EEATHENT
LA

ENEE B
ENGE 5

:

ER
ER

i
ut
UT

S
OMP

ATERISS &

N

10

VERS

HNIV
UNIV
UNIV

Ternary Simulation
of Asynchronous
Gate Networks

WA
W
IVERSITY OF WATERLOO C

Carl-Johan Henry Seger

CS-86-19

June, 1986

Ternary Simulation
of
Asynchronous
Gate Networks

by

Carl-Johan Henry Seger

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, 1985
© Carl-Johan Seger 1985

Table of Contents

Chapter 1

Basic Motivation

... 1

L1 INtroductionc..coccoiiiiiiniiiiiiiiiiiiniirn s s 1

1.2. Historical backgroundccooiiiiiiiiiiiiiiiiiiiiicce e 2

1.3. Simulation of VLSI circuitscccoeiiviiniiiiiiiiniiiiiiinnennee. 4

1.4, Asynchronous CirCuitscccoeveveriiieiiiccimniisiirieerinreerneenns 5
Chapter 1I

Analysis of Asynchronous Circuits .

2.1, Introductiono..ooiiii e 8

2.2. The Huffman model for relay circuitsccooeeviniiiiiienninn, 8

2.3. Extension of the Huffman model to gate circuits 13

24, Timing problemsc..ciiiiiiiiiiiii e 14

2.4.1. RACES ..eoivnniiniiiiiiiiiiiiiiiii et rre st sra e ean s st e e 14

2.4.2. Hazardsoocovvviimiiniiiiiiiiiiii i e 15

2.5. Thegatestatemodelcooviviniiiiiiniiriiiiiereieeeeeeenees 20

2.6. Race and hazard detection using multivalued logic 23

2.7. Ternary simulation techniquesc.ccooiiiiiiiiiniininn, 25

Chapter III

Gate Network Model

2 Carl-Johan Seger

3.1 Introductionocoiiiiiiiiiii e 29
3.2. DelaymodelScooienimiiiiiiii e 29
3.3. Methods for race analysisc.ccoceviiiiiiiiiiiiiiiee 31
3.4. Gatenetwork modeloooiiiiiiiii 40
Chapter IV
Characterization of Ternary Simulation
...................................... 43
4.1. Backgroundocoiiiiiiiiiiii e eaes 43
4.2. Binaryracemodelooiiiiiiiiiiiiiii e aeaas 48
4.3. Ternary simulation algorithm ... 49
4.4, Mainresultcoociiiiiiiiiiiiiii e 51
4.5. Ternary simulation and delayscooiiiiiiiiiiiiinnnnnn, 52
4.6. Characterization of Algorithm Ac.ccoiiiiniiniiiiiiienennn, 54
4.7. Algorithm B - definite nodescoccveviiiniiiiiiiiiiiiininin, 57
4.8. Algorithm B - indefinite gatesc...cooooiiiiii, 60
4.9, The COMJECtUrecccvviinnriiiinniintiiiiiiieereneiiesieetaesieeasanns 63
Chapter V
Conclusions and Further Research
.. 65
S5.1. Introductioncoocovviiiniiiiiiiiiii 65
5.2, Criticism of the ternary simulationo 65
5.3. Output hazardsccooiiieiiiiiiiiiii 68
5.4. Modified ternary simulation algorithm 69
5.5, SUMMArY ..o 76

| 2 05 (2 (S 1 o = U 77

Ternary Simulation
of
Asynchronous
Gate Networks

ABSTRACT

Analyzing asynchronous sequential networks is an
intricate problem. In this thesis we first give a general
overview of the different methods for analysis that have been
suggested in the literature. In the remaining parts of the
thesis, we discuss the use of ternary, or three-valued logic, for
the analysis. A ternary simulation algorithm was suggested by
Eichelberger in 1965, and the method has been extensively
used in simulators for gate networks, mainly because of its
efficiency. However, the results obtained from the simulation
have not been completely understood. The main result of this
thesis is the complete characterization of the ternary
simulation. In fact, we prove the Brzozowski-Yoeli
conjecture (stated in 1976) about correspondence between the
ternary simulation and the binary race analysis according to
the General Multiple Winner model. We show that the
ternary analysis of a gate network, corresponds exactly to the
binary race analysis of the same network under the
assumption that both wires and gates can have arbitrary, but
finite delays.

As a corollary from the characterization, we prove that
there cannot exist a critical race among some gates without
the existence of an oscillation involving the same gates. We
also suggest how to use the results from the ternary analysis
for detecting possible output hazards.

Finally, we discuss some disadvantages of ternary
simulation. In particular, the method can be overly
pessimistic and predict timing problem in cases when this is
highly unlikely. In order to reduce this pessimism, we suggest
a new ternary simulation algorithm. We apply the method to
a number of examples, and show that the method appears to
be quite useful. We also state a conjecture about partial
correspondence between this ternary algorithm, and a binary
“Almost Equal Delay’’ model.

(iv)

Acknowledgements

I consider myself very fortunate in having had Dr. John Brzozowski as my
supervisor, and am very grateful for his encouragement, feedback and
endless patience at all stages of my research. This includes all his help in
correcting my often strange ‘“English”.

I would also like to thank Dr. Michael Yoeli for his many very useful
suggestions regarding this thesis and the formulation of the proofs of the
conjecture. Without his comments, the proofs would be even harder to
read. The comments from the readers, Dr. K. Culik and Dr. F.
Mavaddat were also very appreciated.

A very special thanks must also go to Gunnar Liden. Being the only
Swedes within many miles in a country far away from home, creates a
very special kind of friendship. I consider myself very lucky in having had
the opportunity to learn to know Gunnar.

A very special thanks should also go to Ian and Ann Davis. They have
“forced” me away from my work many times, and invited me into their
home. In addition to this, all discussions with Ian have greatly helped me
in gaining some understanding of Canada and Canadians in general.

Thanks should also go to Neil Calkin for his crucial remarks concerning
marked graphs. The proof of Lemma 2 came out of these remarks!

I would also like to thank all the people who have made my stay in
Waterloo a rewarding experience, due to their friendship, in particular
Brian Smith, Daniel Cavalcanti, Sheila Trainor, Claudia Medeiros, Benny
Wong, and Michel Devine.

Finally, I would like to acknowledge the financial support from Chalmers
University of Technology, from the Department of Computer Science of
the University of Waterloo, and from the National Sciences and
Engineering Research Council of Canada under grant No. A0871.

(v)

Flyttfaglarna

1, flyktande gister pa frimmande strand,
nér soken I ater ert fidernesland?
Nir sippan sig doljer

i fidernesdalen

och bicken beskdljer

den gronskande alen,

da lyfta de vingen,

da komma de sma;

vég visar dem ingen

i villande bla;

de hitta inda.

Du, flyktande ande pa frimmande strand,
nir soker du ater ditt fidernesland?
Nir palmerna mogna

i fadernevirlden,

da bérjar du, trogna,

den fréjdfulla firden,

da lyfter du vingen

som féglarna sma;

vig visar dig ingen

i villande bla;

du hittar dnda.

Johan Ludvig Runeberg

(vi)

Figure

2.1.
2.2
2.3.
24.
2.5.
2.6.
2.7.
2.8.
2.9.
2.10.
2.11.
2.12.
2.13.
2.14.
2.15.
2.16.
2.17.
2.18.
2.19.
2.20.
2.21.
2.22.
2.23.
2.24.
2.25.
3.1.
3.2.
3.3.
34.
3.5.
3.6.
3.7.
38.
3.9.
3.10.
3.11.
3.12.
3.13.

List of Figures

Description

Notation for relay contacts: (a) make; (b) break.

Relay network N;.

Relay switching network N,.

The Y -matrix corresponding to network N,.

The Z -matrix corresponding to network N,.

Composite transition matrix 7 for network N,.

Flow table for network N,.

Huffman model for asynchronous gate networks.

Race conditions in the excitation table for a network.
Different types of combinational hazards.

Circuit containing a static 0-hazard.

Karnaugh map illustrating function hazard.

One realization containing a logic hazard.

Network N with an essential hazard.

Flow table illustrating essential hazard.

Network N 4.

Excitation table for N4. (a) using y, y,; (b) using y; ys.
Excitation table for network N, using the Muller model.
Function table for inverter according to Fantauzzi.
Function table for two input AND gate according to Fantauzzi.
Function table for the Q output of the operator associated
Network N.

Addition, multiplication and inversion defined for ternary operands.

Network N 6

Ternary analysis of network N,.

Network N,.

Race analysis of N, according to MWM.

Race analysis of N4 according to the GSW model.
Race analysis of N, according to the GMW model.
NOR latch.

Race analysis of NOR latch: (a) GSW analysis; (b) GMW analysis.

Race analysis of N, according to the AED method.
Network N3.
Race analysis of Ng according to: (a) GSW; (b) AED.

Race analysis of N, according to the AED method and with marking.

Timing diagram for a race.
Network N,.
Graph of network Ny.

(x)

Page

o

10
10
11
11
12
14
15
16
16
17
17
18
18

SRRPUURERERRRINEE

36
36
37
39

41

4.1.
4.2.
4.3.
44.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
5.1
5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.

Network N 10-

Binary analysis of N.

Temary analysis of N 1: (a) Algorithm A; (b) Algorithm B.
Network N 11

Binary analysis of Ny;.

Ternary analysis of Ny;: (a) Algorithm A; (b) Algorithm B.
Network N 12-

Network N, with one wire delay added.

Race analyms of N, with extra delay (Z Y1Y2)-

Delay-completion of N.

Network Ni;.

Network N 14+

Ternary analysis of network N 4.

Race analysis of N4 according to the GMW model (z y4, - - - ,y9).
One race unit according to the (extended) AED model for NOR latch.

Second race unit according to the (extended) AED model for NOR latch.

Network N 15+

Part of the AED graph for network Ns.

Network N 18-

Race analysis of Ng according to the AED model.

JK flip-flop SN74H76.

Analysis of SN74H76: (a) ternary; (b) binary AED method.

(xi)

43
43

45
45

ALQRLIRES

n

73
3
74
74
75

Chapter 1
Basic Motivation

1.1. Introduction

This thesis deals mainly with the analysis of asynchronous switching circuits,
an area of research that was very actively studied around 1960, but was
somewhat neglected in the 1970’s. However, with the arrival of Very Large
Scale Integration (VLSI) and with attempts to construct simulators for VLSI
circuits, the area has once again become of great interest. This thesis addresses
the first problem that one faces when trying to use asynchronous circuits: namely
the problem of analyzing a given circuit. The second, and much harder, problem
of synthesis, i.e. of constructing a realization from some specification, is only
briefly mentioned. There are some ‘‘standard” ways to solve this second
problem, but as will be shown in this thesis, some of the assumptions and models
behind these design procedures do not hold in general, but apply only to special
cases.

The fundamental difference between a synchronous and an asynchronous
circuit lies in the fact that in the former all “sub-units” are kept in synchronism
by a central clock, whereas in the latter each unit is allowed to work at its own
pace, and only when some communication is necessary between two units are
they synchronized with each other. In Section 4, we will give a more precise
definition of the terms synchronous and asynchronous.

In this chapter a brief historical overview is given and some motivation for
the renewed interest for asynchronous circuits is discussed. Since the
development of switching theory has gone hand in hand with the development of
computers, a historical overview of the development of switching theory is in
many ways a brief overview of the history of computers. In Section 1.2 the early
computers are described and their significance to the development of switching
theory, and in particular to the development of the theory of asynchronous
circuits, is pointed out. In Section 1.3 the basic problem of simulating VLSI
circuits is outlined, under the assumption that only approximate information
about delays is available. In Section 1.4 the merits of synchronous versus
asynchronous design are discussed.

2 Carl-Johan Seger

1.2. Historical background

Switching circuit theory has its rootstin the 1930’s when it was developed by
the telephone industry in response to the intricacy of the dial telephone system.
As a spin-off from this, but also as an answer to the need for tools for calculating
routine tasks, the first modern attempts to build computers were made during
World War I1. There are at least two candidates for the first modern computer:
Bell Telephone Laboratory’s Model I , and IBM’s Mark I (built by IBM, but
constructed by the Computation Laboratory of Harvard University). They both
had one thing in common: the basic “building blocks™ were relays, widely used
in the telephone system and powerful enough for the new tasks of computation.
As a consequence of this, both were extremely slow and also very limited in their
computational power. One interesting difference between the Bell and the IBM
machines, is that Mark I was basically a synchronous machine whereas Bell’s
Model I was asynchronous. In this context a synchronous machine is a machine
in which all internal operations are synchronized with one central “clock” (which
was a slowly rotating cam in the Mark I). An asynchronous machine, on the
other hand, is one in which each part works independently of all the others, and
only when information must be transmitted from one unit to another, is some
kind of synchronization performed. In Bell’s Model I this was accomplished by a
“ready” signal, i.e. an extra line that went high when the current operation had
completed. It is not surprising that the machine constructed by Bell Laboratories
was asynchronous, as the whole telephone network is by tradition (and also by
necessity) asynchronous. The telephone company knew the asynchronous design
techniques well and solutions from the telephone network could therefore be
taken over more or less directly. In many texts these two computers are treated
as special machines and not real ‘“‘computers” — a treatment that is, in many
ways, unjust. In any case, the two basic approaches to the synchronization
problem were already present in these “O-th” generation computers.

The next breakthrough for the development of computers came after the war
when vacuum tube technology had reached a sufficient level of sophistication and
reliability so that relays could be replaced by tubes. For switching theory the
vacuum tube as a new logic device simplified some problems, but also created
some totally new problems. Notably the problem with “glitches”, i.e. very short
pulses generated by “mistake”, became a serious problem. In relay circuits the
inertial mass of the contacts worked as a low pass filter and removed short
pulses, whereas vacuum tubes were fast enough to react to these pulses and
possibly behave incorrectly. One fundamental difference between relays and
vacuum tubes is that relay contacts are a bidirectional elements, whereas gates
constructed with vacuum tubes have a certain set of inputs and some outputs
(normally one).

T For a more complete overview of the early history of computers, the reader is referred
to [31].

Ternary Simulation of Asynchronous Gate Networks 3

In this “first” generation of computers, based on vacuum tubes, there were
again two different schools regarding the type of synchronization that could give
the fastest computer, the synchronous versus the asynchronous approach. The
most famous of these computers was the ENIAC [9], developed at the Moore
School of Engineering at the University of Pennsylvania in 1943. Most facts
about the ENIAC are readily available from the literature, but for the purposes
of this thesis one particular detail is worth mentioning. The timing in the
ENIAC was provided by a master oscillator operating at 100 kHz. This
oscillator drove a ring counter, from which all timing signals were derived
throughout the computer. In other words, ENIAC was a typical (although
complicated) example of a synchronous switching circuit.

A completely different approach was taken in the construction of the IAS
computer, built at the Institute for Advanced Study in Princeton, New Jersey in
1946 [12]. One basic principle that the design team followed was stated as

sequential control operation with each key operation initiated by the safe completion of
the preceding operation

or in our terminology, an asynchronous design principle. The synchronization
between different units was accomplished by a “completion” signal, generated
either by a “model” circuit or simply by a delay element with a reasonably
pessimistic value. Here we can already see one of the objectives for
asynchronous circuits, i.e. speed, but we can also see one of the big obstacles in
realizing this objective. As always (?) in computer construction, it is the
objective of high speed that motivates the use of asynchronous circuits; however
it is far from trivial to design an asynchronous circuit that really accomplishes
this objective. In the synchronous case, the clock frequency must be adjusted to
the slowest component, a problem that can be very serious if some component is
very much slower than the remaining ones. In the asynchronous circuit, on the
other hand, there must exist a certain amount of overhead in the generation of
completion signals.

The next generations of computers and switching circuits (transistor circuits
and bipolar MSI/LSI circuits) were able to use, for the most part, the theory
developed for the vacuum tube gate circuits. Gates constructed with several
inputs and one output were still the basic building blocks. Furthermore, since the
circuits were easy to change, it was usually possible to “tune” them once and
thus obtain close to optimal performance. This ease of design and change lead to
a “trial and error” methodology that in many cases was quite sufficient.
However with the introduction of custom MOS LSI and VLSI, this possibility of
changing or replacing faulty units does not exist any more. Since the cost of
design of these VLSI circuits is extremely high (normally many man-years) it has
become crucial that a genuine understanding of the underlying theory is present
in the construction phase.

4 Carl-Johan Seger

Another feature of MOS technology is a return to the old concept of
bidirectionality. In particular, MOS pass transistors and transmission gates (in
CMOS) are bidirectional; hence there are no distinct input and output terminals
for these building blocks. For this reason it has become important to review
many of the results generated for relay circuits.

Today, the synchronous design approach seems to be completely dominant,
and this is particularly true of VLSI circuits. There are several reasons for this
but the most important ones seem to be the ease of designing synchronous
circuits and the lack of efficient analysis and design procedures for asynchronous
circuits. However, considerable attention has very recently been given to
asynchronous self-timed systems (e.g. [10,23,26]), and hence the area has once
again become of great interest.

1.3. Simulation of VLSI circuits

A fundamental problem with VLSI circuits is that their complexity makes it
extremely hard, or perhaps even impossible, to construct a circuit without some
design errors. For this reason it is highly desirable to simulate the behavior and
to verify the correctness of a given design before the chip is produced. A
considerable amount of work has already been put into this problem, but no
generally accepted “universal” simulation tool has been constructed so far.
There are three main types of approaches to simulation, differing in the accuracy
of the model of the circuit.

1) Circuit level simulation,
2) Switch level simulation, and
3) Gate level simulation.

In transistor level simulation MOS transistors on a chip are represented by
differential equations. This gives a rather accurate model for timing and
electrical behavior, but unfortunately involves a substantial amount of computing.
For this reason transistor level simulation is only feasible on small portions of the
circuit, typically less than 100 transistors at a time. SPICE is probably the best
known simulator of this type.

The gate level approach, on the other hand, is very efficient, but, since pass
transistors and transmission gates create new types of circuits in which the notion
of a gate no longer exists, this approach is not particularly practical nor accurate
for anything except circuits completely based on the gate philosophy. (Such
circuits, however, cannot take advantage of all the features of the MOS
technology.) Several attempts have been made to add new elements, in a rather
“ad hoc” way, to a gate level simulator to cope with pass transistors (e.g. [17],
or [33]) but none has been very successful. In gate level simulation normally the
whole circuit can be simulated and hence it might be possible to detect some very
subtle communication problems .

Ternary Simulation of Asynchronous Gate Networks 5

A suitable compromise between accuracy and efficiency is provided by
switch level simulation. The basic idea is to model each MOS transistor as a
switch, and only have a finite (normally very small) set of strengths (basically
conductivities) of the transistors. A typical simulator of this class is MOSSIM.
This simulator was developed by R.E. Bryant, and appears to be the only one
based on sound physical and mathematical principles [3].

