an ASCII string into an integer:

function XOR_Convert (keystring, len);
keystring: array [1.len] of char;
len: integer;
begin
keyint, word, count, ch, i : integer;
keyint := word := count := 0;
fori:=1 to len do
ch := AND ( ord(keystringli]) , 37);
word := shiftleft (word, 5) + ch;
count := count + 1 ;
if (count = 6) then
keyint := XOR (keyint, word);

word := count := 0;
endif;
endloop;
return (XOR (keyint, word));
end;

This method has an obvious problem. Two or more different keys may yield the
same integer. This may be called a collision by regarding the conversion function
as a hashing function from the set of alphanumeric strings into integers. The
actual address translation function is then the composition of the conversion
function operating on the alphanumeric string, and the hashing function mapping
the resulting integer onto the address range. Obviously, all keys which collide
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under the conversion function will collide under the composite function.

We shall define a K-cluster as a set of K distinct keys which map to the
same integer under the string to integer conversion function. Clusters do not
cause any serious problems for “normal” hashing schemes, because they are
automatically handled by the regular overflow handling mechanism of the hash-
ing scheme. Clusters pose a much more serious problem to any perfect hashing
scheme because there is no overflow handling mechanism. The presence of clus-
ters in a group increases the cost of finding a perfect hashing function for the
group. If there is a K-cluster in a group and the page size is less than K, it is
impossible to find a perfect hashing function for the group. In the next section
we will analyze the effect of a cluster on the cost of finding a perfect hashing
function. We next consider a few conversion methods which reduce the number
and size of clusters.

When all the keys in file A were converted to 30 bit integers using the sim-
ple XORing scheme described above, seventeen 2-clusters resulted. A simple
modification to the scheme resulted in the reduction of the number of 2-clusters
from 17 to 7. An extra character, whose value is the length of the key string,
was appended whenever the length of the key string was not a multiple of 6.
(Note that in XOR-convert, bit patterns from each successive 6 characters were
XORed together.) Similar improvements were observed for other files.

Cluster Integer size in number of bits
Size 30 25 20 15

7 55 497 4078

2 (107 | 1073 | (6) | (3200)

0 1 12 1208

3 (107% | (.05) | (800)
0 0 0 333

4 (150)

Table 8.4.1 Number of clusters for file A
using the modified XOR conversion procedure

Table 6.4.1 shows the number of clusters of different size in file A when
using the modified XOR conversion procedure. The figures in parenthesis are the
expected number of clusters! from an ideal conversion function, which randomly
assigns an integer to each of the key strings. We observe that the actual number
of clusters is much higher, indicating that it should be possible to further improve
the conversion procedure.

t Let /N be the total number of keys in the file and let the conversion procedure return B bit Ln-

tegers. The load factor A = N/2B The expected number of K-clusters is given by Ne™ = Tk
A !

when A << 1.

which can be approximated by

k!
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To this end, we experimented with the following conversion method based
on a radix-36 representation. Each character of the alphabet is assigned an
integer. If there. are R characters in the alphabet, the key can be represented by
a radix-R number. For example, for alphanumeric keys we can define a function
“ord” as follows: ord(‘a’) = 1, ord(‘b’) = 2, ... ord(‘z’) = 26, ord(‘0’) = 27, ...
ord(‘9’) = 36. Any alphanumeric string can then be expressed as a radix-36
number. (Note that upper and lower case are not distinguished.) Such a radix
based representation is also called packed form. If the key value in this represen-
tation exceeds the required word size, the modulus of the number to a suitable
prime is taken. The conversion algorithm is given below. The largest prime
number less than 27 is used while converting key strings into B bit integers.
(Thus prime = 1,073,741,789 when B = 30, prime = 33,554,393 when B = 25,
and prime = 1,048,573 when B. = 20.)

Algorithm to convert an ASCII string into an integer:

function RADIX_Convert (keystring, len, prime);
keystring: array 1..len of char;
len, prime: integer;

begin
keyint, 1 : integer;
keyint := O;

for i:= 1 to len do
keyint := ((keyint * radix) mod prime) + ord(keystringli]); -
endloop;
return (keyint mod prime);
end;

The number of clusters decreased dramatically with this conversion algo-
rithm as indicated by table 6.4.2. The figures in parenthesis are the number of
clusters resulting from the modified XORing method. The relative magnitude of
the number of clusters among the different files is not significant, because the
number of keys in the files are not equal. The clusters are distributed among the
various groups of the file (grouping functions given in table 6.3.1). The results
for file C are not included because the file contained only 3000 keys.

Cluster | Data File Integer size in number of bits

size size 30 25 20
file A | 24000 0(7) 10(55) 286(497)

file B | 12000 | o(12) | 11(184) | 51(309)

2 file D | 10000 | 0(3) o9) | 51(53)
file E 6000 0(2) 1(12) 19(73)

file A | 24000 | 0(0) o(1) 2(12)

file B | 12000 0(0) 0(5) 0(9)

3 file D | 10000 | 0(0) 0(0) o(1)

: file E 6000 0(0) 0(0) 0(3)

Table 6.4.2 Comparison of the number of clusters resulting from
RADIX_Convert and modified XOR_Convert.
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8.5. Effect of a cluster on P(n, m, b)

It is obvious that the presence of a cluster in a group reduces the probabil-
ity of a randomly chosen function being perfect. If the cluster size exceeds the
page size then no perfect hashing function for the group exists. Let P* (n, m, b)
denote the probability of a randomly chosen function being perfect for a group
having (n — k) distinct keys and one k-cluster (for a total of n keys) to be distri-
buted into m pages of size b.

Consider the situation when the (n — k) distinct keys are distributed ran-
domly among m pages. The cluster will hash into a randomly chosen page. The
conditional probability, p,, that the cluster does not cause the page to overflow is
given by '

_ P(n, m, b)
Po Pin —k,m,b)"

The page will overflow if there were already (b — k + 1) or more keys in

the page. The probability of this event, 1 — p,, is given by (this is analogous to
3.4)

(6.1)

k-1
Y
=0

’g:f]P(n—k—Hi, m—1, b)(m—1)r 4+

1—-po= (6.2)

P(n—k, m,b) m*™*
Each term of the sum in the numerator corresponds to the number of ways in
which (b—:) keys may be chosen from the (n—k) distinct keys, and the other
n—k—(b—1i) keys distributed among (m—1) pages. The denominator represents
the total number of ways in which (n—k) keys may be distributed among m
pages. Eliminating p, from (6.1) and (6.2) we obtain

Pf(n, m,b) = Pln—k, m, ) —
@_l)n—k-—b-ki

mn—k

L
Ny |[Pln—k—b+i, m—1,) (6.3)

i=0

In particular, consider the case where k is 2. From the above equation we
obtain:

n—b—2
P(n,m,b)=Pln —2,m,b) — [nb—z]P(n -b—-2,m-—1, b)-(m—_lL-—
m

n—2
_1yn—b—-1
- [g:f}P(n b1, m -1, p)lm= (6.9
. m

From equations (4.5) and (6.4) we obtain the following:
P(n, m,b) = P(n, m, b) —

3=

Pln —b—1,m —1,b) _(m__;m__-*j ["—2} - ["“1]

n—2 b-1 b
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We can use the procedure described in chapter 4, with minor modifications, to
compute P%(n, m, b), by rewriting P’(n, m, b) in the form

