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Abstract

The Effect of Asymmetric Deletions
on

Binary Search Trees

This thesis deals with the study of binary search trees subjected to insertions
and deletions using the standard Hibbard deletion scheme. It has been
widely believed that deletions followed by insertions caused the internal path
length of binary trees to be reduced on average. Recent empirical results
obtained by Eppinger and Culberson cast doubt on this assumption. We
present strong theoretical and empirical evidence that long sequences of dele-
tion and insertion pairs result in trees with an expected internal path length
of ®(N¥2). We also show that this theory applies to a wide variety of asym-

metric deletion algorithms, including an improved one given by Knuth.

We present the results of extensive simulations in an attempt to verify the
estimates of the leading coefficient and lower order terms of the internal path
length. A simulation of special features of trees provides results on trees as
large as 100,000 nodes.

Finally, we consider the problem of designing deletion algorithms without
using rebalancing techniques that yield good average case behavior.
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Chapter 1

Introduction

Binary search trees are well known data structures, often used when fast
search, insertion and deletion are required. They also support nearest neigh-
bor and range queries. When the search trees are well balanced, any of these
operations can be done in O(logN) time on trees containing N items.
Although binary search trees have been intensively studied, there is still
much to be learned, particularly in the dynamic use of these trees.

We are concerned with the effect of deletions and insertions on the
expected cost of accessing elements in a binary search tree using various dele-
tion and insertion schemes that do not explicitly rebalance the tree. Thus,
we do not consider either height or weight balanced trees, and this will be the
only reference to such trees in this thesis. In particular, we are concerned
with the effect of the Hibbard [11] deletion scheme, which was first published
in 1962. The long term effect of this scheme has been an open problem since
its publication. In Chapter 2 we show that under the assumption that each
deletion is paired with an insertion, in a tree with N nodes, then there is
strong reason to believe that the expected cost becomes @(N2). In Chapter 3
the results of extensive simulations are used to strongly support this conclu-
sion. A preliminary study of these conclusions appears in [6]. We now intro-
duce the problem more formally and follow that with a history of previous

work.

1.1. Asymptotic Notation

We use the following definitions for our asymptotic notation. This nota-

tion is fairly standard and follows Gonnet [10].
J(n)= O(g(n))=F kand n, D |[f(n)| <kg(n)Vn>n,
f(n) = Q(g(n)) = g(n) = O(f(n))
f(n) = ©(g(n)) = f(n) = O(g(n)) and f(n) = Qg(n))
f(n) = o(g(n)) ~ lim£L2L = 0

n==g(n)
f(n) = w(g(n)) = g(n) = o(/(n))



1.2. Definitions
We follow the definitions of the area given by Knuth [16]. A binary

search tree is a finite set of nodes which is either empty, or consists of a root
(containing a key) and two disjoint binary trees called the left and right sub-
trees. If v is a non-empty node of a tree, then !(v) designates the left subtree,
r(v) the right subtree, and k(v) the key of v. The father f(v) of v is defined by
the relation f(I(v))=f(r(v))=v. The search propertyis defined by the rule that
for each node v € T, each key in the left subtree of v is less than k(v), and
each key in the right subtree of v is greater than k(v). This implies that each
key in a search tree is unique. Henceforth, binary search trees will be called
simply trees.

The successor s(v) of anode v € T is defined to be that node in the right
subtree with the minimum key. The predecessor p(v) is similarly defined to
be the node with the maximum key in the left subtree. If either subtree is
empty, then the corresponding function is undefined. The natural definition
for s(v) when the subtree is empty would be the ancestor of v which contains
the next largest key; however, for purposes of the description of the algo-
rithm and the subsequent analysis, the above definition is preferable.

We measure the cost of searching for a key in a tree by the number of
unsuccessful comparisons required to find the key, starting from the root.
The Internal Path Length (IPL) of a tree, is the sum over all the nodes in a
tree of the depth of the node, where the root is at depth 0. The average
length of a search path is the IPL of the tree divided by the number of nodes
N. The average length of a search path represents the average cost of access-
ing a key.

There are two basic operations that change trees, insertion and deletion
of keys. To insert a key, a leaf is created containing the key and is attached
in the unique position that maintains the search property of the tree. The

natural and usual method for doing this can be stated recursively as
Insertion
Insert(z,v)
if vis empty, add a node n with k(n)=1z.
else if k(v)<z Insert(z,r(v))
else Insert(z,l(v)).



It is not known who first discovered this algorithm, although the first pub-
lished descriptions were by Windley [21], Booth and Colin [2] and Hibbard
[11] who apparently arrived at the method independently.

In contrast to the insertion problem, there does not seem to be any one
natural algorithm for deletions. Deletions seem to be intrinsically more
difficult. The algorithm which is the most widely known and used is the fol-
lowing due to Hibbard [11].

Hibbard Algorithm
To delete a key d from a tree T, find v € T such that k(v)=d.

if r(v)=@ then do
{ The right subtree is empty, so delete the node containing key}
{ and re-attach the left son as the appropriate left or right son }
{ of the parent }
If v is not the root [I/r](f(v)) < I(v);
{If v is the root then !(v) becomes the new root }

remove v from T.
else do

{ Replace the key d with the key from the successor }

Kv)~k(s(v));

{ Delete the successor node, re-attaching its right subtree. Note that
the successor never has a left subtree }

if s(v)=r(v) then r(v)er(r(v))

else I(f(s())) = r(s(v))

remove s(v) from T.

The following examples applied to the tree in Figure 1.1 may clarify
these algorithms. For convenience the keys are chosen from the integers.

To insert the value 5 in this tree we simply attach it at the point indi-
cated by the dotted line. To Hibbard delete the value 6 from the tree in Fig-
ure 1.1, we replace it by its successor, which is 7. The node containing 8
becomes the left son of the node containing 9, while the node which contained
7 is deleted. To Hibbard delete 4, which has no right son, the node is deleted

and 2 becomes the new left son of 6.