Most of the above approaches have one big problem: there is no possibility
of checking whether manufacturing tolerances can cause a circuit to malfunction.
In other words, very few of the simulation algorithms suggested in the literature
can handle the situation when only approximate information is available for the
delays in the circuit. Not even in circuit level simulation, where a very exact
estimate of the delay in a transistor and wire can be obtained, is there any
guarantee that, for example, a + 10% variation of some parameters could not
completely change the behavior of the circuit. For gate level simulation a three-
valued, or ternary, simulation algorithm was proposed by Eichelberger in
1965 [11]. The method has the great advantage of being able to handle the
situation as described above, but has not been completely characterized, until
1985. In fact this characterization is the main result of this thesist A modified
version of the algorithm suggested by Eichelberger was used by Bryant 1] in
switch-level simulation, but there are still a number of questions about the results
obtained.

1.4. Asynchronous circuits

In this section we present some arguments in favor of using asynchronous
circuits. However, first we clarify the meaning of asynchronous and
synchronous. We will use the term asynchronous network to refer to a general
sequential network, i.e. a network upon which there are very few restrictions (if
any). The term synchronous network is somewhat misleading, and the term
synchronous-mode network [6] is presumably better. The reason for this is that
synchronous circuits are in fact asynchronous sequential networks operating
under certain restrictions. These restrictions are normally that all flip-flops are
clocked by a central clock, and that all inputs to the flip-flops have to be stable
when the clock is “active”. In the few cases when we explicitly compare
synchronous and asynchronous design, we will use a very simple definition and
call all circuits that are controlled by a central clock synchronous, and the
remaining circuits asynchronous. This is, of course, not a very precise definition,
but it is sufficient for our purposes.

There are at least four major incentives for using asynchronous circuits
instead of synchronous circuits which are generally easier to analyze and design.
The first is the possibility of increased speed of operation. Since the basic
philosophy of asynchronous circuits is to let each unit run independently, i.e. at

t See Chapter IV.

6 Carl-Johan Seger

its own maximum speed, it should be possible to build very fast asynchronous
systems. However the issue is not that simple. The major obstacle is that, in
most systems, there is a relatively large amount of communication between
different units, and since the synchronization of the independent units requires a
substantial amount of extra communication (e.g. in the form of request-
acknowledge signalling), there is a certain trade-off between the gain of speed in
individual units and the loss of speed due to communication overhead.
Furthermore, in many cases an asynchronous circuit is much more complicated
than a synchronous circuit designed to perform the same task, and hence the
speed gain obtained by using an asynchronous design might decrease, or even
completely vanish.

The second motivation for asynchronous operation is the need for
communication between two independent synchronous circuits. Since the two
systems operate under the control of different clocks either they must be
synchronized (normally by delaying one of them), or an asynchronous interface
must be provided.

The third incentive is in interfacing “‘real world”” signals with a system. For
obvious reasons, signals coming from the “outside” are completely unrelated to
the internal system clock, and hence either the signals have to be synchronized or
one has to use asynchronous circuits that react as soon as the signals arrive. A
standard way of synchronizing signals is to use a “synchronizer”, which is an
element used to delay the incoming signal until a clock signal arrives. There are,
however, some problems related with synchronizers, most notably problems with
flip-flops entering “meta-stable” states [32]. A meta-stable state is a state
intermediate between 0 and 1 in which a flipflop can remain for an
unpredictable time. (The problem arises when the clock signal and the external
signal happen to arrive exactly at the same time.) An interesting property of
synchronization failure is that it cannot be removed by clever design. There are
many methods to reduce the probability that such a fault would crash a system,
but they all cost time and so would reduce efficiency. In [32] Seitz advocates the
use of self-timed systems as a solution to this interface problem. In a self-timed
system one tries to assure that all system events occur in proper sequence, but
nothing ever has to occur at a particular time. This is accomplished by dividing
the system into elements which are performing computational steps whose
initiation is caused by signal events at their inputs, and whose completion is
indicated by signal events at their outputs. In many cases it is advantageous to
use asynchronous circuits as these elements. On the other hand, completely
asynchronous systems also solve this problem, although they are very difficult to
design.

Finally we point out the following advantage of asynchronous design. If, for
example, a memory bus is completely asynchronous, the bandwidth of the bus
will not be determined by some timing specification (as it would be in the
synchronous design), but by the actual speed of the circuits. In particular, it
becomes very easy to upgrade such a system simply by replacing a slow unit by a

Ternary Simulation of Asynchronous Gate Networks 7

faster one. Note that in such a system one can use a mixture of slow and fast
units, without being forced to use “wait-states™.

8 Carl-Johan Seger

Chapter 11
Analysis of Asynchronous Circuits

2.1. Introduction

In this chapter we give an overview of different models for asynchronous
circuits that have been suggested in the literature. In Section 2.2 we describe one
of the earliest models — the Huffman model. Although this model was initially
developed for relay circuits, it contains some important concepts of more general
applicability. In Section 2.3 we describe how this model was modified for use
with gate networks. Timing problems constitute a major difficulty in the analysis

and design of asynchronous circuits. These problems are discussed in Section
24.

The Huffman model for gate networks has the advantage of giving
reasonably small tables (to be defined later) describing the behavior of the
circuit. However, in Section 2.5 it is shown that the model is incorrect in some
cases. A different model, due to Muller, is also described. This model, which
associates one state variable to each gate in the circuit, gives a more correct
picture of the behavior of the circuit, but has the serious disadvantage of being
usually much more expensive computationally. In an attempt to improve the
efficiency of analyzing circuits in the Muller model, Fantauzzi suggested a nine-
valued algebra and a general method for analyzing certain types of asynchronous
circuits. In Section 2.6 this method is outlined and some comments are given
about its efficiency and usefulness.

Lastly, in Section 2.7 we describe another attempt (a more useful one) of
improving the efficiency of analyzing asynchronous circuits using three-valued
logic. The method, due to Eichelberger, is highly efficient and easy to
implement as an automatic circuit analyzer. However the results of this ternary
analysis were not completely understood. The main result of this thesis is a
complete characterization of the outcome of this ternary simulation (see Chapter

V).

2.2. The Huffiman model for relay circuits

The first, and still the most commonly used, model of asynchronous circuits
is due to Huffman [18]. The basic formulation of the model was for relay
circuits, as described below.

We start with a short description of a relay. A relay consists of two parts:
the coil, and the contacts controlled by the coil. We will say that a relay is
operated when current goes through the coil. The contacts can be of two types;
make and break. A make contact is normally open (i.e. no current can go
through the contact) when the relay in unoperated, but will close when the relay

Ternary Simulation of Asynchronous Gate Networks 9

is operated. A break contact is opposite to a make contact, in that it is normally
closed, and opens when the relay operates. In Fig. 2.1 we show the symbols
used for denoting make and break contacts.

!

—_— X —— _—x
(a) (b)

Figure 2.1. Notation for relay contacts: (a) make; (b) break.

—w— L e

il
——iid
il

Figure 2.2. Relay network N;.

In his model, Huffman first introduced primary relays Xq, - - - X,, i.e.
relays which are directly controlled by an input variable. In Fig. 2.2 the relays
X, and X, are primary. All other relays were called secondary relays; in Fig. 2.2
relay Y is the only secondary relay. Each secondary relay Y is controlled by a
contact network which depends on both the primary and the secondary relays
(possibly including Y itself). Huffman labeled these secondary relays
Yy, - - -,Y,. The output terminals were labeled Z;,---,Z,. Contacts
associated with a given relay R were indicated by a lower-case letter. Normally
open contacts were labeled r, whereas normally closed contacts were labeled r'.
Since there is a certain delay between the energization of a relay and the contact
operation, it is not necessarily true that r; =R;. However, in a steady state
situation we must have y; =Y; and x; = X;. The fotal state of the relay network
is given by x,y, where x =x{, - - - x, andy =yq, - - - ,y;.

Huffman also defined what he called the Y- and Z-matrices. The Y -matrix
is the function table for the the contact network controlling the secondary relays
as a function of the total state x,y. The Y -matrix is obtained by constructing a
table with all possible input states as columns, and all possible y states as rows.
Huffman used originally a “normal” increasing ordering of the states, but later
this was changed to the ordering as in a Karnaugh map, where only one variable
differs between two neighbours in the sequence. The elements in the Y -matrix
are the excitations for the secondary relays given the corresponding input and
internal state. The Z-matrix is constructed similarly, but with the output values
given as functions of the x and y values. In a relay circuit the computation of
Y;, given the total state x,y, consists simply of closing all the make contacts that
have the value 1, all the break contact that have the value 0, and determining

10

Carl-Johan Seger

whether there is a path from the relay ¥; through the contact network to ground.
If there is such a path, the value of ¥; will be 1; otherwise Y; is set to 0. If the
excitation entry is the same as the present (row) value, the state is said to be
stable, otherwise it is said to be transient. To illustrate these concepts study the
relay circuit N, [18] given in Fig. 2.3, with corresponding Y - and Z -matrices in
Fig. 2.4 and 2.5 respectively.

— Y2 X1 73 ,\/\/\I—ﬁ
7T
——\\N\— L y3——y3 y1—
Xy
— 2 y2—
Y1
- — |, yi——n—\\\—
X Y,
— X1 I Y2 x3
Y1 X2
1 — Y1 L V3 x3 I l\/\/\l—
+ -

Figure 2.3. Relay switching network N,.

X1X3
YYD 00 01 10
000 000 100 100 010
001 101 100 100 001
011 011 000 000 001
010 110 000 000 010
110 110 111 100 100
111 011 111 100 100
101 101 100 100 100
100 000 100 100 100

Figure 2.4. The Y -matrix corresponding to network N,.

i}

-

z
|
x

Ternary Simulation of Asynchronous Gate Networks 11

X1X2
yos | 00 01 11 10
000 0 0 0 0
001 0 0 0 0
011 0 0 0 0
010 0 0 0 0
110 0 0 0 0
111 0 0 0 0
101 1 0 0 0
100 0 0 0 0

Figure 2.5. The Z -matrix corresponding to network N,.

From the Y-matrix, Huffman constructed what he called the composite
transition matrix 7, which is basically the same as the Y-matrix, but with the
excitation replaced by a boolean vector by, - - - ,b, in which b; =1 iff y; is
transient, i.e. the entry corresponding to a secondary relay is 1 iff the relay is not
stable. In Fig. 2.6 we give the composite transition matrix for network N,.

X1X2
yoos | 00 01 11 10
000 000 100 100 010
001 100 101 101 000
011 000 011 011 010
010 100 010 010 000
110 000 001 010 010
111 100 000 011 011
101 000 001 001 001
100 1000 000 000 000

Figure 2.6. Composite transition matrix 7 for network N,.

Using the composite transition matrix Huffman then discussed so called race
phenomena. The idea behind a race is that when two or more relays are
unstable at the same time, and therefore are “racing” to change, the following
can happen. If one of the relays is faster than the other(s), the situation can
occur that the faster relay changes, and that change causes one of the other
unstable relays to become stable without changing. In other words, in the
presence of a race several different secondary relay actions are possible
depending on the magnitudes of the operate and release times for the relays
involved, and also upon the past history of their excitations. The presence of
more than one “1” in the composite transition matrix indicates that at least two
secondary relays are simultaneously unstable, and that a race condition exists.
Huffman also distinguished between two different types of races; noncritical and
critical. A race is said to be noncritical if each of the alternate possibilities leads
eventually to the same ultimate stable secondary relay state. Similarly, a race is
said to be critical if there are two or more stable secondary relay states that can
be possible outcomes of the race. In the remaining part of the model, only non-
oscillatory circuits (i.e. circuits that do not oscillate on their own) with noncritical

12 Carl-Johan Seger

races (if any races at all) were considered.

For these type of circuits, the next important concept that was introduced
was the flow table F, constructed as follows. All entries in the composite
transition matrix that consist purely of zeros, i.e. all entries in which the
secondary relays are stable, will have a circle in the corresponding place in the
flow table. These circles are then numbered serially; the order of assignment of
the numbers is unimportant. The remaining entries of F are uncircled, and each
such entry tells what stable circuit condition will ultimately result if the circuit is
put in a total relay state corresponding to the entry in question and if the input
state remains constant. In Fig. 2.7 we show the flow table derived for the
network N, of Fig. 2.3.

X1X2
yows] 00 01 11 10
000 | @© 5 7 3
oL | 8 5 7 @
o | @ 5 7 2
00 { 9 5 7 O
110 | @® 10 7 6
1M [4 © 7 6
101 5 7 6
100 1 O ®

Figure 2.7. Flow tabl

o

for network N,.

There are some very restrictive assumptions in the Huffman model that,
unfortunately, are not always clearly stated. The first is that the so called
fundamental mode operation [24] is assumed. This means that after some input(s)
have changed, no further changes will occur on the input terminals until the
circuit has reached a stable state. This assumption is perhaps somewhat severe,
but without it (or without some very strict assumptions about the delays in the
relays) it would be impossible to predict anything about the behavior of any
network.

Another, more subtle, assumption is that there is a time lag between the
excitation of the relay and the response. If this assumption is false, there could
never be any unstable relays and the model is inconsistent.

The third assumption, which is more of an engineering than theoretical
assumption, is that each relay has a “smoothing” effect on the input pulses. This
smoothing effect is such that pulses shorter than some constant will not affect the
relay, and hence the problem with “glitches” (also called hazards — these are
temporary incorrect outputs) generated in the combinational network controlling
a relay will not affect the relay.

The last assumption, which is not always practical, but does simplify both
the analysis and the synthesis procedure, is the assumption of single input
changes, i.e. it is assumed that only one input variable changes at a time, and
that there is sufficient time between changes to allow the network to stabilize.

Ternary Simulation of Asynchronous Gate Networks 13

These assumptions, except possibly for the last one, are normally fulfilled in
a relay circuit, and hence the model works quite well for these types of switching
networks. However, as pointed out by Brzozowski in 1965 [4], the approach of
only studying the races among the secondary relays is not always correct. There
can actually exist races between primary and secondary relays, something that is
completely missed in this model.

Finally, the following more intuitive model for these secondary relays given
by Huffman [18, page 54] is such that we cannot resist to quote the following:

If we were to endow the secondary relay with human attributes, we could say that each
one is a decision-making clement. After each change in stimulation from its
environment, it waits a time to ‘“‘decide” what the final stimulation is to be, and then
reacts accordingly. The operating ‘“hazard” occurs when this “yes-no” decision is based
on observation over an insufficient length of time.

2.3. Extension of the Huffman model to gate circuits

Although the Huffman model was originally developed for relay circuits, it
was very quickly modified for gate networks. However, some of the assumptions
made in the model had to be very carefully examined. In particular the
assumption of a lag-time between the excitation and the response had to be
satisfied. The method suggested by Huffman was to add delay elements at each
place where there should have been a secondary relay in a relay implementation.
These “places” were called secondary delay locations. The second condition that
had to be fulfilled in a gate implementation (in particular in early
implementations where gates were often constructed with passive elements like
resistors or diodes) was that the gain in each loop of the network had to be
greater than one. If this condition were not true, the network would cease to be
digital, and certainly no longer behave correctly. The general picture for an
asynchronous gate network according to the Huffman model is shown in Fig.
2.8. Today, this model with delays inserted is normally called the feedback delay
model. The reason is obvious from Fig. 2.8.

In the modern version of the Huffman model (e.g. [14, 22, 36]) the following
procedure is normally carried out. First the feedback paths are identified and a
subset of them are selected as state variables. This subset of the feedback paths
is such that if all the feedback paths in the subset are broken, no feedback path
remains in the circuit. Here we can see at once the problem with the feedback
model of deciding which gate outputs are to be considered state variables. We
will return to this in Section 2.5.

Another observation Huffman made was that in many cases the “extra”
delays, added according to the feedback delay model, were not necessary, since
the delays in the electrical circuits themselves were often sufficient. Hence the
problem was to determine if and where delays were necessary to obtain correct
behavior. These, and similar problems will be treated more carefully in a later
section.

14 Carl-Johan Seger

X{ —————— SEE——
: Muitiple output :
Xp ——> gate-type =%
Y1 combinational Y,
: circuit :
Vs i 1Y,
ay
{ Delay jJ«e—r—"

Figure 2.8. Huffman model for asynchronous gate networks.

A problem that became acute when electrical gate circuits were used, was
the lack of the smoothing effect, that the inertial mass in the relays provided. As
a result, even very short “glitches” could cause malfunctions in the circuit.
Huffman suggested a very simple solution; add some circuits that acts as
“smoothers” as a replacement of the relays. This approach has the disadvantage
of slowing down the circuit, and, since one of the main incentives to change from
relays to gate circuits was to gain speed, the solution is not very useful. (The
same argument can also be used against “adding” delays in the feedback paths of
the circuit.) From the above it is quite clear that there was a great need for
solutions that did not slow down the circuit. For this reason the study of timing
problems in asynchronous circuits received a lot of interest. In the next section
we carry out a rather detailed discussion and description of the different timing
problems that can occur in asynchronous circuits. The general conclusion is that
the study of these problems is rather complicated, and requires great care. In a
later section we also show a somewhat different model in which only races have
to be considered, an approach that simplifies the analysis substantially.

2.4, Timing problems

2.4.1. Races

The general idea behind the concept of a race in a gate network is basically
the same as behind the race condition in the relay version, i.e. two or more state
variables are unstable at the same time and therefore the behavior of the circuit
involves a certain amount of non-determinism. In the Huffman model, only the
races between state variables, i.e. between two feedback paths, were considered.
It will be shown later that this is not always correct.

In Fig. 2.9 we show some typical race conditions. For example, if the
network is in the stable state x =00, y =00, and the input changes to x =10
there is a critical race in the excitation table (i.e. in the Y-matrix). The reason is
as follows. The “next” state is y = 11 according to the excitation table; this
implies that both y, and y, are unstable and hence a race exists. If the delays for

Ternary Simulation of Asynchronous Gate Networks 15

the two state variables are unknown, y might change to 01, 11, or 10. In the last
case, y, might not change again, since the circuit is stable in x =10 y = 10;
hence the circuit can end up in state 10. On the other hand, for the first two
possibilities the circuit will end up in state 11. In other words, the circuit can
end up in two different stable states depending on the delays in the feedback
loops. As before, such a race is called critical.

As an example of a noncritical race, study the network in the same stable
total state (x = 00, y = 00) but with the input changing to x = 01. Independently
of the delays in the feedback loops, the network will end up in the stable state
y = 11, and hence the race is noncritical.

X1X2
yyz |00 01 11 10
0 (00|11 |]11]11
01 owijinjoin
11 111101} 11
10 11 111 |10] 10

Figure 2.9. Race conditions in the excitation table for a network.

2.4.2. Hazards

The first problem with hazards is that there are almost as many definitions
of what a hazard is, as there are authors that have discussed the issue. The most
general, but also the least precise, definition could be worded like [14]:

A circuit is said to contain a hazard if there exists some possible combination of values

of stray delays which will produce a spurious pulse or cause the circuit to enter an
incorrect stable state, for some input change.