Pn,m,b)=P(n —1,m,b) — [b_f]P(n—b—l,m—l,b)ﬂ——i_L,;j:
m

=P(""1,‘m,b)—[nb—I]P(n—b_l,m_l,b) (m — 1) { mb }

m* n—1

We can now easily modify the procedure given in section (3.2) for computing

P(n, m,b), to compute P%(n, m, b): replace term with terms during the

n—
last iteration. Figures 6.5.1 and 6.5.2 are plots of F*(n, m, b), showing the effect
of a single 2-cluster on P(n, m, b).
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Fig. 6.5.1 Effect of a 2-cluster on the probability of a trial succeeding
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It should be pointed out that the a.nalysxs and experiments described in this
section aimed to gain a first indication of the effect of clusters. As may be
expected, the effect of clusters is more noticeable for small pages than for large
pages. A single cluster results in an observable (in the plots) reduction in the
probability of a trial succeeding. We have conducted a single set of experiments
to see the effect of a cluster in practice. Key set 7 was modified by inserting a
key whose value was exactly the same as that of the first key in the file. In other
words, the first two keys of the modified key set 7 were identical. Experiments
similar to the ones performed to obtain data for figures 6.3.6 were conducted
with the modified key set. Figures 6.5.3 and 6.5.4 are plots of the results
obtained. The plots show that the effect of a 2-cluster on P(n,m,b) is approxi-
mately the same as that predicted by the analysis. The results of the previous
section show that very few 2-clusters are encountered in practice when
RADIX_Convert is used for conversion of alphanumeric keys into integers. Clus-
ters of size 3 or higher are highly improbable even with the simple modified
XOR_convert. Consider an example with page size 10. When the group size is
10 pages and the load factor 80% , the effect of a 2-cluster is to increase the
expected number of trials required to find a perfect hashing function from 14.7 to
15.2; with a group of 30 pages and load factor of 68%, the effect of a 2-cluster is
to increase the number of trials from 21.7 to 25. In both cases above, P%(n,m,b)
is within the critical region [section 6.3], i.e., the effect of a cluster is less than
that of statistical variation. Thus the effect of clusters on the performance of the
external perfect hashing scheme is rather insignificant. Hence, we conclude that
the problem of clusters should not be a serious one in practice.



Perfect hashing for External Files 79

1.0+

0.9-%

0.8
P Page size (b) : 10
r Number of pages (m) : 10,20,30,40
2 06 Key set 7
b = Solid lines: with a 2-cluster
% 0.5- Dashed lines: without 2-cluster
1
| 0.4-
1
t 0.3
y

0.2+

0.14

0.0 :

40 50 60 70 80 90

Load factor(%)
Fig. 6.5.3 Observed effect of a 2-cluster on P(n,m b)

1.0
0.9
Page size (b) : 30

0.8 Number of pages (m) : 5,15,25
P Key set 7
r 077 Solid lines: with a 2-cluster
o 0.6 Dashed lines: without a 2-cluster
b V-0
a
b 0.5
i
] 0.4
i
t 0.3+
y

0.2+

0.1

0.0 T r r T .

50 60 70 80 90 _ 100

Load factor(%)
Fig. 8.5.4 Observed effect of a 2-cluster on P(n,m b)



20 M.V. Ramakrishna

6.8. Conclusions

In this chapter we explained why functions for trials cannot be chosen from
the set of all functions. A universal, class of hashing functions was chosen for
experiments and the reasons for this choice were explained. Experimental results
for several real life files were presented. The results support the hypothesis that
the relative frequency of perfect hashing functions in the chosen class H, is sta-
tistically the same as predicted by the analysis for the set of all functions
presented in chapter 3.

This chapter completed the answer to one of the main questions posed in
chapter 2: How to find perfect hashing functions? In chapter 3 we proposed a
trial and error method of finding perfect hashing functions and the analysis was
based on choosing functions at random from the set of all functions. The results
of this analysis formed the basis for the performance model in chapters 4 and 5.
The results presented-in this chapter show that the model can be used to predict
the performance of the proposed scheme when hashing functions are drawn from
the class H;.
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Chapter 7
Implementation considerations

7.0. Chapter overview

It is impractical to solve a nonlinear integer optimization problem, as
described in chapter 4, to find the optimal rehashing policy every
time a new perfect hashing function is needed. We give a simple
heuristic for determining a policy, whose performance is close to that
of the optimal policy. The practical aspects of rehashing and relocat-
ing the groups, and organizing the header table are discussed.
Finally, extending the external perfect hashing scheme to make it
fully dynamic is discussed briefly.

81
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7.1. A simple heuristic for finding rehashing policies

In chapter 4 we described a policy for distributing the total number of tri-
als over a range of load factors. We also defined an optimal rehashing policy and
formulated a nonlinear optimization problem whose solution gives the optimal
policy for distributing the trials. It is a difficult problem to solve, and we
described a heuristic solution procedure based on dynamic programming to solve
the problem approximately. As such the solution procedure is an efficient
method for solving the optimization problem. From the point of view of deter-
mining a policy of finding perfect hashing functions, the procedure is simply too
complex. Hence, it cannot be used in practice. However, all the effort spent on
the optimization problem was not wasted. By examining the optimal policies
obtained, we were able to design a simple heuristic for distributing the trials over
different load factors.

The complexity -of the solution procedure is O(t%,,, * m * depth), where
tmax is the maximum number of trials allowed, m 'is the number of pages in the
group, and depth is a parameter of the solution procedure. For example, con-
sider a group with 1,000 keys to be distributed into pages of size 40. If ¢, is 20,
we can expect around 80% load factor, corresponding to about 30 pages. Assum-
ing a modest value of 3 for depth, the solution of the optimization problem
involves about 15,000 evaluations of functions of the form
fi =m;(1 — q:‘) + q:‘ J:41- However, once a policy has been determined, the
cost of actually finding a perfect hashing function is much less: on the average,
about 8,000 evaluations of functions of the form h(z) = (cz mod p)mod m are
sufficient. There is less than a 1% chance (assuming P, = 0.99) of requiring
more than 20,000 evaluations.

The optimization problem has some “hidden” costs as well. The
P(n, m, b) values must be computed each time, or a table of P(n, m, b) values
could be computed once and stored. This table would be too large to be main-

tained in main memory and keeping it on secondary storage results in increased
I/O cost.

Clearly, determining the optimal policy by solving the optimization problem
is very expensive. The cost of the solution procedure can be reduced to some
extent. The full table of P(n, m, b) is not necessary: any required value can be
obtained by interpolation from a smaller table of P(n, m, b) values. Observing
the optimal policies (i.e., the solutions obtained by solving the optimization prob-
lem) it appears feasible to modify the solution procedure so as to eliminate large
amounts of search. These techniques cannot, however, bring down the cost to
practically acceptable levels. The computational power can be better utilized by
increasing ¢,,, rather than finding an optimal policy with a lower value of ¢,,,.

7.1.1. Heuristic policy

Our attempt to reduce the cost of formulating and solving the optimization
problem led to a heuristic for determining the policy. This heuristic does not
require formulating and solving an optimization problem.
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Let us first clarify the terminology. We described a heuristic in chapter 4
to reduce the search space in the solution procedure based on dynamic program-
ming; it gives solutions which are close to the optimal policy. In this section, we
describe a heuristic to arrive at a policy for distributing the trials without formu-
lating any optimization problem at all. This heuristic was derived from the

optimal policies obtained using the procedure described in chapter 4. It is based
on the following three observations.

number of policy

keys (n)

71 025201

72 0153010

73 0062110

74 0062101

7 | 0052201

76 003*4201

77 00252001

78 00243001

79 00062101

80 00053101

81 0043201

82 003*3301

83 00333001
84 0023*4001
85 0005*3101
86 0005*2 201
87 0004*23 01
88 0003*33001
89 00015*3001
90 00006¥2101
91 0005*¥2201
92 0005*1 301
93 0004*1 401
94 00024 3001
a5 000144001
96 00006¥1 201
97 000043 201
g8 00003*3301
99 000041 4001
100 00003*15001

Table 7.1.1 Optimal distribution of trials, b = 10, ¢, = 10, depth = 3.

