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ABSTRACT

We describe a planning program called ‘“Madame,” which is
based on D.H.D. Warren’s WARPLAN modified to use Kowalski’s
representation for dynamic worlds. The modified WARPLAN uses a
network data structure, called the “spider,” to store goal states gen-
erated during the planners use. The spider is retained over multiple
invocations of Madame, and is used to provide possible subplans for
subsequent planning requests.

Experimental results are presented which show that the spider
gives improvement in terms of the time required to produce plans for
a collection of randomly generated queries. We also study the use-
fulness of the spider as it increases in size.

We discuss the spider, the implementation that uses it, and vari-
ous heuristic strategies for retaining and using subplans stored in the
spider.
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Introduction

WARPLAN (Warren 1974) is a goal-directed planner implemented in Prolog.
It uses a STRIPS-like (Nilsson 1980) representation of state change operations. For
example, the operation of removing a file in a single-user UNIX environment
might be represented as:

add( not-exist( File ), rm( File ) );
del( exist( File ), rm( File ) );
can( rm( File ), exist( File ) & write-permission( File ) );

This example uses the original syntax of WARPLAN; the binary relations “add,”
“del,” and ‘““can” correspond to the add, delete, and precondition lists of STRIPS.
If given an initial state description and a collection of operations like the above,
WARPLAN will accept a partial description of a hypothetical state and attempt to
generate a sequence of operations that will transform the initial state into the
hypothetical one. For example, given an initial state

exist(filel), exist(file2), ..., write-permission(filel), ...

that describes the properties of a set of files, one might like to generate a plan to
achieve a state in which “filel” no longer existed. The above rule can be used to
deduce that such a state follows by applying the operation “rm(filel)” in the initial
state.

This approach to automatic planning has provided a basis for several elabora-
tions (e.g., see Nilsson 1980), and has also demonstrated the necessity for more
highly structured problem-solving programs (e.g., Sacerdoti 1979).

Selecting a planning strategy for ISH

Madame is intended for use as the planning component of the University of
Waterloo Intelligent Shell (ISH). ISH seeks to provide a replacement command
interpreter for UNIX. It has been designed to augment the normal notion of com-
mand shell with an ability to answer questions about how to accomplish a desired
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state (cf. Wilensky et al. 1984). Such an ability requires a planner that can deter-
mine what sequence of applicable actions will accomplish the desired state.

The primary motivation for ISH is to investigate the description of realistic
dynamic worlds using logic. For example, although ISH has a “natural” language
front-end (Malito 1984), it is not nearly as sophisticated as UC. However, it’s
axiomatization of UNIX file commands is quite sophisticated.

For several reasons not reported here (see Pakalns 1984), the above STRIPS-
like representation is too simple for the UNIX domain. Kowalski’s representation
for dynamic worlds (Kowalski 1979) is more general, and was adopted for ISH.
This representation uses a meta predicate “holds” that is a binary relation on asser-
tions and states. For example, the assertion

holds( exist(filel), statel )

represents the fact that ““filel” exists in “statel.” The description of the above
remove operation becomes

possible( result( rm( File ), State ) ) <-
possible( State )
holds( exist( File ), State )
holds( write-permission( File ), State );

which can be read as “If one has write permission for a file and that file exists,
then the ‘rm’ action can be applied.” One advantage of such a representation
include a succinct expression of frame axioms (via assertions related to the “possi-
ble” relation) which are implicit in the STRIPS-like strategy (see Kowalski 1979,
ch. 6).

The WARPLAN program modified to use Kowalski’s representation provides
a strong planning foundation but its naive use (e.g., to generate a plan by always
beginning at the initial state) is prone to gross inefficiency. To combat this ineffi-
ciency, the spider data structure was implemented as a kind of “lemma repository.”
An improvement in the efficiency of plan generation can be had, at least in theory,
by retaining the plans (named states) derived for previous requests and using them
as building blocks in subsequent requests.