In this context a stray delay is an unintentional delay in a wire and/or gate,
something which is impossible to avoid in any real implementation of a circuit.
In some texts the race is considered as a special case of a hazard, but we will
adopt the more “‘standard” view [14, 36,22], where races and hazards are treated
separately.

As said before, there are numerous types of hazards, but one can roughly
divide them into four different classes. Each of these classes can then be further
divided into subclasses. The four classes are:

1) combinational hazards,

2) multiple-input-change hazards,
3) false output hazards, and

4) essential hazards.

For the first class of hazards, the combinational hazards, the assumption is
that only single input changes are allowed. The combinational hazards are
divided into two sub-classes: static and dynamic combinational hazards. The

16 Carl-Johan Seger

static hazards are further divided into static 1-hazards and static 0-hazards. In
Fig. 2.10(a) and (b) we show a static 1-hazard and a static 0-hazard respectively.
These are spurious pulses that can occur because of some stray delays in the
circuit. In Fig. 2.11 we show an example of a circuit containing a static
0-hazard. The spurious pulse can occur when the input changes from 0 to 1.

S I [|

(a) Static 1-hazard. (b) Static 0-hazard. (c) Dynamic hazard.

Figure 2.10. Different types of combinational hazards.

01 T > D_O_Ut_ i}

Figure 2.11. Circuit containing a static 0-hazard.

In Fig. 2.10(c) we show one of the two possible dynamic hazards. The basic
idea is that a signal, instead of changing once, “oscillates” before the change
takes place. In relay circuits this is a very common phenomenon, since
mechanical contacts have a tendency to bounce.

McCluskey [24] described necessary and sufficient conditions for the
existence of both static 1- and 0-hazards, and dynamic hazards. The notation he
used was primarily tailored towards relay circuits, but these (and similar) results
are available today for gate circuits in many references (e.g. [14,36]). A major
problem with these types of hazards is that it is often very time consuming to
check for all possible hazards in anything but trivial circuits.

A multiple-input-change hazard occurs when more than one input is allowed
to change at once. The first one to study these hazards was Eichelberger [11].
He used a slightly different notation than the one presented here, but the basic
ideas are the same. For a more complete treatment of the multiple-input-change
hazards, the reader is referred to [6]. One interesting characteristic of this type
of hazard is that it is frequently unavoidable. Two different types are normally
considered: function and logic hazards. The two types will be introduced by
means of an example [14]. Study the Karnaugh map in Fig. 2.12 for a function
f of the input variables xg, - - - ,x4. In Fig. 2.13 we show one possible
realization of the function. If the input to the gate network realizing this
function changes from a = 0101 (with f (a)=1) to b =1111 (with f(b)=1),
the circuit may pass through 0111 (i.e. state g) or 1101 (state e¢) due to stray

Ternary Simulation of Asynchronous Gate Networks 17

X1Xy
xyxq | 00 01 11 10
00 11 0 0
01 1 ¢ 1¢ | 1°
11 0 ¢ l1°f1
10 0 0 0 0

Figure 2.12. Karnaugh map illustrating function hazard.

p J1
X3 o——
X4
!
*1 y2
X3 o———— o— f
x3
X y3
1 =

Figure 2.13. One realization containing a logic hazard.

delays. However, f (g)= 0; hence the output may temporarily become 0 during
the transition between a and b. A hazard like the above, which is inherent in
the function definition, is called a function hazard, and cannot be removed by
normal design of the gate network. The only way to avoid having problems with
these function hazards is either to restrict the input changes to only one variable
at a time, or insert delays in the gate network in such a way that the transition
from one state to another always follows a “‘safe’ route.

In contrast to the above, consider a transition from a (0101) to ¢ (1001)
which may pass through 0001 or 1101. The value of the function for both
transient inputs is 1. However, in the realization in Fig. 2.13, the following
might happen. Suppose the 3-input NAND gates y, and y, happen to be faster
than the 2-input NAND gate y;. Then, when going from state a to state ¢ via
state e, the gates y, and y, might change from 0 to 1 before the 2-input NAND
gate y3 changes from 1 to 0. Hence, for a short time, the output NAND gate
can have all its inputs high, and therefore produce a spurious O-pulse on its
output. As was pointed out by Eichelberger [11] this type of hazard can be
removed simply by including an implicant covering both a and ¢. This type of
hazard, is called a logic hazard, and can be always removed by proper choice of
implicants realizing the function. Note that one can interpret the combinational
static hazards as special cases of the logic hazards.

18 Carl-Johan Seger

The name output hazard refers to any type of hazards that occurs on an
output terminal. The importance of these hazards depends on how the outputs
are going to be used. If, for instance, they are used to control an elevator, they
can probably be neglected completely, but if they are used to trigger a nuclear
warhead, they are (hopefully!) considered unacceptable.

The last type of hazard, the essential hazard, is a slightly different type, and
something unique for sequential circuits. (Note that the previous types of
hazards can be present in any type of switching circuit, including combinational
circuits.) An essential hazard was defined by Unger [36] as:

For some initial total state and input variable x, three consecutive changes in x take the
system to a state that is different from (and not equivalent to) the state reached after a
single x-change.

Study for example the network N3 in Fig. 2.14 [36, page 176], whose flow table is
given in Fig. 2.15.

—

e e P L LT LT LT

!

Figure 2.14. Network N3 with an essential hazard.

X1X2
00 01 11 10 Y2

1M, 0] 3,0] 3,0 | D,0] 00
2 L,0 [30 |®,1]0Q,1] 0
3,01 ®,0] 2,1 | 2,1 | 11
43,030 @0 @,0] 10

Figure 2.15. Flow table illustrating essential hazard.

Ternary Simulation of Asynchronous Gate Networks 19

In the following it is shown that there is an essential hazard associated with the
total state x = 10 y = 10 (i.e. 4) and a change in x;. The first time x; is changed
(to 0) the network will end up in state 3, i.e. y =11 (no race). Changing x;
again (now to 1) will put the network in the state 2, i.e. y =01 (no race). Now
a third change of x; (to 0 again) will put the network in the state 1, i.e. y =00
(no race). Hence, three changes leave the network in a different state than one
change, and therefore there is an essential hazard for this particular state and
changes.

Essential hazards are a property of the flow table, and hence cannot be
eliminated by a clever choice of the combinational circuits. The malfunction that
can happen in the presence of an essential hazard is that one portion of the
circuit changes in response to an input change, and a second part of the circuit
“sees’ this secondary response before it “‘sees” the initial change. This second
part of the circuit may therefore erroneously initiate a change, so the total result
will be as if the input variable changed three times rather than once. An
essential hazard may be viewed as a race condition between an input variable
and a state variable.

In the example above, the “racing” paths are shown as a dotted and dashed
line respectively. The following can happen. If the delay in the wire from the
topmost 2-input NAND-gate to the 4-input NAND gate Y, is longer than the
total delay through the 4-input NAND gate Y,, the inverter, and the 2-input
NAND gate, Y, can “see” this secondary change before it sces the original
change. This in turn can cause Y, to change once, but when the “slow’ signal
from the wire arrives, Y, can change again. These changes can propagate back
through the feedback lines and hence the network can end up in the “three-
change” state instead of the “‘one-change” state.

In addition to these four basic types of hazards. several differently defined
hazards have been discussed in the literature, but they are normally equivalent to
one of these four types.

The Huffman model is quite adequate and correct for describing steady-state
situations, but it fails to correctly model a circuit under transient conditions. One
of the reasons for this failure stems from the fact that the Huffman model does
not capture what happens “inside” the combinational network. The analysis of
races among feedback variables is a straightforward procedure and involves only
studying the flow table. However, verifying that a circuit is free from critical
races does not guarantee it will function correctly. This was discovered very
early, and the concepts of different types of hazards were introduced to ‘““correct”
the model. In other words, the theory of hazards represents attempts to “fix” a
rather inaccurate model. However, this theory is not complete and it is hard to
know which “ad hoc” methods for detecting hazards, one has to apply to be
certain that a circuit will function properly. In the next section we show an
example that clearly demonstrates the deficiency of the Huffman model. We
also describe an approach which more accurately models the circuit.

20 Carl-Johan Seger

2.5. The gate state model

As was shown in the previous section, the feedback line model gives
relatively small flow tables (since there are normally few feedback lines in a
circuit) and also a relatively simple race analysis, but an extremely complex
hazard analysis. However, there are several problems with the feedback model;
the most serious is that the result of the analysis depends on the choice of state
variables, i.e. on the choice of where to “cut” the feedback lines. As an

example of the above pitfall, study the network N4 in Fig. 2.16 (due to
Langdon [20]).

X

Ys 1
{>c Y6 : Ya

s Y2

Figure 2.16. Network N .

X X
yw2 | 0 1 yws (0 1
00 [00 [O1 00 [00 [1T
o1 [10 [11 01 [10 | 11
11 [10 [1T 11 [10 |11
10 [00 | 10 10 [00 [10
(a) (®)

Figure 2.17. Excitation table for N,. (a) using y, y,; (b) using y; ys.

In Fig. 2.17(a) we show the excitation table for the circuit in the case when y,
and y, are chosen as state variables, and in (b) when y, and y; are chosen. Note
that both choices are correct, i.e. break all feedback paths. One can verify that
in the first case there are no races, and no static or dynamic hazards. Also,
since there is only one input, there cannot be any multi-input-change hazards.
Furthermore, if one makes sure that the network starts in state 00 and always
works in fundamental mode (i.e. waits until the network has stabilized before
changing the input) it is easy to verify that there is no essential hazard. The
essential hazard in x =1 y = 10 will never affect the network since this state is
not reachable. In other words, the analysis according to the Huffman model

Ternary Simulation of Asynchronous Gate Networks 21

with y; and y, as state variables indicates that the network should function
properly.

However, study Fig. 2.17(b). By choosing another set of state variables, y,
and yj, it is easy to see that, going from the total state x =0, y,y3= 00 (which
corresponds to the state y,y,= 00 in the previous version) and changing x to 1,
there is a race. For this race the circuit can end up in either 11 or 10. Hence,
with a different choice of state variables there is all of a sudden a critical race!
(Note that this occurs even if the above initial state assumption is obeyed.)
Clearly, this indicates a very serious problem with the Huffman model (or at
least when the ‘“extra” secondary delays are omitted). What is somewhat
surprising is that even very recent textbooks in Digital Design, e.g. [22], still
advocate the feedback model, and do not even mention these problems with the
model.

This drawback with the Huffman model, was pointed out already in 1961 by
Muller [28] and has been mentioned by several authors later [20,5,7]. As was
shown by Brzozowski and Yoeli [7], even in such a simple circuit as an ordinary
RS flip flop constructed with two 2-inputs NOR gates, the feedback model is
inadequate and predicts different results depending on which feedback lines are
chosen as state variables.

The basic approach to “correct” the model is to increase the number of state
variables. However, there is the question of how many state variables are
necessary, and which ones should be chosen. In general the underlying model
for the network determines which state variables are necessary. For example,
under the assumption that only gates have delays, it might be necessary to have
one state variable associated with each gate. On the other hand if both gates and
wires are assumed to have delays, it might be necessary to have one state
variable for each gate and each wire in the circuit. The problem of determining
the minimal number of state variables necessary to correctly describe a network
is still an open problem.

The advantage with the Muller model is that the main timing problem is
associated with races. In other words, the Muller model properly predicts
transitions among states. However, one still has to analyze the circuit for output
hazards. This information can be obtained from the binary race analysis by
observing the transient output values. There remains the problem of efficient
detection of output hazards, but this is outside the scope of the present thesis.

To illustrate the analysis using all gate outputs as state variables consider the
network N4 of Fig. 2.16. The excitation table is given in Fig. 2.18. As can be
seen (with a lot of work), there are several critical races. For example, starting
in the total state x =0y =ygys - - - y1= 100000 and changing x to 1 can result
in the following two sequences (among others):

22

YD1
000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111

Figure 2.18. Excitation table for network N, using the Muller model.

Carl-Johan Seger
0 1
100000 | 100000
000000 | 010000
100001 | 100101
000001 | 010101
100010 | 100010
000010 | 010010
100011 | 100111
000011 | 010111
100010 | 100010
000010 | 010010
100011 | 100111
000011 | 010111
100010 | 100010
000010 { 010010
100011 | 100111
000011 | 010111
100001 | 100001
000001 | 010001
100001 |} 100101
000001 | 010101
100011 | 100011
000011 | 010011
100011 | 100111
000011 | 010111
100011 | 100011
000011 | 010011
100011 | 100111
000011 | 010111
100011 | 100011
000011 | 010011
100011 | 100111
000011 | 010111

YD1
100000
100001
100010
100011
100100
100101
100110
100111
101000
101001
101010
101011
101100
101101
101110
101111
110000
110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
111011
111100
111101
111110
111111

0 1
100000 | 101000
000000 | 011000
100001 | 101101
000001 | 011101
100010 | 101010
000010 | 011010
100011 | 101111
000011 | 011111
100010 | 101010
000010 | 011010
100011 | 101111
000011 | 011111
100010 | 101010
000010 | 011010
100011 | 101111
000011 | 011111
100001 | 101001
000001 | 011001
100001 | 101101
000001 | 011101
100011 | 101011
000011 | 011011
100011 | 101111
000011 | 011111
100011 | 101011
000011 | 011011
100011 | 101111
000011 | 011111
100011 | 101011
000011 | 011011
100011 | 101111
000011 | 011111

a) 100000 — 101000 — 101010 — 101111 — 011111 — 010111 (stable)
b) 100000 — 101000 — 101010 — 101011 — 011011 — 010011 — 010001

(stable).

Note that the above excitation table will contain all the possible races (under the
assumption that only the gates have delays). The excitation table is very large
and hard to read. Although it is very tedious to find out if a race is critical or
noncritical this can be done mechanically by a simple program. On the other
hand, complete hazard analysis in the feedback model involves a lot of
“intelligent” observations. Unfortunately, when the network grows and the
number of state variables (i.e. the number of gates) increases, the excitation table
grows exponentially. Thus the excitation table is only feasible for very small

Ternary Simulation of Asynchronous Gate Networks 23

networks.

Brzozowski and Yoeli [7] suggested in 1976 a more practical approach to the
analysis. The basic idea is that in “normal” circuits there are only a few stable
states even if there are potentially extremely many states. By only calculating the
necessary transitions, make some observations about gates and inputs that can
determine the output of a gate on their own (called forcing signals in their paper)
and also taking advantage of symmetry (if present), the amount of work can be
substantially reduced. Unfortunately, their method relies heavily on “intelligent”
observations and hence is difficult to implement as a computer program. Since
the work involved is substantial for a reasonably large network, computer aids
are vital.

In summary, the Muller approach of using all the gates as state variables
requires a rather simple race analysis, but the excitation table becomes impossible
to handle very quickly. There are methods of reducing the work, but these
solutions are not easily adapted for computer implementation, and are of limited
interest. In the next sections we will show two additional approaches to this
problem.

2.6. Race and hazard detection using multivalued logic

Fantauzzi [13] suggested in 1974 the use of a nine-valued logic for detecting
hazards and races in a gate network. The idea was to have several logic values
representing steady states (0 and 1), changing values (+ and -), static hazards
(S1 and S0), and dynamic hazards (D+ and D-). In addition to these eight
values, a ninth value (*) was introduced denoting an unknown value.

The following restrictions were imposed on the network to be analyzed: only
inverters, AND-, NAND-, OR-, NOR-gates, and RS flip-flops were allowed as
construction elements. Furthermore, if all the feedback paths in the RS flip-flops
were broken, then no feedback path remained in the circuit (hence a lot of
asynchronous circuits were not considered!).

Fantauzzi viewed each gate in the network as an operator, operating on its
input values and generating an output value. He gave function tables for a
number of different circuits. As an example, the function tables for an inverter,
a two input AND-gate and a RS flip-flop constructed with NAND gates, are
shown in Figs. 2.18, 2.19 and 2.20 respectively. The notation is as follows: 0 and
1 denote the usual stable binary values, + and — denote signals that are changing
from 0 to 1 and 1 to O respectively, SO and S1 denote possible static 0-hazards
and static 1-hazards, and D+ and D- denote possible dynamic hazards — the
former in a 0 — 1 change, the latter in a 1 — 0 change. The * is a special value
indicating an “‘unknown” value.

The method will be introduced by means of an example. Study network Ns
of Fig. 2.22[22]. If we start in the total stable state x; - - - x4=0011 and
y1y2 - - - y7=1010011, and change x; to 0, i.e. the new input vector is
x1 - -+ x4=0001, the following procedure is carried out. Since xj3 is changing

Carl-Johan Seger
input | output
0 1
+ -
SO S1
D+ D-
* *

1 0
0 +
S1 SO
D- D+

Figure 2.19. Function table for inverter according to Fantauzzi.

0 + SO D+ * 1 - St D
0]0o O 0 0 0 0 0 0 0
+ |0 + SO D+ * + SO D+ S0
SO [0 SO SO SO SO SO SO SO S0
D+ |0 D+ SO D+ * D+ SO D+ S
* 0 * g) * * % * * *
1 0O + SO D+ * 1 - St D
- 0 SO SO SO * - - D- D
St |0 D+ SO D+ * S1 D S1 D
D |0 SO SO S0 * D D D D
Figure 2.20. Function table for two input AND gate according to Fantauzzi.
S\SR|0 + SO D+ * 1 - S1 D-
0 1 St D * 0 + SO D+
+ 1 S1 * * 0 + * D+
|1 - 81 D * 0 + SO D+
D+ |1 * Sl * * 0 + * D+
* 1 * Sl * * * *® % *
1 1 1 1 1 * 10 v+ 1/*¢ 1+
- 1 - St D * 0 SU+ DJ/SO SUD+
st |1 * $S1 * * 40 S+ * S1/D+
D|1 - s D * -0 SU+ D/SO SUD+

Figure 2.21. Function table for the Q output of the operator associated

to a NAND RS flip-flop with one S and one R input only. The notation
a/b means a if Q was at 1 and b if Q was at 0.
} Possible undesired change. Care must be taken to ensure correct operation.

from 1 to 0, the corresponding input is assigned the value —. Gate output y; will
remain 1, since x; and x, are still 0. Gate y, will operate on — and 1; from the
tables in Fig. 2.19 and 2.19 it follows that the outcome will be +. Similarly, y;
will remain 1, y, will become +, and ys will become +. Finally, for the flip-flop,
the results according to Fig. 2.21 will be ys = * Hence the outcome of the

analysis is that the flip-flop can end up in an unknown state.

Ternary Simulation of Asynchronous Gate Networks 25

::; :)"L_ﬁ Va |
;i :) L1/ 3 Y6

xy {>¢ 23)c Ys) ¥
X3

Figure 2.22. Network Ns.