Figure 1.1 Example Binary Search Tree

By a random tree on N nodes we mean a binary tree generated by insert-
ing a random sequence of N keys (all permutations equally likely), using the
above algorithm. That is, we are referring to the probability distribution of
the shapes of trees generated by random insertion sequences. It is well
known (See for example, Knuth [16] Chapter 6.2.2) that the expected IPL of a
random tree is approximately 1.386 N log,N. We caution the reader that this

is quite different from all trees being equally likely.

The general problem we will address is that of determining the expected
IPL of a tree generated by a random sequence of random insertions and ran-
dom deletions. The problem as stated is somewhat ill-defined. To be more
precise (and to make the problem more tractable) we define an update on a
tree to be thg deletion of one key selected at random from the tree, followed

by an insertion into the resulting tree of a new random key.

We begin with any tree T, on N nodes, for example one generated by
inserting N random keys from the domain D=(0,1). For times j >0, we define
the tree T; as the tree created by performing one update (consisting of a ran-
dom deletion followed by a random insertion) on the tree T;_;. The inser-
tions are performed by the standard leaf insertion algorithm [16]. The dele-
tions are performed by the Hibbard algorithm. It is assumed that the keys
are drawn from a fixed dense domain and that the probability of deletion is
the same for each key in the tree. For purposes of simplifying the analysis,
we consider the keys to be drawn from a uniform(0,1) domain, although this



does not affect the validity of the result for other domains. (See section 2.8).
Under these assumptions, we will estimate, under certain reasonable assump-
tions, the asymptotic upper and lower bounds on the expected value of the
Internal Path Length (IPL) for T; as j-«.

1.3. Historical Background

As has already been indicated, the history of binary search trees extends
back into the late 1950's. However, the problem with which we are concerned,
namely the effect of sequences of deletions and insertions on binary search
trees, can be considered as having originated with Hibbard’s [11] publication
of a deletion algorithm. The algorithm is decidedly asymmetric, in that
whenever the successor of the node containing the key scheduled for deletion
exists, that key is used to replace the key in the node. Thus, the node
effectively moves to the right in the domain from which the keys are chosen.
In light of this observation, the following theorem, which Hibbard proved in
his original paper [11], is quite surprising.

Theorem

If one key in a random tree of N+1 nodes is selected at random and deleted

using Hibbard’s algorithm, the result 1s a random tree on N nodes.

Recalling our earlier definition of a random tree, what this means is that
the probability of obtaining any particular shape of tree by inserting N+1
elements in random order and then deleting one at random, is the same as
the probability of obtaining that shape by inserting N elements in random
order. The intuitive conclusion is that the Hibbard deletion algorithm leaves
the distribution of trees unchanged, and thus sequences of insertions and
deletions generate trees with the same shape distribution as those generated
by pure insertions. This, however, is false. It was first observed by Knott
[14] in 1972 that the first insertion after a deletion changes the distribution of
shapes. '

The reason for this is that, although the shape distribution is maintained
for a deletion, the distribution of values within shapes is not maintained. To
properly describe the distribution of trees of size N, we must include in the
definition both shape and values. For example, in Figure 1.2.A we see the
distribution of trees of size 2 generated by insertions drawn at random from
the domain {1,2,3}. Also displayed is the probability of each of these trees
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2 Insertions

Only 1/6  1/6 1/6 1/6 1/6

3 Insertions

2/9 1/9 1/6 1/9 2/9
1 Deletion / / / / /

A: Tree Probabilities

1/6 2/6 1/6

B: Delete 1 to Obtain Rightmost Above

Figure 1.2 Illustration of Probability Changes Caused by Deletion

being generated from a sequence of three random insertions followed by one
random deletion. There are only two shapes for trees of size 2, and each of
these shapes occurs with probability of one-half under either method of gen-
eration. However, the probabilities of the individual trees do change. For
example, the probability of the rightmost tree in the figure increases from 1/6
to 2/9. In Figure 1.2.B, the only trees that can generate the rightmost tree of
size two through a deletion (of key 1) are shown, together with the probabil-

ity of their occurrence.



It is now readily seen how subsequent insertions change the distribution
of shapes. By assuming that a new key is equally likely to fall into any of the
four intervals (0,1), (1,2), (2,3), or (3,4), we can compute the probability of
occurrence for each of the tree shapes of size three given the above probabili-
ties for the trees of size two. For example, the insertion of a key in the inter-
val (1,2) only creates a balanced tree of size three when inserted into the
rightmost tree of Figure 1.2.A. Summing over all the cases, we see that the

probability of the balanced tree is increased when a deletion is included.

In his thesis, Knott [14] reported the results of extensive simulations of
the Hibbard deletion algorithm for trees of size up to 98 nodes. In these
simulations a random tree was first generated through a sequence of random
insertions, then the tree was subjected to a sequence of deletion/insertion
pairs. In all cases, what appeared to be the asymptotic average IPL was less
than the expected IPL of a random tree. This led him to conjecture that the
Hibbard algorithm causes the search time to be improved when used with the
standard insertion algorithm for random sequences of insertions and dele-

tions.

In 1978, Jonassen and Knuth [12] published a lengthy and difficult
analysis of the algorithm, proving that Knott’s conjecture is correct for trees
of size 3, thus strengthening the conjecture for trees of all sizes. This paper is
an excellent exposition of the extreme difficulties involved in a complete and
exact analysis of this problem. An analysis of trees with four nodes was done

by Baeza-Yates [1] in 1985 with similar results.

In 1982, Eppinger [7] performed much more extensive simulations of the
Hibbard algorithm, for trees as large as 2048 nodes and for more than N?
updates. The surprising result was that for trees of size greater than about
128 nodes, the asymptotic IPL appeared to increase. Using regression tech-
niques, Eppinger conjectured that the expected IPL was O(Nlog®N), which is
considerably worse than the O(NlogN) expected IPL of a random tree. It was
further noted that to reach the plateau assumed to be the long term expected

IPL, required on average N? updates.

Eppinger also simulated the effects of a symmetric version of Hibbard’s
algorithm, in which for each deletion it is randorly decided whether to use
the predecessor or the successor as the replacement key. In all the tests per-
formed, the average IPL was reduced after many updates. These results are

considered further in Chapter 4.5.



