BEPARHMENT

DEPARTMENT
DEPARTMENT

S

ER
ER

|
Ul
Ut

T

A
OMP

33

WATERL
F WATERL

gF

S
ry

I

IVERSITY OF WATERLOO C

IVER
IVER

Updating Derived Relations:
Detecting Irrelevant

and Autonomously
Computable Updates

Josée A. Blakeley
]\éeil Coburn
Per-Ake Larson

CS-86-17

May, 1986

Updating Derived Relations: Detecting
Irrelevant and Autonomously Computable Updates*

José A. Blakeley, Neil Coburn, and Per-Ake Larson!

Data Structuring Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT

Consider a database containing not only base relations but also
stored derived relations (also called materialized or concrete views).
When a base relation is updated, it may also be necessary to update
some of the derived relations. This paper gives sufficient and
necessary conditions for detecting when an update of a base relation
cannot affect a derived relation (an irrelevant update), and for
detecting when a derived relation can be correctly updated using no
data other than the derived relation itself and the given update
operation (an autonomously computable update). The class of
derived relations considered is restricted to those defined by PSJ -
expressions, that is, any relational algebra expression constructed
from an arbitrary number of project, select and join operations.
The class of update operations consists of insertions, deletions, and
modifications, where the set of tuples to be deleted or modified is
specified by a PSJ -expression.

1. Introduction

In a relational database system, the database may contain derived relations in
addition to base relations. A derived relation is defined by a relational expres-
sion (query) over the base relations. A derived relation may be virtual, which
corresponds to the traditional concept of a view, or materialized, meaning that the
relation resulting from evaluating the expression over the current database
instance is actually stored. In the sequel all derived relations are assumed to be
materialized, unless stated otherwise. As base relations are modified by update
operations, the derived relations may also have to be changed. A derived rela-
tion can always be brought up-to-date by re-evaluating the relational expression
defining it, provided that the necessary base relations are available. However,
doing so after every update operation appears extremely wasteful and would
probably be unacceptable, both from a performance and a cost point of view.

* This research was supported by Cognos, Inc., Ottawa under contract WRI 502-12, by
NSERC under grant No. A-2460, and by CONACYT scholarship No. 35957.
t Electronic mail: {jablakeley,ncoburn,palarson}@waterloo.csnet.

2 Blakeley,Coburn and Larson

Consider a database D= {D, S} consisting of a set of base relations
D = {R,R,,...,R, } and a set of derived relations § = {E{,E,,....,E, }, where
each E; €S is a relational algebra expression over some subset of D . Suppose
that an update operation U is posed against the database D specifying an
update of base relation R, € D. To keep the derived relations consistent with
the base relations, those derived relations whose definition involves R, may have
to be updated as well. The general update problem for derived relations consists
of: (1) determining which derived relations may be affected by the update U,
and (2) performing the necessary updates to the affected derived relations effi-
ciently.

As a first step towards the solution of this problem, we consider the follow-
ing two important subproblems. Given an update operation U and a potentially
affected derived relation E; ,

® determine the conditions under which the update U has no effect on the
derived relation E;, regardless of the database instance. In this case, the
update U is said to be irrelevant to E;

e if the update U is not irrelevant to E; , then determine the conditions under
which E; can be correctly updated using only U and the current instance of
E; , for every instance of the database. That is, no additional data from the
base relations D is required. In this case, U is said to be autonomously com-
putable over E; .

The update problem for derived relations is part of an ongoing project at the
University of Waterloo on the use of derived relations. The project is investigat-
ing a new approach to structuring the database in a relational system at the inter-
nal level [A 75]. In current systems there is a one-to-one correspondence
between conceptual relations and stored relations, that is, each conceptual rela-
tion exists as a separate stored relation (file). This is a simple and straightfor-
ward solution, but its drawback is that the processing of a query often requires
data to be collected from several stored relations. Instead of directly storing each
conceptual relation, we propose structuring the stored database as a set of derived
relations. The choice of relations should be guided by the actual or anticipated
query load so that frequently occurring queries can be processed rapidly. To
speed up query processing, some data may be redundantly stored in several
derived relations.

The structure of the stored database should be completely transparent at the
user level. This requires a system capable of automatically transforming any user
update against a conceptual relation, into equivalent updates against all stored
relations affected. The same type of transformation is necessary to process user
queries. That is, any query posed against the conceptual relations must be
transformed into an equivalent query against the stored relations. The query
transformation problem has been addressed in a paper by Larson and Yang [LY
85].

Although our main motivation for studying the problem stems from the
above project, its solution also has applications in other areas of relational data-
bases. Buneman and Clemons [BC 79] proposed using views (that is, virtual
derived relations) for the support of alerters. An alerter monitors the database
and reports when a certain state (defined by the view associated with the alerter)

Updating Derived Relations 3

has been reached. Hammer and Sarin [HS 78] proposed a method for detecting
violations of integrity constraints. Certain types of integrity constraints can be
seen as defining a view. If we can show that an update operation has no effect
on the view associated with an alerter or integrity constraint, then the update
cannot possibly trigger the alerter or result in a database instance violating the
integrity constraint. The use of derived relations (called concrete views) for the
support of real-time queries was suggested by Gardarin et. al. [GSV 84], but it
was rejected because of the lack of an efficient update mechanism. Our resuits
have direct application in this area.

The detection of irrelevant or autonomously computable updates also has
applications in distributed databases. Suppose that a derived relation is stored at
some site and that an update request, possible affecting the derived relation, is
submitted at the same site. If the update is autonomously computable, then the
derived relation can be correctly updated locally without requiring data from
remote sites. On the other hand, if the request is submitted at a remote site,
then we need to send only the update request itself to the site of the derived rela-
tion. As well, the results presented here provide a starting point for devising a
general mechanism for database snapshot refresh [AL 80, BLT 86, L 86].

2. Notation and Basic Assumptions

We assume that the reader is familiar with the basic ideas of relational databases
as in Maier [M 83]. A derived relation is a relation instance resulting from the
evaluation of a relational algebra expression over a database instance. We con-
sider a restricted but important class of derived relations, namely those defined
by a relational algebra expression constructed from any combination of project,
select and join operations, called a PSJ -expression. We often identify a derived
relation with its defining expression even though, strictly speaking, the derived
relation is the result of evaluating that expression.

We state the following without proof: every valid PSJ -expression can be
transformed into an equivalent expression in a standard form consisting of a
Cartesian product, followed by a selection, followed by a projection. It is easy to
see this by considering the query tree corresponding to a PSJ -expression. The
standard form is obtained by first pushing all projections to the root of the tree
and thereafter all selection and join conditions. From this it follows that any
PSJ -expression can be written in the form E = mpoc (r,-l X1, X X r,-k),
where R; R; ,...R; are relation schemes, C is a selection condition, and

A={A,Ay ..., A} are the attributes of the projection. We can therefore
represent any PSJ-expression by a triple E = (A, R,C), where
A={A,Ay ..., A} is called the arribute set, R={R; ,R; , ..., R;} is the
relation set or base, and C is a selection condition composed from the conditions
of all the select and join operations of the relational algebra expression defining
E . The attributes in A will often be referred to as the visible attributes of the
derived relation. For simplicity, we assume that each relation of R occurs only
once in the relational algebra form of the PSJ -expression, that is, we do not
allow self-joins. We also use the notation:

4 Blakeley,Coburn and Larson

o(C) The set of all attributes appearing in condition C
a(R) The set of all attributes of relation R
V(E) The relation resulting from evaluating the relational

expression E over the instance d of D

The update operations considered are insertions, deletions, and modifica-
tions. Each update operation affects only one (conceptual) relation. The follow-
ing notation will be used for update operations:

INSERT (R, ,T) Insert into relation R, the set of tuples T

DELETE (R,, Ry, Cp) Delete from relation R, all tuples satisfying con-
dition Cp, where Cp is a selection condition
over the relations R, , R, C D

MODIFY (R, , Ry, Cyp , Fyy) Modify all tuples in R, that satisfy the condition
Cy , Where Cy, is a selection condition over the
relations Ry, , Ry C D . F,, is a set of expres-
sions, each expression specifying how an attri-
bute of R, is to be modified

A DELETE or MODIFY operation must specify the set of tuples from R,

to be updated. Selecting the set of tuples to be deleted from or modified in R,

can be seen as a query to the database. In the same way as derived relations,

these “selection queries” are restricted to those defined by PSJ -expressions. For
the operation DELETE (R, , Ry , Cp), the set of tuples to be deleted from R, is
selected by the PSJ-expression Ep = (a(R,), Rp, Cp). Similarly, for the

operation MODIFY (R, , Ry , Cy , Fy), the set of tuples to be modified in R,

is selected by the PSJ -expression Ey; = (a(R,), Ry, Cy).