As was mentioned earlier, many asynchronous circuits are not analyzable
with this model because of the assumption of no feedback lines except in the RS
flip-flops. This, together with the very complicated way of calculating the
“excitation” of a gate (or in Fantauzzi’s terminology the operator function),
severely limits the usefulness of the method. In particular, extending the
function tables above to other gates with more inputs, is not trivial. However,
the method has the advantage of detecting hazards in very big combinational
circuits very efficiently (since only one calculation is needed for each gate in the
network). In summary, the method uses an interesting concept, but its
applicability is limited. Since ternary simulation (to be treated in the next
section) offers the same efficiency without the severe limitations, Fantauzzi’s
method is not attractive.

2.7. Ternary simulation techniques

Several authors have proposed the use of three-valued, or ternary, logic in
the analysis of switching circuits. One of the first to suggest the use of a third
value was Montgomerie [27] in 1948, as far as the author is aware. He studied
relay circuits and suggested that a relay contact could be in any one of three
states; operated, unoperated or “neutral” (i.e. between the operated and
unoperated state). The method was primarily used in the synthesis phase,
although the basic idea was quite applicable to the analysis phase as well. In
relay circuits this assumption of three states was very natural; relay switching
contacts (i.e. contact springs that switch between two different contacts) certainly
do have an (unstable) intermediate position between the two end positions.
However, the method suggested had little to do with the way ternary algebra was
used later, and is more of historical interest.

In 1959 Muller [29] suggested the use of a third logic value in the analysis of
switching circuits. The paper was only a very short note, and dealt mainly with
the definition of AND, OR, and inverter operations with three valued operands.
In particular, the application of the method to circuit analysis was not treated at
all.

26 Carl-Johan Seger

In 1964, Yoeli and Rinon [37] developed a formal mathematical theory for
using ternary algebra for hazard detection. Like Muller [29], they used, the third
value (%) to indicate an unknown, but binary value. In other words, if a state
variable had the value %, then it was assumed that it could either have the value
0 or the value 1. Yoeli and Rinon developed a ternary switching algebra in
which they defined the addition, multiplication and inversion operations (i.e.
OR, AND and inverter operations). The definitions were the same as
Muller’s [29], and are given in Fig. 2.23.

+]0 % 1 -]0 % 1 x |0 % 1
00 % 1 00 0 0 |1 % 0
%% % 1 %10 % %
1]1 1 1 110 % 1

Figure 2.23. Addition, multiplication and inversion defined for ternary operands.

They also defined ternary functions which were extensions of the ‘“‘normal”
boolean gate function. In their model, they assumed that the network function
was realized using AND, OR and inverter circuits, and hence the value of the
network function could be obtained by ‘“recursively” applying the definitions
above. The method of detecting hazards was basically along the same lines as
the methods suggested by McCluskey [24], but was adapted to make use of the
special properties of the ternary algebra.

In 1965 Eichelberger [11] suggested how to extend the ideas of Yoeli and
Rinon to hazard and race detection in sequential networks. In this model it was
assumed that the value % represented a changing or unknown value.
Eichelberger used the Huffman model (i.e. feedback model), so the main
objective was to study the behavior of the state variables of the feedback lines.
The proposed method consisted of two algorithms applied one after the other.
The first, called Procedure A was intended for determining which state variables
might change, was defined as follows [11]:

Procedure A:

With the changing x variables equal to % and all other x and y variables as originally
specified, evaluate the ¥; functions to determine if one or more have changed from 1 or
0 to %. If one or more ¥; functions have changed from 1 or 0 to %, change the
corresponding y; variables from 1 or 0 to % and repeat the process until no additional
changes in the ¥; functions are determined.

The procedure is based on one very crucial observation: a state variable can
only change from a binary value to a %. The reason is that the % represents an
unknown value, i.e. the corresponding variable can have either binary value, and
the definitions of the ternary AND, OR and inverter gates are such that
increased uncertainty on the inputs can only produce increased (or the same)
uncertainty on the output. Hence, it follows that Procedure A always halts after
a finite number of steps (actually after at most m steps, where m is the number
of feedback lines). Eichelberger claimed that all state variables that might
experience some type of change, would have the value % after Algorithm A.

Ternary Simulation of Asynchronous Gate Networks 27

The second part of the analysis, called Procedure B, intended to determine
which state variables would eventually stabilize. The procedure was as follows:

Procedure B:

With the changing x variables equal to their new values (1 or 0), and all other x and y
variables equal to their values at the end of Procedure A, evaluate all ¥; functions. If
one or more of these Y; functions changes from % to 1 or 0, change the corresponding y;

variable from % to 1 or 0 and repeat the process until no additional changes in the ¥;
functions are determined.

This part of the algorithm is based on a “dual” observation: a state variable
can only change from a % to a binary value. The reason is once again based on
the definitions of the ternary AND, OR and inverter functions. In this case,
decreased uncertainty on the inputs can only produce decreased (or the same)
uncertainty on the outputs. The method suggested was very useful, and was
quickly implemented in computer programs for analyzing switching circuits [19].

One thing to note is that Eichelberger used the Huffrnan model, but in the
end of the paper he concluded that that was by no means necessary. Actually,
when it came to describing the method of evaluating the ternary gate function, he
essentially used the Muller approach. There were two problems associated with
the Eichelberger approach. The first was that the formulation of the method was
for the Huffman model, which is not always accurate. The second problem was
that it was very unclear how to interpret the results of the method. In other
words, the method was highly efficient in getting information about a circuit, but
it was not clear what this information represented. (This situation is in many

ways similar to the situation today when it comes to switch-level simulators for
VLSI circuits!)

Brzozowski and Yoeli [8] were the first to formalize and to attempt to
characterize the results obtained by the ternmary algorithm. They modified the
algorithm to correspond to the Muller model. Furthermore, they tried to
compare the ternary analysis with a binary race analysis. However, they were
only partially successful — they only managed to show that the ternary analysis
“covered” the binary race analysis. In this context covers means that whenever
the ternary analysis predicts a binary outcome on a gate, the binary analysis gives
the same binary result. They also gave a number of examples where the binary
race analysis predicted a unique binary value, whereas the ternary ended up with
a %. From these examples, they stated a conjecture about complete
correspondence. The conjecture said essentially that the ternary simulation and
the binary race analysis should give the same result if one assumes that both
gates and wires have delays.

To conclude this section, we show the ternary analysis of a reasonably large
network N¢ of Fig. 2.24 [11]. It is easy to verify that the total state x;x,= 00,
y1 -+ - - yg= 11000000 is stable. The question is what will be the result if the
input changes to x; x, = 11? In Fig. 2.25 we show the results after each “step” in
the ternary analysis.

28 Carl-Johan Seger

Y6

ys
{>¢ Y2 ’s

i {>c - N Y7

Y3

Figure 2.24. Network Ny.

Algorithm Step | x; X | y1 Y2 Y3 Ys& Ys Yé Y71 Vs
A: 1 % % 1 1 0 0 0 0 0 0
A: 2 % 1 % % % 0 0 0 0 0
A: 3 1% % 1% 1% % 0 0 0 15 0
A: 4 % % % % % % % 0 % 0
A: 5 % % % % % % % 0 % 15
A: 6 1 1 % % % % % % % %
A: 7 % 1% % % % % % % % 1%
B: 1 1 1 % % % % Y% % % 1%
B: 2 1 1 0 0 1 % % % % %
B: 3 1 1 0 0 1 0 0 % 1 %
B: 4 1 1 0 0 1 0 0 % 1 %

Figure 2.25. Ternary analysis of network N,.

In the next chapter we describe different delay models and binary methods
for analyzing races. Among the described methods is the General Multiple
Winner model. In Chapter IV, we will show the correspondence between the
ternary simulation described above, and the binary race analysis according to the
General Multiple Winner model.

Ternary Simulation of Asynchronous Gate Networks 29

Chapter 111
Gate Network Model

3.1. Introduction

In this chapter we will focus on the different delay models for asynchronous
circuits that have been suggested in the literature. We will also study different
methods of analyzing races according to these delay models. We will use the
Muller model (i.e. the gate state model) for reasons explained in Chapter II. In
Section 3.2 we describe the delay models that have been proposed. We then
continue in Section 3.3 by describing and criticizing different methods for
analyzing races. We conclude the chapter by giving a precise mathematical
description of one model of a network. This model will be used throughout the
remaining parts of the thesis, and, in particular, in the characterization of the
ternary simulation in Chapter IV.

3.2. Delay models

There exist several different models for taking into account different types of
delays in an asynchronous circuit. The basic questions about a delay model are:
locations of delays, their relative magnitudes, the types of delays, etc. Note that,
in this section, our primary interest lies in stray delays, i.e. delays that are not
explicitly inserted. Delays inserted by a designer will be called delay elements.

There are two different types of models of the delay itself. In the first
model, the delay is called pure. The output from a pure delay is assumed to be
the exact replica of the input, only delayed some time A. More formally, if the
input to the pure delay is some function f (¢), (where ¢ denotes the time), then
the output is f (r—A). The most severe objection to this model is that no real
circuit can act in such an ideal way; in particular, very short pulses will almost
certainly not be transmitted through a wire or a gate without being distorted.
This is because there is always a certain amount of inductance and capacitance
associated with a wire, and hence the wire will work as a low pass filter, blocking
very short pulses.

A very natural modification of the pure delay model, is to incorporate this
filtering in the model. One model in which this has been done is the inertial
delay model. This model assumes that a delay behaves in the following way. If
an input pulse arrives and the pulse is shorter than A time units, then the output
of the delay does not change. For all other pulses the output will be a replica of
the input pulse, but delayed A time units. The inertial delay model is
unquestionably the most commonly used in the analysis of networks, even if
some of its assumptions can be argued.

30 Carl-Johan Seger

Several delay assumptions have been suggested in the literature, but we will
only describe a few representatives. One problem in describing the different
approaches that have been taken, is that the delay assumptions and the analysis
method normally go hand in hand, and few authors make any clear distinction
between the two. For this reason, in many cases the naming convention is
somewhat confusing and far from consistent. (The same problem will also be
quite obvious in Section 3.3 where we describe different methods for analyzing
races according to the different delay assumptions.)

The first, and perhaps the most general, model is the unbounded delay
model [25]. The model was suggested by Miller in 1965, but was only briefly
mentioned since it was not considered particularly realistic. As the name
indicates, the basic assumption is that any delay in the circuit can have an
arbitrary, and in the most general case, even infinite delay. Furthermore, no
restrictions were made about the types of delays, and hence both pure and
inertial delays could exist in the same circuit.

A second delay model is the bounded delay model, suggested by Unger [35].
In this model each stray delay is bounded above by a given value 7. Normally,
all stray delays are considered inertial and furthermore delay elements are
permitted. These delay elements are allowed to have delays greater than 7. For
this delay assumption an extensive set of methods have been developed by
Unger [35] and others (e.g. [16,15]), for the synthesis of race- and hazard-free
circuits. The main problem is that all of the methods suggested, require some
delay elements. These delay elements will unfortunately slow down the circuit.

Yet another delay model is the so called speed-independent model [25],
defined by Muller in 1959. In this model the basic assumption is that only gates
have stray delays. Furthermore, these delays are considered inertial. Also, the
delay in each gate is assumed to be arbitrary, but finite. The model does not use
any delay elements. Muller [25] developed an extensive theory for the analysis
and design of speed-independent asynchronous circuits.

All the previous models have one thing in common: they are all very
“pessimistic”’, because they assume arbitrary delays. In an attempt to find a less
pessimistic model Langdon [20] suggested a model he called the bounded-ratio
delay model. The idea was to take into account the fact that in real circuits,
there is always a nonzero delay in any wire or gate, but it is also almost always
possible to give upper bounds on the delays. The model assumes that the
maximum sum of a gate and a wire delay divided by the minimum sum of a gate
and a wire delay is bounded by some constant X. One immediate consequence
is that no single wire delay can exceed a chain of K wire delays. This
assumption greatly simplifies the analysis and synthesis of a circuit, since only
“reasonable” paths need to be considered for hazards and races.

The very last model we will describe is somewhat different. In 1975
Brzozowski and Yoeli [5] defined what they called an Almost Equal Delay model.
Their interpretation of the delay model [6], makes four assumptions:

Ternary Simulation of Asynchronous Gate Networks 31

Only gates are assumed to have delays.
The delay of any gate is approximately A units of time.
All delays are inertial, and

Call ol S

It was assumed that A; <A; + A, for any delays 4;, A;, and A; in the
network.

The Almost Equal Delay model seems to rely on some very severe assumptions,
but in some cases (e.g. for networks built completely with the same type of gates)
the assumptions are probably valid. Unfortunately, as we will see in the next
section, the method suggested for analyzing races according to this model, relies
on a much stronger assumption about the delays. This will be discussed in
greater detail in Section 3.3.

3.3. Methods for race analysis

In this section we will assume that the Muller model (gate state model) is
used unless otherwise stated. The results do not depend on this, but by using this
approach, only races have to be considered as timing problems. (Output hazards
can still occur, but since the output values are part of the total state, it is possible
to detect them in the race analysis.)

The basic problem of analyzing asynchronous circuits is introduced by means
of an example [8]. Consider the network N in Fig. 3.1. (Note that the circuit is
chosen more for demonstrational purposes than for its applicability.)

X1 Y2

1 {>e 1 =

Figure 3.1. Network N,.

The behavior of the network is governed by the following gate excitation
equations:

Yi=x', Yy=xy;, Y3=yr+Yy3,
where Y; gives the value of the boolean function computed by the gate i whose
output is y;, i.e. it is the excitation of the gate. We will say that a gate j is
stable if Y;=y;. It can easily be verified that the total state x =0,
y =01 ¥2y3) =(1,0,0) is stable (i.e. Yy=y;, Yz=y; and Y3=y3).
Suppose now that the input changes to x = 1; what will be the final state of the
network? This question constitutes the basic problem in the analysis of
asynchronous sequential networks. For obvious reasons, the answer depends
largely on the underlying delay assumptions. In order to explain the different
methods, the concept of an allowed sequence, as defined by Muller [25], will be
used. The idea is to describe the behavior of a circuit by giving a sequence of

32 Carl-Johan Seger

total states of the circuit. In this sequence a state b can follow a state a iff b
can be obtained by changing at least one unstable gate in state a, and this change
is allowed according to the method studied. Since different allowed sequences
can start at the same total state, we will normally draw a directed graph showing
all possible successors of a state. One can view this as defining a binary relation
between states “reachable” from each other. (This approach follows very closely
the one taken by Muller [25].)

We will briefly describe four different methods of race analysis:
a) the maximum winner model,
b) the single winner model,
c) the general multiple winner model, and

d) the almost equal delay model.

It is important to remember that these methods are based on mathematical
models, usually simplified (to be manageable) to such a degree that the
correspondence between the real behavior of the circuit, and the predicted
behavior according to the method, is sometimes questionable.

The first, and unquestionably the simplest, method is to assume that all
unstable gates change simultaneously. We will call this the ‘“Maximum Winner
Model” (MWM). In the literature this method normally goes under the name
“unit delay model”. The former name reflects the way of computing the next
state, whereas the latter refers to the underlying delay assumption. In this model
only gates are assumed to have delays, all delays are exactly the same, and the
delays are pure. However, as far as the author is aware, nobody has given any
motivation for this method. The only motivation we can suggest, can be
summarized in one word: simplicity. In particular, it is very easy to use this
approach in a simulator program. However, the assumption about exactly equal
delays is unrealistic, and hence it is not very clear how the results should be
interpreted. In Fig. 3.2 we show the analysis of Network N, of Fig. 3.1
according to the Maximum Winner Model. Unstable gate outputs are shown
underlined in the graph. Note that the Maximum Winner Model predicts that
the network will end up reliably in the stable state y = 001.

A more sophisticated, but also more complicated, race model was suggested
by Muller [30] in 1967. The model was called the “General Single Winner”
model (GSW) by Brzozowski and Yoeli [S], and we will continue to use that
name. As the name indicates, the model assumes that any one of the unstable
gates can change, but with the extra condition that only one of them can change
at the same time. In other words, two states a and b related by the GSW
relation can only differ in one gate value. The model is not necessarily limited to
the case when only gates have delays, but that is the most common assumption.
The delay model behind the GSW model, is a slightly restricted speed-
independent model. The restriction is the assumption that two delays cannot be
exactly equal. In Fig. 3.3 we show the race analysis of network N, of Fig. 3.1
according to this model. As can be seen, the model predicts two possible stable

Ternary Simulation of Asynchronous Gate Networks 33

100

l

010

l

001

O

Figure 3.2. Race analysis of N5 according to MWM.

Figure 3.3. Race analysis of N, according to the GSW model.

outcomes, y =000 and y =001. This outcome seems to be reasonable, at least
from an intuitive point of view. For example, if the inverter is much faster than
the AND gate, it might change to 0 before the AND gate reacts. Hence, the
state y = 000 should also be a possible outcome.

The assumption of only one “winner” in any race in the GSW model is not
well justified, and the main reason seems to be to simplify the analysis. The
obvious extension of the GSW model is to allow more than one gate to “win” a
race. Such a model was actually defined earlier than the GSW model;
Muller [25] defined this model already in 1965, but did not give it any name.
For reasons of symmetry, we will use the name ‘“General Multiple Winner”
model, or GMW for short (this name was suggested by Brzozowski and Yoeli in

34 Carl-Johan Seger

1975 [5]). In the GMW model, any nonempty subset of the unstable gates can
change at once. This gives a rather complicated race analysis if more than two
gates are unstable at some point, but this is the most general case of a race. The
underlying delay model is the speed-independent model. As with GSW, it is
applicable to both gate and wire delays. However, since the analysis becomes
extremely large when many state variables are present, the normal assumption is
that only gates have delays associated with them.

Figure 3.4. Race analysis of N, according to the GMW model.

In Fig. 3.4 we show the GMW analysis of Network N, of Fig. 3.1. In this case
the result of the GMW analysis and the GSW analysis gives the same non-
transient outcome, but the following example shows that that is not always the
case. Study the NOR latch of Fig. 3.5. In Fig. 3.6(a) we show the GSW
analysis of the latch, and in Fig. 3.6(b) we show the GMW analysis. Note that
the GSW model predict that the outcome of the race will either be y =01, or
y =10 — both stable states. However, the GMW analysis also indicates that the
latch can enter an oscillation (between y = 11 and y = 00).

Y1

y2

Figure 3.5. NOR latch.

Ternary Simulation of Asynchronous Gate Networks 35

01 10 01 10

(a) (b)

Figure 3.6. Race analysis of NOR latch: (a) GSW analysis; (b) GMW analysis.

