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ABSTRACT

The detection of timing problems in digital networks is of
considerable importance. In particular it is desirable to have
efficient methods for discovering critical races and hazards.
Unfortunately, commercial simulators rarely provide such
facilities; in fact, the simulators usually assume that all the
gate delays are exactly equal. In contrast to this, binary race
analysis frequently assumes that gate delays can be arbitrarily
large, though finite. An exception to this is the Almost-
Equal-Delay race model, where gates have different delays,
but the difference between any two delays cannot be arbitrary.
The difficulty with the use of this model is that it is computa-
tionally very inefficient. In this paper we define a new ter-
nary model which is very closely related to the binary
Almost-Equal-Delay model. Moreover, the ternary model is
considerably more efficient, as efficient as the unit delay
model; consequently, it could easily be incorporated in simula-
tors.

+ This research was supported by the Natural Sciences and Engineering Research Coun-
cil of Canada under grant A0871.
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1. Introduction

The ideas to be presented will be introduced by examples; note that
these examples were chosen for their simplicity and not necessarily their
usefulness. Consider the circuit of Fig. 1; the behavior of this circuit is
governed by the following equations:

Yi=x", Yy=xy1, Y3=y»ys

where, for each gate, y; denotes the present output of gate i and Y;,
called the exciration of gate i , gives the value of the boolean function com-
puted by gate i . When y; = ¥; the gate has no tendency to change, and
we say that it is stable. If y; # Y;, then the gate is unstable and the output
y; tries to change to ¥;. This change does not always happen because it is
possible that an earlier change in some other gate may cause Y; to become
equal to y;. This corresponds to the fact that the delay associated with
gate i is inertial, in the sense that short periods of instability are tolerated
without any change. Now suppose the circuit of Fig. 1 is started with
x=0and y =yq,y, y3=1,0,0, which is a stable state. What happens
when x is changed to 1? This is the type of problem that we are con-
cerned with in this paper.

x ‘ Y2

[ {>c - | Y3

Figure 1. Network N;.

Any state in which more than one gate is unstable at the same time is
called a race. The outcome of a race depends very much on the model
used. Commercial simulators like SILOS [S85] or MOSSIM [B84] use the
“unit delay”” (UD) model, in which all gates are assumed to have exactly
equal delays. In the state x =1, y = 100 (commas omitted from 1, 0,0
for simplicity) gates 1 and 2 are unstable, and will both change. Conse-
quently the next state is 010. Now gates 2 and 3 are unstable, and state
001 is reached. This state is stable. In summary, the unit delay model
predicts that the final outcome of this transition is the stable state 00 1; see
Fig. 2, where unstable gates are indicated by underlining.

In contrast to this, the General Multiple Winner (GMW) model
[BY79] permits the possibility of unequal delays. The model assumes that
any nonempty subset of the set of unstable gates can change in any race.
In Fig. 3 we show the GMW analysis of network N ;. If gate 1 is faster in
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|

=

0

0

[fe)

0(!1
O

Figure 2. Unit delay analysis of network N ;.

Figure 3. Race analysis of N, according to the GMW model.

state 1 0 0, the state 0 0 0 may be reached. This is also a stable state, and
represents a likely outcome. This shows that the UD model is inaccurate.
In fact, the only justification of the use of the UD model appears to be its
simplicity. On the other hand, the GMW model is too “pessimistic’’ as we
show below.

Consider the circuit of Fig. 4 started in the stable state x =0,
y =1010100, and let x change to 1. It is reasonable to assume that ys
will change to 0 before y4 changes to 1, and that the only likely final out-
come is the stable state 0101000. However, the GMW model will
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N~
- Y6 Y7

Ys
~ I~ I~ ~
iy By, By Ty

Figure 4. Network N ,.

allow the possibility that y, changes before ys and that the state
0101001 is also reachable.

The “Almost-Equal-Delay” (AED) model, formally defined later,
represents an attempt to reduce the above pessimism by assuming that
(roughly speaking) no gate delay exceeds the sum of any two gate delays.
Thus the AED model predicts only the state 0101000 as the outcome
for the circuit of Fig. 4, because the delay of gate 5 is assumed to be
smaller than the sum of delays of gates 1, 2, 3 and 4. Note that the AED
model (extended to multiple winners) is clearly more informative than the
UD model, since it always includes the outcome predicted by the UD
model.

In this paper we define a new stepwise AED model and compare it
with the original AED model. We show that the two models are
equivalent with respect to their capability of predicting the outcome of a
transition. However, the new stepwise model has the attractive property
of being closely related to a time scale; hence, it is possible to obtain some
timing information from the analysis.