In 1983, the author [5] ran further simulations on a variety of algorithms,
generally confirming Eppinger’s results. However, it was not clear that the
O(Nlog3N) conjecture could be supported over other simple formulations that
gave equally good fits to the limited data afforded by the simulations. It was
conjectured that one significant effect of the asymmetry of the Hibbard algo-
rithm is that the tree should become skewed to the left. This is a direct
result of the root of any subtree always receiving a larger key when its
current key 1s deleted and the right subtree is not empty. Various measures
were devised to measure the imbalance of a binary tree and when applied,
these measures showed strong empirical evidence of the conjectured skewing.
One of these measures was the number of nodes in the left linear descendents
of the root; this set of nodes was called the backbone of the tree.

In the following chapter, an approximate mathematical analysis of the
length of the backbone and the size of its subtrees, subject to certain
hypotheses, is presented. The results of this analysis are quite convincing
and support the theory that the expected IPL of trees subjected to a large
number of random updates is @N¥2). In Chapter 3 the data from previous
simulations and from further extensive simulations is used to strongly sup-

port this theory.



Chapter 2

Models and Analyses —

In this chapter we develop models to explain the behavior of binary trees
when modified by long sequences of random updates. We first present a
descriptive analysis of the behavior of the tree, laying an intuitive basis for
understanding the later refined models. Formal analysis of the simpler

models then follows.

2.1. The Intuitive Basis for Our Models

As has been previously noted, when a node that has a non-empty right
subtree has its key scheduled for deletion, the Hibbard algorithm brings up
the next larger key from the right subtree to replace it, and further adjust-
ments are then made in the right subtree. However, our approach ignores the
shape of the right subtree. This process can be thought of as moving the
node to the right in the domain.

Insertions

Figure 2.1 Domain Splitting by Root.

For example, if we consider Figure 2.1, we see that on deleting the key ‘a’
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from the tree, the root gets the new key ‘b’. The root acts as a divider for all
future insertions, and so after the deletion the probability of falling into the
left subtree is increased for each insertion. Intuitively, the left subtree
should be increased on average by one node, and the right subtree should be
decreased by one during the next few moves. The interval (0,Ro0t) has been
increased by the distance between the two adjacent keys. The interval
between the root and its left son has also been increased, and so the right
subtree of the left son of the root is expected to show the actual increase as
future insertions are made. The size of the interval between any two nodes in

the tree determines the expected number of nodes between them.

Figure 2.2 Tree After Many Updates.

However, the roots of each of the subtrees in the tree are also equally
subject to deletion, and so we expect the tree to eventually come to look like
that in Figure 2.2.

The nodes down the left side of Figure 2.2 are called the backbone of the
tree. Note that the left-most node in the backbone must contain the smallest
key in the tree. We will argue that after N? or more updates have occ'urred,
there are on average ®(N'?) nodes in the backbone, and that each of the sub-

trees of the backbone are of average size O(N'2).

We wish to study the behavior of the backbone, and in particular the
intervals between the backbone nodes. One approach to this is to study the
node motions over the domain. When the right subtree of a backbone node is
empty, the node is deleted from the backbone when its key is deleted. This
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complicates the picture somewhat.

Figure 2.3 Tag Model.

To eliminate the problem of disappearing nodes, we track the backbone
nodes by attaching tagsin the manner discussed below and pictured in Figure
2.3. There i1s a tag on each of the backbone nodes of the initial tree. When a
node is inserted into a backbone at time 5, a tag with label j is attached to
the node. This can occur only when the key to be inserted is smaller than
any other key in the tree. When a node is deleted from the backbone, all tags
attached to it are reattached to the next larger member of the backbone.
Thus, tags may clump together on a node, and if so, will remain together
thereafter. Note that when a key is deleted from the backbone, and the node
containing the key has a right son, then the node is not deleted and so the
tags attached to it stay on that node.

We require a device that allows the tags to move freely off the tree
without introducing special boundary conditions. To do this we create a
dummy root element (R), with key value ¥(R)=1. The dummy root is not
subject to deletion or alteration. (Note that 14 D). Since 1 is larger than
any key in the tree, the dummy root will have only a left subtree, which is
. the entire tree of N nodes. We emphasize that the root of the tree is still the
real root, and that the dummy is just a position for the tags to move

smoothly onto when they leave the tree.
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The value of a tag is the key of the node with which it is associated. The

tag moves at time j if its value changes.

Again, note that it is not necessary to reattach a tag to move it, since
replacing the key in the node moves the tag. It is important to maintain the

distinction between deleting keys and deleting nodes from the tree.

To make all this a bit clearer, consider the following examples based on
Figure 2.3. If the key ‘c’ is deleted, then the node containing ‘c’ is deleted
making the node with ‘a’ the left son of ‘d’. The tag with label ‘3’ will be
reattached to ‘d’, giving that node two tags. ( If more tags had been on ‘c’,
they too would have been reattached.) If key ‘a’ were deleted, then ‘b’, the
smallest key in the right subtree of the node, would be brought up to replace
it. The subtree would also be altered in this case, but we will not be con-
cerned with that. Note, however, that the tags in each case moved tc the
next larger key in the tree. Eventually, all these tags would be moved to the
dummy root R. New tags will be created one at a time at the far left when-

ever a new smallest key is inserted.

The following observation is the key to our analysis. It is easily proved
by analyzing the various cases that can occur during the deletion and inser-

tion of keys in the backbone.

Critical Observation:
If a tag moves at time 5, then it assumes the value of the next larger key

in the tree at time j—1.

We can now partially understand the behavior of trees by studying the
behavior of tags. We will show that the tags tend to become clumped as they
move, and that the intervals between tags, and thus between backbone
nodes, apparently become distributed to achieve a @(N'?) average search

path length.