F,, is assumed to contain an update expression for each attribute in R, . We
restrict the update expressions in Fy, to unconditional functions that can be com-
puted “tuple-wise”. Unconditional means that the expression does not include
any further conditions (all conditions are in Cy;). Tuple-wise means that, for
any tuple in R, selected for modification, the value of the expression can be
computed from the values of the attributes of that tuple alone. The type of
expressions we have in mind are simple, for example, H = H + 5,1 = 5.
Further details are given in section 4.3. We make the assumption that all the
attributes involved in the update expressions are from relation R, . That is, both
the attributes modified and the attributes from which the new values are com-
puted, are from relation R,. If the attributes from which the new values are
computed, are from a relation R, , R, # R, , then it is unclear which tuple in R,
should be used to compute the new values.

All attribute names in the base relations are taken to be unique. We also
assume that all attributes have discrete and finite domains. Any such domain
can be mapped onto an interval of integers, and therefore we will in the sequel
treat all attributes as being defined over some interval of integers. For Boolean
expressions, the logical connectives will be denoted by “v”” for OR, juxtaposition
or “A” for AND, “=" for NOT, “="" for implication, and ‘" for equivalence.
To indicate that all variables of a condition C , are universally quantified, we
write V C ; similarly for existential quantification. If we need to explicitly iden-
tify which variables are quantified, we write Vy(C) where X is a set of

Updating Derived Relations 5

variables.

An evaluation of a condition is obtained by replacing all the variable names
(attribute names) by values from the appropriate domains. The result is either
true or false. A partial evaluation (or substitution) of a condition is obtained by
replacing some of its variables by values from the appropriate domains. Let C
be a condition and ¢ a tuple over some set of attributes. The partial evaluation
of C with respect to ¢ is denoted by C [¢]. The result is a new condition with
fewer variables.

3. Basic Concepts

Detecting whether an update operation is irrelevant or autonomously computable
involves testing whether or not certain Boolean expressions are valid, or
equivalently, whether or not certain Boolean expressions are unsatisfiable.

Definition: Let C (x{,x,,...,x,) be a Boolean expression over variables
X1,X25eeesXs . C isvalid if Vx{,x4,....%, C (x1,%2,...,%,) is true , and C is unsa-
tisfiable if A x1,x4,...,%, C (x1,X3,...,X,) is true , where each variable x; ranges
over its associated domain. O

A Boolean expression is valid if it always evaluates to true, unsatisfiable if it
never evaluates to true, and satisfiable if it evaluates to true for some values of its
variables. Proving the validity of a Boolean expression is equivalent to disprov-
ing the satisfiability of its complement. Proving the satisfiability of Boolean
expressions is, in general, NP -complete. However, for a restricted class of
Boolean expressions, polynomial algorithms exist. Rosenkrantz and Hunt [RH
80] developed such an algorithm for conjunctive Boolean expressions. Each
expression B must be of the form: B = BjAB,A - - - AB,, where each B; is an
atomic condition. An atomic condition must be of the form x op y4+c or
x op ¢, where op €{=,<,<,>,>},x and y are variables, and ¢ is a (posi-
tive or negative) constant. Each variable is assumed to range over the integers.
The algorithm runs in O (n3) time where n is the number of distinct variables in
B.

In this paper, we are interested in the case when each variable ranges over a
finite interval of integers. For this case, Larson and Yang [LY 85] developed an
algorithm whose running time is O (n2). However, it does not handle expres-
sions of the form x op y +c where ¢ # 0. We have developed a modified ver-
sion of the algorithm by Rosenkrantz and Hunt for the case when each variable
ranges over a finite interval of integers. The full details of the modified algo-
rithm are given in the Appendix.

An expression not in conjunctive forrm can be handled by first converting it
into disjunctive normal form and then testing each conjunct separately. Several
of the theorems in sections 4 and 5 will require testing the validity of expressions
of the form C,; = C,. The implication can be eliminated by converting to the
form (- Cy) v C,. Similarly, expressions of the form C; & C, can be con-
vertedto C, C, v (=C 1)(—1(:2).

The concepts covered by the three definitions below were introduced in Lar-
son and Yang [LY 85]. As they will be needed in sections 4 and 5 of this paper,
we include them here for completeness.

6 Blakeley,Coburn and Larson

Definition: Let C be a Boolean expression over the variables x,x,,...,.x, . The
variable x; is said to be nonessential in C if
VX yenesXigoersdy X' (C (Xp5enesXiyerisky) = C (X150 X, 0x,). Otherwise, x; is
essential in C . O

A nonessential variable can be eliminated from the condition simply by
replacing it with any value from its domain. This will in no way change the
value of the condition. For example, the variable H is nonessential in the fol-
lowing two conditions: (1) (I >S5 =I1)((H >5)v (H <10)), and (2)
(I >5)(H >5)(H <5).
Definition: Iet Cy, and C; be Boolean expressions over the wvariables
X1,X2,...,%, . The variable x; is said to be computationally nonessential in C § with
respect to C ¢ if

L2 TTSSNG "JORE A [o3 € TSNS "RRUONE S5 T € ST "LRONE 45
= (Cﬁ(xl"--rxi ’--',xn) = CO(xl"'-rxi"--"xn))] .
Otherwise, x; is computationally essential in Cy. O

If a variable x; (or a subset of the variables x,x,,...,x,) is computationally
nonessential in €y with respect to C ;, we can correctly evaluate the condition C
without knowing the exact value of x;. That is, given any tuple

= (X 1,X2,-.. 7% _1,%; 415---5%,) Where the full tuple (including x;) is known to
satisfy C 1, we can correctly determine whether or not ¢ satisfies C¢. This can be
done by determining a surrogate value for x; as explained in Larson and Yang
[LY 85].

Example: 1et Cy=(H >5)and Co=(H >0 = 5@ > 10). It is easy to
see that if we are given a tuple (i , j) for which it is known that the full tuple
(h, i, j) satisfies Cy, then we can correctly evaluate Cy. If (2, i, j) satisfies
C then the value of 2 must be greater than 5, and consequently it also satisfies
(H > 0). Hence, we can correctly evaluate C ¢ for the tuple (i , j) by assigning
to H any surrogate value greater than 5. O

Definition: Let C be a Boolean expression over the variables
X 1,X 25000 Xp ¥ 15V 25++5Ym - 1he variable y; is said to be uniquely determined by C
and x4,...,x, if

vxl;-"’xn Y 1se0+5Ym ’yll ,-'-,ym’
[C (xl"";xn Y 15+++Ym)C (xl’--'rxn ,)’1' ’"')ym,) =Y = yil]' a

If a variable y; (or a subset of the variables y;,y,,...,y,) is uniquely deter-
mined by a condition C and the variables xi,...,x,, then given any tuple
t = (xq,...,X,), such that the full tuple (x,....%; ,¥ 1,...,¥m) 1S known to satisfy
C , the missing value of the variable y; can be correctly reconstructed. How to
reconstruct the values of uniquely determined variables was also shown in Larson
and Yang [LY 85]. If the variable y; is not uniquely determined, then we can-
not guarantee that its value is reconstructible for every tuple. However, it may
still be reconstructible for some tuples.

Updating Derived Relations 7

Example: LetC = (I = H)H > T7T)(K =5). Itis easy to prove that / and K
are uniquely determined by H and the condition C . Suppose that we are given
a tuple that satisfies C but only the value of H is known. Assume that H = 10.
Then we can immediately determine that the values of / and X must be 10 and
5, respectively. O

Definition: Let E = (A, R, C) be a derived relation and let B be the set of all
attributes uniquely determined by the attributes in A and the condition C . Then
AT=AUB is called the extended attribute set of E .

Note that A* is the maximal set of attributes for which values can be recon-
structed for every tuple of E .

4. Detecting Irrelevant Updates

This section considers irrelevant updates. We deal with insertions, then dele-
tions, and finally the most difficult case, modifications. First we define what it
means for an update to be irrelevant.