A major difficulty with models such as the GMW and AED is that
the number of steps involved can be exponential in the number of gates.
To overcome this, ternary simulation has been used [JMV69, B83] to per-
form the analysis more efficiently. However, the ternary simulation algo-
rithm, as suggested by Eichelberger [E65], corresponds to a binary GMW
analysis of the network assuming both gate and wire delays [BS85,BS86],
and is therefore even more pessimistic than the GMW analysis. To over-
come this, we propose a new ternary algorithm, called the ternary almost-
equal-delay (TAED) model. This is a stepwise algorithm of the same
complexity as the UD method, but it takes into account possible races. In
fact, we show that the TAED model is closely related to the stepwise
AED model.
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2. The Binary Almost-Equal-Delay Model

The ‘“‘almost-equal-delay” (AED) model was originally defined using
the ‘“‘single-winner’’ concept for simplicity [BY75, BY76]. In this paper
we consider the more general “multiple-winner” version of the model
which is described below. This generalization is quite straightforward.

The basic idea is illustrated in Fig. 5. Suppose network N, of Fig. 1
starts in state 100 at time O with gates 1 and 2 unstable as shown in Fig.
5. Suppose now that gate 2 wins the race at time ¢ and that, as a result of
that change in gate 2, gate 3 becomes unstable. Under the almost-equal-
delay assumption, it is unreasonable to let gate 3 win the new race between
gates 1 and 3, since gate 1 has already been ‘“‘waiting” for ¢ units of time.
The model will remember this fact and will only permit gate 1 to change in
state 110, predicting the next state as 01 0. Informally, we can consider
that at time 0 a ‘“race unit” has started involving gates 1 and 2. No other
gate can ‘“‘enter’’ this race unit until all the gates in the original unit are
somehow “satisfied”. A gate becomes satisfied if it either changes or
becomes stable as a result of some other change. These ideas will be
made precise below.

100 3 b—

y 3 I—

1

1
110 L -
-7 0 t time
(a) (b)

Figure 5. Illustrating the “AED” idea:
(a) possible transition; (b) timing diagram.

Consider a network with n gates whose outputs are given by the vec-
tory =y - -, Y., and with m inputs given by x =x, - -, x,. With
each gate y; we associate its boolean function Y;(x,y). In the AED
model a certain amount of previous race history is necessary to determine
the outcome of a race. We therefore define a race state to be an ordered
pair <y, S >, where y € B" denotes a state of the network, and S denotes
the set of gates that are unstable in that state and are candidates to change
according to the AED model, as explained below.
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Given any gate state y =y, - - - ,V,, and any subset P of the set
{1,---,n} of gate subscripts, we define y®) to be the vector obtained
from y by complementing all the y; such that i isin P.

We now define a set K of race states and a binary relation p on X .
We begin with a stable state x , y°, and change the input to x. The initial
race state of the network is <y?, U (y%)>, where, for any y, U (y) is the
set of subscripts of unstable gates in state y , i.e.

UG)={ :Y;(xy)=y }

(Note that the input will be held constant at the value x for the rest of the
analysis; thus the dependency of U on x is suppressed.)

The set K and the relation p are now defined inductively as follows:
Basis: <y%, U(O>€ekK.
Induction Step: Given <y ,V>¢K,

1. fV=0g,then<y,V>p <y,V>

2. If V ¢, then for each nonempty subset P of
V compute Wp = (V —P)n U(Gy®)).

(a) If Wp = @, then <y®), U(®)> ek
and <y,V>p <y®) U GHE)>.

(b) If Wp = ¥, then <y®), W, )> €K and
<y, V>p <y®) Wp)>.
Nothing else is in X or p.

The set K defined above represents the set of all possible race states
reachable from the initial race state <y® U (y%)>, and the relation p
describes the immediate successor race states. In particular, given
<y,V>,if V =) then y is a stable state, and this is indicated by stating
that <y, (5> is the only successor of itself. Next, if V % ¢, it turns out
by this definition that V will always represent a subset of the gates which
are unstable in y. The model now assumes, according to the multiple
winner principle, that the gates in any nonempty subset P of V may all
change and so state y*) may be reached. The gates in P are considered
to have completed the race they were involved in. As for the gates in
V — P, one of two things can happen. Either a gate y; remains unstable
in y®) i.e. i €W, or the instability of y; is removed when y changes to
y®). 1In the latter case, i ¢ Wp. Now, if Wp = ¢, all the instabilities
have been removed from V, one way or another. Thus we consider the
previous race unit as completed, and now start a new one by entering the
race state <y®), U (y®))> where each unstable gate of y*) has an equal
chance of winning. If W, # ¢, then some of the instabilities of V still
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remain unsatisfied; these are precisely all the gates in Wp . These gates are
given preference over any new instabilities that may have been introduced
by the change from y to y®).