Intuitively, the tags, starting near zero, perform a random walk to the
right, taking a step of approximate average size 1/ N+1) with probability of
1/N per update. After an average of N steps (requiring an average N? updates)
the tag will reach the dummy root; that is, it will have fallen off the tree.
Knowing the nature of random walks, it seems reasonable that a tag would
deviate ®(N'?) steps from its expected position before reaching the right side.
Since the keys are uniformly distributed, this implies O(N'?) nodes between
tags. Since the backbone nodes are precisely the ones with tags, achieving
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the square root deviation implies that there are ®(N'2) nodes in the back-
bone. It also means that each right subtree of the backbone is expected to
contain O(N'?) nodes. Assuming that the simplified models of this tagging
process given in the next section are asymptotically accurate, we can prove
that after Q(N?) updates a tree will have an expected search path length of
@(NI/Q)_

2.2. Analysis of A Special Case: EFD’s

We begin our modeling with the study of a special case, namely that the
universe of keys is severely restricted. We define an Ezact Fit Domain (EFD)
to mean that there were exactly N keys available in the domain, and that an
update therefore consists of deleting a key and then re-inserting that same
element into the tree, using the deletion and insertion algorithms of interest.
The effect of various updating schemes on trees of small size in such domains

was studied by the author in [5].
We now study the asymptotic behavior of EFD trees on N nades, with

the updating process using Hibbard deletions and leaf insertions. New tags
are created whenever the smallest key is inserted. It is easily seen that any
tag created after time zero will move exactly N times until it falls off an EFD
tree. If a tag moves, then exactly one new node is inserted to its left on that
update, and it falls between the tagged node and the previous immediate
predecessor of the tagged node, unless the node is the smallest in the tree, in
which case the inserted node is a new backbone node. Since the relative size
of the keys is irrelevant to a tree on an EFD, we consider the keys to be
equally distributed, and therefore we say that a tag moves one step when it

moves.

In this section, we derive the expected number of nodes in the subtree
containing the kth smallest node when the node is first inserted into the sub-
tree. From this we are able to obtain bounds upon the expected size of the
subtrees of the backbone, as well as the expected number of nodes in the
backbone. These bounds can then be used to show that the EFD tree has an
expected IPL of ®(N%?2) in the long term.

We study the size of an interval between two adjacent tags for those
cases in which the two tags remain apart. The number of changes to a non-
collapsing interval between two initially adjacent tags during the lifetime of

the upper tag must be less than or equal to 2N—2, since the upper tag can



14

move no more than N—1 times after the lower tag is created, and the lower

tag must move no more times than the upper, or they will collide.

Note that only those updates which affect the size of the interval in ques-
tion concern us here. Updates on keys other than the two at the extrema of
the interval have no effect on the number of keys in the interval. Updates on
the keys within the interval may change the shape of the subtree, but we do
not analyze this shape. Since an update reinserts the deleted key, the new
key must fall in the same interval, and so the number of keys in the interval
does not change for such updates. Similar remarks apply to updates on keys
which fall outside the interval. We refer to the number of keys in the inter-

val as the size of the interval, or equivalently as the size of the subtree.

Update On j Moves It Into The Subtree

ke = T T T
ke = T T T

Figure 2.4 Moving The jth Node Into The Interval
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We now compute the expected size of the interval when the upper tag
moves past the jth key as in Figure 2.4. To understand the motivation
behind this, notice that as long as j is the largest (i.e. rightmost) key in the
interval, then the size of the interval can only be less than or equal to its size
when 5 entered it. We see that the expected size of the right subtree of the
root will be less than or equal to the value obtained by setting y= N in the fol-

lowing lemma.
Lemma 2.1

In an EFD, the expected size of the interval containing the jth smallest key
at the time it enters the interval is

25—2

-G

~ Va7

Proof: On the first move of the upper tag, the second smallest key is added to
the interval between the two tags. Similarly, the sth key is added to the
interval on the j—1st move of the upper tag. To simplify the algebra, we let
k=j-1, and solve for the expected number of nodes in the interval between
two tags after the upper tag has moved & times under the condition that after
any ith move of the upper tag, 1<i<k<N, the lower tag has moved fewer

than ¢ times.

We can model the behavior of the number of nodes in the interval by a
simple coin flipping process. Here a head corresponds to a move of the right
tag, or an increase of one in the number of nodes, and a tail to a move of the
left tag, or a decrease of one in the number of nodes. The number of nodes in
the interval corresponds to the number of heads minus the number of tails.
We start with no heads or tails, and we wish to know what the expected
difference is after some number of heads, given that the number of tails'never
exceeds the number of heads. This process is known in the literature as a
simple random walk with an absorbing barrier at —1. See, for example, Feller
[8].

To aid in understanding the analysis, we represent the possible walks for
k=3 in Figure 2.5. Initially, we start at the origin, which is the top circle of
the diagram. We use k to represent the number of steps to the right, and ¢
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Figure 2.5 Exact Fit Domain Analysis

the distance from the origin. Thus, ¢ under the coin model is the difference
between the number of heads and the number of tails. In the figure all moves
are downward, and either to the right, corresponding to a head (move of the
upper tag), or to the left corresponding to a tail (move of the lower tag).

Using our oblique coordinate system, we let (i,k) be the position in the
diagram representing a distance of ¢ from the origin after ¥ heads. We let P,,
represent the number of ways of reaching (¢,k) with no point on the path hav-
ing a negative + component, and also the last move being be a head. In the
diagram, this corresponds to the number of paths by which we could reach
the ith position from the origin along the upward diagonal ending at k. For
example, the positions reachable with k=3 are indicated by the double circles
in the diagram. Here, P, 3= 2, P,3; = 2 and P33 = 1. Note that P;, = 0, since
we are looking at the state immediately after the kth right move. Thus, in
the diagram we do not include the dashed edges along the third diagonal in
computing P;;. Note the implication that there is always at least one node in

the initial right subtree of the root (for N>1).
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Since left and right moves are equally probable, each time we move down
one level in the diagram we would double the number of possible paths avail-
able in an unbounded version of the random walk. The depth of a point (¢,k)
is 2k—1+, and so the probability of reaching (i,k) on a random walk by one of
the P;, paths is (1/2)%*7/P;,. The expected value of s for a given k and under

the condition that ¢=0 at all times is
k 1 2k—4
x|+ Pi
=12 '

