RATIONAL EQUIVALENCE RELATIONS

J. Howard Johnson

Department of Computer Science
University of Waterloo
Waterloo, Ontario
N2L 3Gl

Research Report CS-86-16
April 1986

Rational Equivalence Relations*

J. Howard Johnson
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

April 11, 1986

Abstract

Rational relations (finite transductions) which are equivalence re-
lations are discussed. After establishing a containment hierarchy, the
complexity of canonical function computation and a number of class
membership decision problems are studied. The following classes are
considered:

(1) Rational Equivalence Relations,

(2) Equivalence Kernels of Rational Functions,

(3) Deterministic Rational Equivalence Relations,

(4) Equivalence Kernels of Subsequential Functions,

(5) Recognizable Equivalence Relations,

(6) Length-bounded Rational Equivalence Relations, and
(7) Finite Equivalence Relations.

Except for one open case ((1) = (2)?), Hasse diagrams are given to
show the relative containments in the general and one-letter-alphabet
cases. Canonical function application for an input of length n is shown
to be O(n?) time and space for (1), O(n) time and space for (2), (3)
and (6), and O(n) time and constant space for the others. It is shown
that transitivity, symmetry, reflexivity, and membership in any of (1)
through (5) are undecidable properties for rational relations whereas
membership in (6) or (7) is decidable.

1 Introduction

Rational relations or finite transductions can be used to describe a nat-
ural class of relations on words just as regular languages describe a nat-
ural class of sets of words. Of particular interest are the functions or

*This work was supported by the Natural Sciences and Engineering Research Council of
Canada, Grant No. A0237, and appears in abbreviated form in the proceedings of the
13th ICALP (1986).

2 J. Howard Johnson

single-valued relations which associate a unique range value to each do-
main value and thus provide a good model for parsing. Rational relations
which are functions have been studied by a number of authors, for example,
[BH77,Eil74,EM65,Niv68,Sch61,Sch75]. Chapter IV of [Ber79] provides an
excellent introduction to the subject with references to the original litera-
ture.

Another important class of relations are the equivalence relations. These
arise naturally as the equivalence kernels of functions or can be defined di-
rectly as relations satisfying the reflexive, symmetric, and transitive laws.
Thus we can introduce rational equivalence relations either as the equiva-
lence kernels of rational (or subsequential) functions, or directly as rational
(or deterministic rational or recognizable or length-bounded rational or fi-
nite) relations which satisfy the three required properties.

The motivation for considering rational equivalence relations arose from
the study of functions used to phonetically encode names for matching pur-
poses as advocated by [Da.v62,F869,Knu73,MKTM77,NK62,Wie77]. For
example, Soundex code [Knu73,NK62] maps surnames into four-character
codes so that similar-sounding names are mapped to the same code and
different-sounding names are assigned different codes. Thus “Johnson” and
“Jansen” are both transformed into the code “J525” and “Smith” is trans-
formed into “S530”. In order to improve on Soundex, a number of attempts
have been made to construct coding functions that more closely reflect the
structure of surnames in the population of interest. For example, the NYSIIS
code was designed to achieve greater accuracy on a population with a signif-
icant fraction of Spanish surnames. A number of coding functions, including
NYSIIS, are discussed by Moore et al [MKTMT7).

Both the Soundex and NYSIIS functions can be modelled as subsequen-
tial functions [Joh83] so that they can be computed deterministically from
left to right by a finite state machine with output. Thus they are rational
functions and the relation “has the same code” is a rational equivalence
relation in both cases.

The principal advantage of using coding functions to identify similar
strings is low cost. Even very large files can be partitioned cheaply according
to a code value using any of a number of sorting or hashing algorithms. Since
the coding function need only be computed once per record, a moderate
amount of effort can be directed into computing better codes if accuracy
can be improved. Thus more general equivalence relation models which
more accurately mirror the true error process are worthy of consideration.

In spite of the fact that a moderate computation cost can be tolerated
in the interest of greater accuracy, it is important to recognize special cases
where more efficient or simpler algorithms are possible. The case of Soundex
is illuminating. Since only a finite number of codes are possible, 6734 to be

Rational Equivalence Relations 3

exact, and each code corresponds to a regular language, we could construct
a semi-automaton that recognizes all of these languages simultaneously and
whose states identify the correct code. Such a semi-automaton will have 7845
states. On the other hand, Soundex has a 23-state subsequential transducer
[Joh83]. If the length restriction to four characters is removed, only seven
states are needed. As a result, it is of interest to study subclasses of ratio-
nal equivalence relations from the point of view of their relative modelling
power and canonical function costs as well as considering when transforma-
tions between classes exist and are effective. For this purpose the relative
containments and decidabilities addressed in this paper are an important
first step.

2 Terminology

A (binary) relation over sets S and T is a subset of S x T. We will be
interested in the Boolean operations on relations as well as composition,
inversion, sub-identity, domain, range, cross-product, and application:

Ry o By = {(u, w)|3v[(u,v) € By A (v,w) € Ry]}

R = {(,u)|(w,) € B} o ={(v,u)lue L}
domR = {u|3v[(u,v) € R]} ranR = {v|3u[(u,v) € R}
Ly X Ly = {(u,v)|u € Ly Av € Ly}

R(L) = {v|3u[u € L A (u,v) € R]}.

An equivalence relation R over a set S is a relation satisfying the reflexive,
symmetric, and transitive laws: 15 C R, R(-1) C R,and RoR C R. The
(equivalence) kernel of a function f:S — T is the equivalence relation over

S:
kerf = {(u,v) € § x S|f(u) = f(v)} = fo f(-1),

A canonical function for an equivalence relation R over S is any function
f:8 — T satisfying R = kerf. A cross-section of an equivalence relation
R over S is a set D containing one element from each class of R. Then
f = RN(Sx D) is a canonical function. The restriction R|D of an equivalence
relation R to a set D is the relation formed from R by restricting the domain
and range to D. Thus R|D = RN (D x D). A thinning of an equivalence
relation R is a restriction whose domain contains at least one member of each
equivalence class of R. A relation R is locally-finite if for any z € domR,
the set R({«}) is finite. If R is an equivalence relation then local-finiteness
requires that every class be finite in size.