As the logical foundation shows, plans and state names are synonomous. One
can view a plan as the result of a constructive proof of a query

holds( List-of-goals, Plan-to-achieve-state )

where ‘Plan-to-achieve-state” is an existential variable. The proof constructs a
state in which the goals hold. Abstractly, assertions about the saved states are used
as lemmas for complex derivations; in planning terms, plans are retained and an
attempt is made to use retained plans as subplans of future plan requests.

One way of viewing the use of these saved plans is to adopt the naive view and
consider initiating the plan search from an alternate ‘“start state.” In other words,
one might try and begin the search for the appropriate sequence of actions from
another state (other than the start state) that was assumed to be on the path of
states to the desired state. If the planner uses a backward search, it could
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terminate when one of the alternative start states is reached. Madame has been
designed to work with multiple start states. It is a backward (or goal-directed)
planner that takes a specification of what properties are desired and, based on
these, selects a start state.

Acquisition and Retention of Multiple Start States

There are two major issues with having multiple start states: acquisition and
retention. Acquisition begs the question of how to obtain these extra start states.
Retention involves storing the extra start states in such a way that they are easily
accessible. For computational efficiency, ease of addition and deletion of start
states is also desirable.

When a plan is generated, it uniquely defines a goal state. This goal state may
then be used as a state from which further planning can be pursued. That is, the
plan used to reach one state might also serve as the initial portion of a larger plan.
For example, in fig. 1, plan P1 transforms the start state into the goal state G1.

Start P1 P2

Figure 1 Using G1 as the Start State

If a plan between the start state and a new goal state G2 is required, it may be pos-
sible to use G1 as the start state. If G1 is used, P2 is a plan which transforms G1
into G2. A plan between the start state and G2 can now be generated by append-
ing P2 to P1. In other words, G1 is a goal state that was subsequently used as a
start state.

In general, the goal states from previously generated plans are retained as
shown in the above example. The retention problem has been further divided into
three sub-problems: storage, addition, and deletion of start states. Start states are
stored in the spider data structure; implementation details are provided elsewhere
(Trudel 1984). A spider is a directed tree with the original start state as its root.
Arcs represent previously generated plans; nodes represent goal states associated
with these plans. Each node in the spider including the root is called a pseudo start
state (p-s-s). For example, fig. 2a represents a spider with only one initial start
state. Assuming that a goal request G1 produces a plan P1, the resulting spider is
given in fig. 2b. An edge has been added that represents the actions in plan P1,
and a p-s-s representing G1 is added. A subsequent goal request G2, and
corresponding plan P2 might result in the spider shown in fig. 1. Now a plan
between the original start state and G2 can be built, by appending the actions in P2



Figure 2a Initial Spider

Start P1

Figure 2b G1 is Added

to the actions in P1. This spider can now be saved for future use. Upon subsequent
uses of Madame, the spider will contain three p-s-s’s instead of only one.

Any p-s-s can be used as the start state. If a plan exists between one of the
p-s-s’s and a goal state, then a plan between the root and that goal state can be
constructed. For example, assume a plan has been found which transforms p-s-s 4
into the Goal State; this is shown in fig. 3a. This Goal State with the newly gen-
erated plan is then added to the spider. A plan which transforms the Start State
into the Goal State can now be easily constructed. It is built by appending the
actions which are represented by the edges in the unique path between the Start
State and the Goal State. This path is represented by the dashed lines in fig. 3b.

