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ABSTRACT

Most videotex systems organize their information in a hierar-
chy, also called a tree. The tree is an inadequate structure, how-
ever, consequently several systems augment it with cross-links or
some form of keyword access. A considerable amount of research
has been doneon improvements and additions to the tree, but rela-
tively little work has been devoted to searching for and testing alter-
natives. Some basic criteria for the design of videotex structures
are discussed. Several existing structures and auxiliary access
methods are presented in light of these criteria.

To facilitate research in new structures, a system called Stred
was designed and implemented. Stred facilitates the design and
implementation of videotex structures and databases: a structure is
described with a structure program written in Stred’s command
definition language, and this program is interpretted in an environ-
ment provided by Stred. Stred, its command definition language,
and experiences with Stred, are described.

t This work was supported in part by grant G1154 from the Natural Sciences and Engineering
Council of Canada.
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1. The Videotex Structure Problem

Videotex presents its users with a library of information. It has the poten-
tial for rapid information perusal and retrieval by utilising the data processing
power of a computer. One of the major obstacles towards fulfilling this potential
is the human-machine interface. A powerful videotex system is not of much use
if it is so unwieldy that the user dreads a session.

The user interface includes more than the human-machine communication
protocol: it also includes the underlying organization of the information which the
human must understand to use the system effectively. I will call the information
organization the structure or access method (a more specific definition will be
given in section 2). The actual information contained will be called the data.

The structure chosen for a videotex system must facilitate access to the
data. To accommodate diverse user needs, the system should support more than
one form of access. In a traditional library the most common form of informa-
tion retrieval is direct search [Schabas, Tompa 83]: the user knows what he wants
and uses the library structure (e.g., the card catalogue) to find and retrieve the
data. We have several centuries of experience in designing libraries to suit this
activity, and these designs have been transported to computer systems. In
videotex, however, a common form of access is browsing [Godin, Saunders,
Gecsei 84] [Schabas, Tompa 83): either the user wanders through the information
looking for anything interesting, or else the user needs specific data but is not
sure exactly which data (but will recognise it when found). Direct search is also
important in videotex, but structures that suit direct searching do not necessarily
support browsing.

In addition to this problem of cross purposes, videotex imposes other con-
straints upon its structures. The implementation of a structure must be efficient.
The user quickly gets impatient if he sees nothing happening. This leads to a lack
of motivation to use the system [McCracken, Acksyn 84] [Newell 77].

The typical videotex display is small, limiting the amount of structure that
can be displayed (relative to its entirety) [Engel, Andriessen, Schmitz 83]
[Robertson, McCracken, Newell 79] [Schabas, Tompa 83]. This gives the user
either a very narrow view of the structure or else a wider but less detailed view.
This limitation is compounded by a restriction on the amount of new structural
information that the user can assimilate at one time {Schabas, Tompa 83]. Too
much information will swamp the user — overwhelm his perceptions — resulting
in the retention of relatively little information.

The physical storage medium of the data also imposes constraints. It costs
money to store information, and so the amount of information that can be stored
is limited. This implies that data duplication should be avoided whenever possible
[Hitchcock 81] [Tompa, Gecsei, Bochmann 81]. On the other hand, in some
instances, a structure may be easier to design, and the database easier to main-
tain, if duplication of data is allowed; without duplication, a cross-link mechan-
ism must be built into the structure.
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Videotex users span the continuum of computer literacy. The access
method must be easily usable by a naive user (even a child) and yet provide an
experienced, sophisticated user with sufficient power [Newell 77] [Rhein 83]. A
powerful system must hide any additional complexity from the naive user.

What structure should be used to provide access to data? The answer
depends upon the purpose for the structure, the users of the structure, and the
database itself to a limited degree. The intended use of the structure — the
amount of browsing versus direct search — may determine if the structure should
be navigational (see section 2.1) or not. The intended users may be unfamiliar
with the system or they may be experienced with the system (or at least with
computer systems in general); they may be one-time users, casual users, or fre-
quent users; they may have a mixture (in varying ratios) of these qualities (e.g.,
many experienced computer users accessing the system casually mixed with many
naive computer users who use the system frequently, with both groups being
experienced with the system itself). The complexity and power of the structure
provided must suit its users. The size and degree of generality of the database
may impose structural constraints (e.g., a very large, general database would
exclude a simple grid, described in section 3.4, as its structure).

The area of databases has been rich in research and development, but
mostly for direct search uses. This development has led to systems that can be
used effectively by both naive and sophisticated users, on both specific and gen-
eral data. The development of videotex, where browsing is a major use, has
increased the need for effectively browsable structures.

So far, most videotex systems (and other data browsing systems) have used
the tree (see section 3.1) as their structure, often with cross-links (see section
3.2). The tree, however, is not always a good structure for this purpose. Unfor-
tunately, relatively little work has been done to find a replacement. 1 have
developed a system, Stred, which is intended to be a system that allows its users
to design their own structures, and to implement these structures quickly and
easily. This encourages the design of novel structures, leading, it is hoped, to
some structures that are superior to the tree-based structures currently in use.

ZOG [McCracken, Ackscyn 84] [Newell 77] [Robertson, McCracken,
Newell 79], an information system developed at Carnegie-Mellon University, uses
network based structures. Each ZOG node, or frame in the ZOG vernacular, is
constructed independently of the structure. This means that for any restrictive
network, such as a tree, the restrictions are enforced only by convention (on the
part of the network constructor). Also, there is no means of conveying informa-
tion from one node to another. There are no state variables: variables which can
contain node-independent information, such as the experience level of the user.
It would be very difficult to implement a multiple context forest (of trees) in
ZOG because of this lack of state variables (which could be used to indicate the
current context).

The French CCETT Teletel/Star videotex system [Henriot, Yclon 79]
attaches a program to each node which can be used to control navigation (as well
as other actions). There are limited state variables (an array of boolean flags,
and stacks of page identifiers). This is more flexible than the ZOG system, but
once again structure is dependent upon convention: each page has a unique
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program, written by the information provider at the time of page creation. This
precludes the information provider from being a casual or naive user.

Stred is designed to be a system to implement a wide range of structures:
the information provider (not necessarily the person who designs the form of the
structure) does not need any intimate knowledge of Stred. The structural type is
enforced by Stred, and does not rely on a node by node convention on the part of
the information provider. Stred allows the application of conventional computer
science data structures to videotex facilities [Tompa, Gecsei, Bochmann 81]. A
Stred structure, therefore, can be seen as an example of a conventional abstract
data type [Linden 76].

A Kkey goal of Stred is personalization (see section 2.2). The guiding philo-
sophy is that any aspect of structuring, even the database itself, that could be per-
sonalized should be personalizable. The database user can make private altera-
tions to a public database, including the alteration of the data. A fluent user can
even make changes to the structure itself.

Another important goal of Stred is simplicity. The design and implementa-
tion of a structure should be as simple as possible; the expertise required by the
structure designer should be minimal. It is hoped that a typical user of the data-

base will be able to design a structure, or, at the least, to make modifications to
an existing structure.

Stred structures should be browsable, since they are for use in videotex sys-
tems. The spectrum of possible structures, however, is too broad to meet the
simplicity goal of Stred, so limitations must be imposed on the types of structures
Stred can create. These limitations manifest themselves as a generic model of
browsable structures within which Stred works. The model described in section
5.1 is a template for the accepted structures.

Aesthetic considerations were ignored in the design of Stred: the design and
implementation of structures is the goal; the particular user interface to operate
upon the structure is another problem. However, since any system must have an
interface, Stred is designed to be operable by another system whose function is to
beautify Stred output and input: to make Stred user-friendly [Fraser 79].

Section 2 will outline some design criteria for structures. These criteria
form the basis for the design of Stred. Sections 3 and 4 will look at some struc-
tures and access methods. These sections display the range of structures that
Stred should be able to handle. Section 5 will informally describe and discuss
Stred. The appendix contains a few examples of Stred structure definitions and a
formal Stred manual. A manual for a new version of Stred is also contained in
the appendix.
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2. Structural Issues

In this section I will discuss some characteristics of structures. First, how-
ever, it is necessary to define what a structure is.

A structure is an abstract data type. It is used to manage a collection of
variables, having types defined by the structure, via a set of functions which
manipulate these variables. One of the parameters to these functions (it may be
an implicit parameter) must be a variable of type database, which is the principal
type defined by the structure. Henceforth, any instance of a structure will be
called a database; the term structure will refer to the organizational schema used
to construct a database. A database can be described by some ordered list of
function invocations (although this list is not necessarily unique).

The functions which define a structure can be classified as either mainte-
nance functions or perusal functions. A maintenance function has the effect (or
side-effect) of changing the database in some way. A perusal function leaves the
database unaltered, although other variables may be changed.

2.1. Navigational Structures

Navigation through a database has been likened to a spaceship travelling
about the cosmos [Lochovsky, Tsichritzis 81]. Navigation is described as a “step-
wise approach to information retrieval” [Raymond 84]. This description appeals
to intuition, but is, strictly speaking, a rather broad definition: what kind of
access cannot be seen as navigational? Even a relational database (see section
3.6) can be considered navigational: access to desired data comes after a series
(possibly of length one) of increasingly refined queries, where each refinement
can be considered a step. I will refine the definition of navigational to make it
less all-inclusive.

A key requirement for a structure to be navigational is for the structure to
present to the user a concept of position. A position in a database is a value of a
special state variable which is used as a parameter for the structure’s functions.
All retrievable atoms of data (in the database) are then associated with some
position. In other words, the selection of data is equivalent to (accomplished by)
the positioning of the user within the database: the data that a user can retrieve is
determined by the user’s position.

A function which alters the value of the position variable is said to be a
traversal function. The set of possible positions in a database (under a naviga-
tional structure) are determined by the value of the database variable, and are
thus altered only by maintenance functions. The position values assigned by any
traversal function (under a given database) must be closed with respect to this
set. Also, the value assigned by a traversal function must only depend upon the
values of the position and database variables, and be independent of the values of
any other state variables. Let a route be a pair of positions, (source, destination),
such that there is some traversal function, under some database value, which will
change the position from source to destination. Given the set of all meaningful
positions in a database, we can then generate a set of routes for that database,
and this set can only be altered by a maintenance function (note that it is possible
for a maintenance function to alter the set of routes without altering the set of
positions). This invariance of the sets of positions and routes under a given value
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of the database variable helps to enforce the concept of a stable “landscape”
through which a “read only” user [Bochmann, Gecsei, Lin 82] can navigate.

A navigational structure is defined to be spatial if it appeals to the user’s
“intuitive notions of dimensions, distance, and nearness in the physical space”
[Godin, Saunders, Gecsei 84]. This means that the positions and routes of a
structure fit into some metric space, where distance can be related to number of
traversal function invocations. To appeal to a user’s intuition, however, the
number of dimensions of the metric space should be restricted to three or fewer,
since most users would have difficulty understanding a larger dimensional space.

Some structures may have subsets that are navigational, but include func-
tions that violate the navigational conditions. A structure is navigationally-based
if it contains a navigational subset and if all databases that could be created with
the structure could also be created with the navigational subset. Henceforth any

reference to a navigational structure will implicitly include navigationally-based
structures.

Navigation is an everyday experience. The user, therefore, will have a
ready, natural understanding of a navigational structure and will need to learn
only the system’s notation for already familiar operations — the user does not
have to learn new search strategies. A spatial structure increases the user’s abil-
ity to visualize position in a database and motion through it, and, importantly, to
remember places in the database [Engel, Andriessen, Schmitz 83] [Newell 77].
This helps prevent the user from becoming lost in the database (see below).

A navigational structure readily allows the exploration of new information
(browsing), especially if the structure is spatial [Engel, Andriessen, Schmitz 83]
[Godin, Saunders, Gecsei 84] [Schabas, Tompa 83]. The available navigational
routes from any position in a database provide the user with alternatives from
which to sclect. This is easier than having to construct a search strategy
creatively, provided that the number of alternatives is not too large. By restrict-
ing the alternatives for the next data selection, a navigational structure guides the
user through a database. New information can be found by exploring unfamiliar
routes. The user can apply experience and strategies from the real world —
exploring a new city or shopping mall — directly to the database.

One of the problems with exploring a navigational database, as with a new
city, is becoming lost [Godin, Saunders, Gecsei 84] [Newell 77] [Raymond 84]
[Viszlai 81]. This may be caused by a drastic shift in context [Godin, Saunders
Gecsei 84]. The user is suddenly removed from previous surroundings and may
have difficulty returning. Drastic context shifts, however, are indicative of a
strain on the spatiality of the database. In the real world it is not (usually) possi-
ble to find onesclf suddenly transported from one locality to another. In a data-
base this is very easy to arrange, either by accident or design, and the user may
not immediately recognise the shift since the new context may have a valid
interpretation in terms of the old context, and thus may not be recognised as
being new. User ignorance of the new context may preclude recognition. For
example, “Edberg”, “Willander”, and “Borg”, under the category “Swedish”,
might be construed to be cities by someone unfamiliar with the tennis scene. A
carefully constructed database may eliminate most of the potential for this
disorientation, but it is unlikely to eradicate the problem since what may seem to
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be a clear, natural shift in context for one user (or the database builder) may be
unfathomable to another because of different experiences and associations.

Finally, the limited output capabilities of videotex allows only a small sec-
tion of a navigational map to be shown at one time. There is little, if any, room
on the display for peripheral vision, by which the user can orient the current posi-
tion within the entirety of the structure [Godin, Saunders Gecsei 84] [Robertson,
McCracken, Newell 79]. This tunnel vision makes it more difficult for the user
to determine a context for any database position. This problem may be solved by
allowing the user to “zoom out” to get a broader, but less detailed, overview.

2.2. Personalization

To build any database the information provider must choose criteria by
which the data can be partitioned to conform to that structure. If the data is suf-
ficiently general, then the information provider must, at some point, make arbi-
trary structuring decisions which, although reasonable, will be confusing for at
least some users [Engel, Andriessen, Schmitz 83] [Godin, Saunders, Gecsei 84]
[Leclerc, Zucker, Leclerc 82] [Newell 77]. For example, consider the assign-
ment of keywords to a document, written for aspiring pilots, about the theory of
flight. The average pilot would prefer keywords such as “lift” and “drag”. A
pilot who has an engineering background, however, might prefer “fluid
dynamics” since the engineer would already be familiar with the subject under
that term. All reasonable keywords could be assigned, but this could easily result
in an excessive amount of keywords, and it also demands that the information
provider has the diverse knowledge necessary to determine all such reasonable
keywords. It is also possible that some users would prefer keywords that are
judged by the information provider to be unreasonable.