4 J. Howard Johnson

A monoid (M,®,1) is a set M with an associative binary operation ®
and a (left and right) identity element 1. We can extend ® to subsets of M
and define the ®-closure of a subset of M:

SOT={aO®blac SAbeT}

(s ¢}
St=5 Sk=stlos st=Js VvS,TCM
i=1
The class of rational subsets of a monoid (M, ®,1), denoted Rat(M), is
defined as all sets derivable from finite sets using a finite number of ap-
plications of the (rational) operations union, ®, and ®-closure. Note that
S§* = {1} U S will be rational if S is.

The first type of monoid that we will consider is the finitely generated free
monoid (£*,-,A). The class Rat(Z*) corresponds to the family of regular
languages over L*. It is well known that this class is a Boolean algebra and
can be characterized by deterministic finite automata (finite state machines).
It is possible to characterize a disjoint collection of regular languages using
a semi-automaton, a 3-tuple (X, Q,5) where X is the alphabet, Q is a set of
states, and §:Q X ¥ — Q is a set of transitions.

The second type of monoid is the direct product of two finitely generated
free monoids (X* x A*,-, (A, A)) where the operation - is defined componen-
twise. The subsets in the class Rat(3* x A*) are called (binary) rational
relations. In addition to the rational operations, they are closed under com-
position, inversion, sub-identity, domain, range, cross-product, application,
and domain and range restriction:

(RioRy € Rat(z* X F*)
R{™) e Rat(A* x =*)

R; € Rat(Z* x A*Y) i, € Rat(Z* x %)
R; € Rat(A* x I'*) —) domR; € Rat(Z*)

L; € Rat(Z*) ranR; € Rat(A*)

Ly € Rat(A*) Ly x Ls € Rat(E* X A*)

Rl(Ll) € Rat(A*)
L Bi1n (L1 X Lz) < Rat(E* X A*)

They are not closed under the Boolean operations intersection or set dif-
ference except in special cases. One such special case occurs when ¥ and
A each contain exactly one letter. Such rational relations form a Boolean
algebra [Gin66]. Another special case is the class of recognizable relations
Rec(Z* x A*) which contains rational relations expressible as a finite union
of products of regular languages: R = |Ji%, A; X B;. This class is also a
Boolean algebra but not closed under *, *, or ¢;. Another special case is

Rational Equivalence Relations 5

the class of length-bounded rational relations LBRat(Z* x A*) which con-
tains rational relations satisfying the following property for some k:

(v,v) ER=>|v| -k < |u| < |v| + k.

It is closed under * and * for relations satisfying the length property with
k = 0 and under N and — but not under x, and since the universal element
E* X A* is not length-bounded, it is not a Boolean algebra. The class
Fin(Z* x A*) is closed under N and — but not *, *, or ¢z and is not a
Boolean algebra because it also lacks the universal element.

A finite transducer T = (X,A,Q,q—,Q+, E) is a 6-tuple where ¥ is the
tape-one alphabet, A is the tape-two alphabet, Q is a finite set of states,
g- € Q is a distinguished start state, Q+ C Q is a distinguished set of final
states, and E C (Q X I* x A* X Q) is a set of transitions. A path from ¢o
to g through T is a sequence of transitions from E of the form

(qO) ui, v1, QI)(QI, uz, vz, 42)(‘12,1‘3, vs3, QS) oo (qk—l: Uk, Vg, qk)-

A successful path is one where go = ¢_ and g € Q.. The label of a path is
the componentwise concatenation of the labels: (v1ugus. . . up, vivevs ... Ug)-
The behaviour |T| of a transducer T is the set of labels of successful paths.
The class Rat(Z* x A*) is identical to the class of finite transductions. At
the expense of adding some states, we can restrict finite transducers to those
with transitions of the form:

@XITxAXxQU@RXAXEXQ)U(Q xA X AxQ).

Such a transducer will be called alphabetic.

A deterministic 2-tape finite automaton A =(3,A,Q1,Q2,9—,Q+, 51, 682)
is an 8-tuple where ¥ and A are the tape-one and tape-two alphabets, Q,
and Q; are disjoint finite sets of states, ¢ € Q; UQ); is a distinguished start
state, @4+ C Q1 U Q2 is a distinguished set of final states, and

6:@1x (Zu{d}) - Q1UQ, 62:Q2 x (AU{}) > QU Q2

are partial functions. The symbol - is a special endmarker character not
occurring in either ¥ or A. Every such machine can be interpreted as the
alphabetic finite transducer:

Ta = <E U {_|})A U {—i}’Ql UQ2,9-,Q+,
U (Q: a’A; 61(47 a)) U U (q’A;b: 52(q, b)))

4€Q;,aczu{-} g4€Q2,beAU{-}

Paths, successful paths, and labels are then defined implicitly in terms of this
transducer. The behaviour |A| of an automaton A is the set of pairs (u,v)

6 J. Howard Johnson

such that (u 4,v H) € |TA|. Deterministic 2-tape finite automata recognize
a subclass of rational relations [FR68] which will be denoted as DetRat (X*x
A*). Deterministic rational relations are closed under complement but not
U, -+, *, or o. However, the classes RecEq(Z* x A*) and LBRat(Z* x A*)
with their rich closure properties are both contained in DetRat(Z* x A*).

Although it is not possible to make the choice of tape to read deter-
ministic without restricting the class of relations that are recognized, it
is possible to make the choice of transition deterministic after the tape
to read has been chosen. A gquasi-deterministic 2-tape finite automaton
A =(%,A,Q,9-,Q4,56,6,) is an T-tuple where £ and A are the tape-one
and tape-two alphabets, Q is a set of states, ¢_ € Q is a distinguished start
state, @+ C @ is a distinguished set of final states, and

:@x (Bu{dh) =@ &:@x(Au{})—-Q

are partial functions. Successful paths and behaviour are defined in a similar
fashion to deterministic automata except that the state set is not partitioned
according to which tape should be read next. This class of automata recog-
nize the full class Rat(Z* x A*).

A subsequential transducer S = (£,A,Q,q—,6,], p) is a T-tuple where &
is the input alphabet, A is the output alphabet, Q is a set of states, - €Q
is a distinguished start state, and

5:QxXT—Q AQ X T — A pQ — A*

are partial functions indicating the next state, the output function and the
termination output function. Every such machine can be interpreted as a
finite transducer:

TS = (2)AaQ) {q+}’ q—’{Q+}a
U (9,6,A(3,8),8(g,a)) U | (g, A, 0(9), 4+))-

g4€Q,a€T q€Q

Paths, successful paths, labels, and behaviour can be then defined implicitly
in terms of this transducer (or directly as in [Ber79]). A rational func-
tion is a rational relation that is single-valued. Relations that are the
behaviour of subsequential transducers constitute a subclass called subse-
quential functions. These two classes will be denoted RatF(Z* x A*) and
SSeqF(Z* x A*). Note that the class DetRatF(Z* x A*) of single-valued
deterministic rational relations is different from both of these.