The last, and most likely the least well known, method described, is due to
Brzozowski and Yoeli [5, 6], and is called the “Almost Equal Delay”” method, or
AED for short. The method is an attempt to decrease the pessimism in the
GSW/GMW methods. This pessimism stems from the fact that in a GSW/GMW
analysis one gate can be unstable for a very long time before changing. Consider
the following case. Two gates a, and b are racing. One of the gates, say a,
changes, and the other remains unstable. Now gate a that changed, might cause
another gate ¢ to become unstable. In the race that follows (between b and ¢) ¢
is allowed to “win” over b. When gate ¢ changes, it can cause a fourth gate d
to become unstable, etc. 'What can happen is that to reach a specific state, one
of the gate delays must be substantially greater than all the others (in the
previous case, gate delay »). To solve this problem, the AED model simply
assumes that all gates have approximately the same delay. How realistic this
assumption is could certainly be argued, but for certain types of circuits, the
assumption might be quite valid. (For example, consider the case when all gates
are of the same type.) We will start by giving an informal description, mainly by
means of an example. Later we will give the precise mathematical definition of
the AED relation. The approach we will take follows very closely the original
method as described by Brzozowski and Yoeli [6].

The basic idea behind the AED method is to make sure that all gates that
are racing must all change, or become stable (because of some other unstable
gate changes) before any ‘“‘new” gate can enter the race. This will be
accomplished by adding another field to the total state, indicating which gates are
unstable and are allowed to change according to the model. We will call such
extended total state a race state, and denote it by <y, §>, where y is the total
state of the network, and § is the set containing all unstable gates that are
allowed to change according to the model. To simplify the analysis, the
assumption of a single winner is adopted. However, the method can be easily
extended to multiple winners. In Fig. 3.7 we show the race analysis according to
the AED method, of the network N, of Fig. 3.1 Note that in the race state
<110, {1}> only gate 1 is allowed to change, despite the fact that also gate 3

36 Carl-Johan Seger

<100,

{1,2>

<110, {1>

<010, {2,3>

<000,3> <011, {2)>

O

001, >

O

Figure 3.7. Race analysis of N, according to the AED method.

has become unstable. The reason is that gate 1 has been unstable for much
longer time than gate 3, and therefore has higher “priority” to win the race. In
this case the AED result was the same as the GSW result, but this is clearly not
always the case. Consider for example the network Ng of Fig. 3.8.

Xy {>¢ Y1
1--:))’21__

:) Y3
]

Figure 3.8. Network Ng.

Y4 Vs

In Fig. 3.9 we give the race analysis according to the GSW model and the AED
model. Note that the results are not equal. The GSW model includes the case
when the total delay through the two NAND gates is smaller than the delay
through the inverter, whereas in the AED model that path is not allowed.

Ternary Simulation of Asynchronous Gate Networks 37

11000 <11000, {1,2}>
/\ /\
01000 10000 <01000, {2}> <10000, {1}>
/ \/
00000 10100 <00000, {3}>
|
10110 <00100, &>

O

00110 10111

00100 00111

S

/
00101

O
@ (v)

Figure 3.9. Race analysis of Ng according to: (a) GSW; (b) AED.

In order to characterize the delay assumptions behind the AED method, we
need a more precise mathematical definition of the binary AED relation. This
relation will be called R for simplicity. Since a race analysis according to the
AED method depends on the previous race history of the network, we will
assume that the network is started in some stable total state and then some
input(s) is changed. We will call this “first” state after the change primary. The
precise definition of the AED method [6] is preferably done recursively. In the
same definition, we will also define the set T of race states which are reachable
from the initial state. Let U (y) be the set of unstable states in the total state y .

38 Carl-Johan Seger

Let (x; y) be primary. Define 7 and R as follows.
Basis: <y, U(y)>€T.
Induction Step: Given <y ,V>eT.
1. HV =g, then<y,V>R <y,V>.
2. £V = (3, for each i €V, compute
W;=(V-{iPnUO®)
a)Ifw, = ? then
<y(' U@yD)y>eT
and
<y,V>R <yD, U (D>,
b) If W; # ¢, then
<y(‘ W >€eT
and)
<y, V>R <y w,)>.

Here y®) denotes the state y with gate i changed, i.e.

y(i)=}’1, T ’yi--layi,’yi-f-l’ Y/ B

The following observation is important. Every time case 2(a) is applied, a time
of approximately A units has elapsed since the last application of case 2(a) (or
after the primary state if this is the first time case 2(a) is applied). This follows
from the fact that case 2(a) is only applied if the previous racing gates have all
changed or become stable (because of other changing gates). In other words, by
“marking” every edge that is added in the graph of the AED relation, because of
rule 2(a), it is possible to introduce a time scale. In Fig. 3.10 we include this
marking in the previous race analysis of our standard example of Fig. 3.1. From
this graph it is easy to see that the network can end up in either one of two
states: 000, or 001. Furthermore, the network will be unstable for at most
approximately 2A time units. (Since the longest path has two marked edges.)

The intention of the AED method was to describe the analysis of races
according to the Almost Equal Delay model (described in Section 3.2).
However, there are some discrepancies between the delay model, and the results
of the race analysis. The main objection against the method is that it assumes
that after a race unit has finished, all the new unstable gates that start racing with
each other have the same chance to win this second race. The problem is that, if
§ denotes the difference between the fastest and the slowest gate in the first race
unit, the difference after the second race unit can be as big as 2. In other
words, after some &k race units, the difference between the fastest and the slowest
“change path”, can be ké time units. But if § is not too small, and k& reasonably
large the different race units can be confused with each other. However, the
method suggested does not capture this fact. Study for example Fig. 3.11. The
assumption is that the faster gates have a delay approximately only 2/3 of the
delay of the slower gates. Note that this is allowed in the Almost Equal Delay
model. It is reasonable to assume that the gates d and e are racing, as can be
seen in the figure. However, according to the method of [6], the change of gate
d belongs to the second race unit whereas the change of gate e belongs to the

Ternary Simulation of Asynchronous Gate Networks 39

<100, {1,2}>
<110, {1}>
* *
<010, {2,3}>
*

\
<000,> <011, {2}>
O l
001, >

O

Figure 3.10. Race analysis of N, according to the AED method and with marking.

third race unit, and therefore the two gates are not assumed to race with each
other.

Figure 3.11. Timing diagram for a race.

There are two ways to solve this problem. Either change the method of
analyzing races, or changing the underlying delay model. Only the latter will be
considered here. We need only add one more assumption to the AED model to
correctly describe the delay model behind the AED method. The assumption is
the following. Let 6 be the maximum difference between any two gate delays A;
and A; in the network (i.€.6 = Apax— Amin)- Assume that the AED method is
carried out for k race units; then ké is assumed to be less than Ay;,. Whether
this is a reasonable assumption is questionable, but one could argue that no
“well-behaved” circuit should need more than some very small number of race
units before it becomes stable after a change.

40 Carl-Johan Seger

3.4. Gate network model

As mentioned earlier, the model of a network, and the assumptions made
concerning the delays, are of vital importance to the results of an analysis. For
this reason we describe a precise mathematical model of a gate network below.
The delay model that will be used in the remaining part of this thesis, unless
otherwise stated, is the arbitrary but finite gate and wire delay model, i.e. both
the wires and the gates are assumed to have arbitrary, but finite, delays. This is
an extension to the speed-independent model, since now wires can also have
delays associated with them. However, we will originally model the network
with only gate delays, and “add” delay elements later to represent the wire
delays. The reason for this approach will be explained in Chapter IV, Section 5,
but is mainly for convenience.

Assume that the network N has n inputs, described by the vector
X =xq," X, of input variables. Also assume that the network has s gates.
Each input and each gate will be represented by a node in a directed graph
G =(V,E), where V is the set of vertices or nodes and E is the set of edges.
The edges will represent the connections among the input terminals and gates in
the natural way. The input and gate nodes can be distinguished as follows.
Nodes of indegree O are inpur nodes, and nodes of indegree >1 are called gare
nodes. With each gate node we associate a boolean function g; — the incoming
edges to the gate node represent the arguments of g;.

Sometimes it is convenient to treat all the nodes of G in the same fashion;
for this reason the vector y =y, - * * ,y,,s Of node labels or node variables will
be used. Thus the vector y of node variables represents the total state (inputs
and gate outputs) of the network. When it is necessary to distinguish between
input and gate variables y; is replaced by x; for i =1, - - - ,n. However, for
i=n+1, - - ,n4s,y; always denotes the output of gate i .

To illustrate these ideas, consider the network Ng of Fig. 3.12. The graph
for Ng is shown in Fig. 3.13. It has 4 nodes: one input node labeled y; (and also
x1) and 3 gate nodes labeled y,,ys,y4. The boolean functions corresponding to
these gates are g,, g3 and g,.

X1

Y3 Ya

T\Yz N~
1/ L

B
|/

Figure 3.12. Network Ny.

Ternary Simulation of Asynchronous Gate Networks 41

Figure 3.13. Graph of network N.

In summary, the following model is used. A gate network is a directed
labeled graph
N=<G,x,y,g >’

where: G = (V, E) is a finite directed graph,

V = {1, - - - ,;n4s}is the set of vertices of G,

E C V%V is the set of edges of G,

X = X, - * * X, is the vector of input variables,

Y = Y1 "' " »Ynys 18 the vector of node labels or node variables,
and

& = 8uil> * ° * »8n4s 18 @ vector of boolean functions.

For an input node the variable y; always takes the value of the external input
X; i.e.

y=x fori=1,---n

With each gate node j is associated the boolean function g;. The arguments of
g; are all those node variables y; such that (i, j) € E; this represents the fact
that node y; is connected to an input of gate j. Note that, by definition, at most
one such wire exists between y; and y;. Thus the indegree of node y; is the
number of arguments of g;. For notational convenience we rename the
arguments of g; as follows. For each (i, j) € E the variable y; is renamed w;.
Suppose all the inputs of gate j are w; ;, - - - ,w;_ ;; we will simply denote this
f)

vector by w;. Thus, if the input vector for gate j is w;, g;(w;) is called the
excitation of the gate and hence

g B —B,
where B = {0, 1}.

To illustrate these details we describe the variables and functions for the
network Ny of Fig. 3.12. The boolean functions associated with the three gates
are:

82(w2) = g2(W12,w2) = 82(y1,¥2) = 82(x1,¥2) = X142,

g3(w3) = g3(wa) = g3(y2) = y3,

84(wq) = g4(W14W34,Wae) = 840V 1,Y3.Ya) = 84(X1,Y3.Y8) = (X1yaya)"

It is assumed that each gate has an arbitrary but finite delay. Thus the gate
output y; may differ from its excitation g;(w;). If y; = g;(w;) we say that gate
j is stable; otherwise it is unstable. A network N is said to be in a stable total

42 Carl-Johan Seger

state iff its inputs are fixed and all its gates are stable.

In the next chapter, we will use this precise mathematical model of a gate
network to characterize the ternary simulation described in Chapter II.

Ternary Simulation of Asynchronous Gate Networks 43

Chapter IV

Characterization of Ternary Simulation

4.1. Background

In this chapter we characterize the result of the ternary simulation according
to the algorithm given by Eichelberger [11] and modified according to
Brzozowski-Yoeli [8], as described in Chapter II. We will show that the results
of ternary simulation correspond to a binary race analysis according to the
General Multiple Winner model [8] for a network under the assumption that both
wires and gates can have arbitrary, but finite delays.

=D

Figure 4.1. Network Nq.

01le—— =010

101
O

Figure 4.2. Binary analysis of Nj.

4 Carl-Johan Seger

We introduce the problem by the example of Fig. 4.1. In Fig. 4.2 we show
the binary race analysis according to the General Multiple Winner model
(GMW). In contrast to this consider the following ternary approach. Starting
with state x = 0, y = 011, change the input to x = %, representing an unknown
or changing signal. As a result of this unknown input x, gates 1 and 3 will have
unknown values. In the second step, gate 2 will also become %. This approach
is summarized in Fig. 4.3(a) and corresponds to Eichelberger’s Procedure
A [11,8]. In this case the figure shows that all the gates become unknown when
the input is changing.

011 1% % %
% L% 1% %
% % % 10%
o
101
o
(2) (b)

Figure 4.3. Ternary analysis of N1: (a) Algorithm A; (b) Algorithm B.

To complete the ternary analysis we now apply the new input x = 1 to the
ternary state % %% resulting from Procedure A, to see how much of the
uncertainty introduced by the transient input can be removed when the final
input value becomes known. First, y; will become 1 since the input x = 1 will
force the output to 1, independently of the second input to the OR gate. Second,
the output of the inverter will become 0 after y; becomes 1. Finally y; becomes
1 after y, changes to 0. This is summarized in Fig. 4.3(b). Notice that the final
outcome of the ternary algorithm is 101 which is precisely the nontransient
outcome of the GMW analysis.

Our second example shows what happens when the result of an input change
does not lead to a unique stable state. The binary and ternary analyses of the
NOR latch of Fig. 4.4 are shown in Figs. 4.5 and 4.6, respectively. The initial
state is x = 1, y = 00 and the input is changed to x = 0. The GMW analysis of
Fig. 4.5 shows three cycles: the stable states 01, and 10 and an oscillation
(00, 11). The latter cycle is not transient like the ones of Fig. 4.2. However, it
is "match-dependent” [8] in the sense that a network can only maintain such an
oscillation if at each step the two gates have perfectly matched delays.

In the case of Ny, the ternary model of Fig. 4.6 predicts an unknown final
state. If one interprets % as meaning that the gate could either have the value 0
or the value 1 in any nontransient situation, then the ternary algorithm results are

Ternary Simulation of Asynchronous Gate Networks

Figure 4.4. Network Ny;.

00

01 10

11

Figure 4.5. Binary analysis of Nyy.

00 % 1%
1 O

% %

O

(a) (b)

Figure 4.6. Ternary analysis of N,: (a) Algorithm A; (b) Algorithm B.

correct.

46 Carl-Johan Seger
J1
D

Figure 4.7. Network N 5.

X1
X2

Our final example [8] for this section shows that the ternary results do not
always correspond to the binary results, if one assumes that delays are associated
only with gates. If the network Ny, of Fig. 4.7 is started with x = 01, y = 00
and the input changed to x = 10, the binary analysis predicts no change in the
state, i.e. y = 00. However, the ternary algorithm yields y = 0%. This
discrepancy can be explained by assuming that wires, as well as gates, have
delays. Study for example Fig. 4.8 in which an additional state variable for the
delay in the x, wire has been added. In Fig. 4.9 we show the binary race
analysis of this ‘“modified” network. Note that the outcome of the ternary
analysis now corresponds to the binary analysis. This leads to the conjecture that
the ternary and binary results correspond properly if one takes into account
appropriate wire delays. It is this problem that is settled in the present chapter.

X1 1

X2 —

Figure 4.8. Network N, with one wire delay added.

We first show that the ternary algorithm is insensitive to the addition of
delays anywhere in the network. This follows basically from the monotonicity
property of Algorithm A and B. As a consequence of this, we will always apply
the ternary algorithm to the original network, without extra wire delays, whereas
the binary race analysis will be performed on the so called “delay complete”
network, in which each gate and each wire has a delay associated with it. In the
remaining parts of the proof, we show how to “mimic” the ternary Algorithms A
and B in this delay complete network. The fundamental observation is that the
wire delays can be used to “remember’” a previous node value, and hence we are
free to choose between an “old” and its complemented “new” value. Another
crucial observation is that if Algorithm B does not yield a binary result, i.e. there
is at least one gate that remains % after Algorithm B has terminated, gates with
a % must either be members of some cycles in the network, or connected to
some cycles whose members are %. This follows from the fact that the output of
a gate can be % only if at least one of its inputs is %. We will call these gates

Ternary Simulation of Asynchronous Gate Networks 47

Figure 4.9. Race analysis of N, with extra delay (z y{y,).

indefinite, and the cycles indefinite cycles. We then show that it is possible in
the binary race analysis to reach a total state in which all gates that are binary
after Algorithm B in the ternary analysis, have the same binary value, and are
stable. Furthermore, this total state is such that there is at least one unstable
wire delay in each of the indefinite cycles. In the last part of the proof, we show
that it is possible to “move” these instabilities around in the indefinite cycles,
and hence all gates that are % after Algorithm B can oscillate.

The chapter is structured as follows. We first formally define the binary
race model and the ternary simulation algorithm in Sections 4.2 and 4.3. In
Section 4.4 we state the main result of this chapter. In the remaining sections
this result is proved. More specifically, in Section 4.5 we show that the ternary
simulation is insensitive to the addition of delays anywhere in a wire, and hence
the ternary simulation algorithm can be applied to a circuit with only gate delays.
In Section 4.6 we characterize the first part of the ternary simulation algorithm.
In Sections 4.7 and 4.8 we show how the last part of the ternary simulation
algorithm can be “mimicked”. In these sections we show also how a
nontransient oscillation can be constructed involving all nodes that remain %
after the ternary simulation algorithm has finished. Finally, Section 4.9 contains
the proof of the main theorem, and also a comparison between this result and the
original conjecture by Brzozowski and Yoeli. [8]. The reader should note that
we consistently use the mathematical model for a gate network described in
Chapter III, Section 4.

48 Carl-Johan Seger

4.2. Binary race model

The race model we will use is the General Multiple Winner model [8], and it
is first formally defined, using the network model described in Chapter III,
Section 4.

Let b € B"* be any total state and let a = by, - - - ,b, be a fixed input
vector. Define U (b) to be the set of unstable gates in b, i.e.

U(b) = {i :n+1<i<n+s, and b;#g;(w;)}.

The GMW relation R, defines the set of successors for any total state b. If b is
stable, i.e. if U(b)= ¢, then the only possible successor is . If b is unstable,
then every state of the form »®) is a successor of b, where b®) is b with some
components changed as follows. Let S be any subset of the set U(b) of unstable
gate variables; to obtain b®) complement b; iff i €S. Formally, define the
GMW relation R,,, on the set B*** of total states. For b e B***,

if U(b) = & then bR, b;

if U(b) % ¢ then bR, b®S) for any S C U (b), S=y.

Following [8] we define the set cycl(R,,b) to be the set of total states of N

that appear in cycles in the relation R, and are reachable from b. For example

the set of cyclic states reachable from 001 in Fig. 4.2 is {011, 010, 111, 110, 101}.
Thus let

cycl(R, ,b) = {ceB"** : b R;c and c R;* c},

where R;t is the transitive closure of R,, and R, is the reflexive and transitive
closure of R, .

A cycle is called mransient if there exists a gate i, n+1<i<n+s which is
unstable in all of the states in the cycle and has the same value in all these states.
For example, in Fig. 4.2, the cycle consisting of 011 and 010 is transient. Let

trans(R, ,b) = {c € cycl(R,,b) : ¢ appears only in transient cycle }
and
out(R, ,b) = cycl(R,,b) — trans(R, ,b).

The set out(R,,b) is the "outcome” of the binary analysis of the behavior of N
when started in total state b, in the sense that it consists of all the states N can
be in under nontransient conditions. Note that match-dependent cycles are
considered non-transient in this model.