We illustrate this definition by the following example. Consider the
network N, of Fig. 1 in state x = 0, y?= 100 which is stable. We now
let £ = 1 and note that U (y®) = {1, 2}. Thus the network starts in the race
state <100, {1, 2}>. The graph of the relation p is shown in Fig. 6, where
each edge has a label showing the gates that change during the transition
corresponding to the edge. (For now, ignore the * marking on some
edges.)

The relation graph shown in Fig. 6 describes all the possible states that
can be reached during the transition from the initial state y° = 100, when
the input changes from 0 to 1. However, we are normally interested only
in the “final” outcome of the transition. Thus we will consider only the
set of cycles in the relation graph of p. Note that, by the definition of p,
there cannot be any transient cycles in the graph. (A cycle is said to be
transient if there is a gate that has the same value and is unstable in all the
states of the cycle [BY79].) In this case the network may end up in either
one of two possible cycles, namely the stable states 000 and 001. Thus
the initial race is critical because the final outcome depends on the relative
delays in the circuit.

For technical reasons which will become clearer later, we mark certain
edges by a * in the graph of p as follows. All edges of the type
(<y,o@> <y,>) are marked. Also, every edge
(<y,V>,<y®), U @®)>) added to p by Rule 2(a), i.e. with Wp = &,
is marked. No other edges are marked. (Note that if an edge is intro-
duced because of Rule 2(a), that same edge cannot be also generated by
Rule 2(b). This follows because y, V , and y ®) uniquely determine Wp .)
For example, Fig. 6 shows all the marked edges for the previous example.

3. The Stepwise AED Model

In this section we introduce a new binary race model, very closely
related to the AED model of Section 2. This model, which will be called
the stepwise AED model, has the advantage of showing more clearly cer-
tain timing information. Also-the stepwise model will be used later to
establish a related ternary model.

To obtain more timing information from p we now define a new rela-
tion R derived from p as described below. Intuitively, one can interpret
this relation R in the following way. Suppose that all the gates have
approximately the same delay, 6§ +¢. Then any race unit lasts for
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<100,{1,2}>

{1,2} <110, {1}>

{1}
<010, {2,3}>
{2} 3
<000,y > {2, 3} <011, {2}>
Q {2}
<001, >

¢

*

Figure 6. Race analysis of N, according to the AED method.

approximately 6 units of time. Thus a transition between two distinct
states related by R represents roughly § units of time. In contrast to this,
consider the relation p of Fig. 6 and the sequence <100, {1, 2}>,
<110, {1}>, <010, {2, 3}> when consecutive race states are related by p.
Here the first transition takes about § units of time, whereas the second —
only ¢ units of time, because gate 1 became unstable in the first state and
lagged behind gate 2 by a small amount of time.

Note that the above intuitive explanation is adequate as long as e is
much smaller than §. Note also that the * -marking introduced in Section
2 has the following meaning: A transition is marked iff that transition
completes a race unit, or it is a self-loop on a stable state.
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Formally, the relation R is defined on a subset Q of the set K of race
states as follows:

Q = {(QLU0Y>IU
{<y , V> : there is a marked edge into <y , V > in the graph of p}

For <y,V>,<j,V>eQ, we define <y, V>R <y, V> iff there exists a
path from <y, V> to <y, V> in the graph of p, such that only the last
edge of the path is marked. Note, in particular, that <y , >R <y, >
for all the stable states <y , @3> in Q.

To illustrate this consider the example of Fig. 6. We find
0 ={<100,{1,2}>,<010, {2,3}>, <000, >, <001, >},

and the reader can verify that R is as shown in Fig. 7.

<100, {1, 2}>

<010,{2,3}>

<000, > <001, >

O S

Figure 7. Relation R derived from p of Fig. 6.

The reader should note that the knowledge of a race state <y, V>
alone does not provide sufficient timing information about race units.
Consider the network N 3 described by the following equations:

lexy217 Y2=x7 Y3=y2

started in the stable state x = 0, y = 000 and with the new input x = 1.
(We use some strange gates in this network in order to keep the example
small; similar phenomena occur in more realistic larger circuits.) In Fig. 8
we show the graph of the relation p for this transition. It is easy to verify
that the states <000, {1,2}>, <010, {3}>, and <110, {1, 3}> are all in
Q, and that <000, {1,2}>R <010, {3}> because the change in gate 2
completes the race unit started in <000, {1, 2}>. When state <010, {3}>
is reached in this way the instability of gate 3 represents a new race unit.
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<000, {1, 2}>

<100, {2}>

{2}

<010, {3}> <111, {1}>

<011, 5>

O

*

Figure 8. AED analysis of network N ;.