(1) For successive values of n, the parameters of the optimization problem
change by small amounts. Hence, drastic changes in the resulting policy
are unlikely, and it should be possible to identify a pattern. For example,
table 7.1.1 lists the optimal policies for a page size of 10.and ty,, of 10. All
the results were obtained with depth = 3. The starred entries correspond
to |E(m)] pages, where E(m) is the expected number of pages resulting
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from the policy. The first entry of each policy corresponds to the number
of trials with [n/b] pages, the second entry to [n /6] + 1 pages and so on.

Figure 7.1.1 is a plot of the expected number of pages in a group as a fune-
tion of the number of keys when the group is built incrementally. The
optimal rehashing policy is followed whenever a new perfect hashing func-
tion must be determined. We see that the graphs are smooth except at the
beginning (due to fragmentation). By storing an Em-table with a few
entries, such as table 7.1.2 (table for b = 10, t = 10), the expected number
of pages required to store a given number of keys can be easily obtained by
interpolation.

30+

25

20.] b=50

Page size {b) : 10, 30, 50

154 Trials () © 10
10
5
0 ) 1 | ] 1
0 200 400 600 800 1000

Number of records
Fig. 7.1.1 Expected number of pages in an incrementally built group

No. of keys | .Expected no. of

(n) pages E(m)

28 3.15

31 4.03

35 413

40 5.05

44 5.46

50 6.36
"75 10.41
100 14.40
150 23.33
200 33.00
250 41.87

Table 7.1.2 Em-table for b = 10, {,,x = 10
(expected number of pages in a group).
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(3) The distribution of the number of trials under the optimal policy appears
to be centered around the expected number of pages; the majority of trials
are made around the resulting expected number of pages, see table 7.1.1.
For example, with a page size of 10 and t,, of 10, when the number of
keys (n) is between 100 and 130, the optimal policy can be approximated
as follows (assuming that the resulting load factor E(m) is known a priori):
make 4 trials with m equal to E(m)f pages,
make 3 trials with m equal to E(m) + 1 pages,
make 1 trial with m equal to E(m) + 2 pages,
make 2 trials with m equal to m; — 1 pages.

Recall that m, corresponds to a load factor of about 50% (P(n, m, b) is very
close to 1.0). Similar approximations to the optimal policy can be found for dif-
ferent ranges of n and stored in a policy-table. Table 7.1.3 is a policy-table for
b = 10. Each entry in the table is expressed as a fraction of tp,,. Each row
approximates the optimal policy for a range of n between the entries in the first
column of that row and the next row. The example given for 100 < n < 130, is
represented by row 3 in the table.

Number of | E(m)—1 | E(m) | E(m)+1 | E(m)+2 | E(m)+3 | m,—1 | m,
of keys (n )

30 0.0 0.8 0.1 0.1 0.0 0.0 0.0

70 0.0 0.6 0.3 " 00 0.0 0.1 0.0

100 0.0 0.4 0.3 - 0.1 0.0 0.2 0.0

130 0.0 0.2 04 0.2 0.0 0.1 0.1

150 0.0 0.2 0.3 0.1 0.2 0.0 0.2

180 0.0 0.0 0.2 0.3 0.2 0.0 0.3

250 0.0 0.0 0.0 0.0 0.0 0.5 0.5

Table 7.1.3 Policy-table for & = 10.

From tables similar to 7.1.2 and 7.1.3 it is straightforward to obtain an
approximation to the optimal policy for a given value of n and ¢,,,.

Heuristic to approximate the optimal policy

Given n, use the Em-table to estimate the expected number of pages,
E{(m), corresponding to the #., specified. Distribute the ¢, trials using
the Policy-table over the range E(m) — 1 to m;, where E(m) is the inter-
polated value of the expected number of pages and m, is the maximum
number of pages.

Given an Em-table and a Policy-table it is straightforward to arrive at a
distribution of trials using the above procedure. Our aim while constructing the
tables was to keep them small and yet obtain a performance as close as possible
to that of the optimal policy. Tables for various values of b and ¢, are given in

t+ It E(m) is not an integer, the trials are divided between the two group sizes [E(m)] and
[E(m)] according to the ratio (E(m)—|E(m))A[E(m)|—E(m)), and similarly for
E(m)+1, and so on.
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Appendix B.

7.1.2. Performance of the heuristic policy

Determining the heuristic policy requires computation and memory space to
store the tables. The computational cost is very low: linear interpolation of the
expected number of pages, and computing the number of trials using the approxi-
mate fractions from the policy-table. These computations are independent of
tmax and the number of pages, and the cost is negligible. The memory space
required to store the tables is also small. Around 100 words are required to store
them in the indicated format. It is possible to encode the tables to reduce their
size. For example, the entries of the policy-table could be stored as 8 bit
numbers by storing (actual fraction) * 256.

The heuristic is based on the solutions of the optimization problem. The
goal is to give a policy which performs close to that of the optimal policy. We
compare the performance of the heuristic policy with that of the optimal policy
in terms of the resulting load factor, probability of rehashing, ete.

Figure 7.1.2 compares the heuristic policy with that of the optimal policy
with respect to the load factor of an incrementally built group and the expected
number of trials required to find a perfect hashing function for a group. The
page size is 30 and t,, is 10. The solid line corresponds to the results obtained
using the heuristic policy. The tables for b = 30 are given in Appendix B. The
load factor and the expected number of trials required to find a perfect hashing
function using this policy were computed as described in chapter 5. The dotted
line corresponds to the results of using the optimal policy (i.e., the optimization
problem is formulated and solved to obtain the optimal policy of distributing the
trials). '

100

Page size (b) = 30

tmax= 10

Dotted line: optimal policy
Solid line: heuristic policy

390

e o

80
load factor

-10

-H O O P "

-5

U o~ .....-1._)

' 0
0 200 400 600 800 1000

Number of records )
Fig. 7.1.2 Load factor and expected number of trials of
an incrementally built group



Perfect hashing for External Files 87

We observe that the load factor resulting from the heuristic policy is very
close to that of the optimal policy. In certain intervals the heuristic policy seems
to outperform the optimal policy. This is only partly true, because often the
higher load factor is associated with an increased value of the expected number
of trials and/or with a decreased probability of succeeding within ¢, trials. We
have observed that, occasionally, the heuristic policy outperforms the optimal
policy in all three aspects: load factor, expected number of trials and the proba-
bility of success in t_,, trials. There are two possible reasons for this anomaly.
First, the optimal policy we are determining is not necessarily the true optimum
but rather a close approximation. The heuristic policy may be closer to the true
optimum than the approximate solution. The second reason, which is more
likely, is as follows. Optimal policy corresponds to optimality at a particular
instant; the optimization problem was formulated to yield as high a load factor as
possible locally (i.e., the load factor after rehashing has been carried out). Fol-
lowing the optimal policy at every stage, while inserting the nth key and the
(n + 1)st key may not be optimal for the combined operation. In other words, a
non-optimal policy for the nth insertion and (n + 1)st insertion may turn out to
be optimal with respect to the end result (i.e., the load factor of the group with
(n + 1) keys). The sharp peaks in the curve with the optimal policy correspond
to a high expected number of trials. This extra work does not translate into an
improved load factor (as compared with the heuristic policy). This is illustrated
in table 7.1.4.

depth 1 3
Number of keys, n 52 53 52 53
Load factor after 74.46 74.62 74.69 74.73
rehashing, RHE ()
Overall load 77.90 7747 7791 77.42
factor, E(a)
Expected number of 4.99 3.35 5.05 4.15
trials, E(t)
Probability of success in .9901 .9926 .9907 .9901
t max trials ’
Probability of 2218 2211 2259 .2248
rehashing, RH () ‘
Rehashing policy 3430008110 | 3511017110

Table 7.1.4 An example with b = 10 and ¢, = 10.