For the basic theory of rational relations and rational functions see
[Ber79,Eil74]. For a discussion of the properties of deterministic rational

relations see [FR68]. Length-bounded rational relations are discussed in
[EM65].

Rational Equivalence Relations 7

A lezicographic order < on T* is the total order induced by an order on
¥ using the rules:

u < uav, a < b= uav < ubw Yu,v,w e X* Va,be X.

The set of words that are lexicographically minimal within their classes
for a rational equivalence relation R will be denoted by lexmin(R). Since
lexicographic ordering is not a well order, there may be classes without
minimal elements so that lexmin(R) might not be a cross-section. The set of
words that are minimal length within their classes for a rational equivalence
relation R will be denoted by lenmin(R). This may fail to be a cross-section
since classes may have more than one element of minimal length.

The subclass of Rat(XZ* x X*) that are equivalence relations over their
domains will be denoted RatEq(XZ*) or simply RatEq if the alphabet is
understood. In an analogous way the following notations will be used:

KerRatF: Equivalence Kernels of Rational Functions,
DetRatEq: Deterministic Rational Equivalence Relations,
KerSSeqF: Equivalence Kernels of Subsequential Functions,

RecEq: Recognizable Equivalence Relations,
LBRatEq: Length-bounded Rational Equivalence Relations, and
FinEq: Finite Equivalence Relations.

It is easily shown that the recognizable equivalence relations are exactly the
rational equivalence relations of finite index [Joh83).

In section 3 the relative containments of these classes are shown in gen-
eral and for the one-letter-alphabet case. Section 4, through a system of
examples, shows that the containments presented in section 3 are proper
and that incomparable classes are truly so. Section 5 discusses the ques-
tion of complexity of canonical function application in terms of the input
word length. Section 6 presents a number of decidability results concerning
class membership. Finally, section 7 presents conclusions and some open
problems remaining from this investigation.

3 A Containment Hierarchy

This section and the following one establish a hierarchy of rational equiva-
lence relations as summarized in the following theorem:

Theorem 3.1 Rational equivalence relations can be organized into the con-
tainment hierarchy as shown in the form of a Hasse diagram in Figure 1(a).
If the alphabet is restricted to contain one letter the hierarchy collapses into
that shown in Figure 1(b).

8 J. Howard Johnson

RatEq
I
' RatEq = KerRatF
L}
KerRatF
DetRatEq DetRatEq

LBRatEq U KerSSeqF KerSSeqF = LBRatEq U RecEq

N\

LBRatEq KerSSeqF LBRatEq RecEq
RecEq FinEq = LBRatEq N RecEq

/

FinEq = LBRatEq N RecEq

(a) General Case (b) One-Letter-Alphabet Case

Figure 1: Containment hierarchies for rational equivalence relations

The remainder of this section establishes the containments of theorem
3.1. The next section shows that the indicated containments are proper
with the exception of KerRatF C RatEq which remains open. It has been
conjectured that these two classes are the same [Joh85].

Lemma 3.2 KerRatF C RatEq.

Proof: Let R € KerRatF. Then there is a rational function f such that
R =kerf = f o f{=1). Since rational relations are closed under inverse and
composition, R € RatEq. O
Lemma 3.3 DetRatEq C KerRatF.

Proof: This follows from Theorems 5.3 and 3.1 of [Joh85]. a

Lemma 3.4 LBRatEq C DetRatEq.

Rational Equivalence Relations 9

Proof: This follows immediately from the observation that LBRat(Z* x
A*) C DetRat(Z* x A*). For if R € LBRat(Z* x A*) then, in the terms of
Elgot and Mezei [EM65], R is finite automaton describable (FAD) so that R
can be recognized by an finite automaton that reads one character (or blank)
from each tape for each transition until both tapes are exhausted. Since
this behaviour can be simulated by a deterministic 2-tape automaton which
alternately reads one character from each tape, R DetRat(Z* x A*). O

Lemma 3.5 KerSSeqF C DetRatEq.

Proof: Let R € KerSSeqF. Then there is a subsequential function f such
that R = kerf = f o f(-1) which can be characterized by some subsequen-
tial transducer: T = (X,A,Q,9-,5,A,p). From this we may construct a
deterministic 2-tape automaton for R that simulates the running of T on
each of its input tapes while checking that they agree on their outputs. The
states of this derived machine will be composed of the states of the two
copies of T as well as a pair of buffers each large enough to accommodate
the largest A or p string. At any time only one buffer will be allowed to be
non-empty and the simulation will read the input tape corresponding to the
other buffer. That buffer is loaded with the appropriate letters from the A or
p strings and the longest common prefix removed. If the result leaves both
buffers non-empty, then a mismatch has occurred and the machine simply
deadlocks. O

Lemma 3.6 RecEq C KerSSeqF.

Proof: Let R € RecEq. Then R € RatEq and R has finite index, say
k [Joh83]. Since each equivalence class C; (1 < 1 < k) is a regular set the
relation f = UL, C; x {a'} from £* to {a}* is a canonical function for
R. Since the classes C; together with Cy = Z* — dom(R) form a regular
partition of Z* there is a semi-automaton A = (3, Q, §) whose states identify
a refinement of this partition. From this a subsequential transducer for f
can be constructed: T = (,A,Q,5,),p) where A(g,z) = A for all ¢ € Q
and z € ¥ and p(q) = o' if state ¢ corresponds to a subclass of C; for § > 1
and p(q) is undefined if q identifies a subclass of Cp. O

Lemma 3.7 FinEq = LBRatEq N RecEq.

Proof: If R € FinEq then R is a finite relation and therefore rational.
Since R is of finite index R € RecEq. Since the maximum difference in
length of related words is bounded R € LBRatEq.

If R € LBRatEq N RecEq then R has only a finite number of classes
and each class is finite in size. Thus R can be described by enumerating a
finite number of pairs of related elements and thus is in FinEq. a

10 J. Howard Johnson

Lemma 3.8 If |3| =1 then RatEq = KerRatF.

Proof: Rational relations over a one letter alphabet are closed under in-

tersection [Gin66]. The relation R, = {(a™,a")|m > n} is rational so
that L = domR — dom(R N R,) is a regular cross-section. As a result
RN (domR x L) is a rational canonical function for R. O

Corollary 3.9 When |S| =1 we can restrict the output alphabet of rational
transductions to one letter without changing the class KerRatF. |

Lemma 3.10 If |[Z| =1 then KerSSeqF = LBRatEq U RecEq.