Definition: Let d denote an instance of the base relations D and d’ the resulting
instance after applying the update operation U to d. Let E be a derived rela-
tion. The update operation U is irrelevant to E if V(E ,d") = V(E , d) for all
instances d and d'. D

If the update operation U does not modify any of the relations over which
E is defined then, obviously, U cannot have any effect on the derived relation.
In this case U is said to be trivially irrelevant to E .

4.1. Irrelevant Insertions

An insert operation INSERT(R, , T) is irrelevant to a derived relation if none of
the new tuples will be visible in the derived relation. Note that this should hold
regardless of the state of the database. The following theorem was proven in
[BLT 86] and is included here for completeness only.

Theorem 1: The operation INSERT(R, , T) is irrelevant to the derived relation
E =(A,R,C),R, €R, if and only if C[t] is unsatisfiable for every tuple
t €T.

Proof: (Sufficiency) Consider an arbitrary tuple + €T . If C[r] is unsatisfiable,
then for every assignment of values to the free variables in C [t], it will evaluate
to false . Therefore, there cannot exist any tuple defined over the Cartesian
product of the relations in R—{R, } that would combine with ¢ to satisfy C and
hence cause an insertion into E .

(Necessity) Consider an arbitrary tuple 1 € T and assume that C [z] is satis-
fiable but that the INSERT operation is irrelevant to E . Without loss of general-
ity we may assume that o(C)—o(C [t]) contains a single variable. Since C [z] is
satisfiable there exists some value, x , for the variable in o(C)—a(C [t]) for
which C [r] evaluates to rrue . We can construct a database instance d , using
the value x , such that the insertion of ¢ into R, will cause a tuple to be inserted
into the derived relation E .

8 Blakeley,Coburn and Larson

To construct d we form, for each relation R; in R—{R,} an instance, r;,
containing a single tuple. The values for r; are determined as follows: if an attri-
bute of r; is the attribute in o(C)—a(C [t]) then it is assigned the value x ; oth-
erwise it is assigned an arbitrary value, say, the smallest in its domain.

The database instance d consists of the empty relation R, and the set of
instances of the relations R—{R, } each of which contains a single tuple. Hence,
V(E ,d) = ¢g. However, if we obtain d' from d by inserting tuple ¢ into rela-
tion R, , then V (E ,d’) will contain one tuple. Therefore, the INSERT operation
is not irrelevant to the derived relation E. O

4.2. Irrelevant Deletions

A delete operation is irrelevant to a derived relation if none of the tuples in the
derived relation will be deleted. We have the following theorem.

Theorem 2: The operation‘ DELETE(R, , Ry, Cp) is irrelevant to the derived
relation E = (A, R, C), R, €R, if and only if the condition Cp AC is unsatisfi-
able.

Proof: LetB=RURp = {R; R, ,...R,}. B is called the combined base of the
derived relation and the delete operation. We first show that we can extend the
base of both E and the delete query Ep = (a(R,), Rp , Cp) to B without affect-
ing their result in any way. Without loss of generality, we can assume that
Rp —R={R; } sothat R= {R; R; ,....R;}. Let ¢ be a tuple in the Cartesian
product r; X r; X - X (the base before adding R; ‘). If ¢ satisfies C,
then ¢ [A] (the projection of ¢ onto A) will be visible in the derived relation, oth-
erwise it will not. Extending the base to; X r;, X - - - X r;, may give rise to
a number of “copies” of ¢ in the extended base. The copies differ only in the
attributes of R; - Since

k
*(C) € Uot®,)

then o(R;) N «(C) = J. Hence, if ¢ satisfies C, then all its copies will satisfy
C . Similarly, if + does not satisfy C, then none of its copies will satisfy C
either. The projection onto A will finally reduce all copies of ¢ to a single tuple,
exactly 7 [A]. This proves that extending the base of E does not change the
resulting derived relation. In the same way, we can show that extending the base
of the DELETE operation has no effect. We now complete the proof of the
theorem.

(Sufficiency) Let ¢ be a tuple over the combined base B and assume that ¢
satisfies C . Then ¢ [A] is visible in the derived relation. If Cp AC is unsatisfi-
able, then ¢ cannot at the same time satisfy C,, . Hence ¢ [A] will not be deleted
from the derived relation.

(Necessity) Assume that Cp, AC is satisfiable. We can then construct an
instance of each relation in B such that deleting a tuple from r, , (R, €B), will
indeed change the derived relation. Let a(C)U a(Cp) = {x1,X2,....5 }.
Because Cp AC is satisfiable, there exists a value combination
X0 = <xP xP,...x% such that C [X°|Cp [X?] is true. We now construct one

Updating Derived Relations 9

tuple 4 for each relation R € B. The attribute values of 1, are assigned as fol-

lows: if the attribute occurs in a(C)u a(Cp), a551gn it the correspondlng value
from X©, otherwise assign it an arbitrary value in its domain, the minimum
value, for example. We now have a database instance where each relation, as
well as the Cartesian product r; X r; X - - Xr;, contains one tuple. The
tuple in the Cartesian product obviously satisfies C and hence the derived rela-
tion also contains one tuple. It also satisfies C;, and hence the relation r, , will
be empty after the deletion operation has been performed. Therefore, evaluating
E over the new instance of the database will result in the empty set. This proves
that the stated condition is necessary. O

Example: Consider two relations R{(H ,1,J),R»(K,L) and the following
derived relation and delete operation:

E = ({H »L}, {Ry, RZ}’(J = K)(K > 10)(1 = 5))> and

DELETE (R, {R1}, (J <5)(I < 10)).

To show that the deletion is irrelevant to the derived relation we must prove that
the following condition holds:

VI,J,K =[(J =K)K >10)(I =5)J <5)I <10)]. This is equivalent
to proving that A I,J,K[(J = K)K > 10)(I = S)(J <5)(I < 10)], which
can be simplifiedto A I,J,K[(J = K){I = 5K > 10)(K < 5)]. The condi-
tion (K > 10)(K < 5) can never be satisfied and therefore the delete operation
is irrelevant to the derived relation. O

Corollary 2.1: If C and C, are independently satisfiable and
a(Cp) N a(C) = @&, then Cp A C is satisfiable and, therefore, the DELETE
operation is not irrelevant to the derived relation £. O

4.3. Irrelevant Modifications

Modifications are somewhat more complicated than insertions or deletions. Con-
sider a tuple that is to be modified. It will not affect the derived relation if one
of the following conditions applies:

® it does not qualify for the derived relation, neither before nor after the
modification
® it does qualify for the derived relation both before and after the modification

and, furthermore, all the attributes visible in the derived relation remain
unchanged

Some additional notation is needed at this point. Consider a modify opera-
tion MODIFY (R, , Ry, , Cuy , Fy) and a derived relation E = (A, R, C). Let
a(R,) = {B1,B,...,B;}. For simplicity we will associate an update expression
with every attribute in R, , that is, Fyy = {f5.f,,.-..f 5,} Where each update

expression is of the form f B, = (B; = <arithmetic expression>). If an attri-

bute B; is not to be modified, we associate with it a trivial update expression of
the form f B, = (B; := B;). If the attribute is assigned a fixed value ¢ , then the

corresponding update expression is fp = (B; := c¢). The notation p(f) will
be used to denote the right hand side of the update expression fp , that is, the
expression after the assignment sign. The notation a(p(f B, }) denotes the vari-

10 Blakeley,Coburn and Larson

ables mentioned in p(f s)- For example, if fp =(B; :==B; + c) then
p(f5,) = B; +c and a(p(f3)) = {B;}.
By substituting every occurrence of an attribute B; in C by p(f p,) 2 new

condition is obtained. We will use the notation C (F,,) to denote the condition
obtained by performing this substitution for every variable B; € o(R,) N a(C).

A modification may result in a value outside the domain of the modified
attribute. We make the assumption that such an update will not be performed,
that is, the entire tuple will remain unchanged. Each attribute B; of R, must
satisfy a condition of the form (B; < UB'_)(B,- > Lp) where Ly and Uy, are the
lower and upper bound, respectively, of its domain. Hence, the updated value of
B; must satisfy the condition (p(f5,) < Us,) (»p(f5,) > Lp,) and this must hold

for every B; € a(R,). The conjunction of all these conditions will be denoted by
CB (FM), that iS,

Cp(Fy) = 5 e/}(RM)(I’ (f5,) <Up,)p(f3,) > Lg)
Theorem 3: The modify operation MODIFY (R, , Ry, , Cy , Fy) is irrelevant to
the derived relation E = (A, R, C), R, €R, if and only if

V[(Cu A Cg(Fun))
= ((-CIA(=C(Fy))) Vv (CAC (Fy) B/\GI(Bi = p(f5)))]

whereI = AN o(R,) .