Not only the vocabulary, but also the preferred organization for a particular
user is dependent upon that user’s experience [Engel, Andriessen, Schmitz 83}
[Newell 77] [Rhein 83] [Schabas, Tompa 83]. A stranger to the information
(e.g., a student) is unlikely to organize information in the same way (under some
particular structure) as one familiar with the data would (e.g., a professor).
Organization may also depend upon the user’s goals and expectations [Newell 77]
[Robertson, McCracken, Newell 79] [Raymond, Canas, Tompa, Safayeni 86].
For example, a scientist is likely to prefer a different organization of European
history than would a literary scholar (even assuming they are equally well versed
in the other’s field of expertise). This type of organizational conflict has been
called the naming problem because it is often apparent when a user has to select
an item from a menu [Raymond, Tompa 86]. We must bear in mind that both a
user’s experience and goals will change over time [Rhein 83]. Thus, even for a
single user, one organization, or even one structure, may not be suitable forever.

A different structural problem arises when a user wants to add information
to a public database. For example, a user might want to include upcoming wed-
dings and other parties in the same locality as public entertainment (concerts,
shows, community events). A user might also want to integrate personal
knowledge with the data in the database. This does not necessarily involve a
change in the organization — a change in the content of one specific database
document may be sufficient.
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The ability to personalize a database will solve the above problems. This
personalizing must be implemented in such a way as not to change the public
database for other users. Ideally, the distinction between the public and private
elements of the database should be transparent to the user [Robertson,
McCracken, Newell 79]. This also allows a pleasant integration of a public data-
base with more personal services, such as electronic mail and forums (electronic
bulletin boards): these services can be added to the database as private additions
(electronic mail, for example, could be retrieved in the same way for all users,
but they only would get their own mail since the database addition to implement
mail would be a personal addition for each user).

2.3. Separation of Structure from Content

Many current videotex systems have their structural information embedded
within the content of the database. In Telidon, for example, the menu is an
integral part of the data {Godfrey, Chang 81]. A separation of the structural
information from the content, in navigational structures, has several advantages
[Leclerc, Zucker, Leclerc 82] [Raymond 84)].

Personalization of databases is much easier with structure/content separa-
tion. Modifications to the organization, including errors, cannot corrupt the con-
tent. Fewer storage resources are needed since only the organizational changes
must be noted: there is no need to copy and alter the content as well. Similarly,
a content update cannot damage the database’s organization.

Separation allows more flexible structures. The structural information is
more easily retrievable, and since it can be retrieved independently of the con-
tent, which can be very large in terms of machine resources, more structural
information can be held and manipulated by the system at one time. For exam-
ple, separation facilitates dynamic menu construction (see section 4.4 on multi-
menus) since the menu display sub-system is not bound by the content.

In some applications (structuring systems), separation implies that data
does not have to be modified to be incorporated into the system [Leclerc,
Zucker, Leclerc 82]. A flexible structuring system can have this property in gen-
eral. This allows the content to be created independently, thus eliminating the
need for special (to the videotex system) editors. This data can be updated by a
system non-specialist (i.e., a librarian is not needed to oversee content modifica-
tions).

Apparent content duplication is feasible in a separated system. In an
integrated system, putting the same content in two (or more) places in the data-
base requires duplication of the content. A separated system only requires extra
structural information, which is usually much smaller than content. When multi-
ple copies exist, there is the danger of inconsistent updating of that content. In a
separated system, separate copies can be implemented as multiple references to
the same content, thus reducing the update problem [Hitchcock 81].
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2.4. Structural Heterogeneity

A homogeneous structure is one that follows one structural schema
throughout.  Alternatively, it is possible to create a heterogeneous structure
wherein some parts follow one schema, and other parts follow another (see below
for an example), or, two or more structures can exist in parallel (see section 3.5
on multiple context trees and section 4 for examples).

A mixed structure (which is an example of a heterogeneous structure)
allows each subset of the information to be organized with a structure that is
most suited for that subset. For example, consider a database on manufacturing.
It may be fundamentally organized as a hierarchy (see section 3.1) with some
subtrees replaced by a structure better suited to the data. For example, a section
on automobile manufacturing could be organized as a grid (see section 3.4) with
dimensions recording manufacturer and type (e.g., [Ford, half-ton pickups],
[Toyota, compact]). This alternate structure may not be practical for the organi-
zation the entire database, but may work well with a subset.

Parallel structures can be used to provide scoping (i.e., zoom out — a
bird’s eye view of the database): one structure can organize key elements of a
database — the “landmarks” — and the other structure can provide the detailed
organization throughout the whole database. They can also provide an alterna-
tive structure more suited to sophisticated users without alienating the naive users
[Forbes 83] [Newel 77] [Santo 83]. Parallel structures can also be designed for dif-
ferent search goals (see section 3.5 on multiple context trees). Parallel structures
create a heterogeneous structure when there is more than one type of structure in
parallel.

With mixed and parallel structures there is the danger that the user may get
confused as to which structure is currently active [Schabas, Tompa 83]. The sys-
tem must be designed to remind the user which structure, and which type of
structure when there are several, is currently active. In multiple context trees
(see section 3.5), for example, it was found that users occasionally forget which
context they are in and attempt to give traversal commands to another context
[Schabas, Tompa 83]. If many kinds of structures are used (especially in a
mixed structure), the user should be fluent in manipulating each of the various
structures. In general, this requires either greater skill by either the user (more
than one structure, and the associated traversal commands, must be known) or
by greater skill and care by the information provider (to provide a common inter-
face).
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3. Some Information Structures

3.1. The Tree

The original structure for browsable databases is the tree, also called a
strict hierarchy. It is a navigational structure. Each position has exactly one
route to a parent position, and one route to each descendent position (also called
a child). There is one special position, the root, which has no parent. A position
with no children is called a leaf. The root, therefore, is the top of a hierarchy,
with the leaves being on the bottom of the hierarchy. The user browses through
the tree by moving from a position to one of its children or to its parent. Figure
3.1 shows an example tree.

Ye Olde Dept.
Store

. otive
recreation furnishings accessories

/m/h/l\

kitchen furmture
entertainment

N /\
TV stereo
/N /N
Figure 3.1: An Example Tree

Trees are simple and efficient to implement. More importantly, they are
simple and natural to understand [Schabas, Tompa 83}. This is partly due to
their spatiality (they can be drawn on paper), and also due to the user’s familiar-
ity with the structure from non-computer life: a user will see tree structures in
chains of command (government, business, and military), in tournaments (e.g.,
hockey playoffs), and, of course, in the living trees they are named after. Also,
navigation through a tree is easy to present to the user in terms of a menu: the
user can select from the children presented in the menu, or the user can select,
the parent.
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There is only one parent for each position, therefore there is only one path
from the root to any particular position. Furthermore, there is only one path
from any position to any other position. This means that the user must back up
if a mistake is made while trying to get to particular information. Backing up
implies that the user was defeated by the system, which causes user frustration
and discontent [Godin, Saunders, Gecsei 84].

Information often does not fit into a hierarchical organization [Engel,
Andriessen, Schmitz 83] [Leclerc, Zucker, Leclerc 82] [Schabas, Tompa 83]
[Tompa, Gecsei, Bochmann 81]. In the example shown in figure 3.1, where
would a user find the position corresponding to “car stereos”? It might be put
under either “automotive accessories” or “stereo”, or even under “recreation”.
This is an example of the naming problem described in section 2.2.

The videotex display (and human perception/cognition) limits the outdegree
at each node (i.e., the number of children at each position). For example, a
tree-structured database may at some point have to partition its information into
separate categories for each of the 50 American states. Putting all the states
under a single position is not feasible for a menu display, although that is exactly
what is desired. Instead, artificial hierarchies must be created to keep the
number of children at each position relatively small. The division might be
alphabetical, geographical, or historical (e.g., by date of founding). These artifi-
cial hierarchies can confuse users because they do not fit their expectations of the
organization.

As the database gets large, the average length of the path from the root to
an arbitrary position gets longer (assuming the outdegree is bounded). A longer
path leads to a greater chance of a user error: either a cataloguing error, a typo-
graphical error or an error in the selection of a child [Engel, Andriessen, Schmitz
83] [Schabas, Tompa 83]. Errors, in turn, lead to the user becoming lost. Even
without errors, the existence of long paths makes retrieval of data more tedious.
This problem can be solved by adding special traversal features to the tree (see
sections 3.2 and 4).

3.2. The Tree with Cross-links

A common addition to the tree is the cross-link. This is a route between a
pair of positions that defies the hierarchical organization. For example, if “car
stereos” were placed under “automotive accessories” in figure 3.1, a cross-link
could be made from “stereos” to “car stereos”.

Cross-links allow information that belongs in many hierarchical classes to
be easily accessible from each. They can be used to provide an escape route
from common selection errors [Raymond 84]. They cut down retrieval time by
allowing more paths to information [Raymond 84] [Schabas, Tompa 83].

As well as preventing errors, cross-links can also help cause them [Ray-
mond 84] [Schabas, Tompa 83]. Traversing a cross-link can result in a drastic
change of context. Consider a possibly natural cross-link from “recreation” to
“home entertainment”. At “recreation” the user sees tennis racquets and water
skis, and then at “home entertainment” sees stereos and VCRs. To some users
this would be disconcerting since in many department stores home entertainment
is in the furniture or camera section, and sporting goods is nestled between toys
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and hardware. The result can be user confusion which, aside from upsetting the
user, can result in further mistakes while disoriented. This drastic change of con-
text is indicative of a strain on the spatiality of the cross-link structure (as
opposed to the underlying tree structure). If the cross-link maintains spatiality,
there is a reduced likelihood of the user becoming disoriented.

Although a cross-link might be conceptually clear in one direction, it may
not be as clear when the user is backtracking across it later. Retreating from
“home entertainment” to “recreation”, in the above context, can be even more
confusing a context switch than the original traversal. The system (or user)
might not remember to back up across the cross-link, in which case a brief side
excursion into “home entertainment” can leave the user far from the original
path.

The concept of cross-links seems reasonable, but how does the information
provider decide where to put one in a tree? Often an arbitrary decision is made
[Newell 77] [Schabas, Tompa 83]. The information provider must have an exten-
sive knowledge of the database and its contents to place cross-links effectively.
Any holes in the information provider’s knowledge (or intuition) could result in
the lack of an important cross-link. The display limitations make the decision
even more difficult: a menu choice for a cross-link takes up display space just
like a hierarchical descendant, and so the information provider is usually severely
limited in the number of cross-links from any position [Schabas, Tompa 83].

Cross-links do alleviate some problems with trees, but they do not solve
any. They may be sufficient for a small database, but eventually, as the database
grows, they are unable to accommodate the increased relationships. They are
useful, however, for a user familiar with the underlying tree structure. In a sys-
tem where the user creates personal cross-links, the chance of the user getting
lost (due to cross-links) would be reduced.

3.3. The Multiple Parent Hierarchy

A multiple parent hierarchy, another navigational structure, is a directed,
acyclic graph with a single source node (the root) [Leclerc, Zucker, Leclerc 82).
In other words, it is a tree modified so that each position (except the root) can
have more than one parent, under the restriction that no cycles are thereby
created (i.e., no position can be the descendent of one of its descendents). It
cannot be modelled in the plane (in general), but it can be modelled in three
dimensional space. A particular database may have many spatial distortions, but
most of the database will be spatial, particularly in a local region (i.e., the set of
routes between all positions within a few traversal steps of the current position).

This structure is more flexible than a tree, since particular data can be
placed in several hierarchical categories. It is still simple to use, but the choices
presented in traversing the database to the root can cause confusion and can
cause users to become lost.

The multiple parent hierarchy eases the naming problem by allowing the
information provider to include a position under several parents. This increases
the number of paths to data, and thus improves data retrieval. The information
provider, however, must still be intimately familiar with the database to
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determine which nodes should be the children of a given node, and so there is
still the naming problem, although greatly reduced.

The multiple parent hierarchy is a good structure for more experienced
users since it provides many paths to data and a form of sideways traversal
[Godin, Saunders, Gecsei 84]. This is achieved by descending to a child node,
then ascending to a different parent node. Repeating this several times illustrates
that this is a property not shared by a simple tree.

Godin et al. [Godin, Saunders, Gecsei 84] implemented a keyword based
lattice. Their system automatically builds a multiple parent hierarchy from the
data, based on keywords assigned to each document (i.e., given the documents
and associated keywords, a database is built). Descending routes are labelled by
the keywords. This system eases the construction burden. The information pro-
vider does not need so thorough a knowledge of the entire database: based on the
assigned keywords, the system builds all the appropriate routes. It is still the
responsibility of the information provider, however, to make an intelligent selec-
tion of keywords for each data object.

3.4. Relative Page Labels - The Grid

The grid [Tompa, Gecsei, Bochmann 81] assigns to each document specific
coordinates in some conceptual n-space. Each dimension consists of an unor-
dered set of labels (the coordinate values). The specification of a label moves the
user from the current document to a document with the same coordinates except
that the named label becomes the new value for the appropriate (co-dimensional)
coordinate. For example, let the dimensions be “producers” (RCA, Sony, Phi-
lips), “product” (TV, stereo, VCR), and “retailer” (The Bay, Sears, Eaton’s). If
the user is at the coordinates [RCA, TV, The Bay] (i.e., a description of RCA
TV’s sold at The Bay), moving to the label Sears would bring the user to [RCA,
TV, Sears]. If the user had been at [Sony, VCR, Eaton’s], the same label Sears
would have brought the user to (Sony, VCR, Sear’s). The meaning of a label,
therefore, is relative to the current position.

The above example does not completely specify the structure, since it
ignores some difficulties: is it possible to have the same label in two (or more)
dimensions? If so, what action is taken if this label is specified? What if some
coordinate is not defined or unreasonable (e.g., maybe RCA does not make
VCRs)? A particular system must solve these problems (e.g., do not allow the
information provider to create a label in a dimension if it already exists in
another).

Whether the grid is navigational or not depends on the particular imple-
mentation. If the addition of a new label to a dimension does not implicitly
create all of the positions thus generated, the structure will be non-navigational
since all of the positions are not contained in the database: the routes to these
positions are implicitly created with the addition of the new label (so the position
exists, from the user’s viewpoint) but the destination position of the routes do not
yet exist in the database. Conversely, a particular implementation might impli-
citly create the positions (when a new label is added to a dimension, all positions
thus made possible are created), and so the structure would be navigational.
‘This grid is non-spatial since the dimensions are unordered. If there are n
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dimensions, all positions are a maximum of n sieps from any other, thus violat-
ing any natural sense of distance.

This structure is not suitable for a large database, since the number of
dimensions and the size of each dimension must grow with the number of posi-
tions in the database. It is not entirely suitable for browsing (in a large data-
base), either, since a user is presented with too many routes from which to select.
Rather than helping to guide a user, as a good browsing system should, the grid
provides a vast expanse (at each position) through which the user wanders with
very little guidance from the organization. Despite these short-comings, the
structure can be good for a regular database (i.e., a database with a narrow
range of topics) which can be a section of a larger database (as part of a hetero-
geneous structure).