Ternary Simulation of Asynchronous Gate Networks 49

4.3. Ternary simulation algorithm

In this section we describe the ternary simulation applied to our model in a
formal way. For more details the reader should refer to [8]. Let T = {0,1,%}.
The values 0 and 1 represent the usual logic levels and % represents an unknown
value. We will use the following convention. Variables like x;,y;, etc. which
take values from B = {0, 1} will have corresponding variables x;,y;, etc. taking
values from T. The partial order < on T is defined by

t<tforalteT,
0<% and 1<%.

The statement t <r means that whenever 7; is binary then #; has the same binary
value as 7;, but r may contain more unknown components (i.e. components with
value %). Thus r has more "uncertainty” than t.

We write t<r if t<r and tr. Also, we extend the partial order < to T in the
usual way:

t<riff t,<r; foralli =1, - - - m.
The p—average operation on nonempty subsets of the set B is defined as follows:
p{0}=0, p{l}=1, p{0,1}=%.
We extend it to nonempty sets of vectors from B™ by taking the “component-by-

component” p-average. Thus, if A CB™, let A; = {g; : (a1, - * - ,a,)€A } for
1<i <m be the set of the ith components of all the vectors in A. Then define
pA = (pAy, - - - pAy)

For example, x{(0,0),(0,1)} = (0,%). Clearly a<pA for everya €A.

For any boolean function f: B™ — BP its ternary extension £: T"™ — T? is
defined by

f(t) = p{f (a) :aeB™ and a<t}.

It follows that, for r e B™, f(t) = f(¢), i.e. on binary vectors the ternary
extension agrees with the original function. The ternary extension obeys the
following monotonicity property [8]:

t<r implies f(t)<f(r).

We first describe how to compute the ternary excitation next for any total
statey e T"**.

50 Carl-Johan Seger

Sfunction next(y e T"**) ¢ T"**;
begin
for j =1ton do
forj =n+lton+s do
next; = g;(w;);
end,
Here, g; is the ternary extension of the boolean function g; associated with gate

j. Note that w;, as before, is a vector consisting of some components of y.
Also, it can be verified that

y< y implies next(y)< next(y).

This follows from the definition of next and the monotonicity property of the
ternary extension.

The ternary simulation consists of Algorithms A and B described below.

Let a,b =adq, - ,4,,¢1, " "¢, €EB"™* be any stable total state and
a =a,, - ,a, bethe new input vector. Let u= p{d,a}.

Algorithm A

h:=0;

Y:=u,c;

repeat

};h :=h+1;yh .
r=next(y*™);

until y* =y*~1;
It was shown in [8] that Algorithm A always terminates, i.e. we have a sequence
of p distinct ternary states, where p <s+1

yoyy19 Tt ”p—l.
It was also shown in that Algorithm A can only "increase the uncertainty” [8] in
the network state, i.e.
y'< y*t! for O0<h<p-1.

Note that y?~! = u,r, for some r € T*.

Next, starting with state y*~! = u,r, we apply Algorithm B given below.

Algorithm B

hi=p;
=a,r;
repeat
h:=h+1;
Y =next(y*™);

until y*=y*~1;

Ternary Simulation of Asynchronous Gate Networks 51

Algorithm B also terminates [8], i.e. we have a sequence of g distinct ternary
states, where ¢<s+1

’I”)P*l'l’ ot ’)P+q_l’

and now the uncertainty decreases, i.e.

y'> y*+ for p<h<p+gq-1.
Note that y*4~! = g, t for some t e T°.

4.4. Main result

The following result was proved by Brzozowski and Yoeli [8] in 1979. Let
N be started in some stable state d,c and let the input vector change to a, i.e.
let the new total state be b =a,c. Then the result y? of the ternary simulation
of N “covers” the nontransient states reachable from b in the GMW graph of N
in the sense that:

p(out(R,, b)) <y".

The example of Fig. 4.7 shows that, in general, the two results are not equal. In
this paper we show that the results become equal if appropriate delays are added.
The main result is formally stated in this section; the following sections then
contain the proof. The basic idea is to study a "delay complete” network
obtained from the original network by adding an arbitrary but finite inertial delay
to each wire. The new network will be called N. It contains the gates of N
whose outputs are now labeled by the vector y, and the special "gates”
corresponding to the added delays. The outputs of those delays will be described
by the vector z. Each delay may be viewed as a gate performing the identity
function. The total state of N is now (y, z), but we will compare only y with the
corresponding vector y in N. In the theorem below, if y,z appears in a cycle of
the GMW graph of N, then we will say that § belongs to that cycle. Assuming
that N and N are started in corresponding initial conditions, the main result is:

Theorem 1 The ternary result y? from Algorithm B for any network N is equal
to the u-average of all the binary vectors y which belong to nontransient cycles
reachable from the initial state of N in the GMW model. Furthermore, there
exists a nontransient cycle Z in the graph of the GMW relation such that the
u-average of all the vectors y belonging to that one cycle is equal to y?.

The proof proceeds as follows. In Section 4.5 we prove that the ternary
simulation is insensitive to the addition of delays anywhere in the network N. In
particular, the results of the ternary algorithm applied to N and N agree in the
gate variables. In Section 4.6 we characterize the result of Algorithm A and
establish the first part of a sequence of states of N that will eventually lead to the
nontransient cycle Z of Theorem 1. In Section 4.7 we find the second part of
that sequence, which is related to Algorithm B. In Section 4.8 we exhibit the
nontransient cycle Z. Finally, in Section 4.9 we complete the proof of Theorem
1.

52 Carl-Johan Seger

4.5. Ternary simulation and delays

In this section we show that the ternary simulation is insensitive to the
addition of delays anywhere in the network. In the lemma below we insert one
delay to N in the wire from node k to node m. The output of this delay will be
designated zj, and the resulting network will be N =<G,x,9, z,, g>, where
the graph G is G with an extra node added for the "gate" corresponding to the
delay 7, , the input vector x is the same as in N, the total state of N is given by
(J, Zwn) and the vector g of boolean functions is the same as in N. The "gate
function” of delay 2, is simply y;.

We say that Algorithm A or B is consistent for N and N if the final result is

the same for y and y, i.e. the output of the additional delay z, is simply
ignored.

Lemma 1 The result of Algorithm A applied to any network N is consistent with
the result of Algorithm A applied to the same network with one wire delay z,
added.

Proof Let N = <G, x, y, g> be an arbitrary network and suppose (k, m) € E.
Let y%= (d,b) bea stable total state of N and let y° = wb, where u = p{a a},
be the initial temary state of N for Algorithm A. Let N = <G, x, ¥, Zim, 8>
be N with a delay z,, inserted in the wire from node £ to node m. The total
state y 7, = d,b, % is stable in N. Let y°, ,° be the initial ternary state of N
for Algorithm A.

We will prove by induction on # that
¥ <y < ¢#* for all h>0.

In view of the fact that Algorithm A converges to its final value after a finite
number of steps, the lemma will then follow.

If y; does not change during Algorithm A the lemma is obviously true.
Otherwise, assume that y, becomes % at step r, r>0. Note that r = 0 means
that y, is an input node.

For the basis, # = 0, we have §° = y°. By the monotonicity of Algorithm
A, §'>%°. Thus we have
F<y <y

Suppose now that <y < ¥**1. Consider the input variables w; ; and w;;
to all the gates of N. If (i,j) # (k,m) then W;; = §; and it is always true that
w;; = y;. Hence

<w <w,l" +1

by the induction hypothesis for the y;. Also wp,,= y; and wy,,= %,,. We know
that

Ternary Simulation of Asynchronous Gate Networks 53

A {fko if h<r

Wen= 15 if h>r

and
A0 .

" {yk if h<r+1

= % ifh>r+1
Thus we also have

h < wh, < WL

Altogether we have

W < wh < Wit forall (i,j) € E.

It now follows by the monotonicity of g; that

S,Ih+1 — g,(w,) < gJ(W]h - h+1 < g,(w"“) - ~h+2.

Hence the induction step goes through and the lemma holds. O
We are now ready to prove the main theorem of this section.

Theorem 2: Informally, the ternary algorithm is not affected by adding any delays
to the network being analyzed. Formally, let N = <G, x, y, g> be any network
and let N = <G, x, ¥y, z, g> be any network obtained from N by the addition
of delays in any wires of N. Then the outcomes of Algorithms A and B are
consistent for N and N .

Proof:

Let Lemma 1° be Lemma 1 with Algorithm A replaced by Algorithm B,
with initial state y~! = u,r and new input x = a for N, and appropriate initial
state for N depending on the position of the added delay. One can verify that
Lemma 1P is proved by dual arguments, interchanging < and >. We leave the
details to the reader.

Altogether, Lemma 1 and Lemma 12 show that ternary simulation yields
consistent results for N and N, when only one delay has been added.

It now follows by induction on the number of delays added to N that the
theorem holds for any N as claimed. O

According to Theorem 2 any number of delays can be added to a network
without changing the result of the ternary simulation. We now define the delay-
completion of a network that gives a network which, in some sense, has all
possible delays included. More specifically, let N = <G, x,y, g> be a given
network. We obtain N = <G, x, 5, 7, g> by inserting a delay in every input
line of every gate of N; N is the delay-completion of N. Let d be the number of
delays inserted. As in the case of w; we define z; to be the vector

J j
z,l TR . This is the vector of input variables of gate j in network N.
J

54 Carl-Johan Seger

To illustrate this definition we show the delay-completion of Ng of Fig. 3.12
in Fig. 4.10.

Figure 4.10. Delay-completion of No.

4.6. Characterization of Algorithm A

The results of this section are an adaptation of the work of Bryant [2]. In
his model delays are associated only with wires and not with gates. However,
the main idea for Theorem 3 is essentially the same. We assume that N and N
are started in corresponding initial conditions.

Theorem 3 The ternary result y* from Algorithm A for any network N is equal
to the p-average of all the binary vectors y reachable from the initial state of N
in the GMW model. Furthermore, there exists a state y,7 reachable from the
initial state of N, in which each gate output that corresponds to % after
Algorithm A in the ternary simulation of N, is the complement of its initial
value, i.e. y* is the pu-average of the initial state and y .

Proof: We will prove the second part, since the first part follows immediately
from the second. Clearly the second part implies that y* is < uY, where Y is
the set of all the binary vectors reachable from the initial state of N. On the
other hand, in [8, Lemma 4] it was shown that any binary state of N reachable
from the initial state is < the result of Algorithm A for N. By Theorem 2, this
result is consistent with that of Algorithm A for N. Hence y*> uY, and the
first part follows.

For convenience we now define the standard initial conditions for N and N
which will always be used to study a transition from a stable total state when the
input vector changes.

Ternary Simulation of Asynchronous Gate Networks 55

Standard Initial Conditions
Network N : <G,x,y,g>
y0=a,b - given stable total state
a - input vector before change
a - input vector after change
u=yu(d,a) - ternary input vector for Algorithm A
b - initial state of gate nodes of N
Network N : <é,x,i,z’,g>
y°,20 - stable total state corresponding to y°
of network N, where
73=79° for all (i, /)€ E
y9,79 - total state of N after input change
which is also the initial state for the
GMW analysis of N, where
7%= a ,b
R, - GMW relation for N

The second part of the theorem can be stated more formally as: let N be any
network and let N be its delay-completion, both started in the standard initial
conditions. Let y*, 0<h <p—1 be the result of Algorithm A after h steps.
Then for each & there exist 72 € B*** and 7% ¢ B¢ such that

() G°%°)R2G™, ™),
(i) y}=% implies)7,-”': @jo)’ for 1<j<n+s,
(iii) y*=y; implies 5=y and 7= 70 for 1<j<n+s.
We proceed by induction on k. The reader may find it useful to follow the

construction in the proof of the theorem in parallel with the construction after
Fig. 4.11 for network N,; of Fig. 4.11.

Basis, h=0: One verifies that 5, 70 satisfies conditions (i)-(iii).

Induction step: Assume that 2, 7% has been constructed and consider y}'*l.
There are two cases.

(a) y}*'=1% and y!=7". In other words y; had the original binary value for
the first & steps and changed to % in step h+1. There must exist at least
one such j in every step h, 0O<Kh<p—1. Note that #+1>1 implies that y;

56 Carl-Johan Seger

must be a gate output since all the input node variables became % in step O.
Since y*!=g; (W) =%, and 7= g;(%") € B and by the definition of the
ternary extension of g;, there exists v{leB "™ such that gi(vh= (yj) and
"< w," Note also that w£< w," If vjj = Wu (at least one such case must
emst), then w,l % ie. y'= % By the induction hypothesm y2= 30 by
(ii). Also z, z,J = z,J because y] y, and (iii) applies. But Z, z,} v, and hence
the delay z; is unstable in step 24, i.e.
y2hs z,, for all i such that v; ;é w,j
Let 7%= 52 if v W, and 72" += z',, otherwise. Note that 77 +!= v}
and hence gate y; will become unstable in step 24 +1.

>

(b) If case (a) does not hold variable y; has not changed from step & to step
h+1. Let '71' +1_ 72" Note that now gate y; will be stable in step 2k +1.

Now define y2* 2" It follows that

G%, YR, G, 72+,
Next define y2*+2,72+2 a5 follows:

ij?}z+2= g (EJ?J;H) for all J ,
and

Z—Zh +2= z—?l: +1 .

The reader can now verify that y2*2, 52%2 satisfies (i)-(iii). Therefore the
induction step goes through and the theorem holds. O

Xt w

Figure 4.11. Network N 3.

To illustrate the construction in the proof of Theorem 3 consider network
N3 of Fig. 4.11. Let

a=0, a=1, b=10010.
Then y° = 010010 and u=%. Also let

Ternary Simulation of Asynchronous Gate Networks 57

Fp=71=10
f3= Z13,293= 01
Zy= 734, Z44= 00
Zg= 745=0
Zg= Z46,756= 01
Hence
¥°, 7%= 110010, 0 01 00 0 01

The construction described in the proof of Theorem 3 is shown below. Note that
all the gates of N are stable in 76, but there are some unstable delays. This fact
will be used in a later section.

Y=1%10010 3°:°= 110010, 001 000 01
y',#'= 110010,1 11 000 01
y'=%%%010 y2,7%= 101010, 111 000 01
¥,7*= 101010,11110001
¥=4%%%%10 y* 7%= 101110,11110001
¥,7°= 101110,111101 11
Y= %%k%%% y°:%= 101101,11110111

4.7. Algorithm B - definite nodes

Let N be any network started in the standard initial conditions. Let y? be
the result of Algorithm B. The indefinite nodes or indefinite gates of N are those
gates whose outputs are % in y? ; the other nodes will be called definite.

Assuming that there is at least one indefinite gate j (i.e. Algorithm B does
not yield a binary result) that gate must have at least one input w;; where y; is
also an indefinite gate (possibly with i=j). Otherwise all inputs to gate j would
be binary and its output could not be %. Since the network N is finite we must
have at least one cycle of indefinite nodes; such a cycle will be called indefinite.

Consider now N ; the indefinite gates of N are the same as those of N. Any
delay between two indefinite gates will be called indefinite. Eventually we want
to show that, if the result of Algorithm B contains at least one %, there exists a
nontransient cycle of length >2 (i.e. an oscillation) in the graph of the relation
R, for N such that all indefinite gates "take part” in that oscillation, i.e. each
gate variable will take on both values 0 and 1 in the cycle. Furthermore that
cycle is reachable from the initial state of N.

Theorem 4 Let N and N be started in the standard initial conditions and let ¥y
be the result of Algorithm B. There exists a state y,z of N reachable from the
initial state such that:

58 Carl-Johan Seger

(1) All definite gates have the same (binary) value in y as they do in y5.
Furthermore, they are all stable, as are all the delays in the wires leaving
definite nodes.

(2) There is at least one unstable wire delay in each indefinite cycle of N .

Proof: Let 3?2, ;%2 be the total state of N constructed in the proof of
Theorem 3. Let y,, p<h<p+qg-1 be the result of Algorithm B after h—p
steps. We first claim that there exist 72* € B"** and 72*e B? such that

@) G%7 227 R 6™,
(i) y* e B implies 3= y” for 1<j<n+s,
(iii) y?= % implies 7= 5?2 and 7= 7% for 1<j<n+s.

We proceed by induction on 2. The reader may find it useful to follow the

construction in the proof in parallel with the construction shown right after this

proof for network N,; of Fig. 4.11.

Basis, h=p: Let 7% =3%2 and 7% =72, Claims (i) and (i) follow

immediately. For (ii), i.e. y’e B, there are two cases.

(a) y?~' €B. But by Theorem 3, (iii) in proof, y 2” 2= ?-1 and from the
deﬁmtlon of Algorlthm B it follows that y! Pl B 1mphes that y/=y/™ and
hence 32 = y# 2=y}t = y2.

(b) yP~'=%. This implies that j 1s an 1nput node of N, and from Theorem 3,
(11) in proof, it follows that y; L ; (yj)'. But this is the new input
value assigned to y? by Algonthm B and hence yfp: y?.

Induction step: Assume that 32* 7% (h>p) has been constructed and consider
y/+1. There are two cases.

(a) y*=% and y*'cB. In other words y; was % for the first h—p steps in
Algorithm B and changed to a binary value in y**!. Note that &+1>p
implies that y; must be a gate output since all the mput node variables
became binary in . Let z, z =y fori =iy, - . This corresponds
to changing all unstable wire delays to gate j (1f any) Now 2"*‘1< w
because z,,”'“_ y', and by the induction hypothesis (iii) we have that 1f
y,eB 1then y'=yk Note that yt+'=g(wheB implies that
gj (E] +) h+1'

(b) I case (a) does not hold, variable y; has not changed from step . to step
h+1. Letz 2""1— z', . Note that now gate y; is stable in step 2i +1.

Now define y2*'= y?*. It follows that either
}721;’ z-?Jt =);2h+1, z—2h+1
or
%,) R, G2+, 7241),

In either case

Ternary Simulation of Asynchronous Gate Networks 59

(};?Jl, z~2h) R: ();2h+l, z—2h+1).
Next define y2*+2 72+2 a5 follows:
~2h+2_ g](z] +1) for auJ,

and
-2h +2= =2h +1

The reader can now verify that y**2, 7%#+2 satisfies (i)-(iii). Therefore the
induction step goes through and the clalm holds.

Now let

)-}'B —)-}'2(p+q-l)

and

2 32°+1-0) for all i such that i is a definite node

Z; - - .
LA z,-f(” -1 otherwise.

It follows trivially that all wire delays from definite nodes are stable in 32 2% | but
furthermore all definite gates are also stable in y?,7%. This is because (ii)
1mphes that zP< wP +9-1 and (by the definition of Algonthm B) it follows that
yP= yHo+a- Y yl’“‘1 g;(wP*971) for all definite gates. In other words,
y2, 2P is a total state reachable from the initial total state y 7% in the GMW
relation such that all definite gates are stable and have the binary value predicted
by the result of Algorithm B. Furthermore all wire delays from definite nodes are

also stable. This completes the proof of Part (1).