However, despite the fact that the states <110, {1,3}> and <010, {3}>
are both in Q¢ and <110, {1,3}>p <010, {3}>, they are not related by
R. The reason for this is that the transition from <110, {1, 3}> to
<010, {3}> does not represent the completion of a ‘“race unit”, because
gate 3 is still unstable, and that condition started in state <110, {1, 3}>.
By requiring that the last edge in the p-path be marked, we make sure that
the R relation holds only between states reachable by complete race units.

We will show that the R relation contains all the “useful” information
of the old AED relation p. Assume the network is started in the stable
state x, y? and that the new input is . For convenience, let G, be the
directed graph of the relation p, and Gy be the directed graph of the rela-
tion R. Note that G, and G; depend not only on the network, but also on
the initial state and the input change.
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Proposition 1: In the graph Gz every node <y, V > e Q is reachable from
the initial race state <y°, U (y%)>.

Proof: First note that, by the definition of p, all nodes in G, are reachable
from the initial race state <y% U (y%>. Consider <y,V>¢eQ; either
<y, V> is the initial state or it has a marked edge (<7,V>, <y, V>)in
G, into it. Obviously, if it is the initial state there is nothing to prove.
Otherwise, study the state <y, V>. Note that <5, V> must be reachable
from <y® U (y%> in G,, and hence there must exist a path in G, from
<y% U (y%> to <y, V> ending with a marked edge. In this path some
other edges might also be marked, but that will only mean that we can
reach <y, V> in Gy by going through more than one node. Hence the
claim follows. O

Proposition 2: The stable states of G, are the same as the stable states of
Gg .

Proof: All stable states of G, are of the form <y, >, with an edge
<y, @>,<y,@>). Note that this type of edge in G, is always marked
and hence will also exist in Gy . Conversely, every stable state of Gy is a
stable state of G, by construction of R. O

For the next proposition we need a new concept. Given any cycle
<yLVi>, .- <y, V"> <y!, V!> in the graph G,, we call a race state
<y!, Vi> initiating in this cycle iff the edge (<y'~, Vi-1> <y Vi>)is
marked, where <y?, V%> is interpreted as <y’ , V" >.

Proposition 3: Every simple cycle C in G, of length > 2 must contain at
least two distinct initiating states in C .

Proof: For any edge (<y’~!, Vi-'>, <y, Vi>) in such a cycle, either the
edge is marked (Case 2(a)) or V! is a proper subset of Vi~ (Case 2(b)).
Thus from any race state in C we must reach an initiating state in C in a
finite number of steps. Starting from any initiating state <y , V> in C we
eventually must reach another initiating state -<y V>in C. We argue
that these two race states must be different. This is because the edge leav-
ing <y, V> involves changing at least one variable, say y;, from V. This
variable cannot change again until a new initiating state in C is reached.
Thus y and y differ atleastiny;. O

We now wish to show that the cyclic behavior predicted by p is in
some sense preserved in R. For any cycle C of race states in the graph
G,, let II(C ) be the sequence of injtiating states of C in the same order as
in C. The AED model of Section 2 (relation p) and the stepwise model
of this section (relation R) are related by the following result. Assume
that the network is started in the stable state x, y® and the input changes
to x. Compute p and R starting from this condition.
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Theorem 1 For every cycle C in the graph G, there exists a cycle ITI(C ) in
the graph Gz . Conversely, for every cycle D in Gg there exists a cycle C
in G, such that D = II(C ). Furthermore, given two corresponding cycles
C, in G, and Cg in Gg, and any variable y;, either y; has the same
binary value in all the states of C, and C; or y; oscillates (assumes the
values 0 and 1) in both C, and Cy .

Proof: Consider a cycle C, in G,. If the length of the cycle is 1, i.e. the
state is a stable state, then the result follows immediately from Proposition
2. Hence assume the length of the cycle is > 2. By the definition of an
initiating state in a cycle and the definition of II(C,), it follows that if
<y, V> and <y, V> are any two consecutive race states in I1(C ,), then
the path in C, from <y,V> to <y, V> will have only the last edge
marked. Therefore we can conclude that <y,V>R<j,V>. This,
together with Proposition 3 shows that II(C,) is a cycle in Gg of length
>2.

Conversely, let Dy be a cycle of Gg. According to the definition of R,
for any two consecutive race states <y, V> and <y, V> in Dy, there
must exist a path in the graph G, from <y, V> to <y, V > with only the
last edge marked. Hence there must exist in G, a cycle C, corresponding
to the cycle Dy in Gy, such that II(C,) = Dy .