Proof: Since RecEq C KerSSeqF, we need only prove that when |Zl=1,
LBRatEq C KerSSeqF and KerSSeqF C RecEqU LBRatEq.

Let £ = {a} and R € LBRatEq. The set of words that are of minimum
length in their class is a regular set: L = domR — dom(R N R,). Thus
the function that maps a word in domR to the minimum length word in its
equivalence class is a rational function. It is clearly also a length-bounded
rational function. It is also subsequential as can be shown by construction.
We assume that we are given a deterministic 2-tape finite automaton which
reads one character (or blank) from each tape in each transition. We will
then construct a machine that reads the input it is given and simulates a
second input that is shorter than the given input by no more than k letters.
It can manage this by keeping track of the current states reached if the
virtual input is terminated at ¢ characters less than the current input for ¢
between 0 and k as well as the state reached if neither is terminated. These
states are maintained in the finite control of the subsequential transducer.
As input is read, a new state is added to the memory. If the memory does
not overflow no output is written. If it does overflow the oldest state is
removed and a single a is written. When the input is terminated enough
a’s are written to make the output correspond to the shortest virtual string
that led to a final state.

Let & = {a} and R € KerSSeqF so that R = ker|T| for some T =
(%,4,Q,9-,8,),p). Let Q1 = {q € Q|p(q) € A*}. Suppressing the output
part of T we obtain a deterministic finite automaton with the same states
and transition structure: A = (%,Q,9-,Q+,5). The accessible part of A
must be a simple path of s+ 1 states {¢—,q1,¢2,...,¢s—1, ro} connected to a
loop of p states {ro,r1,72,...,7p—1,70}. See for example [Eil74] for details.
The structure of T will be the same except that write labels will be attached
to each arc and final states will have a terminating p string.

Let f = |T|. I none of the ry’s are in Q. then the domain of f is
finite and so kerf is in FinEq. In order that kerf be infinite, at least
one of the loop states, say r;, must be final. Then f(a**'t*¥f) = wvw

Rational Equivalence Relations 11

where u = A(g-,a*"*), v = A(r;,aP), and w = p(r;). Let ¢(n) = |f(a™)|,
the length function of f and a = |v|/p. Then ¢(n) < an + B2 where
P2 = maxmgsii+p{d(m) — am} and and ¢(n) > on + B; where g =
MiNy<atitp{P(m) — am}. In other words, we need only check once around
the loop in order to ensure that the bounds work since T can only pump up
by (a?,v) (or by some cyclic shift of v).

Suppose now that (a”,a™) € kerf so that f(a") = f(a™) and é(n) =
#(no). There are two cases depending on whether « is equal to zero or not. If
a > 0 then the constraint an+f; > ang+pB; implies that n > ng—(82—F1)/a
and an + f1 < ang + f2 implies that n < ng + (82 — B1)/a. As a result it
follows that kerf must be in LBRatEq.

If a = 0 then the constraint ¢(n) < B implies that the length of f(a®)
must be f; or less. Thus the cardinality of the range of f is restricted to
Y k<p, |A|* implying that kerf is of finite index and therefore in RecEq. O

Corollary 3.11 When |Z| =1 we can restrict the output alphabet of subse-
quential transductions to one letter without changing the class KerSSeqF .

Proof: Let f be a subsequential function with a one letter input alphabet.
By the previous lemma, kerf is either in LBRatEq or in RecEq. But in
either case another subsequential function using only a one letter output
alphabet can be constructed. O

4 Proofs of Proper Containment

To show that the hierarchy of section 3 contains distinct classes, it is neces-
sary to exhibit relations that occur in one class but not in a subclass. The
following five relations will be used:

1. The universal relation U = X£* X £* has one class containing all of £*.

2. The relation A4 = ((£ x £)?)* U 1y has classes containing all words of
the same even length and singleton classes for words of odd length.
Note that A is the identity function when || = 1.

3. The relation B = ((a,a) - U) U ((5,5) - tv) has one class containing all
words beginning with a and singleton classes for each word beginning
with b. This relation is undefined when |Z| = 1.

4. The relation C = ((£2)* x (£%)*) U (Z x £)* has one class containing
all even length words. Odd length words are grouped into classes by
length.

12 J. Howard Johnson

{U,4,8,¢,0}
1

: {U,4,¢,0}

{U,4,8,¢,0)

{U,4,8,C} {U,4,¢}
{U,4,8} {U, 4}
{4} {U]B} {ﬂ}\ /{U}
/{U} 0

0

(a) General Case (b) One-Letter-Alphabet Case

Figure 2: Containment hierarchies restricted to {U, 4, 8,C,D}

5. The relation D = ((Ex£%)-(22x 24)*)u((B2x Z)-(Z4x £2)*)U(Sx T)*
has classes containing all words of some odd length together with all
words of twice that length. Other words form classes by length.

Theorem 4.1 The restriction of the hierarchies of theorem 8.1 to the five
classes {U,A,B,C,D} is as shown in the form of Hasse diagrams in Figures

2(a) and 2(b).

Lemma 4.2 U € RecEq — LBRatEq.

Proof: Since U is a rational equivalence relation with one class it is rec-
ognizable. It is not length-bounded since there is no value k satisfying the
length-bound constraint. For any value k, (A,a*t!) € U.)

Lemma 4.3 4 € LBRatEq — RecEq. If |[Z| > 2 then A ¢ KerSSeqF.

Rational Equivalence Relations 13

Proof: Since 4 is described by a rational expression and satisfies a length-
bound constraint 4 € LBRatEq. It is of infinite index and thus not recog-
nizable.

However if |X| > 2 it does not have a subsequential canonical function.
Otherwise suppose 4 = fo f(-1) where S = (Z,A,Q,q-,8,),p) and f = |S)|.
Then for any even length k = |w| A(q—,w)p(6(¢—,w)) must be a constant
string independent of w. The second factor can only take on |Q| different val-
ues since there are only |Q| different p values. Thus for words of some fixed
even length the first factor can take on at most |Q| different values as well.
However for each of the |Z[* words of length k after reading an additional
a, we must have |Z|* different values A(q_, w)A(8(q—,w),a)p(6(6(q-,w), a)).
The last two factors are dependent on w only through §(¢_,w) and so can
only take on |Q| distinct values. Combining these observations we have that
|Z|*® < |Q|?. This is false when k > 2logz; Q-]

Lemma 4.4 If |Z| > 2 then B € KerSSeqF — (LBRatEq U RecEq).