Table 7.1.4 was extracted from the results of computations for an incre-
mentally built group with b = 10 and ¢, = 10. There are two sets of results
corresponding to the value of depth used in the solution of the optimization prob-
lem. The rehashing policies obtained with depth = 3 are exact optimal policies
(verified by exhaustive searching). When n is 52, the optimal rehashing policy
(3,5,1,1,0) yields a load factor of 77.91%; only slightly better than the 77.90%
that can be obtained using the policy (3,4,3,0,0). Note that RHE(c) represents
the load factor after rehashing using the policy, whereas F(a) represents the load
factor taking into account the probability of rehashing. RHE(c) values
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corresponding to depth = 3 are always higher than that for depth = 1. However,
with depth = 3 and n = 53 the optimal policy yields an E(a) of 77.42% which is
lower than that obtained with depth = 1 (77.47%).

The optimal policies corresponding to depth = 3 involve more trials with
lower number of pages. This leads to “stiffer” policies: ie., a higher value of
RHE(c), but at the cost of higher E(t) and RH(n) (a lower value of RH(n)
implies a higher probability of the next insertion increasing the load factor). The
overall load factor E(e) is not necessarily higher.

1.0-
0.8
P
r
> 06
b Y07 Page size (b) = 30
2 t .= 10
b Dotted line: optimal policy
i 0.4- Solid line: heuristic policy
i
t
y
0.2
0.0 T Y )
0 200 400 600 800 1000

Number of records
Fig. 7.1.3 Probability of an insertion causing rehashing of a group

Figure 7.1.3 plots the probability of an insertion causing rehashing as a
function of the number of keys in the group. Figures 7.1.4 to 7.1.7 are similar
plots for different values of . In all cases, we observe that the performance of
the heuristic policy is close to that of the optimal policy.
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Tuning the heuristic

As already explained, the Em-table and the Policy-table for the heuristic
were constructed based on the results of the optimal policy. In practice, the
parameters of the tables may be changed dynamically depending on the require-
ments and the performance of the particular class of hashing functions chosen,
heuristic, etc. For example, when the load on the system is high, we may be
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willing to settle for lower load factors. This can be achieved by reducing the
fraction of trials with higher load factors (and thus decreasing the average
number of trials required to find a perfect hashing function).

7.2. Performing a rehash

We have seen in chapter 5 that the probability of an insertion into a group
causing a rehash is quite small (typically around 5%). When an insertion does
not involve rehashing, the cost is minimal: insert the record at the right place
within the page buffer and write back the buffer onto secondary storage. (The
page would have been read into memory already.) However, the cost is much
higher when an insertion triggers a rehash operation. This section deals with the
tradeoff between the amount of buffer space and I/O cost of rehashing.

Minimizing the I/O cost

Consider a group consisting of n records distributed over m, pages of size
b by a perfect hashing function h;. Let the insertion of the (n + 1)st key into
the group cause it to overflow, thus triggering a rehash of the group. This
involves reading in m; pages, finding a new perfect hashing function hy with m,
pages for the (n + 1) records and writing back m, pages onto disk. If
max(m ,, my) pages of buffer space is available, rehashing can be accomplished at
the minimum cost of reading m, consecutive pages followed by in-buffer redistri-
bution of records and then writing m, consecutive pages. Note that
reading/writing a set of consecutive pages is not much more expensive than
accessing a single page, and hence for all practical purposes reading/writing a
whole group can be considered a single disk access (this is not entirely correct,
see section 8.1).

Redistribution of records in place

Assume that m, pages (containing the records to be redistributed) have
been read into m, buffers of a total of max(m,, m,) buffers available. Select the
first key z in the first page(buffer) to be relocated. Compute the new hash
address m, = hy(z). If page m, is not full the key is moved into an empty slot
on that page. If the page m, is already full, an arbitrary key is chosen from that
page for relocation and the key z is moved into the empty slot created. This
relocation chain ends whenever a nonfull page is encountered. Next, choose
another key from page 1 for relocation and so on until the last key in page m,
has been relocated. Note that during this process some keys may already be in
their right place. This redistribution involves moving at most n records.

Reducing the buffer space

If we cannot afford max(m,, m,) buffers, redistribution can be accom-
plished at an increased I/O and processing cost. First of all, all the m,; pages
have to be read to extract the keys and a new perfect hashing function Ay with
m, pages for the (n + 1) keys needs to be found. We assume that at least all
the extracted keys can be kept in core. Redistribution can then be accomplished
using k + 1 buffers (k+1 < max(m;, m,) ) by repeated partitioning as follows.
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The 1idea is to initially partition the group into & subgroups,
0,1,2, ..., k — 1, such that the records which would hash to the first [m,/k]
pages of the group are in subgroup 0, those which would hash into the next
[mo/k] pages of the group are in subgroup 1 and so on. More precisely, if z
denotes a key of the group, then subgroup i = {z |7 [my/k] < ho(z) <
(i+1)[mo/k 1}

Designate one of the (k+1) buffers as a read buffer, and the other k
buffers as write buffers, 0,1,..., k — 1. Read in the m, pages one at a time
into the read-buffer. For each key in the read buffer, compute the subgroup to
which it belongs, and move the record to the corresponding write buffer. When-
ever the read buffer is empty, read in the next page until all the m, pages have
been read. Whenever a write buffer is full, write it onto secondary storage.
When all the m; pages have been processed, we have k subgroups each having
[my/k] pages. Subgroup ¢,0 <7 <k — 1, contains all and only the records
belonging to pages i[mo/k] ,i[my/kl + 1, ..., (¢ + 1)[my/k] — 1 (with refer-
ence to the final desired distribution in m, pages). This first partitioning
involves reading m, pages, moving n records and writing at most m, pages.

If [my/k] < (k + 1) then redistribution within each subgroup can be
accomplished as described above. Otherwise, each of the subgroups may be
treated as a separate problem with [m,/k] pages. If m = m; = m,, each parti-
tioning involves reading and writing m (at most [m /k] * k, to be precise) pages
and moving n records. The problem size is reduced by a factor of k¥ from m to
[m /k]. Since problems of size <(k + 1) can be handled without further parti-
tioning, we conclude that redistribution can be achieved in [log,m] stages of par-
titioning, at a total cost of reading and writing m [logym] pages and moving
n[logym] records among the buffers. (Note that, the initial accesses to extract
the keys are not included.) In particular, if k is chosen to be [Vm] only two
stages of partitioning are required. The first stage involves reading and writing
m pages requiring 2m accesses to the disk. The second stage involves reading
and writing [\/f] subgroups each having [Vm] consecutive pages requiring
2[Vm] accesses. The total cost is 2(m+[Vm]) accesses to the disk and moving
at most 2n records. In practice m ranges from 10 to 50 and hence, reducing the
value of k below Vm (4 to 7) does not seem necessary.