For Part (2), clearly it is sufficient to prove the claim for each simple
indefinite cycle, where a cycle is simple if it has no repeated nodes except for the
first and the last node in the cycle. Let C be an arbitrary simple indefinite cycle
inN. A gate j in C is said to be initiating iff no other gate in C becomes % in
Algorithm A before gate j. Clearly there must be at least one initiating gate in
each simple indefinite cycle. Let j be an initiating gate in C. Assume gate j
became % at step r of Algorithm A. Note that r>1 since an input node cannot
be indefinite. Now since node j is in C there must exist a predecessor to j in
the cycle, say node i. Note that i= j is permitted. Consider z;;. Since j is an
1n1t1at1ng §ate we have that y/ 1= 3¢ and hence according to Theorem 3, (iii) in
proof, 32 V= 52 and also z,2("1)_ Vi - Note that this 1mp11es that v,,‘l, as
defined in the proof of Theorem 3, satisfies v,J =30, i.e. the wire delay from
the predecessor to an initiating gate has the original "old" binary value when the
initiating gate changes.

After this, z; is never changed again to construct 7% (since j is an indefinite
gate). However we know that 3% 2= (%)’ (Theorem 3, (11) in proof) and by
the construction of 2, 72 that y y, y,2”‘2. It follows that 7°= (%)’ and 75= = 3D

and hence z',-’} is unstable. This completes the proof of part 2 u]

60 Carl-Johan Seger

The first part of the construction of Theorem 4 for network N5 is shown
below.

Y= 1s%%%% 3°,7° = 101101,111101 11
7,72 = 101101,111101 11
y=10%%%% 3°:%= 101101,111101 11
y1,71= 101101,110101 11
Y= 100%%% 32,7%= 100101,110101 11
To illustrate the construction of y2 , 7% for N3 we have
y2,#% = 100101, 11000 1 11.

Note that wire delay z44 is unstable. This will later be used to start an oscillation
in the indefinite subnetwork. Note also that all definite nodes have the same
values as in y2.

4.8. Algorithm B - indefinite gates
The main result of this section is captured in the following theorem.

Theorem 5 Let N be a network started in the standard initial conditions. Let
¥2,7% be a total state of N as defined at the end of Section 8. Then there is a
nontransient cycle in the GMW graph, reachable from y”,%, such that all

indefinite gates of N are oscillating.

To simplify the proof of Theorem 5, the following two definitions are useful.
Define a state y,Z of N to be consistent with y2 iff y <y?, and all the definite
nodes and all the delays leaving definite nodes are stable in N. Also, a state y ,
is loop-unstable iff there is at least one unstable wire delay in each simple
indefinite cycle of N .

We now proceed as follows. Starting with a total state (v, 2) we first exhibit
a sequence of total states of N

¢,0)=0%2, -, "),
where m is the number of indefinite gates, and in y*, exact k indefinite gate
outputs have complementary values to those in y and the other indefinite gate
nodes are the same as in y. For convenience, we will say that k¥ indefinite nodes
have been “marked” in this way. By repeating this process of marking (i.e.

complementing) all the indefinite gates we show the existence of an oscillation
involving all the indefinite nodes.

Lemma 2 Let N be a network started in the standard initial conditions and y? be
the result of Algorithm B. Let y,Z be any total state of N consistent with Yy
and loop-unstable. Assume that some, but not all, indefinite nodes of N are
marked. Assume also that every wire delay between a marked and an unmarked
indefinite node is unstable. Then there exists at least one unmarked indefinite
node j, such that all indefinite wire delays to j are unstable.

Ternary Simulation of Asynchronous Gate Networks 61

Proof: Consider the directed graph G’ = (V', E') where
V'CV, ieV’' iffiisanindefinite gate node and
E'={(i,j)eV'xV':(i,j) €eE and z; is stable}.
G ' can be obtained from the graph G by retaining only the indefinite gate nodes
and those indefinite edges that corresponds to stable indefinite delays. G’ has
two important properties:
(i) there is no edge from a marked node to an unmarked node, and
(ii) there is no cycle in G .

Both properties follow trivially from the construction of G' and the assumptions
in the Lemma.

Now consider a reverse path in G '. Start at some unmarked node & € V'’ and
traverse G’ backwards. From (ii) and the fact that G’ is finite it follows that a
reverse path in G’ started at node & must stop at some node, say j. By property
(i) it follows that j must be an unmarked node. Furthermore, since each
indefinite gate has at least one input wire from an indefinite gate, it follows that
all indefinite wire delays to j must be unstable; otherwise the reverse path could
not have stopped at j. Hence the Lemma holds. O

In the following Lemma we will show how instabilities can be "moved”. The
idea is that if all indefinite wire delays o a gate are unstable then it is possible in
the GMW relation to find a state reachable from the present state such that all
indefinite wire delays leaving the gate are unstable.

Lemma 3 Let N be a network started in the standard initial conditions. Let y, z
be a total state of N consistent with y* and loop-unstable. If all indefinite wire
delays to indefinite gate j are unstable, then there exists a total state <, 7€
reachable from y , 7, consistent with y? and loop-unstable, such that

(i) yf= (;)’, and

(ii) all indefinite wire delays leaving gate j are unstable.

b

Proof: Consider gate j. Two cases are possible.

a) Gate j isstableiny, z,i.e. y;= g;(Z;). Since j is an indefinite gate, after
Algorithm B for N, we have yf= g;(wFf) = %. Note that z; < w? by
construction of 3°,7%. By the definition of the ternary extension of &>

there must exist a v; € B/ such that g;(v;) # g;(7;), and v; <wP. If

vj # 7; then we must have w}=1%, i.e. y’=%, and hence z; is an
indefinite wire delay. We want to reach a state in which gate j is unstable.

We will do this, if we set the inputs of gate j to the vector v;. This can be

done because all the indefinite wire delays to j are assumed to be unstable.

Therefore, define

62 Carl-Johan Seger

)71' ifk=l,l=_] andv,l;éz-u

Zy otherwise

and

> =7

b) Gate j is unstable. Define y° = y and 72 = 7.
In either case we have that (v,) R, (7, z°) and gate j is unstable in y°, 7°

Now we will simultaneously change gate j and all indefinite delays leaving
gate j which are unstable. In this way all the indefinite delays leaving gate j will
become unstable after the change. Therefore define y¢ , 7€ as follows:

y7 ifk =j and gate ! is an indefinite gate

25 =
M 7§ otherwise
and
-c gj(z'jD) ifk=j
e =

¥P otherwise

Condition (i) follows from the fact that §¢ =8 (z'jD) = g;(v;) = (¥;)". Condition
(ii) follows from (i) and the fact that if k& is an indefinite gate then
#§ = y{ = ¥;. Hence the Lemma holds. O

Lemma 4 Let N be a network started in the standard initial conditions. Let y,z
be a total state of N which is consistent with y? and loop-unstable. Then there
exists a total state y,7, reachable from y,z, which is consistent with y?, loop-
unstable, and such that all indefinite gates in y and y have complementary
values.

Proof: We proceeds by induction on the number of indefinite nodes which have
been marked, i.e. complemented

Claim: There exists a state y*, 7, reachable from y,7, with £ nodes marked.
Furthermore, this state is consistent with y? loop-unstable and all indefinite wire
delays between marked nodes and unmarked nodes are unstable.

The basis, k=0, follows trivially. Suppose the claim holds for k, £>0. By
Lemma 2 it follows that there exists an unmarked indefinite node j, such that all
indefinite wire delays to j are unstable But Lemma 3 guarantees the existence
of a state y¥*1, 7¥+1 reachable from y*, 7% consistent with y? , loop-unstable and
with node j complemented. We now mark node j, and note that all indefinite
wire delays between marked nodes and unmarked nodes are still unstable.
Hence the induction step goes through and the lemma holds. O

Ternary Simulation of Asynchronous Gate Networks 63

Proof of Theorem 5: Since Lemma 4 can be applied any number of times and
there is only a finite number of possible total states there must exist a cycle in the
graph. Also by the construction of Lemma 4 it follows that each indefinite gate
in N will oscillate. Furthermore, since all definite gates are stable, all wire
delays from definite gates are stable, no wire delays to definite gates are changed
and all indefinite gates are oscillating it follows trivially that the cycle cannot be
transient. O

4.9. The conjecture
We are now in a position to prove Theorem 1.

Proof of Theorem 1: Let Y = {7 :¥,7 e out(R,,y°,7%)}. In Theorem 5 we
showed that y*< u¥. In[8] it was shown that any binary state of N in
out(R,, y°) is < the result of Algorithm B for N. But, by Theorem 2, this result
is consistent with that of Algoritbm B for N. Hence y¥?> u¥, and y2 =Y.
Also, the constructions in Theorems 3, 4, and 5 show the existence of a single
cycle Z such that y? = puZ. O

The following is a consequence of Theorem 1. Whenever a network N has a
critical race, the network N has an oscillation involving the gates that take part
in the race.

The characterization obtained in Theorem 1 does not quite apply to the
original conjecture which used a network N€¢, described below, instead of N.
The conjecture network N°¢ consists of the given network N to which delays have
been added in all the input lines and in all the fan-out connections. There are
two main differences between N° and N':

1) In case an input x; fans out to two or more gates, N° has one delay
associated with the input line x; and additional delays in each fan-out
connection from x;. The network N only has the fan-out delays.

2) In case the output of a gate i is connected to only one gate j (with i = j
possible), N has no delay in that connection, whereas in N delays are
inserted uniformly in all gate-input lines.

First we will show that the extra line delays of N° as described in 1) above
are not necessary. Let N = <G ,x,y,g> be any network. A node i €V is said
to be singular iff the outdegree of i is 1, i.e. the output of node i is only
connected to one gate node.

Lemma 5 Let N be any network, let N© be defined as above, and let N¢ be N°
after the removal of all input delays corresponding to input nodes which are not
singular. If N° and N are started in the appropriate standard initial conditions,
the outcomes of the GMW analyses of N and N¢ will be consistent with respect
to the nodes of N“.

Proof: Consider N¢ with only one extra delay z; added in input line x;. If x; does
not change, the behavior of the two networks is identical. If x; does change, the
variable z; is unstable and can change only once. It must change before the

64 Carl-Johan Seger

network reaches a nontransient cycle, but after that the network behaves like N¢.
The lemma now follows by induction on the number of delays added to N¢ to get
N¢. DO

From now on we consider the network N¢ rather than N°. Until now we
have not explicitly defined any output of network N. One possible interpretation
is that the output of every gate is an external output. In that case gates originally
considered singular in N have an extra connection and are no longer singular.
Thus delays will be present in all the lines leaving such gates, and hence all gate-
input lines will have delays as in N. Therefore, under this assumption N and N¢
coincide, and Theorem 1 constitutes a proof of the conjecture.

One could make a different interpretation, namely that only some of the
gate nodes are external output nodes. It is then reasonable to also assume that
the network has no "useless” gates, i.e. that in the graph G there is a path from
every gate node to some output node. This implies that there must be at least
one gate node with outdegree > 2 in every simple cycle of G. Now the only way
that N¢ differs from N is the fact that in N¢ a gate-input line from a singular
node does not have a delay. For example, refer to Ny of Fig. 4.10. The
corresponding network N§, assuming 4 is the only output node, would not have
delay 734. However, the proof of the conjecture in this form, is outside the scope
of the present thesis, and will be omitted.

Ternary Simulation of Asynchronous Gate Networks 65

Chapter V

Conclusions and Further Research

5.1. Introduction

In this chapter we first discuss some deficiencies of the ternary simulation
algorithm. Some of these are basic properties of the algorithm, and hence cannot
be corrected. An example of this type of problem, is the fact that one can only
detect the presence, but not the absence of possible timing problems with the
method. (This is discussed further below.) Others, like the problem of
characterization of the ternary algorithm applied to switch-level simulation of
MOS circuits, needs further research to be understood. In Section 5.2 we
examine these problems in some detail.

One problem with the Muller model is that output hazards are not
automatically detected. In Section 5.3 we outline one possible use of the ternary
simulation to detect static output hazards.

The most severe disadvantage with the ternary simulation is its pessimism.
In Section 5.4 we outline a new ternary algorithm to reduce this pessimism. We
provide a number of examples and compare the results obtained from the
algorithm with the results obtained from a binary Almost Equal Delay analysis.
From these examples, we state a conjecture concerning correspondence between
the ternary algorithm and the binary ‘“Almost Equal Delay” model. The
conjecture is that the ternary results “covers” the binary AED resuits.

Finally, in Section 5.5 we summarize the main results of the thesis and
discuss some additional open problems.

5.2. Criticism of the ternary simulation

The ternary simulation algorithm described and characterized in the previous
chapters has the obvious advantage of being linear in the number of gates in the
circuit. Hence, very large circuits can be efficiently analyzed. However, there
are some fundamental problems with the ternary simulation approach. The first
is that the method can only analyze a circuit for a given total state and transition.
In other words, the method can only show the presence, and not the absence of
possible timing problems. (Unless, of course, all possible total states and
transitions are simulated.)

The second problem is that the approach is not suited for hierarchical design
practices. The reason for this is that the algorithm does not detect output
hazards. Hence, the simulation can predict that two circuits function properly
for some total states and input changes. However, when the two circuits are
connected to each other, the combined circuit might contain a timing problem.
In Section 5.3 we will further discuss this problem and also suggest some partial

66 Carl-Johan Seger

solutions.

Another problem is due to the fact that the simulation can be very
“pessimistic”’. The reason for this is as follows. In Chapter IV, we showed that
the results of the ternary simulation correspond to a binary race analysis
according to the General Multiple Winner model under the assumption that both
gates and wires can have arbitrary but finite delays. The assumption of arbitrary
delays in wires and gates leads sometimes to overly pessimistic predictions.
Study for example the network N4 of Fig. 5.1.

x =
’7
Y1 Y2 Y3 Ya Ys
Figure 5.1. Network N4.
It is easy to verify that the total state x =1, y,, - - - ,y;=0101000 is stable.

The problem to analyze is what happens when x changes to 0?7 In Figs. 5.2 and
5.3 we show the ternary analysis and the binary analysis according to the GMW
model respectively. To simplify the binary race analysis, we include only one
wire delay z. The results will be the same if all possible delays are considered,
except that in that case the OR gate can also oscillate.

Algorithm | x y1 y2 y3 Y4 ¥s Y6 ¥1
A: % 0 1 0 1 0 0 0
A: » % 1 0 1 0 0 0
A: L, % % 0 1 0 0 0
A: b % % % 1 0 0 0
A: % % % % % 0 0 0
A: b % % Y% % % 0 0
A: L % % % % % %0
A: L % % % % % % Y
A: b % % % Y% Y% % Y%
B: 0 % % % % % % %
B: 0 1 % % % % 0 %
B: 0 1 0 % % % 0 %
B: 0 1 0 1 % % 0 %
B: 0 1 0 1 0 % 0 %
B: 0 1 0 1 0 1 0 %
B: 0 1 0 1 0 1 0 %

Figure 5.2. Ternary analysis of network N 4.

Ternary Simulation of Asynchronous Gate Networks 67

10101000

00107000 11101000

11001000

11011000

11010000

11070110

11010111

01010111

01010101
o

Figure 5.3. Race analysis of N4 according to the GMW model (z y¢, - - - ,y7).

If we study the GMW graph of Fig. 5.3 we can see that the outcome 1 on the
OR gate can happen only if the sum of the delays in the five inverters is smaller
than the delay in the wire z. Clearly, this is a very pessimistic prediction. In
almost all cases the delay in the inverter chain will be greater than the delay in
the wire and the circuit will end up reliably with a 0 on the OR gate.

Ternary simulation is useful in the following sense. Suppose that the
simulator indicates that a circuit behaves correctly and always ends up in a
binary state. In that case we have a guarantee that the realization of the network
will function properly, independently of any delays anywhere in the circuit. In
other cases the ternary simulation may be overly pessimistic, i.e. predicts possible
timing problems in cases when these problems are very unlikely. One may then
want to investigate these potential problems by other means. In Section 5.4 we
will describe a modified ternary simulation algorithm that tries to reduce this
pessimism.

The last problem with the ternary simulation we will discuss, is of a
somewhat different nature. With the arrival of switch-level simulators for MOS
VLSI circuits, it has become of great importance to detect timing problems on
this level. However, the characterization of the results of ternary simulation
given in Chapter IV is only for gate networks. As was mentioned earlier,
ternary simulation techniques have been used in switch-level simulators [1],
although the results are not completely understood. Lengauer and Naher [21]
assumed that each node in the circuit could be in three possible states, 0, 1, and

68 Carl-Johan Seger

X. They also assumed that all changes 0— 1 or 1— 0 could also always go
through this third state X, i.e. the changes could also be of the form 0 — X — 1
and 1— X — 0. Under these assumptions they proved the correspondence
between the results obtained form Bryant’s ternary simulation algorithm, and a
race analysis according to the GMW' model. The question remains, however,
how realistic the above assumptions are in real circuits. Furthermore, it is still
an open question whether these assumptions of a third state (and that all changes
go through it) are necessary.

5.3. Output hazards

The ternary simulation has the rather severe drawback of not being well
suited for hierarchical design practices. The main reason for this is that the
method does not address the problem with output hazards. Hence, even if a
circuit should behave correctly according to a ternary analysis, it is not certain
that the composition of two correctly behaving circuits will behave correctly.

As was mentioned in Chapter II (Section 5) one can detect output hazards
by studying the output gates during the binary race analysis. This is clearly not
feasible for even medium sized networks. The question arises whether the results
of ternary simulation can be used to detect output hazards? In the following we
will outline one possible use of the results from the ternary simulation for
detecting at least some of the output hazards. The basic observation is the
following.

Proposition 1. Let y.° denote the value of an output gate i before the change of
the input. Also, let y/* and y? denote the values of the gate after Algorithm A
and B respectively. If y,®=y? eB then there is an output hazard iff y{ = %.

Proof: Follows trivially from Theorem 3 and Theorem 4 of Chapter IV. D

Note that this only accounts for the static hazards. It is still an open
problem whether the ternary simulation can be modified to detect dynamic
output hazards. One possibility could be to specify the behavior of a circuit for
both binary and ternary input vectors, and also give the output behavior both
after Algorithm A and B. This is clearly a field well worth studying, but is far
beyond the scope of this thesis.

1 Note that this GMW analysis is not binary. For example, if a node with current value
0 is unstable, then it can change cither to 1 or to X..

Ternary Simulation of Asynchronous Gate Networks 69

5.4. Modified ternary simulation algorithm

The ternary simulation algorithm according to the Eichelberger-Brzozowski-
Yoeli version, called E-ternary for short, can be very pessimistic, as was shown
in Section 2. For binary race analysis, the Almost Equal Delay model was an
attempt to reduce the pessimism in the GMW and GSW models. This raises the
question if it is possible to find a ternary algorithm that gives results
corresponding to the binary AED model. We will outline such an algorithm, but
we will not be completely successful.