Proof: (Sufficiency) In the same way as in the proof of Theorem 2, let
B = RU R,, be the combined base. Consider a tuple z from the combined base
B such that ¢ satisfies C}, and the corresponding modified tuple, denoted by ¢/,
satisfies Cy (Fyy). Because the above condition holds for every tuple, it must
also hold for . Hence, either the first or the second conjunct of the consequent
must evaluate to frue. They cannot both be rrue simultaneously.

If the first conjunct is true, both C [¢] and C [¢'] must be false. This means
that neither the original tuple ¢ , nor the modified tuple ¢/, will contribute to the
derived relation. Hence changing ¢ to ¢’ will not affect the derived relation.

If the second conjunct is true, both C [z] and C [¢'] must be frue. In other
words, the tuple ¢ contributed to the derived relation and after being modified to
¢!, it still remains in the derived relation. The last part of the conjunct must also
be satisfied, which ensures that all attributes of R, visible in the derived relation
have the same values in ¢ and ¢'. Hence the derived relation will not be
affected.

(Necessity) Assume that the above condition does not hold. That means
that there exists at least one assignment of values to the attributes, that is, a tuple
¢t such that the antecedent is frue but the consequent is false. Denote the
corresponding modified tuple by ¢'. There are three cases to consider.

Case 1: C [t] = true and C [¢'] = false. In the same way as in the proof of
Theorem 2, we can from ¢ construct an instance d where each rela-
tion in B contains a single tuple and where the derived relation

Case 2:

Updating Derived Relations 11

contains exactly one tuple as well. For this instance, the modifica-
tion operation will produce a new instance d' where the only change
is to the (single) tuple of relation R, . The Cartesian product of the
relations in B then contains exactly one tuple, which agrees with ¢/
on the corresponding attributes. Hence, the derived relation
V(E ,d") will be empty since C [t'] = false . This proves that the
update operation is not irrelevant to the derived relation.

C [t] = false and C [t'] = true. Can be proven in the same way as
Case 1, with the difference that the derived relation is initially empty
and the modification results in a tuple being inserted into the derived
relation.

C[t] = true, C[t'] = true but B/\GI (B: = p(fp,)) is false, that is,

t[B;] = t'[B;] for some B; €AN o(R,). In the same way as
above, we can construct an instance where each relation in B con-
tains only a single tuple, and where the derived relation also contains
a single tuple, both before and after the modification. However, in
this case the value of attribute B; will change as a result of perform-
ing the MODIFY operation. Since B; € A, this change will be visible
in the derived relation. This proves that the update is not irrelevant
to the derived relation. O

The following example illustrates the theorem.

Example: Suppose the database consists of the two relations R(H ,I) and
Ry(J,K)where H,I,J and K each have the domain [0, 30]. Let the derived
relation and modify operation be defined as:

E = ({ij}’ {RI’RZ}’ (H >10)(I =K))

MODIFY (Rq, {R1}, (H >20),{(H :==H +5),(I =1)}).

Thus the condition given in Theorem 3 becomes
VH,I,K[(H >20)(H +5>0)(H + 5<30)

=(-(H >100 =K A(=~(H +5>10)(=K)))
VH >1000 =K)YH +5>100F =K)I =1)]

which can be simplified to
VH,I,K[(H >20)(H <25)

= (-~(H >10)I =K A (=(H >5)I =K)))
v(H >10(=K)].

By inspection we see that if / = K , then the second term of the consequent will
be satisfied whenever the antecedent is satisfied. If I K, the first term of the
consequent is always satisfied. Hence, the implication is valid and we conclude
that the update is irrelevant to the derived relation. O

12 Blakeley,Coburn and Larson

Corollary 3.1: If B; = p(fp) for all B; €/ and for all B; € («(R,) N (C))
then the MODIFY operation is irrelevant to the derived relation E .

Proof: Since B; = p(fp,) for all B; €1 then B/\EI(B,- = p(fp,)) is true . Also,

since B; = P(fBi) for all B; € (a(R,) N a(C)') then C (Fy) = C . Therefore,
the condition in the theorem becomes

VICy Cs (Fy) = ((=C) Vv C)]
which is equivalent to
V[Cu Cp (Fy) = (true)]

Hence, we conclude that the implication is valid and that the MODIFY operation
is irrelevant to the derived relation. D

5. Autonomously Computable Updates

If an update operation is not irrelevant to a derived relation, then some data
from the database is needed to correctly update the derived relation. The sim-
plest case is when all the data needed is contained in the derived relation itself.
In other words, the new state of the derived relation can be computed solely from
the current state of the derived relation and the information contained in the
update expression.

Definition. Consider a derived relation E and an update operation U, both
defined over base relations D . Let d denote an instance of D before applying
U and d’ the corresponding instance after applying U . The effect of the opera-
tion U on E is said to be autonomously computable if there exists a function Fy,
such that

V(E’d,)=FU(V(E7d))

for all database instances d and d'. Apart from the information in U itself, the

only other data required by F; must be contained in the current instance of E .
m]

5.1. Insertions

Consider an operation INSERT (R, , T) where T is a set of tuples to be inserted
into R, . Let the derived relation be E = (A, R, C), R, € R. The effect of the
INSERT operation on the derived relation is autonomously computable if

A. given a tuple r €T we can correctly decide whether ¢ will always (regard-
less of the database instance) satisfy the selection condition C and hence
should be inserted into the derived relation

and,

B. the values for all attributes visible in the derived relation can be obtained
from¢.

Note that if 1 could cause the insertion of more than one tuple into the
derived relation, then the update is not autonomously computable. Suppose that
¢t generates two different tuples to be inserted: #; and 7,. Then ¢, and ¢, must
differ in at least one attribute visible in the derived relation; otherwise only one

Updating Derived Relations 13

tuple would be inserted. Suppose that they differ on A; € A. A; cannot be an
attribute of R, because the exact value of every attribute in R, is given by ¢.
Hence, the values of A; in 71 and ¢, would have to be obtained from tuples else-
where in the database.

Theorem 4A: let E = (A, R, C) be a derived relation and ¢z a tuple to be
inserted into relation R, , where R, € R. Whether or not ¢ will create an inser-
tion into the derived relation is guaranteed to be autonomously computable if and
only if one of the following holds:

I R={R,}
or

II. R {R,} and all the variables of C [t] are nonessential and the current
instance of E is non-empty.

Proof: (Sufficiency)

Case I: Since R= {R,} then o(C) C o(R,). Hence, C[t] can be completely
evaluated, i.e. will yield true or faise .

Case II: The fact that all variables in o(C [t]) are nonessential guarantees that
C [t] will evaluate to the same value regardless of the values assigned to those
variables. Since the current instance of E is non-empty, the Cartesian product of
all relations in R — {R, } will contain at least one tuple. Combining ¢ with a
tuple from this Cartesian product gives a tuple with fixed values for all variables
in a(C) and the condition can be evaluated. Whatever the values of the attri-
butes in o(C ¢]) are, the condition will always evaluate to the same truth value.
Hence, whatever the current instance of the database the decision will always be
the same.

(Necessity) Assume that whether or not ¢+ will create on insertion into the
derived relation is autonomously computable but that neither of the two cases
holds. Since the second case contains three conditions, three possibilities arise:

® (R {R,})and (R = {R,}). This is obviously a contradiction.

® (R {R,}) and there exists some variable, x € «(C [¢]), which is essential
in C [r]. Without loss of generality we can assume that x is the only vari-
able in a(C [t]). This means that there exists two different values x’ and x”
such that C [z, x'] is srue and C [t , x"] is false. In the same way as in the
proof of Theorem 2, we can construct two different instances d’ and d” of
D . Instance d' is constructed from x' and instance d” from x”, such that,
except for the given values of x , all the corresponding attribute values agree.
In both instances relation R, is empty and every other relation in D consists
of a single tuple. Hence,

V(E,d)=V(E,d"

Now insert tuple ¢ into relation R, . Since C [t , x'] is true, V (E , d') must
have a new tuple inserted, whereas V (E , d") will not, as C [t , x"] is false.
Consequently, whether or not insertion of ¢ will affect the derived relation
depends on the existence of tuples not seen in the derived relation.