When Madame is given a goal state description to achieve, the spider is
checked to see if the goal state corresponds to one of the p-s-s’s. If so, no planning
is required. The required plan is built by concatenating the sub-plans represented
by the edges on the unique path between the start state and the p-s-s corresponding
to the goal state. For example, assume we have a spider represented by fig. 4a and
the goal state is equal to p-s-s 3. If a check was not made to see if the goal state is
the same as one of the p-s-s’s, then p-s-s 1 might be used for planning. An edge
linking p-s-s 1 to p-s-s 3 is added to the spider; the resulting spider (which is not a
tree) is shown in fig. 4b. Therefore, the initial check to see if the goal state equals
one of the p-s-s’s, guarantees that when a new p-s-s is added to the spider, it will
have exactly one parent.
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Figure 3a Plan between p-s-s 4 and the Goal State

Using the spider

Fig. 5 shows Madame’s major components. The first component will find the
p-s-s which is “closest” to the goal state described by the query. The method used
to find the closest p-s-s is described below. The query and the closest p-s-s are then
passed to the goal-directed planner. If an appropriate plan is found, the spider is
updated with the new plan. After the spider has been updated, the plan is for-
warded to the user. The user now has a plan which transforms the start state into
the required goal state. All the plans returned to the user are relative to the start
state.

The user now has two options: (1) he can pose another query to Madame, or
(2) he can terminate Madame. If the user chooses termination, Madame will save
the spider. Madame will automatically restore the spider upon the next invocation.

Selecting the closest p-s-s

One of the p-s-s’s in the spider must be chosen as the start state for the plan-
ning component. Ideally, the p-s-s which is closest to the goal state should be
chosen. Assume that the goal state is described by a list of goals LG. Madame
measures closeness in terms of the number of goals in LG which do not hold in the



Figure 3b Plan between Start State and Goal State

p-s-s. The lower the number, the higher the ‘“closeness.” Note that the test of
whether goals hold in a p-s-s uses only matching, not general deduction. This
ensures that the selection is computable. In otherwords, the selection of the closest
p-s-s depends on a STRIPS-like specification of worlds in which only those relations
explicitly changed by actions are recorded.

To find the closest p-s-s, Madame must examine each p-s-s in the spider. A
depth-first traversal of the spider is done. Any type of tree traversal algorithm is
sufficient, as long as it is guaranteed to visit every node in the spider.

As each p-s-s in the spider is visited, its distance from the goal state is calcu-
lated. If a p-s-s is very close to the goal state (i.e. a short distance away), a large
number of goals in LG will hold in the p-s-s. With the closest p-s-s, the planner
will only have to work on the goals which do not hold in the p-s-s.

If the distance between the p-s-s and the goal state is zero (i.e. all the goals
hold in the p-s-s), then the p-s-s is equal to the goal state. Traversal of the spider
is terminated because it is impossible to find a closer p-s-s. If the p-s-s does not
equal the goal state, the spider traversal is continued.



Figure 4a Initial Spider

Figure 4b Illegal Spider
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Figure 5 The Components of Madame

If a tie occurs between two p-s-s’s, Madame will pick the one which is closest
to the root (the start state). This will be the p-s-s with the least number of actions
in the plan between itself and the root. This choice of p-s-s will hopefully minimize
the number of steps in the eventual plan between the root and the goal state.

It is possible that, after traversing the spider, none of the goals in LG held in
any of the p-s-s’s. This results in a global tie, with all the p-s-s’s equidistant from
the goal state. The same rule that was used for breaking a tie between two p-s-s’s is
used; that is, the closest p-s-s to the root is chosen. This is a trivial problem, as the
closest p-s-s is the root. In this case, the spider does not aid the planner.

Problems with finding the closest p-s-s

The above method does not always succeed in finding the closest p-s-s. For
example, in the two blocks world states depicted in figs. 6a,b, the goal on(c a),
places both p-s-s’s at a distance of 1 from the goal state. The tie is broken by
choosing the root because the distance between the root and itself is zero. Madame
will choose the root as the closest p-s-s, but this is the wrong choice because p-s-s 1
is actually the closest: the number of blocks which must be moved to transform the
root into the goal state is three, while only one move is needed for p-s-s 1.
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Figure 6b P-s-s 1

Though the method used by Madame does not always find the correct closest
p-s-s, it was chosen for its simplicity and effectiveness. In most cases, our experi-
ments show that the correct p-s-s will be chosen.