The final part of Theorem 1 follows immediately from the observation that
a gate can change at most once between two initiating states. O

4. Race Units

The definition of Q and R as given above can be simplified since it is
possible to avoid using race states. This follows because, in any state
<y,V>in Q, the set V is uniquely determined by y (V = U (y)). Below
we give a different algorithm for computing Q@ and R, where we do not
explicitly form the graph of p. The reader can easily verify that the result
is equivalent to the previous definition.

As before, we consider a gate network defined by x,y, and Y. A
sequence, (z%, §9), (z1,8Y), - - - (z¥,8*%), k >0, is called a race unit if

i) z%B" is a gate state and % = U (z9),

ii) zi+!is state z/ with all the gate outputs in the set A’ comple-

mented, where A’ is any nonempty subset of S’. Also
gi+l _ (Si _ Ai) nuU (zi'”), and

iii) S* = &.
Note that S°>8'> - - - 5 5%, where O denotes proper con-

tainment.
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We compute the set Z and also the relation o on Z inductively as fol-
lows:

Algorithm 1: Let x , y? be a stable total state and let the input change to £ .
Basis y°€Z .

Induction step: For every yeZ, if there exists a race unit
beginning with (y,U(y)) and ending with
(z,),thenzeZ and yoz.

Now to obtain Q and R, replace each state y €Z by <y, U (y)> in
Q and let <y, U(y)>R <z,U(z)> iff yoz. From now on we will be
working with Z and o rather than with Q and R when referring to the
stepwise AED model.

To illustrate these ideas, consider network N, of Fig. 1, as before
started in the stable state x =0, y®= 100 and with the new input ¥ = 1.

Since U (y% = {1, 2}, there are only three possible race units starting with
(100, {1,2}):

1 (100,{1,2}) (000, ),
2 (100,{1,2}) (110, {1}) (010, ), and

3 (100,{1,2) (010, ).
Therefore we add the states 000 and 010 to Z, and add the pairs
(100, 000) and (100, 010) to the relation ¢. It is easy to show that from the
state 0 0 0 we can only go to 000, and from state 0 1 0 we can end up in
000 or 001. From 001 we can only reach. 001. In summary,
Z = {100, 000, 010, 001}, and the relation ¢ over Z is as illustrated by the
graph of Fig. 9. Note the correspondence between Fig. 9 and Fig. 7.

It is now convenient to interpret Fig. 9 as a nondeterministic finite
state machine with initial state 100, and § as its only input letter. After
one race unit (i.e. after roughly § units of time), we may nondeterministi-
cally reach the states 000 or 010, etc. Let Z%= {y% and let Z’ be the set
of states of Z reachable after i steps, i.e. Z' ={z :y%z}. Note that
these sets are the same as the subsets constructed by the subset construc-
tion when converting the nondeterministic finite state machine to a deter-
ministic finite state machine. In Fig. 10 we show the deterministic finite
state machine corresponding to the nondeterministic machine of Fig. 9.

We close this section with a discussion of some limitations of the step-
wise AED model. One of the basic assumptions in this model is that
delays are only associated with gates, and that delays are inertial in their
nature. In many real circuits these assumptions can be well justified.
However, there is also a danger that the model may become unrealistic
under certain conditions. The model is only accurate as long as races from
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100

000 001

S S

Figure 9. Stepwise AED analysis of ¥ ;.

{100}

{000,010}

\
{000,001}

O

Figure 10. Corresponding deterministic finite state machine to Fig. 9.

different race units do not get “mixed up”’. In general, under the assump-
tion that all gates have delays A; in the interval [§—e¢, 6 +¢], the following
condition makes sure that the k£ race unit does not get mixed up with the
(k=1)":

k(6 —e)>k — 1@ + ).

The condition states that the time to complete £k changes in the fastest
gates (each with delay § — ¢) should be greater then the time required for
k — 1 slowest gates (each with delay & + ¢). What can happen, if the
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above condition is not satisfied, is that the model may omit certain races
that potentially could exist. In summary, a sufficient condition for the
stepwise AED model to be accurate for at least k steps, is that

€ 1
5 % —1
For example, if the uncertainty of the delays in the gates is 10%, the step-
wise AED model is accurate for at least 5 steps. However, the reader
should note that the above condition is only a sufficient condition; in many

cases the AED model is accurate for more than k steps.

5. The TAED Model

In this section we describe a ternary simulation method which is
related to the stepwise AED model. For more details about ternary simu-
lation in general, the reader should refer to [BY79]. Let T = {0,1,%}.
The values 0 and 1 represent the usual logic levels and % represents an
unknown value. We will use the following convention. Variables like y; ,
etc. which take values from B = {0, 1} will have corresponding variables
yi , etc. taking values from T . The partial order < on T is defined by

t<tforallteT, '
0<% and 1<%.

We extend the partial order < to T™ in the usual way:
t<riff t;<r; foralli =1,--- m.