7.3. Header table format

In chapter 3, the header table entries were represented as < p,, m,, R, >,
where p, is a pointer to the page group, m, is the number of pages in the group,
and R, the set of parameters of the perfect hashing function. In chapter 6 we
have seen that perfect hashing functions of the form
h(z) = (cz mod prime) mod m can be found by fixing the value of prime and
choosing the value of ¢ at random (using a pseudo random number generator). If
the same prime is used for all the groups, R, need only consist of the single
parameter ¢.

For example, consider a file of one million records stored by external per-
fect hashing. Assuming a page size of 40 and a load factor of 80%, about 32,000
pages are required to store the file. If page addresses relative to the beginning of
the file are used, 15 bits (or 2 bytes) are required to store p,. Since the group
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size would not exceed about 50 pages, 6 bits (or 1 byte) is adequate to store m.
Assuming that keys(after conversion into integers) are 4 bytes long, 4 bytes are
required to store ¢. Hence each entry of the header table requires about 7 bytes
of storage. If the average group size is chosen to be 1,000 corresponding to 1,000
groups in the file, the header table needs 7 kilobytes of memory.

To find a perfect hashing function for a group we try no more than £,
(10 to 20) hashing functions. During the trials, instead of always generating
“new” hashing functions, we may choose hashing functions which have already
proven perfect for other groups. In other words, if a file consists of one thousand
groups, the thousand parameters R, need not be distinct and storing fewer may
suffice. A set of hashing functions could be generated a priori and stored in a
separate table, called the H-table. Then the entry R, in the header table need
only be an index to the H-table and hence fewer bits are needed to store the
header table entries. In our above example, if the H-table has less than 256
entries, one byte is sufficient to store an index to the H-table. Each header table
entry need only be 4 bytes long. This results in a saving of
7 » 1000 — (4 * 1000 + 256 * 4) = 2000 bytes of memory space.

If the header table is organized as a B-tree, the space requirement to store
< py,m,, R, > is the same as described above. In addition, roughly speaking,
space is required to store one key (or its prefix) per group in the file. Here it is
assumed that the tree is very shallow; for example the tree may have a root node
and Vs leaf nodes each having Vs entries for a total of s groups in the file. -

7.4. Dynamic external perfect hashing »

A hashing scheme is said to be dynamic if it can accommodate wide varia-
tions of the file size, without significant deterioration of the retrieval performance
and storage utilization. Any file organization scheme can accommodate wide
variations of file size by periodically reorganizing the whole file {maintaining the
storage utilization and performance). Dynamic hashing schemes accommodate
file size fluctuations without complete reorganizations of the file.

The load factor of a file organized using the external perfect hashing
scheme varies slightly with the number of records per group. As the file grows or
shrinks, the load factor decreases or increasés continuously and gradually. A file
may double in size causing only a small percentage drop in the storage utilization
and it may shrink to a considerable extent without causing the storage utilization
to decrease. However, if the file becomes too small, the load factor starts to
decrease because of the fragmentation problem. When the file becomes too large,
even if the reduced storage utilization is acceptable, rehashing of large groups
poses practical problems.

If the header table is organized as a B-tree, the scheme is completely
dynamic. In addition, the scheme enables efficient range searches and extra large
groups (discussed in section 7.5) cannot occur. However, the B-tree based scheme
requires more internal memory (approximately twice as much as that for the
hash table based scheme, it depends on the length of the keys stored).

If the header table is organized as a traditional hash table, the file size can-
not be allowed to grow or shrink by large factors. However, several of the
dynamic hashing schemes proposed during the last few years can be adapted to
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organize the header table so that the external perfect hashing scheme is com-
pletely dynamic. The external perfect hashing scheme can be considered as a
hash table having elastic buckets (i.e., each group is a bucket of flexible size).
With this view of the scheme, the linear hashing scheme proposed by
Litwin[L T80}, dynamic hashing proposed by Larson[LR78], or extendible hashing
proposed by Fagin et. al. [FN79] can easily be adapted to organize the header
table so that the overall hashing scheme is fully dynamic. An important point to
remember is that a group need be split into two only when an insertion into the
group causes rehashing (the elastic bucket “overflows” only when an insertion
into the group causes rehashing).

7.5. Handling large groups

The worst case of hashing, when all the keys hash to the same address, is
highly improbable. A less severe event that may arise in practice is when a few
of the groups receive an exceptionally large number of keys as compared to the
average group size. The adverse effect of a few large groups on the overall
storage utilization is minimal. However, rehashing such large groups may pose
practical problems. We propose a simple solution to handle such situations.

When rehashing a group, if it contains more than a certain predetermined
number of keys, the group is split into two or more subgroups. The original
entry in the header table for the group < p,, m;, R, > 1is replaced by
< p;, m;, B, > where p, is a pointer to a subordinate header table which is simi-
lar to the main header table and supports m, subgroups. R, are the parameters
of the subgrouping function. Header table entries may be suitably encoded to
distinguish those which have subordinate tables. For example, if the subgrouping
functions are chosen from the class H,, which require a single parameter, then a
header table entry having R, = ¢, could correspond to a group having a subordi-
nate header table if ¢; < climit.

The problem of large groups does not arise if the header table is organized
as a B-tree.

7.86. Conclusions

This chapter addressed several practical problems encountered in the
implementation of the external perfect hashing scheme. The main practical prob-
lem addressed was the complexity of solving the optimization problem to obtain
the optimal policy of distributing the trials. Although the solution procedure
presented in chapter 4 is an efficient method of solving the nonlinear integer
optimization problem, it is too costly in practice. In this chapter we presented a
simple heuristic to obtain a policy for distributing the trials. The cost of the
heuristic is small and its performance is close to that of the optimal policy.

In the previous chapters, we mentioned that rehashing is an expensive
operation. In this chapter, we described a method of carrying out a rehash with
minimum disk I/0. We also outlined a method of redistributing records using
less buffer space but at an increased I/O cost.

In chapter 2 we gave the symbolic format of the header table entries. As a
consequence of the results in subsequent chapters, we were now able to give
exact details of the header table entries. We also suggested a minor modification
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to the basic external perfect hashing scheme to handle the situation when a few
of the groups are exceptionally large. The same idea can be extended to make
the scheme completely dynamic: it is similar to “dynamic hashing’ proposed by
Larson [LR78]. In fact, most of the dynamic hashing schemes can be adapted to
make the external perfect hashing scheme completely dynamic.
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Chapter 8

Conclusions and further work

8.0. Chapter overview

In this chapter we summarize the performance of the proposed exter-
nal perfect hashing scheme. The cost of insertions and internal
memory requirements are compared with that of other hashing

schemes. Several open problems and directions for future research
are also outlined.
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8.1. Comparison with other hashing schemes

In addition- to optimal retrieval performance, the proposed external perfect
hashing scheme has several other advantages over other traditional hashing
schemes. In view of the differences between the various hashing schemes, it is
difficult to make a strict comparison of the costs involved. The main costs asso-
ciated with the external perfect hashing scheme are for insertions and internal
memory for storing the header table. We compare the new scheme with a
method called “External Hashing with Limited Internal Storage” (denoted by
Eh-LIST) [GL82,LK84], which also guarantees single access retrieval. The inser-
tion costs are also compared with those of double hashing under the uniform
hashing model [LR83].

Load Double -External perfect hashing External hashing with

factor hashing limited internal storage
percent || accesses || hash ads | accesses | memory tmax || 2ccesses | memory | sepr

60 .099 80 .065 20 kb 20 226 83 kb 4

30 .055 24 kb 10 193 125 kb 6

70 - 243 95 125 40 kb 20 .552 71 kb 4

40 129 55 kb 10 467 107 kb 6

80 913 125 .255 90 kb 20 1.344 62 kb 4

40 .259 120 kb 10 1.079 94 kb 6

"Table 8.1.1 Comparison of hashing schemes for b = 10.