3.5. Multiple Context Trees

Data does not often fit nicely into one tree, but it could be organized into
several trees. Each tree can be separately built top-down according to different
organizing biases (viewpoints), or bottom-up by grouping related sets of positions
under a single parent. The bottom up method facilitates the construction of mul-
tiple trees by identifying at each stage positions with several potential parents.
The different trees, or contexts, are then superimposed to create one structure
[Schabas, Tompa 83] [Yhap 83].

For example, consider a database on personnel of a government ministry.
One possible organization is by authorative position with the minister at the root,
and summer students at the bottom. Another possible organization is by loca-
tion: by province, county, city, and office. With a multiple context tree, both of
these organizations could be made available.

The user can navigate through a context just as in a regular tree, and addi-
tionally can switch to another context when the current context is not satisfactory.
The structure is then not navigational, however, since the result of the application
of a traversal function at a given position depends on more than just the database
and the current position — it also depends on the current context. It is possible,
however, to view context as an element of position, making the multiple context
tree appear navigational. The structure is not spatial since the contexts are unor-
dered, but each context is spatial and context switching leaves the user at the
same position, so the structure maintains most of the benefits of spatiality. Each
context represents a different hierarchical ordering, so there is an increased
chance (versus that in a single tree) that the ordering that a particular user would
like is present in one context or another (i.e., one of the contexts is likely to
match the user’s expectations, given enough contexts).

Multiple contexts result in more paths to given positions than there are in a
simple tree (which has only one path). This increases the effectiveness of a
user’s search for data. Also, since there can be cycles in the paths (as a result of
context switches), a user may have a second chance at getting to a position that
was “missed” in one context. The user may not even notice that a mistake was
made and thus may avoid frustration.
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The multiple context idea can be extended to other structures. A system
can have multiple context multiple parent hierarchies, for example. Different
structures can also be mixed (this is similar to existing systems that combine a
tree structure with, say, relational database facilities).

3.6. The Relational Schema

The relational schema is a familiar, well-developed, non-navigational infor-
mation organization scheme. It is very good at helping a user retrieve desired
information. It is also easy to understand and use — an interface that mimics

natural language is commonly used [Hitchcock 81]. Unfortunately, relations are
not well suited to videotex.

A relational system assigns a set of valued attributes to each element of
content and organizes the data into relations having identical sets of attributes.
The user then retrieves data by specifying a combination of attributes and attri-
bute value constraints. A table of elements that matches the request is then
presented to the user. For example, consider a relational database on a city’s
commercial establishments. The user could then specify a relational query such
as:

business=restaurant
AND type=italian
AND (area=my_suburb OR area=nearby_suburb)
The user would then be presented with a list of all nearby Italian restaurants.

As the number of topics in a database gets very large and general, the
number of relational attributes needed to differentiate the data increases. In a
general videotex database, the number of attributes needed would become too
large for a browsing user to manage comfortably. The relational database also
imposes a rigid format on the content of the database, and this is not always suit-
able for videotex content [Tompa, Gecsei, Bochmann 81b].

A relational database is non-navigational (there is no concept of position),
and it is not well suited for browsing. The entire database is directly available to
the user at each stage (user query), and the user is swamped with possibilities for
the next selection: the system provides very little guidance, compared with, for
example, a tree [Raymond, Tompa 86).
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4. Auxiliary Structures and Access Methods

This section will describe structures and access methods that are intended
to be used in addition to another navigational (or navigationally based) structure
(such as described in section 3). These structures and access methods aid the

user in accessing data via the primary structure, but without the primary struc-
ture they are not useable.

4.1. Direct Addressing

With direct addressing [Gecsei 83] [Tompa, Gecsei, Bochmann 81], each
position in the database is given some unique label. The user can then go directly
to that position by naming that label. The label may be user-definable. This is
not a structure, but a common feature added to other structures. Most tree struc-
tures allow the user to go directly to the root at any time, a limited usage of
direct addressing. In the Prestel system [Reid 80], the user can go directly to any
position of which he knows the label.

Direct addressing is not very useful for a system neophyte, but it helps an
experienced user get to a frequently visited area of the database quickly. It can
also help the experienced, but lost, user return to some well-known position
(preferably one in the vicinity of the current search).

4.2. Keyword Search

A position in a database can be given a set of keywords that describes the
content at that position. The user can then search for data by asking the system
to find all positions that have some set of keywords (possibly using boolean
expressions or form filling) in a given subset of the database [Raymond 84]
[Santo 83] [Viszlai 81]. The search may involve several steps of refinement of
the keyword set [Godin, Saunders, Gecsei 84]. The lattice multiple parent
hierarchy formalizes these stages of refinement, petrifying them into a naviga-
tional structure.

This keyword search capacity helps the user retrieve specific data. It is less
useful for browsing than for direct search [Engel, Andriessen, Schmitz 83], but it
is still helpful. The computer can search a section of the database at a much
greater speed than could the user, and yet still maintain a high level of confi-
dence that all relevent information is found. The utility of this feature, of
course, depends upon the information provider’s selection of keywords for each
position. The namirg problem arises again, but with reduced impact since each
node can have several keywords [Furnas, Landauer, Gomez, Dumais 82}.

Another form of keyword search is based on a series of stored directories
of keywords, where each keyword “points” to a set of positions [Gecsei 83]
[Bochmann, Gecsei, Lin 82]. When the user then specifies a keyword, the direc-
tories are searched (according to some method) for that keyword. It may also be
possible to use boolean operations on the keywords (set intersection and union
resulting) [Boggild 86].



16 David Tanguay

4.3. Linear List

A linear list structure records a sequence of positions that the user can
traverse. One linear list implementation is the FAST TRACK{} in the Venture
Onet system [Santo 83]. The user can add favourite positions (selected from the
database) into the list in order. For example, in a news database, a user might
put stocks, the weather report, current news, and a favourite baseball team in the
FAST TRACK. The user can then view these favourite positions by simply flip-
ping through the FAST TRACK, avoiding completely any tedious structure
traversal. The FAST TRACK is used to read an ordered list of favourite pages,
but motion through a list could be made similar to structure traversal (i.e., the
data does not have to be read as part of the traversal), especially in a system with
separated structure and data. With a linear list there is no need for a user to
have to remember “direct address” labels to get quickly to a favourite document.

The time needed to get to a position in the list depends on the length of the
list, so there is a maximum useful length for the list. Beyond this maximum,
flipping through the list would require more effort than traversing the database.
The maximum useful length is a function of the system’s speed of flipping
through the list, and of the individual user’s preference (an unskilled user would
prefer to avoid structure traversal as much as possible, and so would probably
accept a longer list than a skilled user).

This is a highly personal structure that is ideal for a casual user of a
videotex system. The user only has to find interesting areas once, and can then
return to them quickly and with little effort.

4.4. Multi-Menus

Multi-menus [Raymond 84] are not a particular structure, but, rather, a
method of traversing a navigational structure. For this description I will follow
Raymond’s description based on the example of a tree, although any navigational
structure could be used.

The multi-menu presents several levels of the structure at once. Several
levels of grandchildren may be displayed. This gives the user a larger viewport
onto the database - the “zoom out” ability mentioned in section 2.1. It also
increases the traversal speed, since a grandchild can be selected directly. By see-
ing the grandchildren, the user has a better idea of the information provider’s
definition of the children, and so the user can better avoid selection errors.

The multi-menu also allows the user to descend more than one of the
subordinate structures. The system then dynamically combines the descendants
of the selected positions into a new multi-menu. This means that the user can be
positioned at several places in the database at one time, or, viewed another way,
the user is at a dynamically created position. For example, if a user cannot
decide which of two subtrees to descend, both can be chosen and accessed in
parallel. Instead of having to choose the best of several promising candidates,

t FAST TRACK and Venture One are trademarks of CBS.
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the user can select them all. A tree with a multi-menu addition is not itself navi-
gational, but rather an example of a navigationally-based structure (section 2.1).

The limitations of the display device restrict the number of selections that
can be made. To allow more selections, the information provider must limit the
size of the labels for each position.

Error recovery with multi-menus is not significantly better than with trees,
and, in some instances, may be worse since the user can become confused about
the previous position. On the other hand, the multi-menus help the user avoid
errors, and so there is a reduced need for error recovery.
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5. Stred - A System to Design Browsable Structures

5.1. A Model of Browsable Information Structures

A Stred structure is an abstract data type. It is formed from a set of nodes
and links (possibly dynamically generated), along with a set of rules governing
traversal and maintenance. This definition gives the model a strong navigational
bias, suitable for the browsing nature of videotex.

A node is just an atom of structure. It can have associated content, which
is called the node’s page. A node may also have parameters as required by the
particular structure of which it is a part. A page is not specified here: it is just a
name by which data can be referenced. Pages are displayed, processed, or
implemented by means of readers. For example, the reader could be a system
editor and the page could be a text file; the reader could be a chess program and
the page could be a file from which to restore the current position and move; the
reader could be a database program that operates on its own specific data, and
the page could identify a record in that database.

To effect personalization, all access is indirect. A node’s name is really
only a part of its full name which is computed at the time of access (see below).
A link, therefore, does not actually contain a pointer to another node, but just
the name of the target node. A link also contains a title which can be used to
label the link (in a menu, for example). An ordered list of places, called an
access hierarchy, is searched to find a name (an example is given below). A
complete name, therefore, is a place/node-name pair. Personalization is achieved
by allowing the user to create and update the access hierarchy. There are three
separate access hierarchies: one for nodes, one for pages, and one for page
readers.

The rules for traversal and maintenance of the structure are specified in the
form of a program implementing the data type. Each action on the structure is
defined by a routine in the program. The program contains variables which act
as temporary copies of nodes during changes to the structure. The real nodes are
found, under their given names, in a place indicaed by the node access hierar-
chy.

An example will help to explain the operation of an access hierarchy. Sup-
pose [A B] is an access hierarchy for nodes, where B is publicly accessible and A
is accessible only by the user U. Let node C exist, initially, in place B: its com-
plete name is then (for example) B.C. When U first accesses C (obtains a copy
of it), it is first sought as A.C. This fails since there is no node named C in place
A. B.C is then tried, and the read is successful. Now suppose that U has an
updated, personal version of C (created by a structure command). The access
(to add the personalized C to the structure, a write) is first tried as A.C. This
succeeds, since U can write into A. Thereafter, any attempt to read C by U will
result in A.C. U, therefore, has made a personal modification to the public struc-
ture. Other users (who cannot access A), however, who try to read C will still
find the original, unmodified C in place B.
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5.2. Hence, Stred

Stred implements the structure model in a UNIXt environment. Positions
in the access hierarchy are implemented as UNIX directories, and standard
UNIX access conventions are used to determine hierarchical access (i.e., who
can access what). The name of a node (or page or reader) is its filename in the
directory. Each node is a separate file, and a reader is an executable file. Each
page is also a single, separate file (although the reader may interpret its contents
to find access to other files). The contents of a page are completely undefined by
Stred; it is up to the reader to interpret the contents (if any) in a meaningful way.

Stred uses standard input and output to facilitate its being driven by an
interface process. Its output, although legible, is ugly, as is its input. All stored
data, such as nodes, is human readable. This leads to excessive file access and
so Stred is not as efficient as it could be.

Stred can handle more than one database at a time. Each database is
defined by a locale, which is implemented as a file which contains all the infor-
mation needed to define a particular Stred database. A locale contains the access
hierarchies (three lists of directories wherein the data, the organization informa-
tion, and readers can be found, respectively); the name of the command defini-
tion file which contains the user program which describes the structure; name of a
structure command to execute as an initialization command, which can be used
to move the user to a starting point in the database. A locale represents one per-
sonalized form of a database (which is considered a separate database in itself);
each user (or group of users) that uses a personalized form of the public database
— which is represented by a locale — will be represented with a separate locale.

5.3. An Overview of Stred

A structure is defined by a structure program contained in the command
definition file. A locale contains all the parameters necessary to create a particu-
lar database. Stred has a set of commands to create and modify locales (see the
Stred Manual in the appendix for details). The command decfinition file is
created (and maintained) with a conventional text editor.

All locales are completely independent: no action in one locale can affect
the parameters of another locale. (Since locales can share nodes and pages, how-
ever, it is possible for one locale to change the structure upon which another
locale is operating.) Furthermore, within a locale, the structure program cannot
change its locale’s parameters (such as making changes in an access hierarchy).

The initialization routine, as specified by the locale, is used to set up the
initial state of the database. This usually involves initializing some global param-
eters and moving to an initial node. It may also be used to synchronize or ini-
tialize the interfacing process (the driver). For example, this may include output
to tell the driver to bind function keys to frequently used commands.

+ UNIX is a trademark of Bell Laboratories.
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Locale
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Figure 5.1: Stred System Layout

The output produced by Stred follows a consistent format. Output is ini-
tially flagged with a line starting with #keyword, where keyword indicates what
type of information is to follow. For some keywords the information follows
immediately and is terminated by the newline. Other information will continue
onto succeeding lines and is terminated by a line starting with a #End (see the
Stred Manual in the appendix for details on the output formats). The structure

program output may follow any convention and may mimic the standard Stred
output.

Stred input is in the form of a command followed by parameters. The
command is first checked to see if it is a standard Stred command (e.g., a locale
manipulating command). If it is not, it is assumed to be a structure program
command. If it is not a structure program command, an error message is issued.

node hierarchy

page hierarchy

reader hierarchy

setup command

command
definition file

Figure 5.2: Format of a Stred Locale
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5.4. The Command Definition Language

In this section I will outline the capabilities of the command definition
language, with minimal discussion of details. A complete description of Stred,
the Stred Manual, is included in the appendix.

5.4.1. Variables

A Stred structure program is a collection of commands and implementation
procedures that can share global variables. Since only one routine is executed at
a time, there are no synchronization problems. A routine can have local
automatic variables and input arguments (as in C or Pascal).

The most basic data type for variables is the string. There are escape
sequences provided to include some common unprintable characters, the string’s
delimiters, and the escape character itself. A string is of dynamic length.

A link is a representation of a directed edge. A link consists of three string
fields: the file field which contains the name of the node being pointed to (subject
to the node access hierarchy); the title field which contains a string to be used to
elaborate the link (e.g., in a menu display); the selector field which is a general
purpose field that may be used to contain display or selection information for the
interface system. For example, a link’s fields may be, respectively, “fred”,
“Deposits and Withdrawals by Fred (for June)”, “#display reverse”. The target
node of the link is named “fred”. A menu display would include both “fred”
and the title. The selector field contains information that, in this example, indi-

cates to the interface system that this menu entry should be displayed in reverse
video.

A page is a representation of content. Since Stred knows nothing about the
details of content, a page must also include the information needed to read the
content. A page has four string fields: the file field, which contains the name of
the content (subject to the page access hierarchy); the title field, which contains
a description of the page for display purposes; the reader field, which contains
the name of a process to read the content (subject to the readers access hierar-
chy); the args field, which contains any additional parameters that should be
passed to the reader.