E, = £ 1 2k—1
) ?] Piy

We multiply the numerator and denominator by 22#~! to obtain

k
EIC.?'.—IP",k
212,_1P5,k
g

Note that 2¢-!P;, is the number of ways of reaching the 2k—1st level by pass-
ing through (¢,k) and not (¢+1,k). Notice that the 2k—1st level is the level of
the point (1,k) and the point (k,k) is at level k. Thus, there is exactly one way
to get from (1,k) to the 2k—1st level. From (2,k) there are two ways to reach
the 2k—1st level; either move down and left or down and right. In general,
from (i,k), level 2k—1 is achieved by i—1 moves, each with two choices, giving
us 2°~! ways of reaching the 2k—1st level. Thus, the denominator in the right
hand side is equivalent to the number of ways of reaching the 2k—1st level
without passing to the left of the origin. We designate this value by
D, = EEQi_lP;,k

i=1
We get the recurrence
Diyy = 4Dy— G

with D;=1 and C; is the number of ways of reaching the first node on level
2k—1, that is the position (1,k). We note that the point (1,k+1) is two levels
deeper than (1,k). From each node at level 2k—1, there are 4 ways of reaching
level 2k+1, except that from the leftmost node one of these ways leads to the
left of the origin and so must be discounted. Thus, we obtain the recurrence.
It is well known that ¢y is the kth Catalan number, (see for example Jow [13])
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Cp = ﬁ&k]. The reader may recognize this more easily as the number of
binary trees on k nodes. It now easily follows by induction that
= 1 (2k
D, = 9 (k)

Similarly, we let

N, = .Zkl"Z‘_IP"J
which is the numerator for the expectation of . The left and right moves
from (i,k) to the 2k—1st level are entirely symmetric. That is, for every path
from any position (7,k) to a position i— 5 on the 2k—1st level, there is a mirror
image path from (4,k) to a position i+ on the 2k—1st level. Thus, N, is equal
to the sum of the distances of the fth position times the number of ways of
reaching the sth position on the 2k—1st level without ever passing to the left
of the origin. (Notice that only the odd positions are reachable on these odd

levels). We get the recurrence
Nisy1 = 4N+ Gy

by noticing that, except for the first node, from position ¢ on level 2k—1,
there is one way to reach position 1—1 on level 2k+1, two ways to reach posi-
tion ¢ and one way to reach position ¢+1. If the contribution to N, of position
i 1s (2i—1)Z;, then the contribution to Ny, is ((2¢—3)+2(2/=1)+(2i+1))Z,
which is 4 times its contribution to N,. The first node does not contribute
the —1C, implied by this argument, since we disallow the path to the left of

the origin, and thus it must be added in to complete the recurrence.

If we form the sum
Nis1+ Dpyy = 4N+ Dy)

and note that N, = D, = 1, we obtain

Nk = 22k—1_Dk
Thus,
Ny
E = =t
k Dk
22&-1_Dk
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22‘:

_(QkT)—

(2k)!

Using Stirling’s approximation k! = \/Zwk(k/e)", we obtain
E, = Vnk

Finally, recall that the upper tag starts on the 2nd smallest key, and thus the
kth move of the upper tag corresponds to adding the k+1st key to the sub-

tree. Thus, by substituting y—1 for k¥ we finish our proof.
o

Note that in the preceding lemma we did not compute P;,. This can be
computed using the ballot theorem of Feller (8] Chapter III.1 and is |
- i (2k—1
T ( k ]
In what follows, the jth subtree refers to the right subtree of the jth
backbone node, where the root is the first backbone node. If there is no jth
backbone node, because the backbone has fewer than j nodes, then we con-

sider the jth subtree to be empty; that is, it has a size of zero.
Lemma 2.2

The expected size of the jth subtree on an EFD after sufficiently many up-
dates is O(N'?), for all ;.

Proof: This follows from the previous lemma on observing that the expected
size of the subtree to the left of a tag on the kth node is O(\/;) = O(V_N_).
The topmost subtree is O(VN) when the Nth node is first introduced, and
further updates can only reduce this size until the Nth node is eventually
tagged again.

o
In the next lemma we compute a bound on the length of the backbone.

Lemma 2.3

The expected number of nodes in the backbone of the EFD tree is O(\/-A_f)
after sufficiently many updates.
Proof: We define the weight w, of the backbone with respect to the kth node

as follows. Assume that the jth node is tagged, and that the following i
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nodes are untagged. Then the weight of the kth key, j<k=sj+i is 1/(i+1).
Thus, we see that the number B of nodes in the backbone of an N node tree is

N
B= XY w
i=1

Intuitively, the density of the backbone nodes near the right of a tree is not
increased by the fact that they are near the upper boundary. More formally,
if we consider the first N nodes of an M node tree, where M may be arbi-
trarily large, we see that the number of nodes in the backbone over the first
N nodes is identical to the number of backbone nodes in an N node tree in
which the set of updates is the same as the set of updates over the first N
nodes of the M node tree. This is true since an update on any key k¥ does not
affect the structure of the backbone to the left of the key. Thus, where we
now consider the weights to be over the M node tree we see that the number

of backbone nodes over the first N nodes is
N
B = 1+ z w,,
k=1

where the 1 comes from the observation that the rightmost backbone node
may now be distributed over some of the keys to the right of the Nth node.
If we consider the average weight taken over time on the kth key, we see then
that

E[B] = 1+ EN E[w]
k=1

We now compute an upper bound on E[w], for k<M. We proceed in a
manner similar to that in the proof of lemma 2.1 First, we compute the
expected weight R, when the kth key first falls into the subtree. (Actually, we
compute the ratio for the K+1st, but this won’t make any difference in the

asymptotic result that we derive).

k _1—_ 1_ 2k—iP_
"_1 i+1 2 "k

o

Rk =
i=1

where the term Hl-l is the assigned weight, given that there are ¢ untagged

ones for the one tagged one at the left of the interval. Again we multiply the

numerator and denominator by 22¢~1 to obtain
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1_1 1
2:1:+12 Pis
Rk= f
212' ank
'-

Using the result that P, = —27;'.—_—’—.[2",: '], which comes from applying the Bal-

lot theorem of Feller [8] we find that the expected ratio is

~ 212' preri ey

R, = D,

where D, is defined as in lemma 2.1. We now compute the value of the

numerator by

k
2 O At < 2 s O

=1 i=1

= .}C_Ek 9i-1 (Qkk—_ii- l)

i=1

FZon ()

j=0

= QHE [2] *¥i7Y)