14 Blakeley,Coburn and Larson

® (R# {R,}) and the current instance of E is empty. There are two situa-
tions which would cause E to be empty; either no tuple in the Cartesian pro-
duct of the base relations satisfies C or one of the base relations is empty.
IfR, €R,R, # R, is empty then even if C [¢] is true, ¢+ will not cause an
insertion into E . Consequently, whether or not the insertion of ¢ will affect
the derived relation depends on the existence of tuples in the other relations
in the base of E . That is, on the existence of tuples not seen in the derived
relation. O

Corollary 4A.1: If o(C) C o(R,) and the current instance of E is non-empty
then whether or not ¢ causes an insertion into the derived relation is auto-
nomously computable. O

Theorem 4B: Assume that a tuple in 7 has been shown to cause the insertion of
a new tuple into the derived relation. The values of all visible attributes in the
new tuple are guaranteed to be autonomously computable if and only if
AC a(R,).

Proof: (Sufficiency) Obvious.

(Necessity) Without loss of generality we can assume that A — «(R,) con-
tains only one attribute x €a(R;), R; # R,. Assume that r €T causes the
insertion of a new tuple. To insert the new tuple into the derived relation we
must determine the value of x . Even if the value of x is uniquely determined
by the attribute values of ¢, this is not sufficient. The value of x must
correspond to the x value in some tuple in R; , and the existence of such a tuple
cannot be guaranteed without checking the current instance of the relation R; . O

5.2. Deletions

To handle deletions autonomously, we must be able to determine, for every tuple
in the derived relation, whether or not it satisfies the delete condition. This is
covered by the following theorem.

Theorem 5: The effect on the derived relation E = (A, R, C) of the operation
DELETE (R, , Ry, Cp), R, €R, is guaranteed to be autonomously computable
if and only if every attribute in «(Cp) — A is computationally nonessential in Cp,
with respect to C .

Proof: (Sufficiency) If the variables in o(Cp) — A are all computationally
nonessential, we can correctly evaluate the condition by assigning surrogate
values.

(Necessity) Without loss of generality we can assume that a(Cp) — A con-
sists of a single attribute x . Assume that x is computationally essential in Cp
with respect to C . We can then construct two tuples 7, and ¢, over the attributes
in AU o(C) U o(Cp) such that they both satisfy C , 7, satisfies Cp, but 7, does
not, and ¢, and ¢, agree on all attributes except attribute x . Each of 7, and ¢,
can now be extended into an instance of D . Both instances will give the same
instance of the derived relation, consisting of a single tuple 7,[A] (or ¢,[A]). In
one instance, the tuple should be deleted from the derived relation, in the other
one it should not. The decision depends on the value of attribute x which is not
visible in the derived relation. Hence the decision cannot be made without addi-
tional data. O

Updating Derived Relations 15

Example: Consider two relations R y(H ,1), R,(J , K). Let the derived relation
and delete operation be defined as:

E =({J’K}’{R1’R2}’ (I =J)(H <20))
DELETE(RI’{RI}’(I =20)(H <30))

The attributes in o(Cp) —~A={H,I}—-{J,K}={H,I} must be com-
putationally nonessential in Cp, with respect to C in order for the deletion to be
autonomously computable. That is, the following condition must hold:

VH,I,H,I'J,K [(I =J)H <20)(I'=J)H' < 20)
= ((I = 20)(H <30)) = ((I' = 20)(H' < 30))] -

The conditions (H < 30) and (H' < 30) will both be true whenever (H < 20)
and (H' < 20) are rrue. For any choice of values that make the antecedent true,
we must have J =1 = I'. Because I =I', the conditions 7 =20 and 7'=20 are
either both rrue or both false, and hence the consequent will always be satisfied.
Therefore, the variables H and I are computationally nonessential in C, with
respect to C . This guarantees that for any tuple in the derived relation we can
always correctly evaluate the delete condition by assigning surrogate values to the
variables H and [.

To further clarify the concept of computationally nonessential, consider the
following instance of the derived relation E .

E: J K
10 15
20 25

We now have to determine on a tuple by tuple basis which tuples in the derived
relation should be deleted. Consider tuple 7; = (10, 15) and the condition
C = =J)H <20). We substitute for the variables J and K in C the
values 10 and 15, respectively, to obtain C[t{]= (I = 10)(H < 20). Any
values for H,I that make C|[z,] = #rue, are valid surrogate values, say
I =10, H = 19. We can then evaluate Cp using these surrogate values, and
find that (10 = 20)(19 < 30) = false. Therefore, tuple t; = (10, 15) should not
be deleted from E. Similarly, for ¢,=(20,25) we obtain
Cltal = (I =20)(H < 20). Surrogate values for H and [that make
Clz5] = true are I = 20, H = 19. We then evaluate Cp, using these surrogate
values and find that (20 = 20)(19 < 30) = true. Therefore, tuple ¢, = (20, 25)
should be deleted from E . O

Corollary 5.1: If o(Cp) C A* then the DELETE operation is autonomously com-
putable. O

5.3. Modifications

Deciding whether modifications can be performed autonomously is much more
complicated than for either insertions or deletions. In general, a modify opera-
tion may generate insertions into, deletions from, and modifications of existing
tuples of the derived relation as a result of updating a base relation. We sum-
marize the conditions imposed by these possibilities in the following four steps
and give one theorem for each step.

16 Blakeley,Coburn and Larson

A. Prove that every tuple selected for modification which does not satisfy C
before modification, will not satisfy C after modification. This means that
no new tuples will be inserted into the derived relation.

B. Prove that we can autonomously compute which tuples in the derived rela-
tion should be modified. Call this the modify set.

C. Prove that we can autonomously compute which tuples in the modify set will
not satisfy C after modification and hence can be deleted from the derived
relation.

D. Prove that, for every tuple in the modify set which will not be deleted, we
can autonomously compute the new values for all attributes in A.

Theorem 6A: The operation MODIFY(R, , Ry, , Cy , Fyy) is guaranteed not to
create any new tuples which need to be inserted into the derived relation
E =(A,R,C),R, €R, if and only if

V(=C)Cpy Cp (Fyy) = = C (Fy)]

Proof: (Sufficiency) Assume that the condition holds. Consider a tuple ¢ in the
Cartesian product of the relations in the combined base B = Ry Ry, and
assume that ¢ is selected for modification. Let ¢’ denote the corresponding tuple
after modifications. Assume that ¢+ does not satisfy C and hence will not have
created any tuple in the derived relation. Because the above condition holds for
every tuple, it must also hold for ¢+ and hence ¢’ cannot satisfy C . Consequently,
modifying ¢ to ¢’ does not cause any new tuple to appear in the derived relation.

(Necessity) If the condition does not hold we can, in the same way as in the
proof of Theorem 2, construct an instance such that each relation contains only
one tuple and the derived relation is empty before modification but contains one
tuple after modification. This then shows that the condition is necessary. O

Corollary 6A.1: If B;=p(fp) for all B; €(a(R,)Na(C)) or if
(a(R,)Na(C))=) then the MODIFY operation will not cause any insertions
into the derived relation.

Proof: In either case the values of the variables which appear in the selection con-
dition for E , that is in C , are unchanged. Hence, no new tuples will need to be
inserted into E . O

Corollary 6A.2: If Cyy AC (F,,) is unsatisfiable then the MODIFY operation will
not cause any insertions into the derived relation.

Proof: If Cy AC (Fy) is unsatisfiable then — (Cyy AC (Fyy)) must always be
true . Hence ~Cy Vv - C (Fy,) is always rrue . Therefore, Cyy = —~C (Fy) is
valid which means the implication given in the theorem must be valid. O

Theorem 6B: The condition C,, is guaranteed to be autonomously computable if
and only if every attribute in o(C);) — A is computationally nonessential in Cy,
with respect to C . O

The following proof is similar to the proof of Theorem 5, it is included here for
completeness.

Updating Derived Relations 17

Proof: (Sufficiency) If the variables in «(Cy) — A are all computationally
nonessential, we can correctly evaluate the condition by assigning surrogate
values.