Load Double External perfect hashing External hashing with
factor hashing limited internal storage
percent || accesses || hash ads | accesses | memory | f.x || accesses | memory | sepr
76.5 .042 . - - - - .128 13 kb 4

35 016 4.2 kb 5 .090 19.6 kb 6
80 081 270 .030 4.2 kb 20 242 12.5 kb 4
100 .030 5.4 kb 10 137 188 kb 6
85 .192 300 .061 8.4 kb 20 582 11.8 kb 4
107 .065 140 kb 10 .408 17.6 kb 6

Table 8.1.2 Comparison of hashing schemes for b = 50.

Table 8.1.1 summarizes the cost of the three hashing schemes for a file of
one million records and page size 10. Table 8.1.2 corresponds to a page size of
50. The tables show the average cost per insertion and amount of internal
memory required, if any. Under any file organization scheme a minimum of two
disk accesses are required for insertions: one read access followed by one write
access. The I/O cost of insertions given under the heading “accesses” represents
the average number of extra read/write accesses required for insertion, that is,
accesses above the minimum 2.0. Insertion in double hashing involves an unsuc-
cessful search, followed by a write access, and hence the number of accesses were
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computed using the formulae given in [LR83] for the expected length of an
unsuccessful search.

For the external perfect hashing scheme, the column labeled “hash ads”
represents the expected number of hash address evaluations per insertion. This
depends on t,,,., When an insertion does not cause rehashing, only two disk
accesses are required. When an insertion does cause rehashing, three accesses are
required: initial reading of a single page, then reading the whole group, followed
by writing the whole group. This is under the assumption that enough internal
buffer space is available to accommodate all the records of the group. We also
assume that the cost of accessing a whole group of contiguous pages is roughly
the same as that of accessing a single paget. If less buffer space is available, the
I/O cost will be correspondingly higher. “memory” represents the internal
storage space required for.the header table when organized as a hash table. If
the header table is organized as a B-tree the amount of memory required will be
higher. The perfect hashing functions are assumed to be stored in a separate
table and header table entries have indices to the perfect hashing functions.
Each entry of the header table is assumed to be 5 bytes long when b = 10
(3+1+1 bytes for < p,, m;, R, >) and 4 bytes long when b = 50. The size of the
table which stores the randomly generated parameters of the perfect hashing
functions is fixed at 1 kilobytes. The table lists two sets of values at each load
factor corresponding to two different values of ¢,,,..

For Eh-LIST “sepr” represents separator length in number of bits per page.
The expected number of extra accesses per insertion was computed using the
results in [GL82]. For each load factor, there are two sets of values correspond-
ing to separator lengths of 4 and 6 bits.

It is surprising that the expected I/O cost for the external perfect hashing
scheme is less than that for double hashing. At higher load factors, the number
of extra accesses per insertion for the external perfect hashing scheme is about
one third of that for double hashing.

Eb-LIST is a good candidate for comparison with the external perfect hash-
ing scheme. Both guarantee single access retrieval and both have internal,
memory requirements in addition to increased insertion costs. We observe from
the tables that the external perfect hashing scheme outperforms Eh-LIST for the
range of load factors and page sizes covered. Under Eh-LIST, for a given separa-
tor length, the total amount of internal memory required is almost independent
of the load factor. For the external perfect hashing scheme, the amount of inter-
nal memory required is very sensitive to the load factor. We observe that the
expected number of extra accesses per insertion for Eh-LIST is 4 to 8 times that
for the external perfect hashing scheme, over the range of load factors and page
sizes considered. At high load factors, the internal memory required is roughly
the same for both schemes, but at lower load factors the external perfect hashing
scheme needs much less memory (a factor of 4-5).

1 This is not entirely true, of course. -The relative cost of accessing a group and a single page,
depends on the characteristics of the secondary storage medium, the group size, and the size of indi-
vidual records. Later in this section, we discuss the relative costs with reference to disks.
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There are a number of assumptions involved in this comparison. The main
assumption is regarding the relative cost of accessing a group and a single page.
When the external medium is a disk, the cost measure is the total delay involved
in reading or writing (seek time -+ rotational latency + transfer time). For the
sake of simplicity let us assume that the access time for a group is approximately
twice the access time of a single paget. If the cost of accessing a single page is
unity, then the I/O cost of rehashing is 5 units: 1 unit for initial reading of a sin-
gle page, 2 units for reading the entire group, and 2 units for writing back the
whole group after redistributing the records. That is, the extra accesses required
is 5 — 2 = 3. This implies that, the number of extra accesses for the external
perfect hashing scheme given in column 4 of tables 8.1.1 and 8.1.2 should be mul-
tiplied by 3. For example, when the page size is 10 and the load factor is 70%,
the number of extra accesses required for double hashing is 0.243 per insertion.
External perfect hashing needs time corresponding to 0.125 * 3.0 = 0.375 extra
. accesses per insertion, which is less than the 0.552 required for Eh-LIST. When
the page size is 50, at 80% load factor double hashing needs 0.081 extra accesses
per insertion. Eh-LIST needs 0.242 extra accesses per insertion, much higher
than 0.030 * 3 = 0.090 required for external perfect hashing. Thus, the main
conclusions drawn from tables 8.1.1 and 8.1.2 regarding the relative I/O costs of
Eh-LIST and external perfect hashing do not change. However, the I/O cost of
double hashing is now slightly less than that of external perfect hashing.

Using the external perfect hashing scheme, a file of one million records can
be stored at a load factor of 80% using about 6 kilobytes of internal memory,
when the page size is 50. An average insertion involves about 100 hash address
evaluations and 2.03 disk accesses. Only 3% of the insertions require temporary
buffer space for about 900 records. The same file requires 19 kilobytes of inter-
nal memory if stored under Eb-LIST with 6 bit separators, and the expected cost
of an insertion is 2.137 accesses.

When the header table is organized as a B-tree, the internal storage
requirement of the external perfect hashing scheme will be higher (the entries in
column 5 of tables 8.1.1 and 8.1.2 need to be multiplied by a factor of 2,
roughly). The resulting organization is completely dynamic and permits efficient
range searching.

+ For the range of group sizes we are dealing with this is not unrealistic. If the average access
time of the disk is 30 milliseconds and the transfer rate is 3 kilobytes per millisecond, one disk access
corresponds to transferring 90 kilobytes. A group having 500 records, each-record being 360 bytes
long, can be accessed in 2 * 30 milliseconds. ‘
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8.2. Contributions of the thesis

This thesis represents the first attempt at applying perfect hashing to large
external files. The primary goal was to determine if and how large external files
could be organized using perfect hashing, and whether this would be practical.
The main contribution has been to show that perfect hashing is indeed practical
for organizing large external files. Also, the proposed external perfect hashing
scheme is competitive with other hashing schemes.

: The recurrence relation for computing P(n,m,b) was of crucial importance
for this thesis. Davis and Barton [DB62, BD59] clearly state that there is no
closed form expression for P(n, m, b) simpler than the one given by (3.2). This
expression is not useful for computational purposes and we have not found any
reference to better algorithms. The algorithm given in chapter 3 to compute
P(n, m, b) is simple and requires only a few seconds of CPU time for the range
of m and b we are interested in. For larger values of m and b, we derived an
approximation for P(n, m,b). The computation of P(n, m, b) is required in
other areas of computational probability theory. An example is the Table Suffi-
ciency Index computations in [NY85], where Norton and Yeager were able to
obtain only approximate values of P(n, m, b) using a complicated procedure.