=0

and using the equivalence ( see Feller [8] page 50)

(20 = (39-6)

we continue with
2&-1*5:‘[L]'[( ) - (- 1)]

k=1 ]
= k+.7 [L ] + [ ] '_l
[ [ ; E i)
and using the telescoping property we get

a GRCIR-HIE e

=0

and similarly

_ 2kk-1 T(2kk—1][_;_]k_l+ (3 [%-]H*' -+ 3k %][2]k—l]
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2k—1
ACY

22k—1
2k

Recalling that
= 1 (2
Dy =+ (k)

from lemma 2.1, and using Stirling’s approximation we find that the expected

weight is
Va
R, <
£ oV

where the inequality follows from the first inequality above. To see that this
also acts as an approximate upper bound on the expected weight at all other
times, we note that at any time other than when the key first enters a sub-
tree one of two cases must hold. First some number of updates-may have
occurred since the key entered. However, when the next key enters the tree,
we see that the number of untagged keys in the interval is expected to be
larger, or more to the point, that the weight on & is reduced. Thus, our bound
acts as an upper bound to this case. In the second case, the key may be
tagged. In this case, the argument applies to the interval to the right, and we
are counting the tag on the left of the interval as being part of the interval.

Thus, our upper bound again applies.

To complete the proof,

N
E[B] < 1+ X R,
k=1

I

™M
2

S

= 0(VN)

where the last follows by comparing the summation of 1/Vk with the integral
to see that the result is =2VN.
o

We note that in fact the upper bound 1is approximately
VaN = 1.77.V'N. Since this is based on the expected weight when the kth
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key first enters the interval, it is in a sense based on the minimal expected
interval, that is on a maximal expected weight. On the other hand, if we look
at the expected interval size, we can see that when the kth key is first tagged
the size of the interval to its right is still 0(\/;). This suggests that the
expected size of the interval is Vak+ o(\/;) over all time. We conjecture
that a better approximation to the coefficient can be obtained by ignoring the
small order term and taking the inverse of this expectation to be the expected

proportion of the time that the kth key is tagged. Thus,

X1
E[B] = Elv—ﬂk

o
v=YN

Q

1.128. VN

Q

This conjecture has the virtue of being in excellent agreement with the
results of the simulations performed upon EFD trees, as presented in Chapter
Three.

We now have two pieces of information which together imply that the
Internal Path Length of the EFD tree is ®(N32) if more than N? updates have
been performed. These are the upper bound on the subtree size, and the
upper bound on the expected number of backbone nodes. We first prove the
lower bound on the IPL.

Theorem 1
The asymptotic IPL of a tree is (N%2).
Proof: We let B be the number of backbone nodes in a tree, and N;, the
number in the sth interval from the right of the tree. Clearly,

IPL = §B: iN;

i=1

Now consider an ideal tree T, in which each interval between backbone nodes
contains K=0(N'?) keys, and the constant is larger than the constant in the
bound of lemma 2.3. If we consider the K largest keys, they will contribute
less to the above sum in the ideal tree than the K largest keys would on aver-
age contribute to the sum on an average tree, since the top subtree would on
average be smaller than our ideal subtree, and so some of these nodes would

on average be in the second subtree. Similarly, the jth largest subset of K
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keys corresponding to any interval j of the ideal tree would contribute more
to the average tree, since

ij iE[N)] = ﬁ iNT;

i=1 =1
where NT; is the number in each subtree of the ideal tree, and thus some of
the keys in the sth subset would be in a deeper subtree on average. Summing
over all N nodes in this way leads to the conclusion that the IPL of the aver-
age tree is greater than the IPL of the ideal tree. Noting that having @(N'?)
nodes in each subtree implies that the ideal tree has (N'2) such subtrees, we
get
Q(NV2)

IPL = O(N12)i

i=1
= Q(NS/Q)

o
Next we prove the upper bound.

Theorem 2

The asymptotic IPL of a tree is O(N®2).

Proof: Now we build a pessimal tree, in which we put ®(N'2) nodes in the
backbone with a constant larger than that of the expected number of nodes.
We then add nodes until each subtree contains ®(N"2) nodes, as in the previ-
ous theorem. Note that this tree will have more than N nodes. For our
upper bound we assume that each subtree is linear, which is the worst case.
We note that the JPL can be computed as the sum over each subtree of the
IPL of that subtree, plus the sum of the distances to the roots of the subtrees
times the number of nodes in the corresponding subtree. The IPL of each
subtree is

") Nl/2)
L, =%

i=1

= 8(N)

Since there are ©(N'?) such subtrees, this implies that the sum of all the
IPL’s of the subtrees is ®(N%*2). The sum of the distances to the roots of the

subtrees is
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Y Nl/2)
5: ,'@(NIIZ) = @(N3/2)

i=1
Thus, the total of these two is also ®(N*2?). We see that for each subtree of
the average tree, the contribution to the IPL is less than the contribution of
the corresponding subtree in the pessimal tree, and there are more subtrees
in the pessimal tree than in the average tree. Hence, the IPL of the average
tree is less than or equal that of the pessimal tree, which completes the

theorem.
u]

Finally, we combine these two theorems to form

Corollary
The Internal Path Length of the EFD tree is @(N*2),

2.3. An Alternate Model

We remind the reader that the only requirements for the above two
theorems and corollary to hold are that the expected number of nodes in the
backbone is O(N'2) and that the expected number of nodes in any subtree of
the backbone is O(N'?). We now give an alternate proof of the first fact for
the EFD model. Although this method gives much weaker bounds in the
sense that any coefficients computed by this method are less precise than the
above method, it does appear that the arguments given here should also
apply to trees in which the keys for insertion are drawn at random from the
domain (0,1), independently of the keys already in the tree. After completing
this alternate proof for the EFD model, we will attempt to justify this intui-

tion more fully.