The statement t < r means that whenever r; is binary then ¢, has the same
binary value as r;, but r may contain more unknown components (i.e.
components with value %). Thus r has more “uncertainty” than t.

For any vector of boolean functions f : B” — BP its ternary extension
f:T" — T? is defined by

f(t) = Lub. {f (a):aecB” anda<t}.

It follows that, for teB", f(r) = f (¢), i.e. on binary vectors the ternary
extension agrees with the original function. The ternary extension obeys
the following monotonicity property [BY79]:

t< r implies f(t) < f(r).

The underlying idea behind the TAED method, formally defined
below, is to find all the unstable gates in a state y, and then determine
which of these unstable gates that must change in this race unit. Consider
network N 4 of Fig. 11(a) started in the stable state x = 0, y = 11 and with
the new input ¥ = 1. The first step of the TAED algorithm is to calculate
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the l.u.b. of the present state, and the excitation of the gate network. In
this intermediate state, called t in the algorithm, a gate will have the value
% if it is unstable. In network N, both gate 1 and gate 2 are unstable and
hence t =% %. In order to determine which of the unstable gates must
change in the present race unit, the excitations of the unstable gates (i.e.
the gates for which t; = %) are re-evaluated. However, this re-evaluation
is done assuming t is the total state of the network. If the excitation of an
unstable gate j is still binary, then, independently of changes in the other
unstable gates, this gate has to change before the present race unit can fin-
ish. On the other hand, if the “new” excitation of an unstable gate j is
%, then that instability “depends” on some gates that are also unstable.
Hence it is possible to change these other unstable gates first and thereby
remove the instability of gate j. In network N, we get Yi(1,%%) =1 =0
and Yy(1, %%) = (1%)’ = %, so the new state we reach is 0 %. Itis easy to
see that gate 1 must change in any race unit, since the excitation of the
gate depends only on the new input value. On the other hand, the insta-
bility of gate 2 depends on gate 1 which is unstable; if gate 1 changes first,
gate 2 becomes stable. Hence in the stepwise AED model we can reach in
one race unit the states 00 or 0 1. Note that in the next race unit, gate 2
will again be ‘“‘unstable” (= %) but when re-evaluated, it will be ““forced”
to the binary value 0. This is also consistent with the stepwise AED
model.

| {>A Y1 D"ﬂ— ' _—_——[__Dbyj

(a) (b)

Figure 11 (a) Network N 4; (b) network Ns.

In the description above we simplified the re-evaluation of the excita-
tion of the unstable gates slightly. As the following example shows, it is
not correct to use the values of t for all gates. Study network Ns of Fig.
11(b) started in the stable state x =0, y =1 and with the new input
x =1. We immediately get t= %, but if we use that value for the
re-evaluation, the TAED model will predict that the state after one race
unit will be %. However, the stepwise AED model only predicts the state
y = 0. The reason for this discrepancy is that, when there is a self-loop,
the % that the gate depends on, is coming from itself. Hence the only way
to remove the instability of the gate is to change its state. The solution to
this problem is simply to use the ‘“‘old” gate state for gate j when
re-evaluating gate j. We will use the notation tU) to denote the vector
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obtained from t by replacing the j* component by y j- Innetwork N5 we
get Y(&,tM)=Y(1,1)=(11)' =0, and hence the TAED model will
correspond to the stepwise AED model. We now formally define the
TAED method.

We define the function next as follows. Let ¥ be the new binary
input, and let y be any ternary gate state. We calculate the successor state
of y as shown below.

function next(y e T") eT"

for j =1ton do -- First calculate the intermediate state t
{
for j =1ton do -- Re-evaluate the excitation
{
if t; = % then ) .
¥ =Yj(.f,t(")) - t(")=t1' Yt b
else
Yi =¥;
return(y)

The TAED algorithm consists of repeatedly applying next. Note that
this will either lead to a stable ternary state, or an oscillation. In this
respect the TAED method is similar to the unit-delay method used by
most commercial simulators.

To illustrate the algorithm, consider network N, of Fig. 1 started in
the stable state x = 0, y? =100 and with the new input ¥ = 1. The first
time we call next we get the following intermediate values:

t, = Lub. iy, Yi(x,y% = Lub. {1, 5"} = Lub. {1,0} = %,

t, = Lub. {yQ, Y,(x,y"} = Lub. {0, (iy )} = Lu.b. {0, 1} = %, and

ty = Lub. {y?, Y%,y = Lub. {0, (y5 +yd)}=lub. {0,0}=0.
Hence, t = % % 0. In the second step of the algorithm, the gates with % in
the intermediate state are re-evaluated using the intermediate state, except
for the value of the gate itself for which we use the “old” value. For net-
work N, we re-evaluate gates 1 and 2, and we get the following values:

¥1 = Y48, tD) =%’ =0, and

Y2 = Yo, P) = (F ty) = (1 %) = %.
Hence, we obtain the new state y= 0% 0. In Fig. 12(a) we give the com-
plete TAED analysis of network N ;.
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y¥=100 Z%={100}

tl=1%1%0

y'=0%0 zl={ogQ01m

C=0%1%

y¥=00% 22={06Q001}
&) &)
(a) (b)

Figure 12. Analysis of N;: (a) TAED model;
(b) states reachable in stepwise AED model.