Nodes are a class of types defined in the structure program. Every node
type has the following fields: the file field, a string which is the name of the node
(subject to the node access hierarchy); the title field, a string which contains a
description of the node for display purposes; the page field, a page record which
represents the content associated with the node (if any). In addition to these
fields, other ficlds may be defined that are strings, links, or lists of either (see
below). A particular set of defined fields creates a particular node type that is
named in the structure program. Node variables are declared by this given
name; there is no generic node type.
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Figure 5.3: Stred Record Types

The above described types may be considered to be the basic types. In
addition to these there are also aliases for the basic types. An alias is a pointer
with implicit dereferencing. There is also a facility to create homogeneous lists
of basic types. This is implemented within the language as an abstract data type
(section 5.5.2 includes a description of lists). Lists of lists, lists of aliases, aliases
of lists, and aliases of aliases are not provided.

The routines are divided into two classes: commands and procedures. Both
may be used recursively. A command is a user callable routine and may only
have arguments of type string. Commands, therefore, form the user-visible part
of the abstract data type that is a structure. When a command is invoked by the
user, missing arguments are allowed. A procedure is a routine that can only be
invoked by other routines, and it may have arguments of any type. Procedures,
global variables, and node definitions are the user-hidden part — the implemen-
tation details — of the structure. When a routine is invoked from another rou-
tine, all declared arguments must be passed.

Routines can have local variables (passed arguments and automatics). This
may lead to a name conflict with global variables. The scope rules enforced by
Stred cause local variables to be accessed in preference to global variables. Of
course, no two local variables (and no two global variables) can have the same
name. All routine names are global identifiers, and all routines are globally
accessible. A Stred structure program, therefore, has two-level static name bind-
ing similar to that of a single C source file.

5.4.2. Program Organization and Operations

A Stred structure program consists of three sets of named fields. The first
set consists of fields to define each of the defined node types. The second set is a
single field, labelled with the keywords globals, that declares all of the global
variables and routines. The arguments for the routines are also declared here.
The third set has several fields, one to define each declared routine. A routine
declaration field contains the local automatic variable definitions and the
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execution statements (thus implementing the rules mentioned in section 5.2).

There are several example structure programs in the appendix which illustrate the
three sets of fields.

There are four basic types of Stred command definition language state-
ments: the simple statement, the repeat statement, the do-while statement, and
the control statement. If any statement fails (described below), then the routine
executing that statement immediately terminates with failure. If all statements
executed succeed, then the routine terminates with success. Success or failure is
the only status returned by a routine.

A simple statement consists of an expression, an optional success clause,
and an optional failure clause. The success clause is a list of statements, as is a
failure clause. If the expression succeeds (see below), the success clause is exe-
cuted. If there is no success clause, or if the success clause statements are all
executed with success, then the simple statement succeeds and the next statement
is executed. If any statement executed in the success clause fails, then the simple
statement fails. If the expression fails and if there is a failure clause, the failure
clause is executed, with the same results as with the success clause. If there is no
failure clause, then the simple statement fails. A simple statement is reminiscent
of a Snobol-4 statement with success and failure labels. Figure 5.4 is an example
of a simple statement.

$ this is a comment

$ read in a node named °‘root’

nodel <- “root’ ?(
$ this is the success clause
current <- nodel; § node assignment

):(
$ this is the failure clause
$ print out a error message
% °#Error: unable to read root node\n’;
1§ fail
)

Figure 5.4: A simple statement

A repeat statement is similar to a simple statement. As long as the expres-
sion succeeds and the statement succeeds (i.e., the optional success clause
succeeds), then the repeat statement is re-executed. If the expression fails, the
loop is exited and the failure clause is executed to determine the success or
failure of the statement as a whole (if there is no failure clause, then the state-
ment fails). Figure 5.5 is an example of a repeat statement.

A do-while statement must have a success clause. This clause is first exe-
cuted, and then the expression is executed. If the success clause ever fails then
the do-while statement fails. Otherwise, as long as the expression succeeds the
statement is re-executed. The failure of the expression causes the same results as
an expression failure in the repeat statement. Figure 5.6 is an example of a
do-while statement.
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$ run through a °list’ of nodes

$ done is a string field of nodel

\ nodel.done = "mo’ ?(
$ read in the next node
$ next_node is a string field of nodel
nodel <- nodel.next_node;

):(); § empty failure clause

Figure 5.5: A repeat statement

$ run through a 1list of strings looking for
$ a match for the value of string variable search_string
?(
$ compare and break loop if match
1 = search_string ?(\! ) :0;
) 1< +1 :( $ get next element of the list
$ couldn’t find it
$ print an error message and fail
% "#Error: could not find *;
% search_string; % °'\n’;
(b § fail
),

Figure 5.6: A do-while statement

There are three control statements: one causes a routine to terminate with
success (immediately); one causes a routine to terminate with failure (immedi-
ately); one causes the innermost executing loop statement to terminate with suc-
cess (immediately). The loop termination control must be within the success
clause of some loop statement (possibly nested inside enclosing statements). Fig-
ure 5.7 shows all of the control statements.

ot $ fail statement
?1 $ succeed statement
\'! § break loop statement

Figure 5.7: Control statements

The expressions do the actual work. Assignment, comparison, list opera-
tions, node and page operations, and output are all accomplished by expressions.
Expressions operate on objects. An object can succeed or fail, causing the
expression to succeed or fail, respectively. An object fails if it does not exist: for
example, the third element of a list may be referenced, but the list may (at that
particular time) have less than three elements. Additionally, an object fails if it
has no value. A string has no value if it was never given a value or if it was
explicitly set to have no value (the empty string is a value). The other basic
types will have no value if their file field has no value.
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Assignment itself is an expression. In general, the types of both sides must
match exactly (there are exceptions decribed below). If an alias is the destina-
tion for the assignment, then the alias becomes an alias for the source (which
must be a variable based object, not a constant). There is a very primitive string
concatenation expression: two strings (only) may be assigned to a string, resulting
in concatenation. The destination of the assignment may be one of the sources.

The only relational tests are equality and inequality of strings. If a node,
page, or link is involved in a comparison, the comparison reduces to a com-
parison of the file fields.

$ string variable declarations
string a, b, stringl, string2;

$ assignment
a <- b;

$ string concatenation
stringl <- string2 + °'string number 3°;

$ relationals
a=0Db; § equality
a ~ b; § inequality

Figure 5.8: Some Stred Expressions

Lists are an abstract data type. The first and last element can be refer-
enced, as well as the previous and next element of any given list element.
Aliases are used to march through lists: for example, each step sets the alias to
the next list element. Lists contain copies of objects, not the actual objects speci-
fied for insertion. A copy can be inserted at the head of a list, or may be
inserted following any referenced list element. Any referenced list element may
be removed from the list. Figure 5.9 is an example that displays the list opera-
tions.

There is a special expression that finds a link that goes from one node to
another. If there are more than one link between the two nodes, the first link
(using the order in the node definition) is the one found. Another special opera-
tion, alluded to above, is the destruction of an object. This explicitly causes the
object to have no value. It will fail only if the object initially had no value (or
did not exist).

There are special expressions to perform special tasks. A node variable
may be saved (written). The value of the file field is the name of the node, and
the node access hierarchy determines exactly in which place the node should be
saved. A node may also be restored, again through the node access hierarchy
(via an assignment statement with a node destination and a string source). Both
page content and nodes may be removed (from their permanent places, some-
where in the appropriate hierarchy). The page content may also be copied to
another place (via an assignment statement with a page source and a string desti-
nation). The reader for a page may be invoked to act on the page’s content.
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$ a routine to display some list operations
#list_example {

string listx; $ declare a list of strings
string alias™; § declare a string alias

$ first assign the first five numbers to the list

list <- ’3"; § places 3 at the head of the list
list > '4°; $ places 4 to follow the first element
list* -> ’5°’; § places 5 to follow the last element
list <- *2°;

list <~ ’1°;

$ print out the list in order

% list; $ prints first element

% +list; $ prints second

% ——1list*; § prints third last

% —-1list*; § prints second last

% list*; $ prints last element

$ remove the third element from the list
++1list —>;

$ walk through the 1list with a do-while loop
alias <- l1list; $ alias references the first element
?( % alias; ) alias <- +alias :();

$ make the list empty
\ list-> :0);
}

Figure 5.9: List operations

Stred will invoke the reader itself if it is not being driven by an interface system,
otherwise, Stred just informs the driver system that the computed command line
should be executed. Figure 5.10 shows the special expressions.

5.5. Experience with Stred

5.5.1. An Interface System

A small system, called Scri, was written to provide an interface between
Stred and an ANSI terminal. This section gives a brief description of Scri to
illustrate the nature of the communication between Stred and its interface system.

Scri divides the terminal screen into five windows. The top line displays
the name of the current locale. The next line displays the file and title of the
current node, where the values are obtained from the last #Locale and #Node
outputs issued by Stred (see the Stred Manual in the appendix).
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#special_ops {
$ network_node is a defined type
$ (the definition is not shown here)
network_node ni, n2;
link 1n;

nl <- ‘'root_node’; $ restore (read in) a node
n2.file <~ ’search_node’;

ln <- n1.n2; $ finds a link from n1 to n2

<-n2; $§ save a node

n2->; $ remove a node

<-nl.page; § read a page

ni.page->; § remove a page

nl.page.file <- ’new_page’; § set the new page
nil.page.reader <- ‘ed’; $ and set the reader

}
Figure 5.10: Special Expressions

The next line down is the command input window. It is entered by striking
the escape key twice in succession or as the result of special escape sequences
and key bindings described below. Characters are gathered until a carriage
return, and the collected input is sent as a command to Stred. Scri then waits for
the Stred input prompt before accepting any further input from the terminal.

The next line down is the message window, which displays messages from
Stred. Stred sends a messages either by emitting the #Error output, or by a

Scri-specific #Message line. In the former case, an audible beep is also gen-
erated by Scri.

The final lines of the terminal screen (usually 20 lines) form the display
window. All output from Stred that is not recognised by Scri is paged through
this window. Very little processing is done on this output, other than truncation
of the output lines to fit the terminal screen, and simple pagination (i.e., when
the display is filled, Scri waits for an input character before continuing to display
the rest of the output).

Scri provides special escape sequences to generate Stred commands. For
example, the sequence “escape r” causes the command window to be entered
with the Stred command Read-Locale already entered. Stred itself can specify
that Scri is to set single key bindings for user commands. For example, suppose
Stred has output the lines

#Bind 1 cd 1$

#Bind g goto_child
Now if the user enters a “1”, the command line “cd 1” is immediately sent off
to Stred (the dollar symbol expands to a carriage return). If the user enters a
“g”  the command input window is entered with the string “goto_child” already
typed, and Scri awaits further input to complete the command line (up to a car-
riage return).
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Scri is a very simple system. There are many ways to extend it, such as
increasing its control of the display window. For example, it could accept menu
entry directives from Stred and then format this information into a nice menu in
the display window. Special processing could also be added to the command
input window to reduce typing, such as having some escape sequence expand to
the current node name. The #Bind mechanism is sufficiently flexible, however,
to enable Scri to provide an acceptable, although still somewhat crude, interface
to all of the structures implemented so far.

5.5.2. Structures

A tree, a multiple parent hierarchy, a general network, and a grid have
been implemented with Stred. All of these were simple to implement, but they
are all very simple structures. The structure programs for some of these are in
the appendix.

The main discovery from this experience was the ease with which changes
could be made to a structure. Existing commands could be changed to operate
in slightly different ways. This made the decision to choose between some design
alternatives easy: just try one way for a while, then the other, and choose the
favourite. For example, consider the removal of a child in a tree. What happens
to the children of the child (the grandchildren)? There are several possibilities:
they could be removed from the tree, they can be promoted to children of their
grandparent, or they could be placed in a predefined orphanage. With Stred it
was casy (for a user fluent with the command definition language) to change the
structure to implement any of these schemes (in the first program in the Sample
Programs appendix, the routines _check and rm_only promote grandchildren,
whereas _geno and rm remove the subtree — note the shared code between rm
and rm_only). Another example is the creation of a node in a multiple parent
hierarchy. The node is first declared as a child of some other node. The prob-
lem then, is to specify other parents. One way is to have the user explicitly
specify a new parent by its name. Another way is to select a node and traverse
the structure adding parents to the selected node. The reverse can also be done:
select a node and traverse the structure adding children. In the multiple parent
hierarchy I designed, the third method was first used, but was later changed to
the second method. Another simple example applies again to the multiple parent
hierarchy. After a structure traversal, should the new set of parents be displayed
(with the new children), or should the structure wait for a user command? Struc-
tural refinements like these are easy to make with Stred. These refinements can
be made by a user who does not like the method used by the structure designer.

A new command can be easily added to perform some special modifica-
tion. The new command may be a special command only needed by one user,
and may not warrant inclusion into the structure for users in general. For exam-
ple, this thesis was created using Stred with a tree structure. The leaves of the
tree contained the sections, and the internal nodes were sections that had sub-
sections. All went well until a hard copy was desired. In order to produce a
hard copy, I wrote a command that traversed the tree and read all the pages,
thus concatenating the sections into a whole. Headings, taken from node titles,
were inserted as well. The concatenated output was then suitable for shipping
through the text formatter to the printer (which could have been done by the
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traversal command, too). This command would not be needed by many users of
the tree structure, especially since the headings are dependent upon the typesetter
(and macro package) used. A general tree traversal command might be useful
enough to include as part of the tree structure, but the specific operations to be
done in the traversal would vary from application to application, and so some
small changes would have to be done by each user.

5.6. Comments on Stred

5.6.1. General

Most of the general goals of Stred were satisfactorily met. Stred allows the
construction of structures, although not as easily as originally desired. The abil-
ity to create personal structure commands and the illusion that the user owns the
database make for a comfortable environment for the user.

Stred’s main failings are in the details of the implementation of the model
— the command definition language in particular. It was intended to be usable
by a person with little programming experience, but the complexity of the struc-
ture design problem forced the language to be too complicated for a non-
programmer, and yet it is too limited for a programmer. The efficiency of Stred,
in both time and space, is too poor for Stred to be used as part of a real videotex
system, but this was expected.

5.6.2. The Model

The structural model used by Stred was adequate. It is sufficiently flexible
to accommodate a wide variety of structures, and yet simple to learn.

The highlight of the model was the access hierarchy. It is very easy to
understand, and yet it is powerful enough to create a flexible access system. It is
well suited to the implementation of invisible personalization. It does, however,
have a problem with database changes: if a user makes a private change to a
public database (thus creating, in effect, a private database), and the public data-
base is subsequently changed, the private database becomes outdated. It is even
possible that the private database will be invalid (under the given structure).
One way to alleviate this problem is to have Stred give a warning when the
accessed entity is not the most recently updated.