We begin by describing the algorithm by means of an example. We will
apply the method to the network N, of Fig. 3.1, starting in the total state x =0,
y = 100 and changing x to 1. The basic idea is to apply the E-ternary Algorithm
A one step, and then apply Algorithm B at once. However, for reasons to be
explained later, the method is slightly more complicated. The first step of the
algorithm is to determine which gates are unstable or unknown in the current
state. This is accomplished by calculating an intermediate total state t in the
following way. The unknown states (i.e. states that have the value %) remain
unknown. To determine which binary states might be unstable, the algorithm
compares the ternary excitation of the gate with the previous value of the gate.
If the ternary excitation is a %, or not equal to the original gate value, the
corresponding entry in t will get the value %. All the other gates keep their
previous values. In the case of state y=100 and x =1 we get the following.
There are no unknown gate values in y®=100. Furthermore,
Yi=x'=1=0%1=y], and hence, tl=1%. Similarly,
Yo=xyl=11=1%0=y) so t}=%. Finally, Y3=y7+yJ =0+0=0=y],
and hence t§ = 0. In summary, we get the intermediate total state t' =% % 0.

The next step in the algorithm is to determine which of these unknown or
possibly unstable states must stabilize during this race unit. This is accomplished
by recalculating the excitation for those states. However, for the recalculation of
gate j we use the gate values according to the intermediate state, except for the
value of the gate value j itself. For this, we use the original value. Furthermore,
the gates with binary values in t keep their original values. In our example we
must recalculate gate 1 and 2 (since they are the only ones with the value % in
t!). Wegetyl=x'=1'=0,and yJ=xt} =1%=%. Hence, gate 1 will get the
new value 0 whereas gate 2 will be unknown. In summary, we get y'=0%0. It
is interesting to compare this result with what the Almost Equal Delay model
predicts after one race unit. From Fig. 3.10 it is easy to see that the AED model
predicts that 000 and 010 are the possible states after one race unit. In other
words, y! = {000,010}, and it appears that the result of the ternary algorithm is
the p-average of the outcome of the binary race analysis according to the AED
model.

The above procedure is then repeated, either until the result stabilizes, or
some maximum number of times (arbitrarily chosen). In our example we get the
following calculations. Since y}=0, and ¥Y;=x'=0 we get t=0. Gate 2 is
unknown and hence tf=%. Finally, Y3=y}+yi=%+0=% and therefore

70 Carl-Johan Seger

t?=1%. Hence, we obtain =0%%. Gates 2 and 3 must be recalculated. We
get the following results: y?=0, y}=VY,=xt}=10=0, and
y3=Y3=t34y}=%4+0=1%. In summary, we obtain y>=00%. If we compare
this result with the AED result after two race units we can easily see that
¥? = {000,001}, and hence the two methods give the same result once again. It
is trivial to verify that the state y = 00% is stable in the ternary algorithm.

We now describe the method in more detail. We will use the same network
model as was described in Chapter III (Section 4). As in Chapter III (Section
3),astatey =a,c, aeB”, and ceB’, is said to be primary iff there exists aeB”
such that § = d, c is stable. Let y? be primary.

Algorithm 1
t=20;
2=y
repeat
Y=gz
z = next(y);
t=t+1;

until (z = y or t = max_time);

where next(y) is calculated as follows:

Sfunction next(yeT"*)eT"*,;

begin
tETn-H';
A: Jori=1ltron
) ti=Yy;;
Jor j=n+1 to n+s
ify; =% or gj(w;) =% then
t; =%;
else
t; = u(y;, g (w));
B: forj=1lton
next; =t;;
Jor j=n+1ton+ts
l:ftj =% then
next; = g;(v;);
else
next; = t;;
end,
Here v; is defined in a way similar to w;, i.e. v;=v; ;, =",V ;. However,
/]

for v;; we have for all (i,j) €E

Ternary Simulation of Asynchronous Gate Networks 71

Yj ifi=j
Vi =0y ifi g

In other words, v; is the vector of input variables to the gate j, using the values

of the intermediate total state t, except for the value of gate j itself, for which the
original value is used.

Part A of the function next calculates the intermediate total state t. This
state is such that each gate that was either % (i.e. unknown) or unstable in state
y will get the value %; all other nodes will keep their previous binary value. In
Part B, the ternary excitations for all the gates that became % in Part A are
reevaluated. For the gates that kept their binary value in part A, the binary
value is kept unaltered.

In the remaining part of this section we will study this method for a number
of examples. We will compare the results with the results obtained by an Almost
Equal Delay analysis. However, the AED analysis is slightly modified. We will
extend the AED model to include multiple winners, and we will only be
interested in stable states, and states reachable after some complete race units.

Our first example will be the NOR latch of Fig. 3.5. We start in the stable
state x = 1, y°= 00, and change x to 0. We get the following results:

=11y
Y=(1), t))=1%%

It is easy to verify that the state y=%% is stable in the ternary algorithm.
Compare now this result with the AED analysis shown in Fig. 5.4.

<00, {1,2>
<01, > <11,{1,2}> <10, o>

Figure 5.4. One race unit according to the (extended) AED model for NOR latch.

Note that y! = {01, 11, 10}, and the results from the two methods are equal. In
Fig. 5.5 we show the second race unit, starting in the three different starting
states 01, 11, and 10. We can see once again that y? = x{01, 00, 10} and hence
the methods seem to correspond.

In the following example we show that the extension of the AED model to
include multiple winners is necessary to obtain correspondence between the
ternary algorithm and the binary race analysis. Study network Nys of Fig. 5.6.
It is easy to verify that the total state x = 1, y = 000 is stable. Now change x to

72 Carl-Johan Seger

<01, o> <11, {1,2}> <10, >

<01, > <00,{1,2}> <10,p>

Figure 5.5. Second race unit according to the (extended) AED model for NOR latch.

Y1

—~

Y2

Figure 5.6. Network N is.

0; what will be the new state of the network? The ternary algorithm gives the
following results:

tl=%1%0
y' = ((0+83), (0+t])’,0)=%%0
C=1%1%1%

¥=(0+8), O+t)), {3) =% % %

It is easy to verify that this state is stable in the ternary algorithm. However, in
Fig. 5.7 we show a part of the graph for the AED relation. Note that after an
even number of race units (>2) the states 010, 100, and 011 are reachable (there
might be others too). Similarly, after an odd number of race units (>3) the
states 010, 100, and 111 are reachable (there might be others too). It is also
straightforward to see that only the states 100, 010, and 110 are reachable after
one race unit. Hence we can conclude for this example that the ternary
algorithm gives a result that corresponds exactly to the binary AED model. Note
that the AED model has to be extended to multiple winners, otherwise the
network would only end up in 010 or 100.

To simplify the graphs for the binary AED analysis, we will show only the
states reachable after some number of complete race units from now on, i.e.
there will be an arrow between state ¢ and state b iff b is reachable from a after
one complete race unit.

All the previous examples have indicated that the results of the ternary
algorithm and the binary AED model correspond to each other. However, the
following example shows that that is not always the case. Study the network N4

Ternary Simulation of Asynchronous Gate Networks 73
<000, {1,2}>

<010, 5> <110, {1,2,3> <100, o>

<001, {1,2,3>

<111, {1,2}>

Figure 5.7. Part of the AED graph for network Ns.
of Fig. 5.8.

_D > _\ Vs Ye6
x——Doﬂ—D,ﬁ ¥3 — Iﬁ\

Figure 5.8. Network N g.

We start in the stable total state x =0, y =111000, and change x to 1. The
ternary algorithm yields the following results:

tl= %%%%00
y'= 0%%%00
2= 0%%%%0
Y= 01%0%0
= 01%0%%
Y= 01000%

It is easy to verify that the last state is stable. In Fig. 5.9 we show the result
according to the binary AED model. Note that we use the simplified notation
described above. After one race unit we can reach the states 010000, 010100,
000000, 000100, 001000, and 001100. Note that the u-average of these vectors is
equal to y! obtained from the ternary algorithm. However, after the second race
unit we can only reach the states 011000 and 010000, but the ternary algorithm
gives ¥ =01%0% 0. Note that we do not have equality any more, but that the
ternary vector covers the p-average of the binary outcomes of the AED analysis.
Similarly, after 3 or more race units, the binary race analysis predicts that the
network will reliably end up in the state 010000, whereas the ternary predicts

74 Carl-Johan Seger

111000
010100 000060 000100 001000 001100
011000
0100000

Figure 5.9. Race analysis of N5 according to the AED model.

01000%.. Note again that the ternary result covers the binary. This leads to the
following conjecture:

Conjecture If y' is the result after i steps of the ternary algorithm described
above, then

¥ > u{ all states reachable after i complete race units according to the AED model}.

Qur final example is a commercially available integrated-circuit JK flip-flop
SN74H76 [34], shown in Fig. 5.10. It is easy to verify that the total state P =1,
C=1,J=1, K=1, ¢=1, and y; - - - yg= 10011110 is a stable state. The
transition we will study is when C changes to 0. In Fig. 5.11 we show the
ternary results beside the binary race analysis according to the AED model.
Note that for clarity some states are repeated in the binary race analysis. The
results of the two analyses correspond exactly.

BN I_DJSC——D&m

:) sz__D Y4 ,———___>° ysp_—jc ys

Figure 5.10. JK flip-flop SN74H76.

Ternary Simulation of Asynchionous Gate Networks 75

y’ = 10011110 10011110
t'= 1%%11110
y'= 11111110 11111110

2= 111%%%10

y2 = 11100%10 11100110 11100010
= 11100% 1% /

\ Yy
y3= 1110011% 11100110 11100111
t*= 11110011% /
y*= 11100110 11100110 01100110

= %110%110

\

]
y = 1110%110 11100110 11101110

%= 1110%110

\

y® = 11100110 11100110
O O
(a) (b)

Figure 5.11. Analysis of SN74H76: (a) ternary; (b) binary AED method.

76 Carl-Johan Seger

The usefulness of the ternary algorithm described above, can be argued.
First of all, the ternary algorithm is not guaranteed to halt. This can easily be
seen from an oscillating circuit, e.g. an inverter with its output connected to its
input. Furthermore, even if the conjecture above is true, the example of Fig. 5.8
shows that complete correspondence cannot be obtained. An even more serious
disadvantage, is that the corresponding binary method for analyzing races, the
Almost Equal Delay method, relies on some very severe assumptions that are
unlikely to hold in general. However, we hope that the above ternary algorithm
is just the first one in a class of modified ternary algorithms that reduce the
pessimism in the Eichelberger-Brzozowski-Yoeli algorithm, but can still be shown
to correspond to some reasonable binary race model.

5.5. Summary

The main result of this thesis is the complete characterization of the ternary
simulation. Some interesting corollaries follows from this characterization, e.g.
that no circuit in which wires and gates have delays can have a critical race
without also having the possibility of entering an oscillation. Another result is
the proposition about static output hazard detection, proved in Section 3.
However, as was shown in the previous sections, there are a number of problems
with the ternary simulation that sometimes makes it less useful. The problem of
finding a modified version of the ternary simulation algorithm, in which the
pessimism is reduced, remains unanswered, and deserves further study.

In the previous sections we have pointed out a number of open problems.
For example, detection of dynamic output hazards using ternary simulation,
adjusting the ternary simulation to hierarchical design practices, characterization
of the ternary simulation applied to switch-level models of MOS circuits, and the
conjecture about correspondence between the ternary algorithm described in
Section 4, and the binary Almost Equal Delay model, are all open problems.

We strongly believe that asynchronous design will become of much greater
importance than today, when very fast circuits are to be constructed. This will
be true in particular for VLSI circuits, where the delays in the “wires” on the
chip are relatively large, and hence the skew in the clock signals can become
significant. There are however a number of problems that have to be solved
first. Some of these problems are related to the analysis phase, but the much
harder ones concern the synthesis phase. Today’s design practice is based on the
Huffman model, but as was shown in Chapter II, the model is not always
accurate. One interesting possibility is to use a ternary approach in the synthesis
phase. Whether this is possible, remains an open question.

10.

11.

12.

13.

14.

References

Bryant, R. E., Race Detection in MOS Circuits by Ternary Simulation, pp.
85-95, in VLSI 83, F. Anceau and E. J. Aas eds., Elsevier Science
Publishers B.V., North Holland (1983).

Bryant, R. E., Toward a Proof of the Brzozowski-Yoeli Conjecture on
Ternary Simulation, Unpublished manuscript, (Dec. 1983).

Bryant, R. E., A Switch-Level Model and Simulator for MOS Digital
Systems, IEEE Transactions on Computers, Vol. C-33(2), pp. 160-177 (Feb.
1984).

Brzozowski, J. A., Some Problems in Relay Circuit Design, IEEE
Transactions on Electronic Computers, Vol. EC-14(4), pp. 630-634 (Aug.
1965).

Brzozowski, J. A. and Yoeli M., Models for Analysis of Races in Sequential
Networks, pp. 26-32 in Lecture Notes in Computer Science, A. Blikle ed.,
Springer Verlag (1975).

Brzozowski, J. A. and M. Yoeli, Digital Networks, Prentice-Hall, Englewood
Cliffs, New Jersey (1976).

Brzozowski, J. A. and M. Yoeli, Practical Approach to Asynchronous Gate
Networks, Proc. IEE, Vol. 123(6), pp. 495-498 (Jun. 1976).

Brzozowski, J. A. and M. Yoeli, On a Ternary Model of Gate Networks,
IEEE Transactions on Computers, Vol. C-28(3), pp. 178-183 (Mar. 1979).

Burks, A. W., Electronic Computing Circuits for the ENIAC, Proc. IRE,
Vol. 35, pp. 756-767 (1947).

Dill, D. L. and E. M. Clarke, Automatic Verification of Asynchronous
Circuits Using Temporal Logic, Proc. 1985 Chapel Hill Conference on VLSI,
pp- 127-143, Computer Science Press, (1985).

Eichelberger, E. B., Hazard Detection in Combinational and Sequential
Switching Circuits, IBM Journal of Research and Development, Vol. 9, pp.
90-99 (Mar. 1965).

Estrin, G., The Elecronic Computer at the Institute for Advanced Study,
Math. Tables and other Aids to Computation, Vol. 7, pp. 108-114 (1953).

Fantauzzi, G., An Algebraic Model for the Analysis of Logical Circuits,
IEEE Transactions on Computers, Vol. C-23(6), pp. 576-581 (Jun. 1974).

Friedman, A. D. and P. R. Menon, Theory and Design of Switching Circuits,
Computer Science Press Inc., Woodland Hills, California (1975).

78

15.

16.

17.

18.

19.

21.

22.

23.

24.

25.

27.

29.

Carl-Johan Seger

Friedman, A. D. and P. R. Menon, Synthesis of Asynchronous Sequential
Circuits with Multiple-Input Changes, IEEE Transactions on Computers, Vol.
C-17(6), pp. 559-566 (Jun. 1968).

Hackbart, R. R. and D. L. Dietmeyer, The Avoidance and Elimination of
Function Hazards in Asynchronous Sequential Circuits, IEEE Transactions on
Computers, Vol. C-20(2), pp. 184-189 (Feb. 1971).

Holt, D. and D. Hutchings, A MOSYLSI Oriented Logic Simulator, Proc.
18th Design Automation Conf., pp. 280-287 (Jun. 1981).

Huffman, D. A., The Synthesis of Sequential Switching Circuits, pp. 3-62 in
Sequential Machines: Selected Papers, E. F. Moore ed., Addison-Wesley,
Reading, Massachusetts (1964). First appeared in the J. Franklin Inst.,
257(34), (1954).

Jephson, J. S, R. P. McQuarrie, and R. E. Vogelsberg, A Three-Level
Design Verification System, IBM Systems Journal, Vol. 8(3), pp. 178-188
(Mar. 1969).

Langdon, G. G., Analysis of Asynchronous Circuits Under Different Delay
Assumptions, IEEE Transactions on Computers, Vol. C-17, pp. 1131-1143
(Dec. 1968).

Lengauer, T. and S. Naher, An Analysis of Ternary Simulation as a Tool
for Race-Detection in Digital MOS Circuits, VLSI: Algorithms and
Architectures, International Workshop, Amalfi, Italy, (1984).

Mano, M. M., Digital Design, Prentice-Hall, Englewood Cliffs, New Jersey
(1984).
Martin, A. J., The Design of a Self-Timed Circuit for Distributed Mutual

Exclusion, Proc. 1985 Chapel Hill Conference on VLSI, pp. 245-260,
Computer Science Press, (1985).

McCluskey, E. J. Jr., Transients in Combinational Logic Circuits, pp. 9-46
in Redundancy Techniques for Computing Systems, Wilcox, R. H. and W. C.
Mann eds., Spartan Books, Washington (1962).

Miller, R. E., Switching Theory, Wiley, New York (1965).

Molnar, C. E., T.-P. Fang, and F. U. Rosenberger, Synthesis of Delay-
Insensitive Modules, Proc. 1985 Chapel Hill Conference on VLSI, pp. 67-86,
Computer Science Press, (1985).

Montgomerie, G. A., Sketch for an algebra of relay and contact circuits,
Proc. IEE, Vol. 95, pp. 303-312 (1948).

. Muller, D. E., Lecture Notes on Asynchronous Circuit Theory, Digital

Computer Laboratory, University of Illinois, (Spring 1961).

Muller, D. E., Treatment of Transition Signals in Electronic Switching
Circuits by Algebraic Methods, IRE Transactions on Electronic Computers,
Vol. EC-8 p. 401 (Sep. 1959).

31.

32.

33.

35.

36.

37.

Ternary Simulation of Asynchronous Gate Networks 79

Muller, D. E., The General Synthesis Problem for Asynchronous Digital
Networks, Eighth Annual Symposium on Switching and Automata Theory, pp.
71-82 (Oct. 1967).

Ralston, A. and E. D. Reilly, Jr., Encyclopedia of Computer Science and
Engineering, Second Edition, Van Nostrand Reinhold Company, New York
(1983).

Seitz, C. L., System Timing, pp. 218-262 in Introduction to VLSI Systems,
Mead, C. A., and L. A. Conway, Addison-Wesley Publishing Company,
Reading, Massachusetts (1980).

Sherwood, W., A MOS Modelling Technique for 4-State True-Value
Hierarchical Simulation, Proc. 18th Design Automation Conf., pp. 775-785
(Jun. 1981).

Texas Instruments Staff, The TTL Data Book for Design Engineers, Texas
Instruments Inc. (1973).

Unger, S. H., Hazards and Delays in Asynchronous Sequential Switching
Circuits, IRE Transactions on Circuit Theory, Vol. CT-6, pp. 12-25 (Mar.
1959).

Unger, S. T., Asynchronous Sequential Switching Circuits, Wiley-Interscience,
New York (1969).

Yoeli, M. and S. Rinon, Application of Ternary Algebra to the Study of
Static Hazards, Journal of the Association for Computing Machinery, Vol.
11(1), pp. 84-97 (Jan. 1964).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