Proof: After reading the first character, a subsequential transducer can
either stop or begin copying its input depending on whether an a or a b was
seen. Thus B € KerSSeqF.

However, B cannot belong to LBRatEq since words beginning with a
can differ arbitrarily in length. It cannot belong to RecEq since there are
an infinite number of classes corresponding to the words beginning with b.
O

Lemma 4.5 C € DetRatEq — (LBRatEq U KerSSeqF).

Proof: To show that C is deterministic, consider a deterministic 2-tape
automaton that repeatedly reads one character from each tape and keeps
track of the parity (even or odd) of the lengths. When an end-marker is
detected on one of the tapes we know the parity of the terminated string
and can either check for termination or even parity of the other string as
appropriate.

Formally, let

A= (E;E’ {Aa BaC7 D’ E}! {A')B"C': D” E'}7A> {E}aal’ 62)

5(A4,z) = A 5(A,z) = B
61(Aa _') = C 62 (A', _l) = C
51(3,2:) = B' 52(3', .’C) = A
51(3, ") = FE b9 (C', a:) = D Vee X
51(0, :t) = D 62(0',4) = K
6(D,z) = C 6(D',z) = C'
s(D,4) = E 5(F,H) = FE

14 J. Howard Johnson

It is easily shown that this automaton behaves as described and thus recog-
nizes C.

However C does not have a subsequential canonical function even if || =
1. Otherwise suppose C = f o f(1) where S = (%,A,Q,9-,8,),p) and
f =1|8|. Let ky = | f(A)| and ks = max,eq |p(g)|. Since R is of infinite index,
the range of f is infinite so that there must be a word w satisfying | f(w)] >
ki+kz. Thus |w|is odd since otherwise |f(w)| = | f(A)] = k1. Let 8(q—, w) =
a1. Then [A(q-, w)p(gs)] > k1 + ks but |A(g-, w)A{g1,a)p(6(g1,a))] = k1 50
that |A(¢—,w)| < ky. But then |p(g1)| > k2, a contradiction.

The relation C cannot be length-bounded for any & since one of the words

a*t! or a*t? is of even length and thus in the same equivalence class as A.
O

Lemma 4.6 D € KerRatF — DetRatEq.

Proof: Let a be a letter from . Then the set D = (aa)* of words that have
an even number of a’s is a regular cross-section for D. Thus DN (Z* x D) is
a rational canonical function for D and D € KerRatF.

However, even if |[%| = 1, D is not deterministically recognizable. Oth-
erwise there is a deterministic 2-tape automaton accepting D:

A= (E,E,Ql, Q2’Q—’Q+)51a52)-

Since Q@ = @1UQ); is finite there must exist 1, 7, ¢/, and 5/ with¢ # i' or § # 5
such that A is in the same state, say ¢, after reading (a‘,a’) and (a*', a?").
But then if A accepts (a**™,a?™"), it must also accept (a¥'+™, a¥ "+7) since
there is a path from g to a final state with label (a™ -, a™).

Let n be any number satisfying n > max{0,{/2 — j,¢ — ¢ — 25 + j'}
and n # j (mod 2) and define m = 25 + 2n — . Then it follows that
(1) myn > 0, (2) i + m = 2(5 + n) where j + n is odd, and (3) ' + m >
7'+ n. Thus (a™*™,a’*") € D and therefore (a*'+™,a?'*") € D leading to
the constraint 25 —¢ = 25" —4'. Alternatively we can set m to be any number
satisfying m > max{0,5/2 ~ ¢, — ' — 2 ++¢'} and m # { (mod 2) and
define n = 2¢ + 2m — j. This leads to the constraint 2¢ — 5 = 2¢' — 5. The
only way that both constraints can be satisfied isif i = and 7 =3'. 0O

5 Canonical Function Computation

One of the principal motivations for studying rational equivalence relations
was to discover more general models for string similarity which partition
the set of strings over some alphabet into disjoint classes. Implicit in this
is the requirement that for any given set of strings, the partitioning can be
done efficiently. If there is an efficiently computable canonical function then

Rational Equivalence Relations 15

the partitioning can be achieved by computing the canonical form for each
string and sorting the set by the canonical form value.

To be more specific the problem then is: Given a description of an
equivalence relation, construct an efficient algorithm which accepts as input
a word and writes a canonical form for the class to which the word belongs.
The discussion of complexity will be restricted to that of the algorithm found
and not consider the cost of of finding it. Furthermore the algorithm cost
will be in terms of the input length only.

Theorem 5.1 The cost of canonical function computation on an input of
length n for the subclasses of RatEq can be summarized in the following
table:

Class Time Space
RatEq O(n®) O(n?)
RatEq O(n®/logn) | O(n)
KerRatF | O(n) O(n)
DetRatEq | O(n) O(n)
LBRatEq | O(n) O(n)
KerSSeqF | O(n) o(1)
RecEq O(n) 0(1)
FinEq O(n) o(1)

When restricted to the one letter case RatEq has a canonical function com-
putable in O(n) time and space and LBRatEq has a canonical function
computable tn O(n) time and O(1) space.

Because the proofs in section 3 were all effective reductions, we can
prove theorem 5.1 by establishing the complexity bounds in the three cases:
RatEq, KerRatF, and KerSSeqF.

Lemma 5.2 For any R € RatEq there is a canonical function f com-
putable in O(n®/logn) time and O(n) space. Alternatively, it may be com-
puted in O(n?) time and space.

Proof: Consider an enumeration of £* that lists A, then strings of length
one, strings of length two, and so on. Within each set of strings of a given
length, we choose a reversed lexicographic ordering. For example, if our
alphabet is {a,b,c} and we choose to have a < b < ¢ then our enumeration
will be:

A,a,b,c,aa,ba,ca,ab,bd,ch,ac,be,cc,aaa,baa,...

If we are now given a string u we will find the first element v in sequence
such that (u,v) € R. This is definitely a bounded search since we never

16 J. Howard Johnson

need to search past u. This exponential time algorithm provides a canonical
function for R.