Finally, we will present an intuitive argument that the subtrees of the
root when first created should have an average size of VE«W, and that the
average number of nodes in the backbone should be approximately V2N/x for
asymptotically large N. This argument will parallel very closely the ‘above
proof for the EFD model, but relies on the convergence of certain distribu-
tions which is not yet proven. The results of simulations presented in subse-
quent chapters tend to confirm these values.

We will be using the uniform(0,1) distribution throughout this discus-
sion, and in particular we will frequently require the distribution of the kth
gap X~ X(i-1), where X(;) denotes the kth order statistic from N independent
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random variables with the uniform distribution. The gap distribution is the
same for all &, including the values X{;)—0 and 1= X, and is given by

P{Uy<u} = 1-(1—-u)V, 0susl (2.1)

See for example Feller [9] pages 22ff. The expected value is

E[Uy] = w5 (2.2)
and
E[Up\? = j.uzN(l—u)N‘ldu (2.3)
0
- 2
T (N+1)(N+2)

from which we can derive the variance

Var(Uy) = E[Up?] — E[U)? (2.4)

N
(N+1)(N+2)

2.4. The Model

Although analyzing the intervals between a pair of non-colliding tags
works well for the EFD tree, when we allow the new keys that are to be
inserted during an update to be drawn at random from the (0,1) domain, the
problem becomes much more difficult. In the following, we study the
behavior of a single, but typical tag from the time it is first created until it
falls off the tree. The intuition behind this analysis is that if we can bound
the expected deviation of a typical tag at each point in its lifespan, and we
can say something about the average distance between the tags, then we can
bound the expected size of the gaps that open up due to the deviations of the

tags from their expected positions.

Also, since the distributions of the tag motions are different for the real
tree (i.e. the tree wherein the keys are drawn at random) than for the EFD
tree, we will try to build a model which is general enough to capture both the
EFD and the real tree. That is, we specify a set of conditions which are
sufficient to allow us to draw some conclusions about the behavior of any pro-
cess which satisfies these conditions. It will then be shown that the tags on

an EFD do satisfy these conditions while they remain on the tree, but that
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the those on the real tree do not. Thus, we develop an alternate proof, sub-
ject to some simplifying assumptions, for the fact that the EFD develops an
IPL of Q(N%72).

Although the model is still not general enough to capture all the intrica-
cies of the real tree, it is possible to carefully pinpoint the areas for which the
model fails. In particular, it will be seen that condition 2.7, relating to the
covariances between successive moves, has not been proven. However, it
seems pretty clear from an intuitive viewpoint that this condition must hold.
In addition, condition 2.4 is shown not to hold for the real tree, although in
this case bounds can be placed on the distances moved which are sufficient to
allow the proof to proceed subject to condition 2.7 and the assumptions made
in this section. Here again, it seems intuitively obvious that for asymptoti-
cally large N the distribution should converge to that in condition 2.4.

We now build the model. Conditions 2.1 to 2.7 define a random walk
which models the behavior of a single tag. We define random variables called
tag positions where the tth tag position on the Kth update (time step) after
its creation is designated by P, g, and

Condition 2.1
K
P, k= zoMt,i
where M, ; is the distance moved by the tag ¢ on the sth update and will be
further refined shortly. If two or more tags are being referred to, this
definition admits of ambiguity. In this case, the time subscript will refer to
the time since the creation of the most recently created tag.

The above definition produces an unbounded walk. On the EFD this
would be equivalent to allowing the tags to continue walking after leaving the
tree. Since we will require a bound on the expected deviation of a tag during
its lifetime, we specify a bounded walk, P}y, corresponding to the bounded

walk of tags on the tree, with the following boundary condition.
Condition 2.2 , .
Plb,K = min(Pt,Kyl)
We note that the motion of a tag across the domain of a tree depends

upon two random variables. First the tag must be moved by having the node
to which it is attached selected for deletion, and then the distance it moves is
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the distance to the next closest key. We mimic this behavior with the follow-
ing two conditions. First we define a selection variable Z, ,;, which, for i=1

has the distribution,

Condition 2.3

The second part of the random move is the distance moved. We now define a
random variable U;; for the distance moved. For the EFD at least, these

intervals are identical for each ¢, and have the distribution

Condition 2.4

P{U,;<u} = P{Uy<u} = 1-(1-u)V (2.4)

It is easy to see that as long as a tag remains on the tree, whether or not
it is moved on update ¢ is independent of whether or not it is moved on any
update j#i. Also, whether or not a tag moves on update s is independent of
the size of the interval following the tag. Thus,

Condition 2.5
We require that for a given tag ¢t the Z, ; are independent of each other and of
the U, ,; that is, Cov(Z, U, ;) = 0.

We call M, ; the initial value, or the creation value (distance) of the tag ¢,
and define M,, = U, ,.
Condition 2.6
We define M, ;, for i=1, by M, ; = Z, U, ;, and thus

P{Nf{y,‘S U} = I—P{Z,’,=1}P{UN>u} (2.6)
= 1——11\—,(1—1;)”

To obtain the desired bound on the expected deviation we also need the
following bound, which will be proven for the EFD.

Condition 2.7
COV(U,],‘,ULJ’) = 0, 14 ] (27)

The above are sufficient to obtain bounds upon the expected deviation of
a tag during its lifetime on the bounded walk. We will develop that analysis
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in the next section, and then following that show some of the complexities

that arise when we treat the tags on the real tree.

To show more precisely how this information can be used to attack the
problem of the distances between backbone nodes, and thus bound the IPL,
we need to delimit the interactions between tags. Since the interactions
between tags on the real tree are apparently very complex, we attack this
part of the problem in a high level manner. Namely, we try to specify a
minimal amount of information which appears to be true on the two types of
tree, but which should be sufficient to provide us with the results we desire.
Note that we do not specify how the new tags are generated, nor how they
might come together to form clumps. We will see that both the EFD and the
real tree satisfy the upper bound implied by the following condition, and that
the EFD satisfies the second half of the condition also. We say that two tags
u,v are adjacent if they are created in sequence.

Condition 2.8
The expected distance between adjacent tags u and v, where u is created

before v, is, for all updates ¢ after the creation of v,

E[P, ]-E[P, ] = O[_IIV]

and is identical for all .