(Necessity) Without loss of generality we can assume that o(Cy) — A con-
sists of a single attribute x . Assume that x is computationally essential in Cy,
with respect to C . We can then construct two tuples ¢, and ¢, over the attributes
in AU a(C) U a(Cy) such that they both satisfy C , ¢, satisfies Cy, but 1, does
not, and 7, and ¢, agree on all attributes except attribute x . Each of ¢, and ¢,
can now be extended into an instance of D . Both instances will give the same
instance of the derived relation, consisting of a single tuple #;[A] (or #,{A]). In
one instance, the tuple in the derived relation should be modified, in the other
one it should not. The decision depends on the value of attribute x which is not
visible in the derived relation. Hence the decision cannot be made without addi-
tional data. O

Corollary 6B.1: If o(C),) C At then the condition C,, is autonomously comput-
able. O

Theorem 6C: The decision whether or not a tuple in £ chosen for modification
by Cy , will still satisfy C after modification is guaranteed to be autonomously
computable if and only if every attribute in o(C (Fy)) — A is computationally
nonessential in C (F,,) with respect to the condition C ACy ACg (Fr).

Proof: (Sufficiency) If every attribute x € (a(C (F;,)) — A) is computationally
nonessential with respect to C ACy ACp (Fys), we can correctly evaluate the con-
dition by assigning surrogate values.

(Necessity) Without loss of generality assume that o(C (Fy;)) — A contains
only a single attribute x and that x is computationally essential. In the same
way as in the proof of Theorem 5, we can then construct two tuples ¢#; and ¢,
over the attributes in AU a(C) U o(Cy) U a(C (Fy) U o(Cg (Fy)), such
that they only differ in the value of x , and such that ¢ and ¢, satisfy C, Cy
and Cy (Fy). Lets{ and 75 denote the corresponding tuples after modification.
Because x € (a(C (Fj;)) — A) then the tuples r{ and 74 must have different
values for at least one attribute, and x must occur in the update expression for at
least one attribute in o(C). One of them, ¢{ say, will satisfy C while the other
one will not. We can now extend ¢, and ¢, to obtain two different database
instances where each relation contains only one tuple and where in both cases the
derived relation contains the same tuple. In one case (for the instance obtained
from ¢,) the single tuple in the derived relation should be deleted after the modif-
ication, while in the other case it should not. The decision depends on the value
of x , which is not visible in the derived relation. O

Corollary 6C.1: If B;=p(fp) for all B; €(«(R,)Na(C)) or if
(a(R,)Na(C)= then the MODIFY operation will not cause any deletions
from the derived relation.

Proof: Similar to the proof of Corollary 6A.1. O

Corollary 6C.2: If o(C (F,,)) C A* then whether or not a tuple in E , chosen for
modification by C,, , will satisfy C after modification is autonomously comput-
able. O

18 Blakeley,Coburn and Larson

Recall that a(p(fp,)) denotes the set of attributes occurring in the right
hand side expression of f 5 . Define the set Z as

z=U 0t(i’(fz;,.))

B; €A

that is, Z is the set of attributes from which the new values for the attributes in
A are computed.

Theorem 6D: For all tuples in the derived relation which are not to be deleted
after modification, the new values for the attributes in A are guaranteed to be
autonomously computable if and only if every attribute in Z — A is uniquely
determined by the condition C ACy AC (Fy)ACy (F)) and the attributes in A.

Proof: (Sufficiency) Assume that every attribute in Z — A is uniquely deter-
mined by the condition C ACy AC (Fy JACg (Fy,) and the attributes in A.
Therefore, the value of every attribute in a(p(f p,)) can be uniquely determined

and, hence, the modified values of attributes in A are autonomously computable.

(Necessity) Let the modifications be autonomously computable. Without
loss of generality we can assume that Z — A consists of a single attribute x .
Suppose that x is not uniquely determined by the condition
C ACy AC (Fyy JACg (Fy,) or by the attributes in A. We can then construct two
tuples 11 and ty over the attributes in
AU o(C) U a(Cy) U a(C (Fy) U aCg (Fy) such that ¢, and ¢, both satisfy
C,Cy,C (Fy), and Cg (Fy), and both tuples agree on the values of all attri-
butes except x . Each of ¢, and ¢, can now be extended into an instance of D .
Both instances will give the same instance of the derived relation, consisting of a
single tuple ,[A] (or #,[A]). In both instances the tuple in the derived relation
should be modified. However, the values of those modified attributes which are
calculated using x will be different depending on whether we use ¢, or 7,.
Hence, the values are not autonomously computable. O

Corollary 6D.1: If Z C A* then the modified values are autonomously comput-
able. O

Corollary 6D.2: If B; =p(f 5.) for all B; € («(R,)NA) then the tuples that remain
in E will not have any attribute values changed. O

We give an example which proceeds through the four steps associated with
Theorems 6A - 6D, at each step testing the appropriate condition.

Example: Suppose the database consists of the two relations R(H ,7) and
Ry(J,K) where H,I,J and K each have the domain [0, 30]. Let the derived
relation and modify operation be defined as:

E={l,J},{R,R3}, (H >10)(I =K)(J <295))
MODIFY(R ,, {R2}, (V < 15)v(J >25)(K >20)), {(J:=K+5),(K:=K)}).
Step A:
YH,I,J,K[(=(H >10)(I =K)({J <25)))

Updating Derived Relations 19

A <15 v (J >25K > 20))

A(K +5<30)K +5>0)

= -(H >10)(=K)X + 5<25))]
Clearly, as far as testing validity is concerned, we need not consider the values of
H and I. Therefore, assume (H > 10) and (I = K). For the =~ C condition
of the antecedent to evaluate to true, we must have (J ¢ 25). Hence for the
Cy condition to evaluate to frue we must also have (K > 20). Therefore in the
consequent (K + 5 < 25), and hence the consequent is frue. This shows that

the given implication is valid. Therefore, the given modify operation will not
introduce new tuples into E .

StepB: a(Cy) — A= {K}
VH,I,J,K,K'[(H >100(=K)(J <25)(H > 10){I = K")(J <25))
=(((<1B)vU 225K >20) = (U <15 v { =225)K'>20)))]

For the antecedent to be true, we must have I = K = K’. Hence the two condi-
tions in the consequent are equal regardless of the value of /. Therefore, K is
computationally nonessential in C,, with respect to C, and C,, is autonomously
computable.

StepC: o(C(Fy)) —A={H,K}

VH,H',1,J,K,K'

[((H >10(=K)J <25))(J <15) v (J >25)(K > 20))

AK +5<30)(K +5>0)(K <30)(K >0))

A(H' >10)I = K)J <25)(J <15) v (J >25)(K' > 20))

A K"+ 5<30)(K' + 5> 0)(K' < 30)(K' > 0))

= (((H>100(I =K)K +5<25)=(H'>10)(I =K)K'+ 5<25)))]

For the antecedent to be #rue we must have 7 = K = XK' and H > 10 and
H' > 10. If so, the truth values of the two conditions of the consequent depend
solely on K and K’. Because K = K' they will always have the same truth
value. Therefore, H and K are computationally nonessential in C (F,,) with
respect to C ACy ACg (Fy), and C (Fy,) is autonomously computable.

StepD: Z — A= {K}
Since C guarantees that / = K in E, the value of X is uniquely deter-

mined by the value of I which is visible in E. Therefore, the new values of
modified tuples in £ are autonomously computable.

In summary, consider a numeric example for the given schema.

20 Blakeley,Coburn and Larson

Before

R: H I Ry J K E: I J
1 5 20 5 S 20
11 15 10 15 15 10
11 22 10 22 22 10
1 20 30 20

Afte

R: H I Ry J K E: I J
1 5 20 5 5 20
11 15 20 15 15 20
11 22 27 22
11 20 25 20

Step A provides a warrant that the last tuple, which does not satisfy C before
modification, will not satisfy C after. Step B guarantees that we can determine
which tuples of £ to modify; the second and the third. Step C allows us to deter-
mine which modified tuples of E will be deleted since they will no longer satisfy
condition C ; the third one. Step D ensures that we can compute the new values
for the remaining modified tuple. O

6. Conclusion

Necessary and sufficient conditions for detecting when an update operation is
irrelevant to a derived relation (or view, or integrity constraint) have not previ-
ously been available for any nontrivial class of updates and derived relations.
The concept of autonomously computable updates is completely new. Limiting
the class of derived relations to those defined by PSJ -expressions does not seem
to be a severe restriction, at least not as it applies to structuring the stored data-
base in a relational system. The class of update operations considered is fairly
general. In particular, this seems to be one of a few papers on update processing
where modify operations are considered explicitly and separately from insert and
delete operations. Previously, modifications have commonly been treated as a
sequence of deletions followed by insertion of the modified tuples.