, We could not prove the existence of a perfect hashing function within the

class H,, for a given set of keys. In view of this, the idea of limiting the cost of
finding perfect hashing functions in chapter 4 is especially important. We have
analyzed one particular optimality criterion, but the approach is general and can
be applied to other criteria as well. This technique of limiting the cost may also
be applied to other probabilistic procedurest.

Chapter 6 completes the answer to one of the main questions posed in
chapter 2: How to find perfect hashing functions? The results of the experi-
ments presented indicate that the relative frequency of perfect hashing functions
within the class H, is the same as that predicted by the analysis in chapter 3.
This implies that the performance characteristics of the external perfect hashing
scheme as presented in chapter 5 can be attained in practice. Although there are
good reasons for choosing the class H,, many questions regarding perfect hashing
functions remain open.

The results of the comparison of various hashing schemes, presented in the
previous section of this chapter, are surprising. The proposed external perfect
hashing scheme is not only practical but it can also compete with other hashing
schemes. In short, the main contribution of the thesis is to show that perfect

hashing is a practical and competitive technique for organizing large external
files. '

+ A real life example: How should a student with limited funds, distribute applications among
graduate schools of various quality? The aim is of course to get into the best possible school.
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8.3. Directions for future work and open problems

In this final section we discuss various open problems and plans for future
research.

1. Implementation

We have not made a complete implementation of the external perfect hash-
ing scheme. All the results of the performance analysis in chapter 5 depend
solely on the values of P(n, m, b). The results of the experiments discussed in
chapter 6 show that the performance of the suggested class of hashing functions
is the same as predicted by the analysis of P(n, m, b) in chapter 3. In addition,
we have proposed solutions to several other implementation problems. However,
a full implementation of the proposed external perfect hashing scheme has not
been done and is left as future work. Both Eh-LIST and the external perfect
hashing scheme should be implemented in order to compare their relative perfor-
.mance and difficulty of implementation.

2. Rehashing policies

In chapter 4 we discussed the main implications of a rehashing policy. We
chose to define an optimal rehashing policy which minimizes the expected number
of pages while limiting the cost of rehashing. It is possible to define other
optimality criteria and study the performance under the policies so obtained.
However, it seems that unless the optimality criterion is extremely simple, some
form of heuristic to compute the optimal policy will be necessary in practice.

Intuitively, it appears that the size of the policy-table (discussed in chapter
7) could be reduced further. It would be interesting to study the result of a dras-
tic reduction in the size of this table. For example, consider the following policy
of distributing the trials: make 50% of the trials with |[E(m)] pages, 40% of the
trials with |E(m) + 1] pages and the rest with |E(m) + (5 — b/10)] pages,
where E(m) is the expected number of pages under the optimal rehashing policy
obtained from the E'm-table.

3. Classes of hashing functions

We have experimentally shown that the relative frequency of perfect hash-
ing functions in the class H, is statistically the same as that predicted by the
theoretical analysis for the set of all functions. However, there are many open
questions regarding perfect hashing functions:

a)  Are there other classes of simple hashing functions which behave similarly?
What are the important characteristics of such a class of functions?

b) Is universal, a necessary and/or sufficient condition?

c) Given a set of keys, does a perfect hashing function always exist in the
class H;? Under what conditions? What effect has the load factor?

d)  What are the characteristics of the sets, if any exist, for which no perfect
hashing function exist in a given class?
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The results of Mairson may be applicable in this regard[MR83, MR84].

4. Other methods of finding perfect hashing functions

We proposed finding perfect hashing functions by a trial-and-error method.
Other methods could be investigated. Previously known methods of finding
direct perfect hashing functions for small static sets have a complexity of at least
O(n®). For group sizes in the range of a few hundred records, 10 to 20 trials for
finding a perfect hashing function corresponds to a complexity of O(n log n).
Hence, any new method will have to be very efficient to compete with the trial-
and-error method. (All known methods for small static sets involve sorting the
elements first.)

5. Deletions

We have not analyzed deletions under the external perfect hashing scheme.
The only adverse effect of deletions is a reduction in the storage utilization for
the group involved. As a positive effect, deletions reduce the probability of an
insertion causing a rehash. Whenever a group is rehashed, the effects of any pre-
vious deletions vanish. If there is a large number of deletions without a
corresponding number of insertions into a group, to maintain the storage utiliza-
tion the group should be rehashed. In this rehashing process, trials need be made
only with fewer pages than the current number of pages in the group. The main
decision to be made is when to rehash a group. Optimal rehashing policies for
deletions could possibly be defined and analyzed in the same way as was done for
insertions in chapter 4.

8. Memory management

As blocks of pages are allocated and deallocated for various groups, frag-
mentation of secondary storage will occur. Memory management in this case is
much simpler than the traditional problem. This is because groups can easily be
relocated to reclaim fragmented memory space. Relocation of a group requires a
~ single read access to the disk followed by a single write access, provided that
enough buffer space is available to store all the records of the group. Further
details of memory management need to be worked out and analyzed.

7. Conversion of key strings to integers

In practice, keys are often strings of alphanumeric characters. Before
applying a hashing function to such a key, it is necessary to convert it into an
integer. The goal is to always convert distinct keys into distinct integers. In
chapter 6 we described an improved method of conversion, RADIX-Convert.
However, in comparison with an ideal conversion function, there is still much
room for improvement.

8. Improving the solution to the optimization problem

It is clear that the procedure presented in chapter 4 for solving the optimi-
zation problem is satisfactory for our purpose. However, we have some sugges-
tions for obtaining better solutions (closer to the true optimal solution).
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The proposed heuristic retains the best depth states < 7, h; > for each 7.
This may be modified by giving some consideration to the values of h; in the
retained states. The solution vector obtained using the heuristic solution pro-
cedure is not far from the true optimal solution. Exhaustive search may be car-
ried out locally, near the heuristic solution obtained. The local search may be
guided by treating the objective function as a continuous function of t;’s and
moving in the direction of steepest descent. The search space may be further
reduced by the following observation. Suppose (t;, 25, ..., tp, ..., ¢ ) is an
approximate solution where t,, corresponds to trials with E(m) pages (E(m) is
the resulting expected number of pages in the group). In the local exhaustive
search process, if we increased the value of one ¢;, 1 <t < m, by 1 then reduc-
ing the value of ¢;, r > 5 > m, by 1 will not likely help because the solution may
become infeasible. So j has to be chosen such that 1 < 57 < m.

9..Size of tl}e H-table

In section 7.3 we suggested the use of the H-table, which stores the param-
eters of the hashing functions in use. Each header table entry stores a pointer to
the H-table, and not the complete parameter set of the perfect hashing function
for the group. This organization saves space because each function stored may
be used by several groups. Suppose ?.,, is in the range of 10 to 20. Then at
most 10 to 20 hashing functions are tried each time a new perfect hashing func-
tion is required. How many different hashing functions need be stored in the
H-table? t_. is a lower bound and the header table size is the upper bound.
What is the effect of reducing the size of the H-table below the upper limit?

It’s not difficult being perfect...
Because, somebody has done it.
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Appendix A

In chapter 4 we presented a typical optimization problem encountered
when determining a rehashing policy. In this appendix we outline a few steps of
the heuristic solution procedure for that problem. The problem is to determine

(ty, ta, . . ., ty) so as to minimize f,;, where
Fi=9(1—1.07) 4+ 10410 % (1 — 09957 + - -- (4.17)
+17%1.07 %0995+ - - %0.070°® |

subject to the constraints
ti+tad -0+ tg=10 (4.18)
Oty + 52ty + - - - + 32797ty > 46052 . (4.19)
All the constants of the problem are given in table 4.4.1 on page 52.