We can reduce the cost of finding the canonical element using a modifi-
cation of the membership algorithm for rational relations. Assume that we
are given a quasi-deterministic 2-tape automaton for a rational equivalence
relation R: A = (%,%,Q,9-,Q4+, 61, 82). Consider the modified automaton
A'=(Z,2U{?},Q,9-,Q+, 61,65 where ? is a new letter not in ¥ and

, _] (g, 2) ifzeX
b2(q,2) = { Uyes 82(g,y) if z=7

Thus 63 is the same as 8, except that it can read a wild card character
instead of any other letter.

We can use A’ to identify the canonical string. We first find its length
by testing (u,A), (u,?), (u,7??), and so on for membership. When we find a
string of wild card characters that is related to u, we then know the length
of the output word.

The second part of the algorithm attempts to replace each wild card
character by a letter from X proceeding from right to left. Let = = {a;]1 <
i < s} and suppose our given ordering is a; < a3 < ag < - -+ < a,. First we
replace the last wild card by a; and test the new string for membership. If
this fails, we try a2 and so on until we succeed. Then we move on to the
second last wild card and repeat the process. When we finish the first wild
card, we will have a string in £* and it will be minimal according to the above
ordering. This algorithm requires O(n) space and O(n3/logn) time since it
requires a maximum of n+|X|n passes of the standard membership algorithm
each of which require O(n?/logn) time and O(n) space [MP80,vLN82|.

It should be clear that we could have assigned wild cards from left to right
instead of from right to left. The advantage with the above approach is that
we can avoid many repeated computations as done in the algorithm in Figure
3. This is a modification of the standard dynamic programming algorithm
for testing whether a pair of words are accepted by a non-deterministic 2-
tape automaton. The basic data structure used is an array T with rows
indexed by positions in the first word and columns indexed by positions in
the second word, here being computed. The first “for” statement (at {A)
in Figure 3) initializes column zero of T so that T'[¢,0] contains all states
reachable from ¢_ with a label (ujuz...u;,A). The “while” statement at
(B) continues adding columns until one is found whose last element contains
a final state. Each column is added by extending the output word with a
wild card character and determining the states reachable with label as the
appropriate prefix of u and the correct number of wild cards. The length
of the output is known and assigned to the variable L. The loop at (C)
then prepares for a backward pass of the array T by removing from the last

Rational Equivalence Relations 17

{ Given a modified automaton A' = (%,%,Q,¢_,Q+,6;,6;) and an input
word u, compute the first word v in reversed lexicographic sequence
such that (u,v) € |A'|. Let ni(k,z) = {q|6i(q,z) =k} fori =1,2 }

T: array [0: |u|,0: |u|] of set of states;

W: array [0: |u|] of set of states;

begin T[0,0] := {¢-};

(A) for i:=1 to |u| do T[¢,0] := Userji1,0) 61(k, us);
J:=0
(B) while T[|u|,7]Nn @+ = 0 do begin
J:=3+1 T[0,5] :=Usero,j-1) 52(k,?);
for ¢ :=1 to |u| do
T[s,4] = UkeT[i—l,j] b1(k, u;) U UkeT[i,j—l] b2(k,?)
end;
L:=3; Tllu|,L}:=T[lul,L] N Q4;
(C) fori:=|u/—1to0by —1do
T[s, L] == T[i, L] N Uperfi+1,z) M (ks iv1);
(D) for j:=L-1to 0by —1 do begin
(E) for I :=1 to |X| until U!.';lOW[i] # § do begin
vit1 = ai; Wlu|] :== T(lu|, 5] N Urer(ju),j+1) n2(k, vi41);
for ¢ :=|u|— 1 to 0 by —1 do
Wi :=T[i,5] N {UkeW[i+1] M (K, wir1) U Uperp,j+1) 12 (5, ”j+1)}
end;
for ¢ :=0 to |u| do T[s,j] := W]i]
end end

Figure 3: A canonical function for a rational equivalence relation

column all states which are not on a path to a final state. The loop at (D)
continues the process by weeding out from T the states which cannot be on
a successful path. The decision about the actual characters of v are made
in the loop (E). Each character in ¥ is tried in turn until one is found which
does cause the column under consideration to be completely zeroed out and
thus break all paths. This algorithm then requires O(n?) time and O(n?)
space since each column of the table will be computed once in the first part
of the algorithm and modified a maximum of || times in the second part.
O

The above function is not in general rational. For example, consider the
relation R = T UT(-1) Uy where T = {(a®b%,b%a2*+1)|i, 5 > 0}. The
above algorithm would select from each class the shorter of the two words.
This is shown in [Joh85] not to be a regular set. As a result, it cannot be

18 J. Howard Johnson

the range of a rational function.

Lemma 5.3 If R € KerRatF then there is a canonical function that re-
quires O(n) time and space for input of size n. Furthermore this function
can be effectively computed from a finite transducer for R.

Proof: Clearly if R € KerRat then there is a rational function f that is a
canonical function. Thus we need to demonstrate that such a rational func-
tion can be found and that it can be used to construct a O(n) time and space
bounded canonical function. It is shown in [Joh85] that any R € KerRatF
has a regular cross-section. Thus we can effectively find a rational function
for R by enumerating regular languages and testing whether restricting the
domain of R to each of these yields a function. Clearly such a function will
be rational and will exist because of the existence of a regular cross-section.

Now any rational function can be expressed as the composition of a left
sequential and a right sequential transduction [Ber79, Theorem 5.2 pp. 126—
127]. Since a sequential transduction cannot generate an output whose
length exceeds its input length by more than a constant factor, the time
and space required will be O(n). a

Lemma 5.4 If R € KerSSeqF then there is a canonical function that
requires O(n) time and O(1) space. Furthermore this function can be effec-
tively computed from a deterministic finite automaton for R.

Proof: The only information that needs to be stored is the current state
and the next symbol of input. For each character read we will expend an
effort proportional to the number of characters written. This is bounded by
a constant so that the overall cost is linear in the size of the input.

We can effectively find such a transducer if it exists. Without loss of
generality we can assume that the image alphabet has two letters. We simply
enumerate transducers from X* into {a,b}* until we find one f satisfying
fof(=1) = R. This latter question is known to be decidable for deterministic
rational relations [Bir73] and as a result of the reductions of section 3 we
know that both sides of the equality are deterministic rational. a

6 Decision Problems

If rational equivalence relations are to be useful, it must be possible to con-
struct them. One approach would be to start with a rational relation spec-
ified as a finite transducer and modify it until it is an equivalence relation.
This section shows that this is very likely not to be a feasible approach since
it is recursively undecidable whether the behaviour of a given transducer is
an equivalence relation.