Updating the Spider

After the planning component has extended the plan between the start state
and the closest p-s-s to the goal state, the goal state is added to the spider. There
are two possible parents for the newly added p-s-s: (1) the p-s-s closest to the goal
state, or (2) the start state. As the planner uses a regression strategy (cf. Nilsson
1980), it will sometimes insert actions in the plan which transforms the start state
into the closest p-s-s. If actions were inserted, then the start state will be the
parent. Otherwise, the closest p-s-s will be the parent of the newly added p-s-s.
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All newly generated plans are added to the spider. Currently, there is no
implemented policy for retiring or rejecting p-s-s’s. One possible criteria would be to
only accept a new p-s-s if the plan represented by the edge between the new p-s-s
and its parent contains n» or more actions. This would represent accepting new
p-s-s’s for which a lot of work had been expended to generate a plan.

Description of experiment

For the experiment, identical planning queries were passed to Madame and to
Madame’s planning component. The difference being that the former had the
benefit of the spider. The latter, Madame’s planning component, only had access
to the original start state.

Although Madame’s intended problem domain was UNIX, the blocks world
was chosen for experimentation. At this time, only a small portion of the UNIX
domain has been encoded.f The experimental problem domain used here is a five
blocks world with three table positions. The start state is shown in fig. 7. During
the experiment, total time was measured.

p q r

Figure 7 Start State

+ Test results from the UNIX domain can be found elsewhere (Trudel 1984).
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Input for the experiment consisted of sixty-one lists of goals, each list

represents a goal state. For example, the first list of goals was:
on(c,q) & on(e,b) & clear(e)

The number of goals in each list and the goals themselves were generated ran-
domly. It is possible that the queries could have been generated so that one
planner was favoured over the other, e.g., queries could be generated where the
closest p-s-s in the spider for each query would be the root (the start state). At the
other extreme, the same query could have been repeated sixty-one times. The
planner using the spider would produce a plan once while the other planner would
re-generate the same plan sixty-one times. The planner using the spider would be
the clear winner in this case.

Experimental results

The time taken to generate each goal state is shown in fig. 8a. The spikyness
of the graph is due to the fact that easy and difficult goal states are intermixed. To
remove the spikes, cumulative time versus number of goals is plotted in fig. 8b.
Fig. 8c is a plot of the difference between the two curves in fig. 8a. For each goal
state, the solid line is subtracted from the dashed line.f Madame is more efficient
whenever the curve is above the zero axis.

Experimental conclusions

Figs. 8b and 8c show that once the spider has grown to a certain size, Madame
becomes more efficient. At the beginning of the test, the overhead of keeping the
spider makes the planner less efficient. Eventually, the spider will attain a size
where the probability of finding a p-s-s which is closer to the goal state than the
start state is relatively high. The crossover point is marked with an "A" in both fig-
ures.

Madame as yet has no strategy for deleting p-s-s nodes. As the spider
becomes large, the time required to maintain and use the spider will diminish its
beneficial properties. This situation first occurs at point B in fig. 8c. But surpris-
ingly, the curve oscillates beyond point B. In this region, a point above the x-axis
means that a “good’ p-s-s was found, and a point below the x-axis means that time
was wasted searching and updating the spider. We speculate that the curve would
continue to oscillate if the experiment was continued beyond sixty-one goal states.
It was observed that there were 28 p-s-s’s in the spider after sixty-one queries.
Since the spider has grown slowly, it is reasonable to hypothesize that as more
queries are solved, the spider will remain small in proportion to the number of
queries solved. Also, as the spider grows, the probability that it will contain a p-s-s
near the goal state increases.

1 Graphs similar to fig. 8b can be found elsewhere (Trudel 1984). The experiments were performed in
the UNIX and blocks domain.
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Figure 8a Experimental Results

Comparison with previous work

One of the earliest attempts at saving plans for subsequent use, was STRIPS’

MACROPS or macro-operators (Fikes et al. 1972).