The abstraction of content (pages) allows Stred to be flexible (recall section
2.3 on structure/content separation), but it also limits Stred. A structure may
often be guided by its contents. Since Stred cannot access any information in the
contents, information that could be used to build a database (e.g., keywords)
must be duplicated, almost certainly laboriously, by the database builder. There
is a trade-off here between content flexibility and structural flexibility. A solu-
tion might be to allow Stred to have content types: one type of content would be
undefined and behave like content does now; other types of content would be
recognised by Stred, and the information contained in these types could be
directly manipulated by Stred. This would allow Stred to implement relational
structures, and to simplify keyword-based access structures. The cost would be
increased complexity in Stred, as well as a need for support software (e.g., a spe-
cial editor for Stred content files).
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The content abstraction allows Stred to implement gateways easily. The
page reader is sct to be the foreign system, and reading the content effects the
transfer through the gate. An interesting scenario has Stred itself being the
reader. This can be used to implement a heterogencous system by a user with
little expertise with the command definition language. For example, one node of
a multiple parent hierarchy could have Stred as its page reader and a Stred
locale, implementing a grid, as its page. This technique can also be used to com-
bine independent Stred structures (e.g., by different information providers) into
one super-structure.

Stred has no relational capabilities. There should be some facility for
them, even if in some limited form. Keyword search and form-filling would be a
valuable addition to Stred. This would increase the complexity of the Stred struc-
tural model, but it would probably be worthwhile. Such a feature might be
added by using some type of Stred recognised content, as mentioned above.

5.6.3. Locales

A Stred locale is a convenient way to package a database. It is concise and
simple. Despite this simplicity, there are some outstanding questions about its
potential use.

Currently, Stred allows more than one database to be active (i.e., a Stred
session may involve many locales, and, therefore, databases). Is there any rea-
son to allow multiple locales? A naive user would only be confused by the con-
cept of multiple locales. An experienced user might use them to implement
parallel traversal of a database, but the effectiveness of this is limited because
there is no way to communicate between locales. For example, to fork off a
parallel search at some node the user must activate the new locale (on the same
database) and traverse it to the current position. This work overhead probably
neutralizes any gain from the paraliel search. The user may also get lost in the
context switch. Even if this capability was desired, it is probably better imple-
mented as a structure onto itself (i.e., all done in a single command definition
file).

The initialization of a locale is very primitive. Stred only allows a routine
to be called with no arguments. It would be better either to allow the locale to
contain its own setup routine, or to allow arguments to the initialization routine.
This could aid the naive user: a pre-defined set of slight personal modifications
could be made without having to leave Stred to change the command definition
file. I think it wise, in general, to insulate the database user from the command
definition file.

A related problem is the insulation of the locale from the structure pro-
gram. A structure command cannot, in any way, change a locale. An intelli-
gent structure might want to adjust some default global parameters to suit the
observed usage by a particular user. This could be accomplished in a limited
way by the up-keep of a special node that records global parameters, but it would
be better if the structure program could change the initialization routine called by
the locale file (especially if the above initialization scheme were implemented).
There might be some use for the manipulation, by the structure program, of the
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access hierarchies, but I think the complexity and danger of such scheming would
create more problems than they solve.

5.6.4. Separation of Structure from Interface

The separation of Stred from any human interfacing responsibilities made
the design of Stred much easier. This also increases the range of Stred applica-
tions: the interface can be changed to suit a variety of structures and a variety of
input and output hardware. This suits Stred’s purpose (the exploration of new
structures), but, still, an interface is needed for any practical testing.

A suitably flexible interface system could handle a very wide range of
structures and hardware, but any particular instance requires some degree of
communication between the Stred structure program and the interface system.
The result is a protocol between the structure program and interface system
where the interface communicates with the structure program by command invo-
cations and the structure program communicates with the interface system by the
output of proper textual sequences (i.e., interface commands). This protocol can
result in the non-portability of the structure program between various interface
systems, since different interface systems will have different protocols. It may be
possible to design an abstract interface model that would suit all needs, both
hardware and structural (i.e., formatting of structure information), but I think
this is unlikely. A good model should be able to handle a wide range of
hardware and structures, however, so a small set of models (each with its own
protocol) might be feasible. A Stred structure could be made portable among all
of these models by having an internal switch and by having all protocols available
by changing the value of this switch.

5.6.5. The Command Definifion Language

The greatest weakness of Stred is the command definition language. This
reflects the emerging realization — during design, implementation, and practice
— that the complexity of structure design is too great to allow a naive user to be
able to design and implement a structure. The result of my under-estimation is a
lack of orthogonality and a dearth of capabilities.

Statements (expressions, objects, and routines) are driven by success and
failure, reminiscent of Snobol and, to a lesser degree, Prolog. The original intent
was to have a command be a short sequence of declarative statements, where the
failure of any would cause the failure of the command. In certain cases, of
course, recovery from failure was desired. To reduce the complexity of the logic
for some commands, the success clause was added. The loop statements were
added much later. It soon became apparent that the language would be too com-
plex to be easily mastered by a non-programmer, but the success driven nature
remained. It seems to fit the nature of the application well: even though the
logic may often get involved, it still usually comes down to a sequence of opera-
tions, the failure of any voiding the entire command.

There are too few operators and types. One of the biggest problems with
structuring is finding a name to identify each node uniquely. In a multiple
parent heirarchy, for example, it should be possible for different nodes to have
children of the same name. The ability to change the set of parents of a node,
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however, prevents identical names from being resolved by context (i.e., the path
from the root, which can be used in a tree structure to identify each node
uniquely). There is probably a devious method whereby Stred, as it exists now,
could distinguish such nodes, but it would require more expertise, by the struc-
ture designer, than should be needed. Full integer capabilities and a wide range
of string processing capabilities would simplify this problem by allowing the easy
generation of serial numbers for nodes.

The pre-defined records (nodes, pages, and links) seem too contrived. A
node class of records is probably useful, but the others are probably better han-
dled by allowing the user to create general records types.

Many operations are achieved in a fashion that seems indirect. For exam-
ple, the copying of content is done by assigning a variable of type page to a
string. This is ridiculous. My intent was to keep the language as small as possi-
ble, but such obfuscation does not really save in language size. A richer, more
explicit set of operations is needed, and, among the existing operations, more
orthogonality is needed.

The syntactic style of the language is not conventional (i.e., it is not a Pas-
cal clone). There is a small set of keywords, covering the declarations of vari-
ables, and a relatively large set of funny tokens. This reflects a BCPL-derivative
background, and I make no apologies for the choice of this style. There is, how-
ever, excessive symbol overloading and context sensitivity. A larger set of tokens
(either keywords or symbols) is needed.

5.7. Summary

Stred makes a very good general personal information system. It is more
useful as a system for experimentation with various structures than it is as a com-
mercially viable videotex system, but this is to be expected from a research pro-
ject. Even so, Stred would be good as a small in-house documentation retrieval
system.

My experience with Stred suggests that the description and construction of
an information structure is too complicated to be done by a person with little pro-
gramming experience. It was a mistake to try to design the Stred command
definition language to accommodate such users. The language should be made
more conventional; it should have more generality, completeness (e.g., integers),
and orthogonality.

The model for structures is good. It is simple and yet sufficiently general
to handle a wide variety of structures. The use of access hierarchies seems to be
a good method of implementing personalization. The only major drawback is the
complete absence of any relational capabilities, or any sort of built-in keyword
capabilities. It is questionable as to whether they should be included in a brows-
ing system, but they would greatly extend the power of Stred.

Stred has no specifications for its pages and readers. This flexibility
enables Stred structures to be useful outside of the videotex domain. Document
creation structures, document filing structures, and program maintenance struc-
tures are all possible applications using Stred.
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I cannot consider Stred to be a final product. It does point the way for a
successor system that could be truly usable. My experience with Stred suggests
that the idea of a personal vidcotex system has merit, from the individual’s
viewpoint, although it is probably not feasible for a large user community with
current hardware capabilities and costs (unless personal computers become so
commonplace that their use in videotex can be assumed without including their
purchase cost).
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David Adrien Tanguay

University of Waterloo
1. The Stred System

1.1. Overview

Stred is a system that allows the user to design and implement personal
information access structures for use in videotex systems. The current system
runs under a UNIX 4.2bsd operating system. The design is achieved via a sim-
ple programming language that manipulates a basic model of information struc-
ture. Stred then interprets this language, thus achieving implementation.

Stred itself makes no concession to user friendliness, although its output is
human readable and its input human operable. It is expected that a driver pro-
gram will mate Stred output and user input with the available hardware devices
to create an aesthetically pleasing, user friendly display.

A key goal of Stred is the personalization of public structures. This is
achieved by means of an access hierarchy combined with separation of structure
from content. The hierarchy is a list of places to search for elements of struc-
ture, or, with a separate hierarchy, of content. To access something, the first
location in the list is tried. If that fails, the next is tried, and so on, until a loca-
tion is found within which access can be made or with resulting failure of access.
The hierarchy may be avoided: if the name being searched for begins with a "/",
then the hierarchy is not employed and the name is considered to be an absolute
pathname (all hierarchically accessible objects resolve to files) for that object.

Each database is represented by a locale. A locale contains the access
hierachies, the structure design program (in the command definition file), and,
optionally, the name of a routine (in the command definition file) to be used to
initialize the database. Stred provides a small set of commands to create and
manipulate locales. All structure-related commands are defined in the command
definition file.

1.2. The Structure Model

The basic structural model used by Stred is that of a set of nodes intercon-
nected by links. A nede is an element of structure — a location in the database.
A node does not represent, directly, any data content. Optionally associated with
each node is a page, which is the data content of the database at that node.

Content is undefined by Stred. A page is simply a file of data which must
be interpreted by a separate process. To read a page, therefore, Stred invokes a
reader process with the page file as an argument. The reader process is a part of
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the definition of a page. There are separate access hierarchies for nodes, pages,
and page readers.

Links are connections between nodes. They operate on a by-name basis,
using the node access hierarchy. For example, suppose node A has a link to
node B. Then, when the user traverses a link from A to B, the actual node that
is arrived at is subject to determination by the access hierarchy. It is possible to
move from node to node without using links: only the name of the destination
node needs be known; links are provided only as a convenient way of packaging
this information.

This model places a strong navigational bias upon Stred structures,
although certain non-navigational structures are possible. The most straight for-
ward implementations with Stred are graph type structures, such as trees,
directed acyclic graphs, and networks.

1.3. Commands

The Stred command line arguments are all taken to be locales that are to
be used in the session. They are activated in reverse order so that the first given
locale is active when the command prompt is first displayed.

The following commands are those accepted by Stred. They are described
using the standard abbreviation syntax of the University of Waterloo: all upper-
case letters of a command must be present, as well as non-alphabetic characters;
all lower-case letters (including the underbar _ ) are optional. Optional argu-
ments are enclosed in square brackets ([ 1). Where a choice of exactly one
character is required, the characters are presented in parentheses and separated
by vertical bars (eg. (+]-)). If an argument can be present zero or more times,
an asterisk () is appended to the argument.

List-Locale [locale]
This lists the named locale. If no locale is given, a list of active
locales is presented.

Goto-Locale locale
Switches to the named locale.

Copy-Locale name
A copy of the current locale is made under the given name. Stred then
switches to that locale.

Read-L.ocale locale
The named locale is read into Stred. The command definition file is
parsed and the initialization routine, if present, is executed. The named
locale becomes the current locale.



40 David Tanguay

Delete-Locale [+PERManent]
The current locale is deleted from Stred. Stred then switches to the last
active locale (next in the locales list) if there is one. If the +PERManent
option is invoked, the file containing the locale is removed.

Edit-Locale [options]* [locale]
Makes changes to either the current locale or the named 1locale.
Options are as follows:

(+}-) CReate
Creates a new locale or clears an existing locale.

(+]-) CLear
All fields of the locale are cleared.

(+]-) PERManent

The edit changes are made permanent (i.e. the locale file is
updated).

(+|-) List
Lists the locale verbosely after the edit.

Init=routine
Sets the initialization routine.

-Init
Resets the initialization routine.

Comm_Def File=file
Set the command definition file.

Director_List=(Readers|Pages|Nodes)
Set the hierarchy to be modified (see below).

List_ADD=dir
Add dir to the end of the hierarchy.

List_INS=dir
Add dir to the head of the hierarchy.

List _DEL=dir
Delete dir from the hierarchy.

Help-Locale
This prints out a short list of Stred commands (not user defined com-
mands).

Isystem command
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If a ! is the first character of the line then the rest of the line is passed on
to UNIX via the system function.

user defined commands
An unrecognised command is assumed to be user defined in the current
locale. If it is not, an error message is produced.

1.4. Output

The following are the various forms of output Stred will produce. The user
commands may produce any kind of output (even simulations of these).

Input prompt:
>
This (with a trailing space, no newline) is the input prompt. It indicates
that Stred is idle and ready to accept input.

Failure message:
#Failed
This indicates a failure of a user command (see section 2).

Error message:
#Error: string
This indicates that an error has occurred in one of the Stred commands,
as detailed by string. For example, an attempt to Goto-Locale to a
non-existant locale will produce an error.

Execution request:
#Execute command_string
If Stred’s standard output is not to a terminal, Stred will produce this
message in place of executing command_string itself.

Locales listing:

#Locales
namel
namen

#End

This is the list of all locales as produced by the List-Locale com-
mand.
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Locale display:
#Locale name
CommandDefinition=file
Initialize=routine
Node dir
Page dir
Readers dir
#End
This is the verbose listing of a single locale as produced by List-
Locale. If any hierarchy is empty it is omitted. If there is no initializa-
tion routine or command definition file, the respective line is omitted.
This is also produced by Read-Locale after a successful read (including
the reading of command line locales), and by the +List option of
Edit-Locale.

Page output:
#Page 'name’
Title="string’
Reader='string-
Args='string’
#End
This is the output produced by the command definition language’s output
expression when its argument is a page (see section 2). If any of the
strings are non-existent, the respective line is omitted.

Node output:
#Node ’'name’
Title="string’
#End
This is the output produced by the command definition language’s output
expression when its argument is a node (see section 2). If the title string
is non-existent, the Title line is omitted.

Link output:
#Link 'name’
Title=’string’
Selector="string’
#End
This is the output produced by the command definition language’s output
expression when its argument is a 1ink (see section 2). If any of the
strings are non-existent, the respective line is omitted.
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Help response:
#Help
text

#End‘ e
This is the format of the output produced by the Help-Locale com-
mand.
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2. Stred Command Definition Language

2.1. Data Types

There are three basic data types in Stred: the string, the page, and the
1ink. There is also the class of user defined types, called nodes. A particular
node type has a standard specification with additional specification added by the
user, including the type name.

All identifiers in Stred are composed of any sequence of alphanumerics and
the underbar (_). Identifiers (and keywords) are case sensitive. Some example
identifiers are _hi, TopOfTree, 1, 84 _nov, and _.