Rational Equivalence Relations 19

Theorem 6.1 Given a finite transducer for a rational relation R, the fol-
lowing properties are recursively undecidable:

R 1s transitive (i.e., RoRC R)
R is symmetric (i.e., RC R(-V)
R 1s reflexive (i.e., taomr C R)
R € RatEq

R € KerRatF

R € DetRatEq

R € KerSSeqF

R € RecEq

R D ;A e N

The following properties are decidable:

1. R € LBRatEq
2. R e FinEq

3. R € RecEq when R is known to be an equivalence relation.

If the alphabet is restricted to contain one letter then the above undecidable
properties become decidable ezcept for R € DetRatEq which remains open.

This will be proven by exhibiting a rational relation which is either the
universal relation or not an equivalence relation depending of whether an
instance of Post’s correspondence problem has a solution. Since the universal
relation is in RecEq, by the hierarchy of theorem 3.1 it is undecidable
whether a given rational relation is in any of the classes RatEq, KerRatF,
DetRatEq, KerSSeqF, or RecEq. Since the relation can be made to fail
any of the reflexive, symmetric, or transitive laws, these are undecidable
properties. These arguments depend critically on ¥ having at least two
letters. All of these questions become decidable in the one letter case using
the decidability of inclusion.

The following three lemmas will follow a model of Fischer and Rosen-
berg [FR68] using a reduction from Post’s Correspondence Problem: Given
sequences uj,uz,...,Up and vy, vs,. .., vp of strings, determine a non-empty
sequence of indices 1,13,...,1; such that u; u;, ---u;, = v; v;, -+ v;,. The
existence of a solution to PCP is a well-known recursively undecidable prob-
lem.

Lemma 6.2 Transitivity testing for rational relations is undecidable.

20 J. Howard Johnson

Proof: Let a and b be in ¥ and U1, U2,...,Up, V1, V2,...,Up € T* be an
instance of PCP. We can construct a relation that is transitive if and only
if this instance of PCP has no solution. Define

U = {(ab,u1), (a?b, u3), .. ., (a”B, up)}

V = {(ab,v1), (a®b,v2),... , (aPb,vp)}.

The relation Ut is subsequential since we can construct a subsequential
transducer that counts a’s and whenever it reads a b, emits the correct u;.
Thus U? is a deterministic rational relation. Similarly V* is a deterministic
rational relation. The relations (2* x £*) — Ut and (Z* x *) =Vt are
deterministic rational since deterministic rational relations are closed under
complementation. Since any deterministic rational relation is rational

Z={(Z"xZ)-UTu{(Z* x =) -V} =(Z*x %) - (Ut nV+)

is rational. Now Ut N V™ is not empty if and only if the corresponding
instance of PCP has a solution. If Ut NV * is empty then Z = £* x £* and is
thus transitive. If Ut NV * is not empty, it will be a function that is not total.
Thus if (w1, w3) € Ut NV* then z # w; implies that (wy,z) ¢ Ut NV,
It is possible to choose z # w; such that z ¢ dom(Ut N V1) since there
are at least two words (and therefore at least one different from w;) in
* — dom(U*t NnV*) (for example, aa and aaa). Now (w1, w2) € Z but
(w1,2),(2,wz) € Z. Thus Z is not transitive. Since Z is transitive iff the
given instance of PCP does not have a solution, transitivity is an undecidable
property. O

Lemma 6.3 Symmetry testing for rational relations is undecidable.

Proof: Consider Z = (£* x £*) — (Ut NnV*) with X, U, and V defined
as above. Since Z is a rational relation, (A- Z) U B where A = X x A and
B = A x £* is a rational relation.

Now if UT NVt is empty, then (A-Z)U B is £* x £* and thus symmetric.
If Ut NVT is not empty, A- (Ut NV+) is a function but its inverse is not.
Thus (A-Z)UB = (Z* x Z*) — (A- (Ut N V™)) is not symmetric. O

Lemma 6.4 Reflezivity testing for rational relations is undecidable.

Proof: Let A = {a,b,$} = T U {$} and let Z = (Z* x =*) — (Ut NVt) as
above and A = A x (Z*-{$}) and B = ({$}-2Z*) x A. Thus A-Z- B has as
domain {w;$wz|w;, w; € £*}. But (wySwa, wi$w;) € A- Z- B if and only if
(w1, w2) € Ut NV since by construction (w;$ws, w;$wz) must factor into
(A,w18) € A, (w1,w;) € Z, and ($ws,A) € B. Thus A- Z - B is reflexive if
and only if the given instance of PCP is empty. O

Rational Equivalence Relations 21

Note that we can extend the domain of A-Z - B to A* by constructing
Z'=A-Z-BU(Z'U(Z*$Z*($T*) 1)) x (B* U (Z*$=*($z*) 1))

without affecting the proof. In addition, we could code A back into X, so
that two letters suffice.

Corollary 6.5 It is undecidable whether a rational relation is in RecEq.

Proof: The above lemmas construct a rational relation which is either a
recognizable equivalence relation (£* x £*) or not an equivalence relation
depending on whether an instance of PCP has a solution. Thus membership
in RecEq is undecidable.]

Lemma 6.6 It is decidable whether a rational relation is in LBRatEq.

Proof: We can check whether it is length-bounded by inspecting the trans-
ducer for loops that are not length-preserving and yet can occur on a success-
ful path. If there is one such loop the transduction cannot be length-bounded
since we can pump up one of the tapes arbitrarily and exceed any predefined
bound. If there is no loop then the transduction is length-bounded following
[EMB65]. If the relation is length-bounded then it is deterministic. Symmetry
can be tested using Bird’s algorithm [Bir73] to see whether R equals R-1,
Transitivity can be tested by computing R o R which is length-bounded if
R is and testing whether this relation is equal to R. It is easily shown that
R=R(1Y and R= Ro R if and only if R is an equivalence relation on its
domain. O

Lemma 6.7 It is decidable whether a rational relation is in FinEq.

Proof: We can easily check whether the relation is finite by checking the
domain and range for finiteness [Ber79, Proposition 8.2 p. 88] If they are
finite then the finite set of ordered pairs in the relation can be enumerated
and the reflexivity, symmetry and transitivity verified. O

Lemma 6.8 It is decidable whether a rational relation 1s an equivalence
relation in the one-letter-alphabet case.

Proof: Inclusion testing for rational relations over a one letter alphabet
is decidable. Thus testing of reflexivity, symmetry, and transitivity are all
decidable. O

Lemma 6.9 Given a rational equivalence relation R it s decidable whether
R € RecEq.