Testing the conditions given in the theorems above is efficient in the sense
that it does not require retrieval of any data from the database. According to
our definitions, if an update is irrelevant or autonomously computable, then it is
so for every instance of the base relations. The fact that an update is not
irrelevant does not mean that it will always affect the derived relation. Deter-
mining whether or not it will, requires checking the current instance. The same
applies for autonomously computable updates.

It should be emphasized that the theorems hold for any class of Boolean
expressions. However, actual testing of the conditions requires an algorithm for
proving the satisfiability of Boolean expressions. Currently, efficient algorithms
exist only for a restricted class of expressions, the main restriction being on the
atomic conditions allowed. An important open problem is to find efficient

Updating Derived Relations 21

algorithms for more general types of atomic conditions. The core of such an
algorithm is a procedure for testing whether a set of inequalities/equalities can all
be simultaneously satisfied. The complexity of such a procedure depends on the
type of expressions (functions) allowed and the domains of the variables. If
linear functions with variables ranging over the real numbers (integers) are
allowed, the problem is equivalent to finding a feasible solution to a linear pro-
gramming (integer programming) problem.

We have not imposed any restrictions on valid instances of base relations,
for example, functional dependencies or inclusion dependencies. Any combina-
tion of attribute values drawn from their respective domains represents a valid
tuple. Any set of valid tuples is a valid instance of a base relation. If relation
instances are further restricted, then the given conditions are still sufficient, but
they may not be necessary.

If an update is not autonomously computable some additional data may be
required. An open problem is to determine the minimal amount of additional
data required from the database, and how to retrieve it efficiently.

22 Blakeley,Coburn and Larson

Appendix

The theorems presented in this paper require that statements be proven
at run-time , that is as updates are being performed on a particular database
instance. What is required is that certain types of Boolean expressions be
tested for unsatisfiability (or equivalently, tested for satisfiability) or that im-
plications involving Boolean expressions be proven valid. The latter problem
can be translated into one of showing that a Boolean expression is unsatis-
fiable. Hence, in either case we can proceed by testing satisfiability.

Rosenkrantz and Hunt [RH 80] gave an algorithm for testing the sat-
isfiability of conjunctive Boolean expressions where the atomic conditions
come from a restricted class. Their algorithm is based on Floyd’s all-pairs-
shortest-path algorithm and therefore has an O(n®) worst case complexity,
where n is the number of variables in the expression. The algorithm pre-
sented here is a modification of that given by Rosenkrantz and Hunt; there
are three main differences. First, we assume that each variable has a finite
domain whereas Rosenkrantz and Hunt allow infinite domains. Second, if
the expression is satisfiable our algorithm not only verifies the satisfiability
but also produces an assignment of values to the variables which satisfies
the expression. Third, although the worst case complexity of our algorithm
remains O(n®) under certain circumstances (which are not unreasonable to
expect) the complexity is reduced to O(n?).

The algorithm given here tests the satisfiability of a restricted class of
Boolean expressions. Each variable is assumed to take its values from a
finite, ordered set. Since there is an obvious mapping from such sets to
the set of integers, we always assume that the domain consists of a finite
interval of the integers. It is assumed that each Boolean expression, B, over
the variables z;, z3, . . . Z,, 18 in conjunctive form,i.e. B = ByAByA...ABy,,
and that each atomic condition, B;, is of the form (z; op z; 4 ¢) or (z; op ¢)
where op € {=,<,<,>,>} and c is an integer constant.

The first step is to normalize B so that the resulting expression, N =
N1 ANz A...A Np,, only has atomic conditions of the form (z; < z; + ¢).
Conditions of the form (z; op ¢) are handled by modifying the given domain
bounds for the variable z;.

We build a weighted, directed graph G = (V, E) representing N. Each
variable in N is represented by a node in G. For the atomic condition
(z: < =+ ¢) we construct an arc from node “z;” to node “z;” having weight
c. Hence, |V| = (the number of variables in N) and |E| = my. The
graph, G, can be reduced in size by removing nodes of in-degree zero. The
justification for doing this is that if z; is such a node then N does not have
any conditions of the form (z; < z;+c¢). Hence, the upper limit value of z; is
not constrainted by the value assigned to any other variable. Therefore, we
allow z; to be assigned its (modified) upper bound. Also, for each node z; in

Updating Derived Relations 23

G, such that there is an arc of weight ¢ from z; to z;, we replace the upper
bound on z; with min{ (upper bound on z;) , (upper bound on z;)+c}. We
can then remove node z; and its incident arcs from G.

The graph is represented by an n x n array A where, initially, A(f,5) = ¢
if and only if N contains an expression of the form (z; < z; + ¢). If two
nodes do not have an arc between them the corresponding array entry is
labelled with oo (i.e. an arbitrarily large positive value). Performing on
A, the operation which corresponds to graph reduction on G, may produce
an array with some rows and columns which will be unused. We therefore
include in our algorithm a compaction routine which moves all the relevant
information remaining in A to the upper left-hand corner.

After compaction, any variable not represented by a row and column in A
has been assigned a value which does not contravene any condition in N. A
is used as the input to a modified version of Floyd’s algorithm to determine
either that N is unsatisfiable or to produce an assignment which satisfies
N. The idea is that we give each remaining variable an initial trial value
equal to its (modified) upper bound. At each iteration we adjust the values
(downward) to reflect the current values in A and the previous set of trial
values. The iterations continue until we find an assignment to the variables
which satisfies N or until we determine that N is unsatisfiable. This takes
at most |V| < n iterations. :

To be more specific, given a graph with nodes z;,...,z,, the kth step
of Floyd’s algorithm produces the least weight path between each pair of
nodes, with intermediate nodes from the set {z;,z3,...,z;}. In terms of

the Boolean expression this corresponds to forming, from the conditions in
N, the most restrictive condition between each pair of variables. The only
conditions of N which may be used at the kth step are those involving
the variables zy,...,z;. The new trial value for z; is found by taking the
minimum of its previous trial value and min{(previous trial value of z;) +
Ali, g} for 1< j< n.

There are three possible situations that indicate that the algorithm should
terminate. We test each of these conditions after each iteration:

1. Is there a negative weight cycle? In this case N is unsatisfiable

2. Does the current trial assignment violate any variable’s lower bound?
Again, N is unsatisfiable

3. Does the current trial assignment satisfy the lower bound for each
variable and satisfy N? In this case N is satisfiable.

Since the longest cycle can contain at most |V'| arcs we conclude that this
is the maximum number of iterations required. If after |V| iterations we

24 Blakeley,Coburn and Larson

have not found a negative weight cycle or violated any lower bound then the
current trial assignment must satisfy N.

The following are pseudo-code versions of the algorithms required to
carry out this method. The first is Satisfiability which acts as a mainline for
the entire procedure. It in turn uses a number of procedures which are listed
in the order they are called in Satisfiability. They are: Normalize, Reduce,
CheckBound, CheckExpr, Compact, TestA, and CalcTrial.