It is interesting to note that the lLu.b. of the states reachable after i
race units in the stepwise AED model, corresponds exactly to the outcome
of the TAED method after i steps; see Fig. 12(a) and (b). In the next
section we explore the relationship between the two models.

6. A Partial Characterization of the TAED Method

In this section we show a partial correspondence between the binary
stepwise AED model and the results of the TAED algorithm described
above. The main result is:

Theorem 2: Let x, y? be a stable total state, and let £ denote a new input
vector. Let y¥ denote the results of the TAED method after i > 0 steps
starting in y’= y°. Then:

y > lub. (Z),

where Z' is the set of states reachable in i steps in the stepwise AED
model.

Before proving the theorem we will establish Lemma 1 below. The
following observation is useful in proving the lemma. If y is the input to
next, then tU)>y. Hence, by the monotonicity property of the ternary
extension,
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Yj (x- ’ t(j)) > Yj (x— ’ y) (1)

Lemma 1: Let y € T" and let y be next(y). Then

w<y and woz implies z<y.

Proof: If y; =%, then for any such z we will trivially have y;>z;.
Hence, study the cases when y;€B . Note that, by the definition of t, it
follows that y; = % implies t; = %. Therefore there are only four cases to

consider.
1 2 3 4

yj= b b b %

ti= b % % %

yi= b b b' b
Here b stands for some binary value (0 or 1), and b’ denotes the comple-
ment of b .
Casel y;=b,t;=b,andy; =b.

Case 2

Case 3

By the definition of t;, t; = b implies that Y;(x,y) = b. Furth-
ermore, by the definition of ternary extension, we must also have
Y;(x,w)=0b for every w<y. Since w;<y; =b, gate j is
stable in any such state w. Consequently, gate j remains
unchanged in any race sequence beginning in state w. There-
fore, if w 6z , we must have z; = b. By assumption, y; = b and
¥; > z; holds.

yi=b,tj=%,andy;, =b.

If t; =% then Y;(f,y) is either % or b'. By (1)
Y, (x, tUNh> Y;(x,y). Thus y;, as computed by next, must have
the value % or b’'. But we have assumed y;=b. Hence this
case is impossible.

yi=b,t;=%,andy; =b".
We first prove that in any state w <y, gate j is unstable. Since
t; =% we know that y; = Y;(x, tU)). Also, by assumption,
§; = b'. Altogether we have Y; (£, tU)) = b'. By (1) we know
that Y; (£, tY)>Y;(f,y), so b'=Y;(£,y). Furthermore, by
the definition of ternary extension, it follows that
Y;(¥,y)>Y;(x,w) when w<y. Hence b'=Y;(x,w) for
w <y Since w <y, and y; =b, we must have w; =b.
Together, this shows that gate j is unstable in any state w <.
Secondly, we show that for any race sequence starting in state
w, gate j must change, and therefore for any z such that woz
we will have z;=b'. We prove this by contradiction. Assume
there exists a race sequence <z% §%>, <z!, 81>, - <z* Sk >
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(k >0) withz°=w, S°=U(w), and S* = ¢, such that zf = b .
Since, according to the first part above, gate j is unstable in any
state w <y, we can conclude that & > 1. Furthermore, since
w <y, and, by assumption, y; = b, we must have zjo =b. How-
ever, by the definition of a race sequence it follows that a gate
can change at most once during a race sequence; since zj° =b,
and z! is assumed to be b, it follows that zf=b for
p=0,---,k. Since t=lLub.(y, Y(¥,y)), it follows by the
definition of ternary extension that t > lu.b. (w,Y (x,w)) for
w <y. Furthermore, by the definition of a race unit, it follows
that for j =1,---,n, and p =0, - - - , k, we have that z] is
either equal to w; or Y;(x,w). We can therefore conclude that
zP<lub.(w,Y(x,w)), and hence t>z? for p =0, --- k.
This, together with the fact that zf=b =y; forp =0, -,k
shows that tU) >z? for p =0, --,k. By the monotonicity of
ternary extension Y;(x, V) >Y,;(%,27) for p=0,--- k.
Furthermore, since t; = % we have §; = Y; (¥, tU)), and, since
§; =b', by assumption, it follows that Y;(,t0))=b".
Together the above two facts imply that Y;(x,zP)=5b" for
p =0, ---,k. However, this implies that j is in U (z?) for
p =0, -,k contradicting the assumption that S*¥ = g5. There-
fore the assumption must have been false, and we can conclude
that all states z, such that woz, must have z; = b'. Hence,
y; > z; holds.

y =%,t; =%,andy; =b.