22 J. Howard Johnson

Proof: The idea is to compute a locally finite thinning of R as shown in
[Joh85] and test whether the resulting relation is finite. If it is then the
original relation must have been of finite index and therefore in RecEq. O

Lemma 6.10 It is decidable whether a rational relation is in either of the
classes RecEq or KerSSeqF in the one-letter-alphabet case.

Proof: From above results we can decide whether a relation is in LBRatEq
or in RecEq and therefore whether it is in KerSSeqF (since it the union
of these two classes in the one letter case). O

There remains exactly one case and it is open. If R € KerRatF is it
decidable whether R € DetRatEq?

7 Conclusions and Open Problems

A hierarchy of rational equivalence relations has been established. This pro-
vides a framework for identifying efficient canonical functions and a number
of decidability questions. Although it is undecidable whether a given ra-
tional relation is an equivalence relation, canonical functions seem to be
efficiently computable, at least in terms of the input length.

The most significant remaining open problem is whether the containment
KerRatF C RatEq is proper or alternatively that these classes are the
same [Joh85]. There are several relative decidability questions that remain
open.

Given Membership Decision Problem

R € RatEq R € KerRatF? R €DetRatEq? R € KerSSeqF?
R € KerRatF | Rc DetRatEq? R € KerSSeqF?

R € DetRatEq | R € KerSSeqF?

R € LBRatEq | R € KerSSeqF?

R € DetRat R € DetRatEq? R € KerSSeqF? R € RecEq?

With regard to the question of whether R € KerSSeqF for R € KerRatF,
it is known to be decidable whether a rational function is subsequential
[Cho77]. However, this question is stronger: For the given rational function
is there a subsequential function whose equivalence kernel is the same?
Another type of open problem is that of effectively characterizing the
classes RatEq and DetRatEq, that is coming up with a presentation for
these two classes such that any member of the class can be represented
by the model and it is decidable whether the presentation is well formed.
For example, a rational equivalence relation can be described by a rational
transducer and an assurance that it describes an equivalence relation. Since

Rational Equivalence Relations 23

the assurance cannot be verified effectively, this is not an effective charac-
terization. On the other hand, a member of KerRatF can be presented in
terms of a rational function in the form of a transducer. It is possible to
verify that this transducer describes a function.

Another open problem related to the effective characterization for Det-
RatEq is the decidability of the question whether Ro R = R when R is
deterministic rational. If this is decidable then the class of DetRatEq can
be effectively characterized by deterministic 2-tape finite automata.

8 Acknowledgements

I wish to thank Karel Culik II for his help at the early stages of this research
and especially for pointing the way in the undecidability proofs of section
6. I also thank Christian Choffrut for some useful discussions leading to the
resolution of the one letter alphabet case and Derick Wood and a referee for
comments on the presentation of the material.

References

[Ber79] Jean Berstel. Transductions and Contert-Free Languages. B.
G. Teubner, Stuttgart, Germany, 1979.

[BHT77] Meera Blattner and Tom Head. Single valued a-transducers.
Journal of Computer and System Sciences, 15:310-327, 1977.

[Bir73] Malcolm Bird. The equivalence problem for deterministic two-

tape automata. Journal of Computer and System Sciences,
7:218-236, 1973.

[Cho77] Christian Choffrut. Une caractérisation des fonctions séquen-
tielles et des fonctions sous-séquentielles en tant que relations
rationnelles. Theoretical Computer Science, 5:325-338, 1977.

[Dav62] Leon Davidson. Retrieval of misspelled names in an airlines pas-
senger record system. Communications of the ACM, 5(3):169—
171, 1962.

[Eil74] Samuel Eilenberg. Automata, Languages, and Machines, vol.

A. Academic Press, New York, 1974.

[EMB65] C. C. Elgot and J. E. Mezei. On relations defined by generalized
finite automata. IBM Journal of Research, 9:47-65, 1965.

24

[FR68]

[FS69]

[Gin66]

[Joh83]

[Joh85]

[Knu73]

[MKTM77]

[MPS0]

[Niv68]

[NK62]

[Sché61]

[Sch75]

J. Howard Johnson

Patrick C. Fischer and Arnold L. Rosenberg. Multitape one-
way nonwriting automata. Journal of Computer and System
Sciences, 2:88-101, 1968.

Ivan P. Fellegi and Alan B. Sunter. A theory of record linkage.
Journal of the Americal Statistical Association, 64:1183-1210,
1969.

Seymour Ginsburg. The Mathematical Theory of Contexzt-Free
Languages. McGraw-Hill, New York, 1966.

J. Howard Johnson. Formal Models for String Similarity. PhD
thesis, University of Waterloo, 1983. Available as University of
Waterloo Research Report CS—-83-32.

J. Howard Johnson. Do rational equivalence relations have
regular cross-sections? In Proceedings of the 12th Interna-
tional Conference on Automate, Languages, and Programming,
pages 300-309, Springer-Verlag LNCS 194, 1985.

Donald E. Knuth. Sorting and Searching. Addison-Wesley,
Reading, Mass., 1973.

Gwendolyn B. Moore, John L. Kuhns, Jeffrey L. Trefftzs,
and Christine A. Montgomery. Accessing Individual Records
Jrom Personal Data Files using Non-unique Identifiers. Tech-
nical Report NBS Special Publication 500-2, U.S. Dept. of
Commerce—National Bureau of Standards, 1977. Available
from the National Technical Information Service.

William J. Masek and Michael S. Paterson. A faster algorithm
for computing string-edit distances. Journal of Computer and
System Sciences, 20(1):18-31, 1980.

Maurice Nivat. Transductions des langages de Chomsky. Ann.
de UInst. Fourier, 18:339-456, 1968.

H. B. Newcombe and J. M. Kennedy. Record linkage: making
maximum use of the discriminating power of identifying infor-
mation. Commaunications of the ACM, 5(11):563-566, 1962.

M. P. Schiitzenberger. A remark on finite transducers. Infor-
mation and Control, 4:185-196, 1961.

M. P. Schiitzenberger. Sur les relations rationelles. In Automata
theory and formal languages: 2nd GI Conference, pages 209
213, 1975.

Rational Equivalence Relations 25

[vLN82] Jan van Leeuwen and Maurice Nivat. Efficient recognition of
rational relations. Information Processing Letters, 14(1):34-38,
1982.

[WieT7] Gio Wiederhold. Database Design. McGraw-Hill, New York,
1977.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