A MACRORP is a generalized

The MACRORP is stored in a data structure called a triangle

version of a plan. The generalization is obtained by replacing problem specific con-
The triangle table allows STRIPS to access any subsequence of the

stants with variables.

table.

Every time STRIPS must extend the plan it is working on,

MACROP efficiently.
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it will consider unique subsequences of the MACROPS in addition to the actions.
This approach quickly leads to an explosion of alternatives at each planning step.

Another problem with MACROPS is that “...even ‘useless’ operator
sequences, such as STACK(x,y) followed by UNSTACK(x,y), can become macro-
operators” (Minton 1985). This problem never arises with Madame because every
node in the spider describes a unique state.
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To avoid being swamped by the number of MACROPS, Minton (1985) added
heuristics to prune the number saved. He called his planner MORRIS. “Currently
MORRIS saves two types of macro-operators, s-macros and t-macros. S-macros, or
‘scripts’, are frequently used operator sequences. T-macros, or ‘tricks’, are operator
sequences for solving difficult problems.” (Minton 1985). A limit on the number
of s-macros is maintained; when this limit is exceeded, the least frequently used
macros are deleted. This strategy could also be applied to the spider to control its
growth. The maximum number of p-s-s’s can be determined with the aid of fig.
8c. Since we want the curve to remain above the x-axis, a point is chosen between
A and B. The size of the spider at this point, s-limit, will be the maximum number
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of p-s-s’s allowed. If the experiment were now performed with a different set of
goal states and only s-limit p-s-s’s were allowed in the spider, the behavior after
point B would probably never occur. Adding heuristics to control the number of
saved plans is more important for STRIPS due to the large number of MACR OPS
generated. Madame does not have this problem because it only stores the goal
states and not the intermediate states needed to achieve the goal state.

Another system that saves sequences of actions is SOAR/CHUNKING (Laird
et al. 1985). A “chunk” represents a sequence of actions. CHUNKING was
added to SOAR, which is a planner that “...can create goals to reason about any
aspect of its problem-solving behavior” (Laird et al. 85). For example, when
SOAR must choose one of possibly many applicable actions at some stage, it will
formulate the selection as a planning subproblem.

The CHUNKS are not restricted to being subsequences of the eventual plan.
The CHUNKS are created dynamically whenever a subgoal is successfully com-
pleted. As with MACROPS, appropriate constants are replaced with variables.

Although no data is presented in (Laird et al. 85), SOAR/CHUNKING will
probably face the same combinatorial explosion as STRIPS with MACROPS. We
therefore further speculate that both systems would exhibit behavior similar to fig.
8c. But, beyond point B, the curve would be negative and have a negative slope.

Concluding remarks

Madame sometimes produces a plan which is not optimal. For example,
assume the spider contains two p-s-s’s (the root and p-s-s 1) and the edge linking
the p-s-s’s represents a plan containing one hundred actions. Further assume that
the list of goals LG passed to Madame hold in p-s-s 1. Madame will therefore
return the plan linking the root, the start state, with p-s-s 1. But, it is possible that
a more efficient, perhaps optimal, plan could have been constructed by applying
fewer actions to the start state. This optimal plan would not have been considered
by Madame; plans that are found in the spider will be used before any other plan-
ning is done.

The spider obtains new p-s-s’s from plans which have been generated. Since
Madame uses the spider, it generates new plans from old plans. This means that as
the user asks for plans, they are recorded in the spider. As every user can have his
own spider, the spider crudely models a user’s history of interaction with the
planner. Note also that the generated plans are in the user’s language, i.e., por-
tions of the plan will already be familiar to him.

As the user asks for plans, the spider will grow larger because new p-s-s’s will
be added. This means that the spider will “know” more about the problem domain
and be more helpful in planning. Therefore, the spider learns about the problem
domain along with the user. The experimental results show that the growth of the
spider is not a major concern.
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