One-dimensional, homogeneous (all elements of the same type) lists of
basic types or node types can be made and manipulated. Also, aliases can be
made for variable of either a basic type or a node type. Lists of lists, lists of
aliases, and aliases of lists are not allowed.

There are two types of routines: commands (comms) and procedures
(procs). Commands are user-callable and only allow string arguments. If the
user does not provide all the required arguments, then the unspecified arguments
are passed as non-existent (see below). Procedures are only callable from other
procedures or commands and can have any type of arguments. Recursion is
allowed for both.

The data types:

string
A simple character string with dynamic length. A string is non-
existent if it has no value (a string with no characters — i.e., of length
zero — has a value).

page
A page contains four string fields:

file - This is the name of the page. If this field is non-
existent then the page has no value.

title - This specifies the title of the page. It is not required.

reader - This is the name of the reader process of the page. It
is not required for the page to have a value, but it is
required if the page is to be read.

args - This contains any options which should be passed to the
reader in addition to the page name.

link
A 1link is a representation of a connection from one node to another.
It has three string fields:
file - This is the name of the target node. If this field is non-
existent, then the 1ink is considered to have no value.
title - This is the title of the 1ink. It is useful for menu
selection.
selector - This is an extra field which can be used by the
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process which drives Stred. For example, it can contain
information to map the selection of this 1ink onto a
particular display hardware feature.

node

A node is intended to be a location in the database, although it can be
used to contain any structural information. The node can contain user
defined fields, but all node types contain the following fields:

file - The name of the node, a string.

title - A title for the node.

page - This is the content associated with the node. It is a

page structure (see above).

User defined fields can be of either string or link types, or lists of
either. The creation of a node type is described in section 2.2. Note
that variables of node type are not declared as nodes, but as the name
given to the specific instance of node type.

2.2, Program Format

A Stred command definition file consists of a set of named fields which
can be divided into three sections:

node type definitions:
This is the first section. It is a set of fields which define the various node
types. The name of the field names the node type. The user-defined
fields of the node are defined. An example field:

#tree {
linka, b¥;
string s1;

global definitions:
This single field, identified by the globals field tag, declares all of the
global variables used, as well as all of the commands and procedures and
their respective arguments. The order of the declarations is arbitrary.
An example globals field:

#globals {
tree current; $ a node
string sl, s2x, s37;8% string, list, alilas
page def_reader;

link temp, ptr~;
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comm create (name, titl),
destroy(name) ;
proc pLO,
p2(n:tree, 1:1ink™, list:stringx*);

command and procedure definitions:

Following the globals field is a list of fields defining each command
and procedure declared in the globals field. The field tag matches the
name of the routine it defines. The routine definition consists of a (pos-
sibly empty) list of local, automatic variable declarations, similar to the
global variable declarations, followed by the execution statements. If a
local variable (either input argument or automatic) has the same name as
a global variable, all references to that name will be to the local variable.
If a user-defined field of a node type has the same name as either a local
or global variable, it has access priority (only in node field selection, of
course). An example command field:

#destroy { § name:string

tree n,

n <- name; $ read the node

current.n->; $§ destroy link from current to it
<-current; $ update the current node

n->; $ destroy the node

2.3. Statements

A Stred routine either succeeds or it fails. Each statement in a Stred rou-
tine either succeeds or fails, and the failure of the statement causes the routine to
fail (immediately). The routine succeeds if all statements executed in it succeed.
There are four types of statements, described below. In the descriptions, an
optional section is enclosed in bold square braces ([ ]). A list of statements is
specified by <stats>. An expression, which can also succeed or fail, is specified
by <expr>.

Simple

<expr> [?(<stats>)] [:(<stats>)];

If the expression succeeds then the statements in the ? clause are executed.

If there is no ? clause then the statement succeeds, otherwise the statement

succeeds only if all of the ? clause statements succeed. If the expression

fails then the statements in the : clause are executed. If there is no
clause then the statement fails, otherwise the statement succeeds only if all
of the : clause statements succeed. If this statement succeeds, the next
statement is executed.
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Repeat Loop
\ <simple>
This is similar to the simple statement except that if the expression (in the
simple statement) succeeds and the simple statement itself succeeds, then it
is re-executed, instead of continuing on to the next statement. If the
expression fails, then this behaves the same as the simple statement.
Do-While Loop
? (<stats>) <expr> [:(<stats>)];
This is similar to the repeat loop except that the expression is executed
after the ? clause. The ? clause statements, therefore, are always exe-
cuted at least once.

Control ‘

\! causes the immediate termination, with success, of any loop. It may
only appear inside the ? clause of a loop statement. It terminates
only the innermost enclosing loop.

?1 This statement causes the immediate termination, with success, of the
routine.

-+ This statement causes the immediate termination, with failure, of the
routine.
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2.4. Expressions

Every expression results in either success or failure. The types of expres-
sions are:

object
This fails if the object fails (see below). Otherwise, no action is taken.
object = object
This compares two objects for equality. This is an exact comparison for
strings; for nodes, pages, and 1links only the file field is compared.
The expression fails if either object fails or if the two (resultant) strings are
not equal.

object ~ object
This tests objects for inequality. It is otherwise identical to the equality
test.

object <- object

This assigns the right object to the left object. It fails if either object fails

(and as specified below). The two objects must be of the same type except

for the following exceptions:

node <- string
This reads the node named by the value of string into the vari-
able node. This fails if the node is unaccessible or if the saved
node type is different from node’s node type.

string <- page
This copies the content (i.e. the file) of page into the file named
by string (as determined by the page access hierarchy). This
fails if either page (content) is unaccessible.

list <- object
This inserts a new copy of object at the head of 1ist. The base
type of 1ist must be identical to the base type of object.

alias <- object
This makes alias an alias for object. The base type of alias
must be identical to the base type of object.

object <- stringl + string2
This concatenates two strings into one string and assigns the result to
object (under the above assignment conditions). Both stringl and
string2 must succeed if the expression is to succeed.

% object
This outputs object. This fails if object fails. strings are output
directly. Nodes, pages, and 1links are output in the format specified in
section 1.4.

<-node
This writes node (in the file node.file as determined under the node
access hierarchy). This fails if the file field of node fails or if the access
fails.

<-page
This reads the contents of page. This fails if the file or reader fields
fail. It also fails if either the reader (under the binaries hierarchy) or the
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content (under the page hierarchy) is inaccessible. The execution com-
mand is structured as "reader args file". If the output of Stred is to a
terminal device then Stred itself will perform the execution with the stan-
dard system function; otherwise, an #Execute request is output (see sec-
tion 1.4).

proc(argl, ..., argn)

This invokes a procedure or command. Each of the given arguments are
assigned to the corresponding defined arguments as if by an assignment
expression (with the attendent success or failure), except if the argument is
declared as a list. A list can only receive another list, and the declared list
argument becomes an alias for the passed list argument. The success or
failure of the invoked routine then determines the success or failure of the
expression. Note that if the declared argument is an alias, the passed argu-
ment must be a variable of that type (thus implementing a pass by refer-
ence).

lobject —-> robject v
This appends a copy of robject following lobject in alist. 1lobject
must be a list element, and robject must be an object of the same type.
This fails if either object fails, with one exception: if lobject references
the last element of a list (see below), this operation becomes equivalent to
the assignment "1ist <- object".

object—>
This destroys and/or removes object. If object is a list element, it is
removed from the list. object is cleared (i.e. any following reference to
it or any of its fields will fail) and any associated permanent object (file of
a page or node) is removed (unlinked from the file system).

2.5, Objects

An object can either succeed or fail. Failure occurs if the named object
does not exist (eg. the successor of the last element in a list - see below) or if it
has no value. The following are objects.

A variable:
A simple variable reference, var, is an object. If var is a list, the varx
references the last element in the list and var references the first element
in the list (except on the left side of assignments and as a passed argument
to a declared list).

A string constant:

A string constant is a series of characters delimited by a matching pair of
quotes (either single, double, or grave). There cannot be a line break
within the string. The following escape sequences are recognised within the
string:

\n - a newline character

\t - a horizontal tab

\b - a backspace character (non-destructive)
\e - the escape character
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\’ \" \' - a string delimiter
\\ - a backslash
any other sequence "\c" results in "c"

A selected field:

A field is selected from an object by object.field. If field is a list
then the first element is referenced, and if there is a * suffix the last ele-
ment is selected (as with a simple variable above). There is a special
operation that selects a link from one node to another, using the syntax
nodel.node2. If there are more than one link, the link selected is the
first encountered in the definition of the links of nodei. If there is no link
found, the object fails.

Link neighbours:
If object is an element of a list, then +object is the next object in the
list, and —object is the previous element in the list. If there is no next
(previous) element, this object fails.

Comments:
A comment is initiated by a $ and terminated by the end of the line. It is,
of course, ignored during execution.



3$
$ Example 1: A Tree
$
$

This is the Stred program for a tree. The commands
$ for traversal and maintenance are inspired by UNIX,
$ but there is a strong Port influence.
$ This program was used to create this thesis.

#tree {
string name;
link parent, child¥;

3
#mrk {
¥
#globals {
string p_reader, p_args, $ default reader
root, $ name of root node
sep; $ hierarchical separator for names
tree current, $§ current position
clip; $ for set .. move, et al.
comm le(dir),
cr(dir, titl),
cd(dir),
rm(dir),
rm_only(dir),
r(dir),
set(dir),
move(nm, titl),
copy(dir),
head (dir),
tail(dir),
retitle (titl),
set_reader(r, a),
mark (),
help();
proc _le(n:tree),
-geno(n:tree),
-check(nc:tree, np:tree);
-rename (old:string, par:string, new:string),
_setup();
b4
$ the setup routine
#_setup {
mrk m;

root <- ‘thesis’;

sep <= ‘.’

p_reader <- 'vi’;

$ look for a marked position from previous session

m <- °'_mark_"' %(
current <- m.title;
m->;

)i (

$ no marked session, so start at root



52 David Tanguay

$ build it if necessary
current <- root :(
current.file <- root;
current.page.file <- root;
current.page.reader <- p_reader :();
current.page.args <- p.args :Q0;
<-current;
).
)
$ print current location
% current;
_lc(current) ;
>

$ mark the current node
$ next session will start at the marked node
#mark {

mrk m;

m.file <- ’'_mark__’;
m.title <- current.file;
<-m;

¥

$ list the children of the passed node
#_1c {

$ n:tree

link 1~;

1 <- n.child ?(
?(
% l.selector; % '\t’;
% 1.title :Q); % '\n’;
D1 <-+1 :0;

Y: (% '\n’3);
Y
$ remove a subtree, recursively
#_geno {

$ n:tree

tree m;

link 1~;

\ 1 <~ n.child ?(

m <- 1.file %(

—geno(m) :0;

):0;

1->;
):0;
n.page-> :(); § get the page, too
n->;
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$ rename a node

$ this changes the pathnames of all its children, so
$ they must be changed (moved) too (recursively)
#_rename {

b4

$ old:string the old name of this node
$ par:string the new name of its parent
$ new:string  the new name of this node
tree n, o;

link 1~
o <- old; $ get the old node
n <- o; $ and make an update copy

n.parent.file <- par;
n.name <- new;
n.file <- par + sep;
n.file <- n.file + new;
n.page.file <- n.file;
$ rename all the children recursively
1 <- n.child ?(
?(
-rename(l.file, n.file, 1l.selector) :0);
l.file <- n.file + sep;
l1.file <- 1.file + 1l.selector;
Y} 1 <= +1 :0):
): 0
$ install the new node
<-n;
n.page.file <~ o.page :():
$§ outstall the old node
o.page~> :0);
o->;

$ list the children of a node
$ must first figure out what directory the user wants
#lc {

$ dir:string

tree n;

air ?(
$ first try relative to current
n.file <- current.file + sep;
n.file <- n.file + dir;
n <- n.file ?(

~le(m);
:(
$ try global pathname
n <- dir ?(
_le(n);

~

):(
% "#Error: No such directory\n';
o
)
)

53
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):(
$ no given directory means current
_le(current);

),

$ create a new child
#er {

$ dir:string
$ titl:string
tree 1n, t;
link nl;

dir :(
% ’#Error: syntax: cr name [title]
[
)
n.file <- current.file + sep;
n.file <- n.file + dir;
n.name <- dir;
current.n  ?(

% ‘#Error: Already exists\n’;

o
SO
redundant: previous check should be
t <~ n.file ?(

% '#Error: Already exists\n’;

1

LA

10
build the node

.vitle <- titl :(Q);
.page.file <- n.file;

.page .reader <- p_reader :();
.page.args <- p_args :Q);
.page.title <- titl :(Q);
nl.file <- n.file;

nl.selector <- dir;

nl.title <- titl :Q);
n.parent.file <- current.file;
$ link to parent
current.child* -> nl;

$ update the database

<-n;

<-current;

_le(current);

0 H 0 8B N

}
$ move to a new node
$ let '.' be the current node
$ let '..' be the parent
#cd {
$ dir:string
tree 1n;
dir :(

$ no node given, assume '.’
% current;

_lc(current) ;
7

o

sufficient
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dir = *..* ?( § parent
dir <- current.parent.file :(
% '#Error: At °; % root; % ' already\n’;
b ]
).
):(
dir = *.* ?( § current
% current;
_le(current);
7!
):0;
).