The following is a description of the variables used in the algorithms:

e n the number of variables in B

e B a Boolean expression of the form B; A ... A B,, over the variables
zj,...,Zn. Each atomic condition B; is of the form (z; op zx + ¢) or
(z; op c) where op € {=,<,<,>,>} and c is an integer

e U and L are n-dimensional, integer vectors. Each z; in B is assumed
to have a finite interval of the integers as its domain. Initially, U|[¢] and
L[+] give, respectively, the upper and lower domain bounds on z;, with
L[] < Uli] for 1 < ¢ < n. As the algorithm proceeds these bounds
may be adjusted to reflect the constraints imposed on the variables by
the conditions in B. The modified entries in U are taken as the “trial”
assignment of values to the z;’s. These entries may be further modified
in the search for an assignment which satisfies B. At the termination
of the procedure if B is found to be satisfiable then the assignment
z; := U] will satisfy B

e SAT is a boolean variable which is true if B is satisfiable, false other-
wise

e N, a Boolean expression of the form N1 A ... A Np,p < m, over the
variables xi,...,%,, is the “normalized” version of B. Each atomic
condition N; is of the form (z; < =z +¢)

e Ais an n X n array of integers (including co) used initially to record
a directed graph representing B. Subsequently, A is reduced and com-
pacted by removing nodes of in-degree O from the graph. The com-
pacted A is then used as input to Floyd’s algorithm to give the shortest
paths in this graph

e indeg is a 1 X n array of integers, where indeg[i] gives the number of
non-infinity entries in row ¢ of A (i.e. the in-degree of node z; in the
directed graph representing N). A row of A which, after reduction, is
no longer being considered has its indeg set to —1

e size gives the order of A after it has been “compacted”

Updating Derived Relations 25

e row is a 1 X n array of integers, where for 1 < ¢ < size,row[i] gives
the row number of the corresponding row of A before compaction

Note: oo represents a large positive number whose value, which is larger
than that of any integer, remains unchanged by the addition or subtraction
of arbitrary integers

26 Blakeley,Coburn and Larson

Procedure
Satisfiability(B, L,SAT, U, n)

Input: B,L,U,n
Output: SAT,U where the assignment z; := U|[¢] satisfies B if SAT is true

Local: A, N,indeg, row, stze

begin

SAT :=true

Normalize(B, L, N,SAT,U)

if SAT = false then return i

for i :=1tondo /*initialize indeg and A */
indeg[s] ;=0
for j :=1 to n do Afi,j] = o0 od

od

for each (z; < zx+¢)in N do

/* build the matrix for the directed graph representing N */
if A4, k] = oo then

tndeg[j] := indeg[j] + 1

Alj,kl=c¢
else if ¢ < A[j, k| then
Alj,kl=¢
fi
od

/¥ “remove” rows representing nodes of in-degree zero */
Reduce(A, L, SAT,U,indeg,n)
if SAT = false then return fi
stize:=n [* initialize size and row */
for ¢ := 1 to size do row(s] := ¢ od
/¥ test the “trial” values against the lower bounds */
CheckBound(L,SAT,U, row, size)
if SAT = false then return fi
CheckExpr(N,SAT,U) /* test the “trial” valuesin N */
if SAT = true then return fi
/¥ move the remaining rows of A to the upper left-hand corner */
Compact(A,indeg,n, row, size)
/¥ run Floyd’s Algorithm (with some added tests) on the compacted A */
for k:=1 to size do
for 1 := 1 to stze do
for 5 :=1 to size do
if Afi,] > A[f, k] + A[k, j] then

Updating Derived Relations 27

Ali,3) = Ali,]+ Alk,]
fi
od
od
TestA(A,SAT,size) /* check for negative cycles */
if SAT = false then return fi
CalcTrial(A,U, row, size) /* calculate the new “trial” values */
CheckBound(L, SAT,U,row, size)
/* test the new “trial” values against the lower bounds */
if SAT = false then return fi
CheckExpr(N,SAT,U) /* test the new “trial” valuesin N */
if SAT = true then return fi

return

Procedure
Normalize(B, L, N, SAT,U)

Input: B,L,U

Output: L,N,SAT, U

begin
SAT := true
N :=true /* a trivial atomic condition */
for each B; in B do

case B; of form
(z; op c) : case op of
> : if (¢ > U|[j]) then SAT := false return
else if (¢ > L[j]) then L{j] :=¢
fi
> : if (¢ > U[j]) then SAT := false return
else if (c+ 1 > L[j]) then L[j] :==c+1
fi
: if (¢ < L[j]) then SAT := false return
else if (c < U[y]) then U[j] :=¢
fi
< : if (c < L[j]) then SAT := false return
else if (c — 1 < U[y]) then U[j] :=c -1
fi

IA

28 Blakeley,Coburn and Larson

= : if (¢ < L[j]) or (¢ > U[j]) then SAT := false return
else Ulj] :==L[j]:=cfi
endcase

(z; op zx + c) : case op of
>:N:=(zx < zj—c)AN
>: N:=(zx < zj—(c+1))AN
<:N:=(z; < zg+(c—1)AN
<:N:=(z; <z + ¢)AN
=:N:=(z; < zp + ¢)A(zx < z; — ¢)AN
endcase
endcase
od
return
end
Procedure

Reduce(A, L,SAT,U,indeg,n)

Input: A,L,U,indeg,n
Output: A,SAT,U,indeg

Local: e currchanged is an integer variable used to indicate the number
of the last row to have its indeg decremented during the current
pass of A

e prevchanged is an integer variable used to indicate the number
of the last row to have its indeg decremented during the previous

pass of A
begin
prevchanged := n
SAT :=true

while prevchanged > 0 do
currchanged :=0
for 1 := 1 to prevchanged do
if indeg[f] = 0 then
for 7:=1ton do
if U[j] > Uli] + Alj,+] then
Uls] = Uli) + Al
if U[j] < L[j] then
SAT := false

Updating Derived Relations

return
fi
fi
indeg|j] := indeg[j] — 1
currchanged := 3

od
indegli] := —1
fi
od
prevchanged := currchanged
od
return
end
Procedure

CheckBound(L,S AT, U, row, size)

Input: L,U,row,size
Output: SAT

begin
SAT := true
for 1 := 1 to size do
if Ulrow[i]] < L[row[i]] then SAT := false return fi
od
return
end

Procedure
CheckExpr(N,SAT,U)

Input: N, U
Output: SAT

begin
S AT :=true
for each (z; < zx +¢) in N do
if U[j] > Ulk] + c then SAT := false return

29

30 Blakeley,Coburn and Larson

od
return
end

Procedure
Compact(A,indeg,n,row, size)

Input: A,indeg,n
Output: A, row,size

begin
stze:=0
fori:=1tondo
if indeg[t] > O then
stze :—= stze+ 1
row[size] :=1
fi
od
for 1 := 1 to size do
for 7 :=1 to size do
Alt, g] := Alrow]i], row[s]]
od
od
return
end

Procedure
TestA(A, SAT,size)

Input: A, size
Output: SAT

begin
SAT :=true
for 1 := 1 to stze do
if Af¢,1] < 0 then SAT := false return fi
od
return
end

Updating Derived Relations

Procedure
CalcTrial(A, U, row, size)

Input: A,U,row,stze
Output: U

Local: T is an 1 X size array of integers used for temporary storage

begin
for 1 :=1 to size do
T[i] = min{U[row[i]],lsr’{lsiiliu{U[row[k]] + Alt, k] }}

od
for ¢+ := 1 to size do
Ulrowl[s]] := Ti]
od
return
end

31

32

References
[A 75]

[AL 80]

[BLT 86]

[BC 79]

[GSV 84]

[HS 78]

[LY 85]

[L 86]

[M 83]

[RH 80]

Blakeley,Coburn and Larson

ANSI/X3/SPARC Study Group on Database Management Sys-
tems, Interim Report, FDT (ACM SIGMOD bulletin), 7, 2,
(1975).

Adiba, M., and Lindsay, B.G., “Database Snapshots,” Proc. 6th
International Conf. on Very Large Databases, (Montreal, 1980),
86-91.

Blakeley, J.A., Larson, P.-A., and Tompa, F.W., “Efficiently
Updating Materialized Views,” SIGMOD 1986, (to appear).

Buneman, O.P., and Clemons, E.K., “Efficiently Monitoring
Relational Databases,” ACM Trans. on Database Systems, 4, 3
(1979), 368-382. .

Gardarin, G., Simon, E., and Verlaine, E., “Querying Real
Time Relational Data Bases,” IEEE-ICC International Confer-
ence (Amsterdam, 1984), 757-761.

Hammer, M. and Sarin, S.K., “Efficiently Monitoring of Data-
base Assertions,” Supplement, Proc. ACM SIGMOD Interna-
tional Conf. on Management of Data, (Austin, TX, 1978),
38-48.

Larson, P.-A. and Yang, H.Z., “Computing Queries from
Derived Relations,” Proc. 11th International Conf. on Very
Large Databases, (Stockholm, 1985) , 259-269.

Lindsay, B., et.al., “A Snapshot Differential Refresh Algo-
rithm,” Research Report RJ 4992, IBM Almaden Research
Center (1986).

Maier, D., The Theory of Relational Databases, Computer Science
Press, Rockville, MD, 1983.

Rosenkrantz, D.J. and Hunt, H.B. III, ‘“Processing Conjunctive
Predicates and Queries,” Proc. 6th International Conf. on Very
Large Data Bases, (Montreal, 1980), 64-72.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