Since t; =% it follows that §; =Y, (¥, (), and since we
assumed §; = b, it follows that Y; (£, t/)) = b. By (1) we know
that Y;(%,tV)>Y;(¥,y), so we can conclude that
Y;(x,y)=b. By the definition of ternary extension it follows
that Y;(x,w)=b for any w <y  Study any state
w €B",w <y. We have two cases:

Since w; =b and Y;(x,w)=b, we have that gate j is
stable, and, as in Case 1 above, we can conclude that for any

state z such that woz we have z; =b. Hence, y; > z;
holds.

(i) w; =b".
Since w; =b' and Y;(x,w)=>b we have that gate j is
unstable. Using similar arguments as in the second part of
Case 3 above, we can conclude that for any race sequence
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from the state w, gate j must change and thus we have that
ifwoz, thenz; = b. Hence, y; >z; holds.
We have shown that y; >z; for all possible cases, and hence that y >z
for any state z , such that woz , wherew <y. O

We are now in position to prove Theorem 2.

Proof of Theorem 2: We want to show that if y/€B, then
lub.{z; :y%" z} = y}. We will prove this by induction on i .

Basis: i = 0. Trivially true.

Induction Hypothesis: Assume that for all k& <i, we have that
¥ > Lub.{z :y%c* z}.

Induction Step: We need to show that for any z such that y%f+lz,
we have y*1>z. But y%‘*!z implies there exists
w such that y%'w and woz. By the induction
hypothesis w<y , and Lemma 1 applies. Thus
yti>z. o

The following example shows that the inequality of the theorem can
not be replaced by equality, i.e. that the TAED model is sometimes overly
pessimistic. Study network N¢ of Fig. 13, started in the stable state x = 0,
Yy =y¥1°°-¥6=111000 and with the new input x = 1. In Fig. 14 we
show the binary stepwise AED analysis of the race and in Fig. 15 we show
the TAED analysis. Note that the % for gate 5 in state y? is incorrect.
The reason for this discrepancy between the ternary simulation and the
binary race analysis is that in the state y! not all binary states <y' are
reachable, and in particular, the state y = 011100 is not reachable from
the initial state. It is this state that causes gate 5 to be unstable in the ter-
nary simulation, and eventually leads to the % in y2. In general, the
discrepancy occurs because of the loss of information in the ternary simu-
lation where we only use the ‘““average’ of the states reachable. It appears
that this pessimism occurs only in pathological examples, and that for most
practical circuits, the ternary and the binary AED analysis correspond
exactly. However, the problem of characterizing the class of networks for
which the two models agree remains open.
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Figure 13. Network Ng.
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Figure 14. Stepwise AED analysis of Ng.

Y =111000 Lub.(Z% = 111000
t! = %%%%00
y' = 0%%%00 Lub. (Z') = 0%%%00
? = 0%%%%0
Y = 01%0%0 Lub. (Z% = 01%000
= 01%0%%
Yy = 01000% Lub.(Z% = 010000
(a) (b)

Figure 15. (a) TAED analysis of Ng;
(b) Lu.b. of the stepwise AED analysis.
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7. Summary

In this paper we have presented a new ternary simulation algorithm
that can easily replace the unit-delay algorithm in simulators. The algo-
rithm is very closely related to the binary almost-equal-delay model, and
hence is capable of detecting critical races under the assumption that all
delays are approximately, but not exactly, equal. Computationally the ter-
nary algorithm is of the same order of complexity as the unit-delay method
(in the worst case it involves twice as many function evaluations). A
major disadvantage with both this ternary algorithm and with the unit-
delay method, is that the algorithms are not guaranteed to halt. One can
easily test whether a ternary stable state is reached by comparing y and y.
If y=y and y is binary, we know the circuit reliably reaches a unique
stable state. Otherwise, a critical race or an oscillation is likely, and
further analysis is required. Since there are at most 3" reachable ternary
states, it is decidable whether the analysis predicts a unique binary stable
state. However, for large networks this decision may involve an excessive
amount of computation. For such reasons commercial simulators simply
terminate the computation when the number of steps exceeds some arbi-
trarily chosen relatively small limit. The same approach can be used here.
One can argue that a practical circuit that does not stabilize in (say) 10
race units is not very well designed. Consequently the method can be
made practical and should produce useful results.
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