$ a real name was given
$ first try relative
n.file <- current.file + sep;
n.file <- n.file + dir;
n <- n.file :(
$ not relative, try global
n <- dir :(
% "#Error: No such directory\n’;
[ ]
)
).
$ now move
current <- n;
% current;
_lec(current);

$ remove a child
$ this throws out the whole branch
#rm {

$ dir:string
tree n;
dir 7(

$ make sure child exists
n.file <- current.file + sep;
n.file <- n.file + dir;
current.n :(
% '#Error: No such child\n’;
-
);
n <- n.file;
):(
$ no child given, so remove current node
current.file = root ?(
% ‘#Error: Can't delete ’; % root; % ' \n‘:
]

): O

n <~ current;

$ move to parent

current <- current.parent.file;

55
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$ perform the removal
_geno(n);
current.n->;
<-current;

% current;
_lc(current);

>
$ read contents (if any)
#r {
$ dir:string
tree  n;
dir ?(
$ read a child
n.file <- current.file + sep;
n.file <- n.file + dir;
current.n  :(
% ’#Error: No such child\n’;
4
)
n <~ n.file;
<-n.page;
):(
$ no child given => read current
<-current.page;
)
~le(current);
}

$ set the current node as source node
$ for a copy or move (a la Port)

#set {
$ dir:string
tree n;
dir ?(
$ set a child
n.file <- current.file + sep;
n.file <- n.file + dir;
current.n :(
% '#Error: no such child\n’;
1
)
clip <= n.file;
):(
$ no child given => set current
clip <- current;
);
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$ move a subtree
$ everything must be renamed
#move {

b

$ nm:string
$ titl:string

link 1;
tree P
clip :(

% '#Error: No node was set to move\n';
ot
).
clip.file ~ root :(
% "#Error: Can’t move "; % root; % '\n';
|

clip the branch

<- clip.parent.file;

.clip->;

.file ~ current.file 7(
(—p;

):(

current <- p;

O 'O T &\

)

nm :(nm <- clip.name;);

titl ?(
$ retitle it, if a title was given
clip.title <- titl;
<-clip;

):(
$ no title, so use old (if any)
titl <- clip.title :(0};

make the link from the future parent
.selector <- um;

.file <- current.file + sep;

.file <~ 1.file + nm;

.bitle <- titl Q)

rename everything

_rename (clip.file, current.file, nm);
clip.file->; $ unset

$ attach to the new parent
current.child* -> 1;

<-current;

% current;

_lc(current);

P H e s

$ copy the content from one node to another
$ build a new node if the destination doesn’t exist
#tcopy {

$ dir:string
tree n;
string name, fname;

clip.page; $ a source node must be set
$ have to determine the destination
dir ?¢(

dir = *.° ?(

57
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n <- current;
):(
name <- dir;
)
):(
$ use old name if none was given
name <- clip.name;
)
name ?(
$ get the destination node
fname <- current.file + sep;
fname <- fname + name;
n <- fname :(
$ it doesn't exist => make it
clip.title ?(
cr(name, clip.title);
):(
cr(name, *’);
)
n <- fname;
)
0
copy the contents
.page-> :0);
.page <- clip.page;
.page.file <- n.file;
.page.file <- clip.page;
-n;

H AY B 89 O A

current ?(

current <- n;
): Q0

be

$ change the title of the current node
#retitle {

$ titl:string

link 1=;

tree p;

current.title <- titl;

<-current;

$ also change the link title from the parent
$ (if root => no parent)

p <= current.parent.file :(?!);

1 <- p.current;

l.title <- titl;

<—p;

% current;
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$ move a child to the head of the list
$ this is for display

$ there are better ways to do this
#head {

b

$ dir:string
tree c;
link 1, p~:

dir = (

% '#Error: syntax: head child\n';
¥

)

c.file <- current.file + sep;
c.file <- c.file + dir;

p <- current.c :(

% *#Error: No such child\n’;
:

)

1l <- p;

| Jut?

current.child <- 1;

<-current;

_le(current) ;

$ move a child to the tall of a list
#tail {

>

$ dir:string
tree c¢;
link 1, p~.

dir :(
% °#Error: syntax: tail child\n’;
ot
)
c.file <- current.file + sep.
c.file <- c.file + dir;
p <- current.c :(
% '#Error: No such child\n®;
Tl
),
1 <- p;
p->:
current.child* -> 1;
_le(current);

$ change the reader of the current page
#set_reader {

$ r:string
$ a:string

:C
% '#Error: no reader was given\n’;
1

T

)
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current.page.reader <- T;
current.page.args <- a :();
<-current;

}

#help {

"\tle  [dirj\n";

*\ter dir [titlel\n’;
*\tcd [dirl\n’;

‘\trm  [dir]\n’;

"\tr [diri\n"’;

*\tset [dirl\n’;

"\tmove [name] [titlel\n’;
*\tecopy [dirl\n’;
*\tretitle title\n’;
*\thead dir\n’;

*\ttail dir\n’;
*\tset_reader reader [argsl\n’;

AWM ARV IR VRN RANR

>

$ check that 1t is okay to promote grandchildren
$ to children
#_check {

$ nc:tree

$ np:tree

link lc™, 1p~.

lc <~ nc.child :(?!);
1p <- np.child :(?!);
7(
1p <~ np.child;
?(
lc.selector ~ nc.name ?(
lc.selector - 1lp.selector;
Y: 0
Y 1p <- +1p :0;
) lc <= +lc :0);
¥

$ remove a child
$ this promotes all the grandchildren
#rm_only {

$ dir:string

tree n;

link 1=

dir ?¢(
$ make sure child exists
n.file <- current.file + sep;
n.file <- n.file + dir;
current.n :(
% '#Error: No such child\n’;
[
)
n <- n.file;
Y:(
$ no child given, so remove current node
current.file = root 7(
% ‘#Error: Can’'t delete '; % root; % ' \n*:
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):0;
n <- current;
$ move to parent
current <- current.parent.file;
)
$ perform the removal
_check(n, current) :(
current <- n;
% '#Error: cannot promote children\n’;
1
);
current.n->;
1 <- n.child ?(
?(
_rename(l.file, current.file, l.selector);
l.file <- current.file + sep;
1.file <~ 1.file + l.selector;
current.child* -> 1;
) 1< +1 :0;
);
<-current;
% current;
_lc(current) ;
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Example 2: A Grid

This is a Stred program that implements a flavour of
grid structure. It allows only 3 dimensions.

€A H H B P H

#grid {
string x1, x2, x3;
>

#save { $ the keys of the various dimensions
string 1%, 2%, 3*;
b

#globals {
string saved_name, sep;
string p._al, p_a2, p_a3, p_cl, p_c2, p_c3;
grid current;
save Keys;
comm move(1, 2, 3),
wni(Q),
add(1, 2, 3),
del(1, 2, 3),
see(),
set_reader(rdr, arg),
newl (k),
new2(k),
new3(k),
remove (k) ,
keys(Q),
help();
proc _setup(),
_find(1~:string, k:string),
file(g~:grid),
_init O,
_parse(),
_place(k:string),
_finQ,
_sad(s”:string, k:string);
}

$ the setup routine
$ get the keys, if any
$ if none, start with a few defaults
#_setup {
string start;

sep <— .’

saved_name <- ’saved_keys’;

$ retrieve the keys

Keys <- saved_name :(
Keys.file <~ saved_name;

)
Keys.1 :(
Keys.1 <- ’'root_i’;
):
Keys.2 :(

Keys.2 <- ’'root_2’;



b

A System for Managing Information Structures

);
Keys.3 :(
Keys.3 <- 'root 3’;
)
<-Keys;

$ nodes are named by a concatenation of their
$ coords start at the first indicated label of
$ each dimension
start <- Keys.1 + sep;
start <- start + Keys.2;
start <- start + sep;
start <- start + Keys.3;
current <- start :(
$ create the node if it doesn’t exist
current.file <- start;
current.xl <- Keys.l;
current.x2 <- Keys.2;
current.x3 <- Keys.3:;
<-current;
)

% current;

$ look for a key in a list
#_find { $ 1, k : string

}

?(
1 =% 2021) :0;
) 1 <~ +1;

$ build a file name, given coords
#_file { $ g~ : grid

g.file <- g.x1 + sep;
g.file <- g.file + g.x2;
g.file <- g.file + sep;
g.file <~ g.file + g.x3;

¥
#_init |
p_ci-> :Q; pc2-> :(; p-c3-> :0;
pat-> :0; pa2-> :0; pad3> :0;
b
#_fin {

p-c1 :{(p.cl <- current.xi;);
p-c2 :(p.c2 <- current.x2;);
p_c3 :(p.c3 <- current.x3;);

63



64 David Tanguay

#_place { § k : string
_find(Keys.1, k) 7(
pecl (1) :(p_el <- k;);

):(
_tind(Keys.2, k) ?(
p-c2 7(:1) :(p.c2 <- k;);
):(
_find(Keys.3, k) 7(
p-c3 ?(:1) :(pc8 <- k;);
)
)
)
}
#_parse {
p-at  ?(
-place(p_al);
p-a2 ?(
_place(p_a2);
p_a3 7(
_place(p_a3);
):0:
):0;
):0:
_fin();
}

$ move to another grid coordinate
$ only if there 1s a node there
#move { $ 1, 2, 3 : string

grid c;
_init )
p-at <- 1 :0; pa2<-2 :0; pa3d < 3:0;
—parse() :(
% "#Error: Bad grid coordinates\n®;
!
)
c.file <- " *;
c.x1 <- p.cl; ¢.xX2 <~ p_c2; c¢.X3 <- p_c3;
~file(c);

c <- c.file :(
% "#Error: No such node\n*;
!

)

current <- c;

% current;
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$ make a node at a grid coordinate
#add { $ 1, 2, 8 : string

>

grid t, g

~initQ);
p-al <- 1 :(); p.a2 <- 2 :(0); p-.a3 <- 3 :0;
—parse() :(
% “#Error: Bad grid coordinates\n';
-t
)
g.file <= * 7,
g.Xx1 <~ p_cl; g.Xx2 <- p.c2; g.x3 <- p_c3;
file(g);
t <- g.file 7(
% '#Error: node '; % g.file;
% ° already exists\n';
1

) 0
<~g;

$ delete a node at a grid coord
#del { $ 1, 2, 3 : string

>

grid g

_initQ);
pal <=1 :(); pa2 <- 2 :(); p_al3 <=3 :0;
_parse() :(
% "#Error: Bad grid coordinates\n*;
i
)
g.file <= *
g-x1 <- p_cl; g.x2 <- p.c2; g.Xx3 <- p_c3;
_file(g);
g.file ~ current.file :(
% *#Error: Can't delete current node\n*;
|
);
g <- g.file :(
% '#Error: No node at those coordinates\n’;
|

g->;

$ print out current grid coords
#wmi {

}

% current;

$ set the reader for the current node
#set_reader { $ rdr, arg : string

current.page.reader <- rdr;
current.page.args <- arg :();
current.page.file <- current.file;
<-current;
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$ read the contents of the current node
#see {
current.page.file :(
% '#Error: Page is not set for this node\n';
T :
),
<-current.page;

>

$ add a new label to dimension 1
#newt { $ k : string
—place(k) ?2(
% '#Error: Key is already in a dimension\n’;

keysQ;
1
): O
Keys.1* ~-> k;
<-Keys;
keysQ);

¥

$ add a new label to dimension 2
#new2 { $ k : string
—place(k) ?(
% °*#Error: Key is already in a dimension\n';

keys(Q);
|
):0;
Keys.2% -> k;
<-Keys;
xeys(Q);

}

$ add a new label to dimension 3
#newd { $ x : string
—place(k) 7(
% *#Error: Key is already in a dimension\n’;

keys(Q);
o1
):0;
Keys.3% -> k;
<-Keys;
keys(Q);
}
#.sad { $ s~, k : string
\'s “k 7(
s <- +8;
):(
s->;
)
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$ remove a label
$ labels must be unique, so there is no problem
$ re which dimension to remove from
#remove { § X : string
_sad(Keys.1, k) :(
_sad(Keys.2, k) :(
_sad (Keys.3, k) :(
% ‘#Error: No such key\n';
:
),
)
)
<~Keys;
keys(;
¥

$ on-line doc

#help {

*Commands are:\n’;

*\tmove coord [coord [coord]ll\n’:
*\tadd coord [coord [coord]l\n’;
*\tdel coord [coord [coordll\n’;
*\twni\n’;

"\tnewi  coord\n’;

*\tnew2 coord\n’;

*\tnew3 coord\n’;

*\tremove coord\n’;

*\tsee\n’;

*\tset_reader reader [args]\n’;
*\tkeys\n’;

*\thelp\n’;

AR 2T AV AT AR AT AT AT RN AW AR W N

¥

$ display all the labels (keys) of all dimensiomns
#keys {
string s7;

% °'Dimension 1:\n';
s <- Keys.1;
?(
% '\v': % s; % "\n’;
) s <= +s :0;
% ‘Dimension 2:\n';
§ <- Keys.2;
?(
% '\t’; % s; % "\n";
) s<-+s :0;
% ’Dimension 3:\n';
s <~ Keys.3;
7(
% '\t’; % s; % "\n’;

) s <-+s :0);
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Example 3: Directed Acyclic Graph

@ A &P

$ This is a Stred program describing a dag with a
$ single source node. All nodes in the database must
$ have unique names.

$

#dag {
link parent*, child*;
>

#globals {

dag current,
target;

string root,
path*,
p-reader,
pP-args;

comm 1cQ,
1pQ,
ge(e),
gp(p).
back (),
mark (),
new(c, v,
mklink(t),
unlink(e),
read (),
set_reader(r, a),
page_reader(r),
page_args(a),
wniQ),
helpO;

proc —setup(),
~1ind (1ist~:1ink, it:string),
_path(p:string),
_check(p:string, c:string),
~unlink(p:string, c:string);

for making links

name of starting source
path from root to current
default reader for pages
default page arguments

€ P B S

b3

#_setup {

root <- ’'root’;

p_reader <- ’'vi’;

current <- root :( $ start at root
current.file <- root; $ create it if I must
<-current;

).

path <- root; § initialize path

% current;

1c();
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$ list children of current node
#lc {
link 1=,

1 <- current.child ?(
% 'Children:\n’;
?(
% "\t’; % 1.file; % °\v’;
% 1.title :Q); % '\n’;
) 1 <= +1 Q0
):(
% 'No children\n’;

)
}
$ list parents of current node
#lp {

link 1=,

1 <- current.parent 7?¢(
% 'Parents:\n’;
?(
% '\t'; % 1.file; % °\t';
% 1.title :Q); % '\n’;
) 1 <-+1 :0;
):(
% 'No parents\n’;
)
}

$ find a particular link in a list
#_find { $ list~:link, it:string
\ list.file ~ it ?2(
list <- +1ist;
Y:(?);
>

$ adjust the path for a move
#_path { $§ p : string
string s7;

$ back to root then re-init the path
p = toot 7?(

\ path-> :0);
path <- root;
?!