Solution

The solution procedure uses depth = 3. The computation starts at stage 9
(the last stage) and proceeds backwards to stage 1. A table of f,*is constructed
as follows (trivial): '

fr*(T7 hl) = my
fgt(tg, 32797 % tg) = 17

<7, h> Iy ty"
=20, 0> 17.0 0
<1, 32797> 17.0 1
<2, 65594> 17.0 2
<10, 327970> 170 10

Table A.1

The computation proceeds with stages 8,7, - --,4. At stage 4 the final
table retained for use in stage 3 is as follows:
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<, h> e iy
<1,8629> | 14688 | 0
<6,37956> | 12.389 | 3
<6,33350> | 12342 | 4
<6,28744> | 12359 | 5
<7,37373> | 12229 | 5
<7,32767> | 12240 | 6
<7,38323> | 12244 | 6

Table A.2

The computations at the next stage, stage 3, are discussed in greater detail
below. The general equations are

e i . t
Jir b+ ait;, )= (my + 7 = 1)(1 — ¢; °)
¢
+ ;' [t =t hy), 0< 7 <tpa
%7, by + a;t;) = o_é'f?f%f Jil7, by + a;t;, t5) .

Substituting the appropriate values for the constants, we obtain
fa(7 by +1046t3,t5) = 11(1-—-0.9t3) + 0.9"% fi(r —ta, b)), 0<7 <10,
fa'(7, by + 1046t5) = min fo7, by + 10464, t5) .

0t <r
In particular, consider the computations for the states of the form <9, ﬁ,>, ie.,
the states with 7 = 9. For each value of t;, 0 < ;< 9, it is only necessary to
evaluate f; for depth number of different states. One value of

fa(9, by + 10465, t3) is evaluated for each of the depth best values of
f4(8 — ts, by) in table A.2. For example, with ¢; = 3, f is evaluated as follows:

£3(9, hy + 3138, 3) = 11 * .2695 + 7305 + £ 6, h;)
Using f4%(6, 33350) = 12.342 from table A.2 we obtain
f3a(9, 36488, 3) = 11.9803 .

The values of f3(9, h; + 1046t t;) are tabulated in table A.3. There are 3
entries for each value of t3, 0 <3< 9.
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t3 7, hl -+ 1046t3 f3 <7 — t3, hl> H f4*(T — t3, h[)

0 <9, 77661 > 13.002 <9, 77661> : 13.002

3 <9, 36488 > 11.9803 <6, 33350> :12.342

3 <9, 31882> 11.9927 <6, 28744> :12.359

3 <9, 41094> 12.0146 <6, 37956> : 12.389

4 <9’ s e > PR ...

4 <9, -+ >

4 <9, - >

9 <9, 9414> | 13.339 <0,0> :17.0

Table A.3
The best 3 (depth) values of f; from table A.3 are retained in table A4,

corresponding to states of the form <9, :-- >. Tables similar to A.3 are com-

puted, one for each value of 7 from 1 to 10. The final table of f;* for stage 3 is
as follows:

<7, > /s ;'

<9, 33511> | 11.995
<9, 39565> | 11.997
<9, 36488> | 11.981
<10, 49128> | 11.915
<10, 52105> | 11.922
<10, 53734> | 11.934

W W ] W N

Table A.4
Finally, the table of f,* computed for the first stage is as follows:

7, h Ay ¢

<10, 49128> | 11.915 0
<10, 52105> | 11.922 0
<10, 53734> | 11.934 0

Table A.5

The minimum value of f; is 11.915. The optimal rehashing policy is
obtained by tracing back the ¢;* values corresponding to the final optimum value
chosen. Alternatively, partial policies of the form (t;%, ¢t;,,*, . .., ty") could be
stored for each state in the table of f;* at stage :. The optimal rehashing policy
for the above problem is (0, 0, 4, 4, 1, 0, 1, 0, 0).
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Appendix B

In this appendix we give the policy-tables and EFm-tables for a few different
page sizes and values of ¢, Section 7.1.1 described a heuristic procedure to
determine rehashing policies using the E'm-table and the policy-table for the
given page size.

Number of keys, n | Expected number of pages, E(m)
t e = 10 t e = 20
28 3.15 3.02
31 4.03 4.02
35 4.13 403
40 5.05 497
44 5.46 5.15
50 6.36 6.11
75 10.41 9.74
100 14.40 13.63
150 23.33 21.97
200 33.00 30.96
250 41.87 40.14

Table B.1 Em-table for b = 10, ¢, = 10, 20
(expected number of pages in a group).

Number of | E(m)—1 | E(m) | E(m)+1 | E(m)+2 | E(m)+3 | my—1 | m,
of keys (n )

30 0.0 08 0.1 0.1 0.0 0.0 0.0

70 0.0 0.6 0.3 0.0 0.0 0.1 0.0

100 0.0 0.4 0.3 0.1 0.0 0.2 0.0

130 0.0 0.2 04 0.2 0.0 0.1 0.1

150 0.0 0.2 0.3 0.1 0.2 0.0 0.2

180 0.0 0.0 0.2 03 0.2 0.0 0.3

250 0.0 0.0 0.0 0.0 0.0 0.5 0.5

Table B.2 Policy-table for b = 10.
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Number of keys, n | Expected number of pages, E(m)
t =10 t o= 20

110 4.10 4.02

135 5.10 5.04

160 6.23 6.07

200 8.12 8.02

250 10.26 10.05

300 12.51 12.16

400 17.15 16.61

500 21.84 21.21

600 26.60 25.89

700 31.43 30.64

750 33.89 33.04

1000 46.19 45.04

Table B.3 Em-table for b = 30, ¢t ., = 10, 20
(expected number of pages in a group).
Number of | E(m)—1 | E(m) | E(m)+1 | E(m)+2 | E(m)+3 | my—1 | m,
of keys (n) '

110 0.0 08 0.2 0.0 0.0 0.0 0.0
300 0.0 0.8 0.1 0.1 0.0 0.0 0.0
450 0.0 0.7 0.2 0.1 0.0 0.0 0.0
550 - 0.0 0.6 0.3 0.1 0.0 .0 0.0
650 0.0 0.6 0.1 0.1 0.1 0.0 0.0
1000 0.0 0.5 0.1 0.2 0.2 0.0 0.0

Table B.4 Policy-table for b = 30.
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Number of keys, 7 | Expected number of pages, E(m)
tmax = 10 tmax = 20
240 5.79 5.57
270 6.11 6.03
290 7.01 6.93
330 7.93 7.73
354 8.2 8.06
400 9.38 9.12
450 10.75 10.39
500 12.05 11.76
650 15.87 15.40
800 19.80 19.27
950 23.80 23.17
1100 27.83 27.09
1250 31.91 31.06
2000 60.0 58.0
Table B.5 Em-table for b = 50, t,, = 10, 20
(expected number of pages in a group).
Number of | E(m)~1 | E(m) | E(m)+1 | E(m)+2 | E(m)+3 | my—1 | m,
of keys (n)
240 0.0 0.8 0.2 0.0 0.0 0.0 0.0
500 0.0 0.8 0.1 0.1 0.0 0.0 0.0
900 0.0 0.8 0.1 0.0 0.1 0.0 0.0
1100 0.0 0.7 0.1 0.1 0.1 0.0 0.0
2000 0.0 0.6 0.1 0.2 0.1 0.0 0.0

Table B.8 Policy-table for b = 50.
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