):0;

$ if the next node is the previous in

$ the path, back up the path

s <- -pathx :(
path* -> p; $ it's not: add to path
21

)
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s =p ?(

path*->; $ 1t is: back up
):(

path* -> p; $ it's not: add to path
)

Y

$ go to child
#ge { $ ¢ : string
dag 4,

_find(current.child, c); $ it must be a child
d <- c; $ preserve current
current <- 4;
_path(c);
% current;
le();

bz

$ go to parent
#gp { $ p : string
dag d4;

_find(current.parent, p); $ it must be a parent
d <- p; $ preserve current
current <- d;
~path(p);
% current;
1cO;

>

$ back up the path
#back {
dag d;

path¥->; $ back up the path
d <~ path*¥ :(
% *"#Error: Can't back track\n";
$ something weird happened: re-init path
\ path*-> :0;
path <- root;
path —-> current.file;
.
)
current <- 4;
% current;
le();
>

$ make a new child for current
#new { $ ¢, t : string

dag d;

link 1;

d <-c 72(
% '#Error: Already exists\n’;
1

):0;
$ make the node
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.file <- ¢;

.title <- ¢t Q)

.page.file <- c;

.page.reader <- p_reader :();
.page.args <- p_args :Q;
.page.title <- t :0);

link it to current

.file <- ¢;

.title <~ t :Q);
current.child* -> 1;

1.file <- current.file;
1.title <~ current.title :();
d.parent* -> 1;

<-d;

<-current;

1cQ;

[ - A = T o Vi = TRy = Vi » Ty o 1}

}

$ mark the current as the target for a new link
#mark {
target <- current;

}

$ check that a link doesn't create a cycle
#_check { § p, ¢ : string

dag d;
link 1=;
P~ c; $ make sure it’s not a tight cycle

d <-p :(?!); § doesn’'t exist yet
1 <~ d.child :(?1);
?(
_check(l.file, ¢); $ recurse on children
) 1 <-+1 :0;
}

$ make a link from current to target
#mklink { $§ t : string -> the link title
link 1;

target :(

% '#Error: No target node was set\n';
o}

)
current ~ target;
_find(current.child, target.file) 7(
1cQ);
k4
):0;

_check(target.file, current.file) :(
% *#Error: That would make a cycle\n';
]
)
$ make the link
1.file <- target.file;
vt 7(
l.title <~ t;
y:(C
1.title <- target.title :Q);
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)
current.child* -> 1;
<-current;
1.file <- current.file;
l.title <~ current.title :();
target.parent* -> 1;
<-target;
1eQ);

b

$ destroy a limnk - if this results in an isolated
$ child, the node is removed and links to its children
$ are deleted (proceeding recursively)
#_unlink { $ p, c : string
dag pd, cd;
link 1~

$ break the link
pd <- p:
ed <- ¢
pd.cd->;
<-pd;
cd.pd->;
cd.parent 7(
<-cd;
d:(
$ it's isolated: unlink children
1 <- c¢d.child ?(
?(
_unlink(e, 1.file);
) 1<-+1 :0;
): 0
$ throw the node (and page) away
cd.page 7(
cd.page->;
):0;
cd->;
).
¥

$ unlink a child from current
#unlink { § ¢ : string

_find(current.child, c); $ make sure it's a child
_unlink(current.file, ¢); § unlink it
current <- current.file; $ update current
1c();
b

$ read the current page
#read {
<-current.page;
1c();
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$ set the page reader and arguments for current
#set_reader {
$ r, a : string - reader process and the arg string
current.page.reader <- r;
current.page.args <- a :();
current.page.file <- current.file;
current.page.title <- current.title :();
b

$ change default page reader
#page_reader { §$ r : string
r 7(
p_reader <- r;
)
¥

$ change default page reader arguments
#page_args { $ a : string

a 7(
p_args <- a;
).
}
$ show the path to curremt
#umi {
string s~;
s <- path;
?(
%s:% " "
) s<-+s :10;
% "\n’;
}
#help {
% °'Dag commands are:\n’;
% '\tlc\n':
% *\tlp\n’;
% '\tge child\n’;
% '\tgp parent\n’;
% *\twmi\n';
% *\tback\n';
% '\tnew name [title]\n’;
% ‘\tmark\n’;
% '\tmklink [titlel\n’;
% ’\tunlink child\n’;
% °\tpage_reader reader\n’;
% °\tpage_args args\n';
% °\tset_reader reader [args]\n’;
% °\tread\n’;
% °\thelp\n’:
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Stred Manual

David Adrien Tanguay

University of Waterloo
1. The Stred System

1.1. Overview

Stred is a system for designing and implementing structures for use in
videotex databases. The major emphases are flexibility of the implementation
and the personalization of the databases created with Stred. Stred also supplies a
standard operating environment for its structures. The design of a structure is
specified in the command definition file, in the form of a structure program writ-
ten in a special language (see section 2). This program describes the commands
and datatypes which specify the structure.

Stred itself makes no concession to user friendliness, although its interface
is human operable. It is expected that a driver system will mate the Stred inter-
face with the available hardware devices to create an aesthetically pleasing, user
friendly interface.

1.2. Environment

Stred views a database as a collection of nodes and state variables, with
commands, input interactively, that manipulate the organization of the database.
The format of a node, the state variables, and the precise definition of the com-
mands constitute the structure, the scheme of organization. The structure is
defined in the command definition file by the structure program.

A node does not (usually) contain the contents of the database. The data
(if any) that is associated with a node is stored in a separate file, called a page.
Pages are not interpreted by Stred; a reader process must be supplied to read,
modify, and/or format the data. The node, however, will usually contain the
information necessary to access the page (the page’s name, for example).

Nodes, pages, and readers are accessed indirectly: the actual name is modi-
fied by an access hierarchy (separate hierarchies for each). The access hierarchy
is an ordered list of places that are searched to find the object (under the given
access capabilities) (this is similar to the search for executable files done by the
UNIX shell on the PATH environment variable). Stred uses UNIX access per-
missions to determine access type. For example, let the node access hierarchy be
{usr/public/db_nodes, /usr/telidon/nodes, and /u/me/n. Now suppose we want to
access the node root_2_4 with write permissions, and that this node exists in
/usr/public/db_nodes with read-only permissions and in /w/me/n with full permis-
sions. First, /usr/public/db_nodes is searched and the node is found, but access
fails since that root_2 4 does not have the required permissions. Next,
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/usr/telidon/nodes is searched, and again access fails, this time since the node
does not exist there. Finally, /u/me/n is searched, the node is found with the
required permissions, and the access terminates in success. The access hierarchy
is not applied to names that begin with a slash (/). These names are assumed to
be absolute pathnames and are accessed "as is" (i.e., without modification by the
access hierarchy).

Different structures can operate one the same database, in certain condi-
tions. The node formats (see section 2) must be compatible, and the commands
of one structure must preserve the consistency of the database under the other
structures. As a simple example, a command that performs a pre-order walk of
a tree can be added to an existing tree structure, creating a technically different
structure, but one that is still compatible with the original. More radical changes
could be accommodated, but the risk of incompatibility will naturally increase.

A database is described by a locale. A locale contains the access hierar-
chies (node, page, and binary), the name of the command definition file (i.e.,
the structure of the database), and an initializing command line (executed
immediately after loading the structure program). A locale is stored as a file,
but it is created and modified with Stred commands. In one Stred session,
several different databases may be activated (i.e., several locales may be loaded).

1.3. Commands

The following commands are those accepted by Stred. They are described
using the standard abbreviation syntax of the University of Waterloo: all upper-
case letters of a command must be present, as well as non-alphabetic characters;
all lower-case letters (including the underbar _ ) are optional. Optional argu-
ments are enclosed in square brackets ([ J). Where a choice of exactly one char-
acter is required, the characters are presented in parentheses and separated by
vertical bars (eg. (+}-)). If an argument can be present zero or more times, an
asterisk (*) is appended to the argument.

Three types of arguments are allowed on the Stred command line:

(+ -)EchoLocale
When on, this causes a verbose listing of the current locale after every
change of locale. It is off by default.

(+}-)Slave
When on, this indicates to Stred that it is being driven by another pro-
cess. Stred will issue #Execute statements instead of executing processes
itself (see section 1.4). The default is off.

(+-)Repeat
When on, then this causes the input lines to be echoed. When off, the
input prompt is not output. The default is to not echo input lines and to
output a prompt. If Stred is a slave, setting this option has no effect.
All other arguments are assumed to be the names of Stred locales. They are
loaded in reverse order so that the first given locale is active when the command
prompt is first displayed.
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The following are the commands accepted interactively:

List-Locale [locale]
This lists the named locale. If no locale is given, a list of active locales is
presented.

Goto-Locale locale
Switches to the named locale.

Copy-Locale name
A copy of the current locale is made under the given name. Stred then
switches to that locale.

Read-Locale locale
The named locale is read into Stred. The command definition file is

parsed and the initialization routine, if present, is executed. The named
locale becomes the current locale.

Delete-Locale [4+-PERManent]
The current locale is deleted from Stred. Stred then switches to the last
locale (next in the locales list) if there is one. If the +PERManent
option is invoked, the file containing the locale is removed.

Edit-Locale [options]* [locale]
Makes changes to either the current locale or the named locale. Options
are as follows:

(+) CReate
Creates a new locale or clears an existing locale.

(+}) CLear
All fields of the locale are cleared.

(+ ) PERManent

The edit changes are made permanent (i.e. the locale file is
updated).

(+}) List
Lists the locale verbosely after the edit.

Init=routine
Sets the initialization routine.

~Init
Resets the initialization routine.

Comm_Def_File=file
Set the command definition file.
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Binary_ADd=dir

Binary_INs=dir

Binary_DEl=dir

Node_ADd=dir

Node_INs=dir

Node_DEl=dir

Page_ADd=dir

Page_INs=dir

Page_DEl=dir
Add (to end), insert (at head), or delete hierarchical places
(directories) from the appropriate hierarchy.

Make-Place dir

Make a hierarchical place (a directory). The access permissions are
those set in your umask.

Delete-Place dir

Delete a hierarchical place (remove the directory). The directory must
be empty.

Help-Locale
This prints out a short list of Stred commands (not user defined com-
mands).

Isystem command
If a ! is the first character of the line then the rest of the line is assumed
to be a UNIX command line. If Stred is a slave process, then it outputs
a #Execute request (see section 1.4). Otherwise, Stred itself executes the
command (via the system function).

user defined commands
An unrecognised command is assumed to be user defined in the current
locale. If it is not then an error message is produced.

1.4. Output
The following are the various forms of output Stred will produce.

Input prompt:
>
This (with a trailing space - no newline) is the input prompt. It indicates
that Stred is idle and ready to accept input. It is not output if —Repeat is
in effect when Stred is not a slave.
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Failure message:
#Failed
#tFailed on line n
This indicates a failure of a user command (see section 2). Usually, the
line number (of the command definition file) that was being executed
(that caused the failure) is displayed (the second form).

Error message:
#Error: string
This indicates that an error has occurred in one of the Stred commands,
as detailed by string. For example, an attempt to Goto-Locale to a non-
existant locale will produce an error.

Execution request:
#Execute command_string
If Stred is being driven by another process, Stred will produce this mes-
sage in place of executing command_string itself.

Locales listing:
#Locales
namel
namen
#End
This is the list of all locales as produced by the List-Locale command.

Locale display:
#Locale name
CommandDefinition=file
Initialise=routine
Node dir ...
Page dir ...
Binary dir ...
#End
This is the verbose listing of a single locale as produced by List-Locale.
If any hierarchy is empty it is ommitted. If there is no initialization rou-
tine or command definition file, the respective line is ommitted. This is
also produced by Read-Locale after a successful read (including the read-
ing of command line locales), and by the +List option of Edit-Locale.

Help response:
#Help
text

#Endm'
This is the format of the output produced by the Help-Locale command.
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2. Stred Command Definition Language

2.1. Data Types

There are two basic data types in Stred: string (a character string), and int
(signed integer). There is also the class of user defined types, called nodes. A

particular node type has a standard specification with additional specification
added by the user, including the type name.

Comments in Stred start with a commercial at sign (@) and continue to the
end of the line.

All identifiers in Stred are composed of any sequence of alphanumerics, the
underbar (_), and the octothorpe (#) that does not comprise a valid number con-
stant (see section 2.4). Identifiers (and keywords) are case sensitive. Some
example identifiers:

#hi

TopOfTree

84_nov

#1

One-dimensional, homogeneous (all elements of the same type) lists of

basic types or node types can be made and manipulated. Also, aliases can be
made for variables of either basic or node types. Lists of lists, lists of aliases,
aliases of aliases, and aliases of lists are not allowed.

There are three data types:

string - A simple character string with dynamic length. A string is non-
existent if it has no value (a string with no characters — i.e., of length
zero — has a value).

int - An integer. int variables are initially undefined (a special internal
value), and may be explicitly set to undefined by deleting them (see sec-
tion 2.5).

node - A node is intended to be a location in the database, although it can be
used to contain any structural information. The node can contain user
defined fields, but all node types contain a file field, a string, which is
the name of the node as it is stored in the access hierarchy. User
defined fields can be string, int types, or a previously defined node type,
or lists of these. The creation of a node type is described in section 2.2.
Note that variables of node type are not declared as nodes, but as the
name given to the specific instance of node type.

Variables are declared with a statement of the form:

type varl, var2, ..., varn,
where type is the base data type and vari is the identifier for the variable. The
identifier may be followed by a carret (%) to indicate that the variable is an alias,
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or by an asterisk (*) to indicate that it is a list. The following are example
declarations:

string root, list_of_names*, reader, list_ptr";
int count;
node_type current®, save_node;

2.2, Program Format

A Stred command definition file consists of a set of named fields which can
be divided into three sections:

node type definitions:
This is the first section. It is a set of fields which define the various node
types, one type per field. The name of the field names the node type.
For each node type, the user-defined fields of the node are defined as a
set of variable declarations. Aliases are not allowed in field declarations.
Only previously defined node types are allowed (there is no forward
declaration of types). An example node definition:

tree {
stringreader, args;
stringparent, child*;

global definitions:
This single field, identified by a null field tag, declares all of the global
variables used, as well as all of the commands and procedures and their
respective arguments. The order of the declarations is arbitrary. Com-
mands and procedures are declared in a fashion similar to variable
declarations, with their arguments also declared at the same time (see
section 2.3 for command and procedure definitions). An example glo-

bals field:
{
@ see also section 2.3
tree current; @ a node
strings1, s2*, s3"; @ string, list, alias
comm create(name, title),
destroy(name};
proc P10,

p2(tree n; link 17 string list*);
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command and procedure definitions:

Following the globals field is a list of fields defining each command and
procedure declared in the globals field. The field tag matches the name
of the routine it defines. The routine definition consists of a (possibly
empty) list of local, automatic variable declarations, followed by the exe-
cution statements. If a local variable (either input argument or
automatic) has the same name as a global variable, all references to that
name (within that field) will be to the local variable. If a user-defined
field of a node type has the same name as either a local or global vari-
able, it has access priority (only in node field selection, of course). An
example command field:

@ see sections 2.4, 2.5, and 2.6
@ This command destroys a child, passed as name, of
@ the current node in a tree structure.

destroy { @ string name;
tree n;
string!lp”;

#read n <— name; @ read the node
@ find the link from current to name
Ip << current.child;

\lp " name ?(lp << “+Ip;) :0;

@ nuke the link

!p;

#save current; (@ update the current node
#remove n; @ destroy name

2.3. Routines

There are two types of routines: commands (comms) and procedures
(procs). Commands are user-callable and only allow string arguments. Com-
mands also allow the last declared argument to be a list of string, and all excess
arguments passed are placed in order in this list. If the user does not provide all
the required arguments, then the unspecified arguments are passed as non-
existent (see below). Procedures are only callable from other procedures or com-
mands and can have any type of arguments. Both allow recursion.

Commands and procedures are declared in the globals field in a similar
fashion to variable declarations. Following the routine’s identifier, however,
there must be a list of declarations of routine arguments (possibly empty)
enclosed in parentheses.

Command arguments must be strings, so the list is just a comma separated
list of identifiers. They may not be aliases or lists, except for the last identifier,
which may be a list — any excess arguments to the command are put at the end
of this list.