The following we call the sweeping rule, because it says that a tag sweeps
all the tags to its right ahead of it. This clearly applies to both types of trees.
Condition 2.9
For all tags u,v such that u is created before v, P, ;<P,; for all updates ¢
after the creation of v.

The next condition we call the gluing rule, and it says that once two tags
are clumped together they stick together. Note that we do specify how the
tags come together. '
Condition 2.10
If on any update ¢, P, ;=P ,, then P, ;=P ; for all j>i.

Using our model, we can now prove the following lemmas.
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Lemma 2.4

= 1 -
E[Mt,i] = N(N+1)’ 121
Proof: Using conditions (2.4), (2.3) and (2.6) we have

E[Mt.,'] =E[Mt"- and Z,’,v= I]P{Zt,,-= 1} + E[Mt,,' and Z,’,-=0]P{Z,';=0}

= E[Upl
=1
N(N+1)
o
Lemma 2.5
T e

Proof: Using the previous lemma, and conditions (2.4), (2.3) and (2.6) we have

Var(M, ;) = E[(M,,)?}] - E]M,;]?

E[(Mt,i)2 l Z, ;= I]P{Zt,i= 1} + E[(Mt,i)2 I zt,i=0]P{Zt,i=0} = E[Mt,i]2

1 1 2
UM = [N(N+1)]

IN2+ N—2
NAN+1)(N+2)

o
Applying conditions (2.5) and (2.7) leads to
Lemma 2.6
Cov(M, ;) M, ;) = 0, i=0,7 >0.
Proof:
We treat the case i >0. The case i=0 will follow. By definition we have

Cov(M,;M, +;) = EM; M, ;; ] = EM,JE[M, ,, /]
The distributions of M, ; and M, ;, , are given by condition (2.6), thus the pro-

duct of expectations is

1

EM,JEM, ;] = NYN+1?



31

by lemma 2.4 and thus
= E[ULIE[U )5

by applying equation (2.2) and condition (2.4).
Now consider the first term on the right hand side, that is, the expected
product.

EM; M, ..;] = E[EM; M, ;+;|Z, ]]

E[Mt,th,.‘+j | Z, ;= l]P{Z,.,-=1}

+ E[Mt,th,i+j | Z,,;=0]P{Z,,,~=0}
' 1

= EM, M, y; | Z,,;= I]W

where the last step follows since the probability of moving on any update is

1/N, and the product is zero if the tag does not move. Similarly,

1

EV[Mt,th,Hj] = EM; M, s, | Z, ;=1 and Zg iy = 1]-N_2

This term be rewritten as
= 1
E[Mt,th,.'+j] = E[Ut,iUt,H;']F

Combining these results, we have

Cov(MyMyir) = (B[U, Uy 1= BIULJEU o D2

Cov(Ut,i)Ut,l'-i-j)_]:}—z_

and applying condition (2.7} leads to
COV(MI,ith,i+j)SO

when ¢+=1. When =0, the proof is similar, except that 1/N2 becomes 1/N.
o

Lemma 2.7

N+ N=2 ., N
N](N+1)](N+2) (N+1))(N+2)

Var(P,,K) <
Proof: From condition (2.1) we can obtain

K
Var(P, i) = > Var(M,’,-) + 2y Cov(M,’;,M,,J~)
i=0 1<y
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K
= EOVar(M,',-)

since the covariances are non-positive by lemma 2.6. Now using lemma 2.5 we contin-
ue

NAN+1))N+2)
2N+ N—2 K + N
NN+12(N+2) (N+1)2(N+2)

m]

For & a constant greater than zero, we define

L = (1+§)N?

Lemma 2.8

For K= L updates

PP <1< AR + 0[1@]

Proof: Using condition (2.1) and lemma 2.4 we see that the expected value of

the sum P, is

L
E[P,,] = glE[Mt,"] + EM, ] = 5\1,(4-1\}53.]\1/2) + N.lpl
_ N
- 1+EN+1

Thus, for P,; <1 the tag must deviate by EN/(N+1) from its expected posi-

tion. The variance of P, can be determined using the previous lemma to be

N2+ N—2 (1+ E)N?
NZ(N+12(N+2)" )

_ 201+ 1
= ._.(Tg.)_.‘. O(N‘Z)

< 1
Var(Pi1) = * NFD(NFY)

Using Kolmogorov's inequality then,

2(1+&) 1
EL o[N?]
P{P,, <1} = >
[

N+1
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To complete the proof, we note that for any & = & the term on the right is

reduced, and thus the bound holds for K=L.
o

Lemma 2.9
Var(P}g) < Var(P, g)

Proof: We use throughout this proof the fact that
E((X-2)’] 2 E[(X—ux)’]

Case (1). K=< N2

From the above fact we can conclude
E[(P/x—E[P/])’] = E[(P{x~E[P,x])*]

For K=N? E[P,x] = 1. For P,x=<1, P}y = P, by condition (2.2) and for
P,k > 1, Pty <P, and thus

IP/x—E[P, k]| = [P, x—E[P, k]|
From this we can conclude
E[(P{x—E[P, ])’] S E[(P, x—E[P, £])?]
= Var(P, )
Case (2). K> N?
Again using our fact
E(P{x—E[P{k])*] = E[(P{x — 1)?]

Now for Py, = 1, the relation P/ = 1 < E[P, ¢] follows by lemma (2.4). For
P, x>1,Plr=1and so

[Pig—1| = [P, x—E[P, £]|
This leads to our conclusion that
E[(P/x—1)%] < E[(P, x—E[P, £])?]

= Var(Pt,K)
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Lemma 2.10

Elipt - BipLd) = (2874 o[ -1, kst

N3/ 2

Proof: Using the fact E[|X[?)2 2 E[|X|] (Feller [9] Chapter V.8(c)) we see that
the expected deviation is less than or equal to the standard deviation, which
is the quantity in the right hand side of the lemma for L updates, which
holds by the previous lemmas.
o

We now have an upper bound on the expected (absolute) deviation of a
tag during K<L updates. However, it may require more than L updates be-
fore the tag reaches the boundary.

Lemma 2.11

ElIPb - Elpbl = (287 4 o[-L), kee

N3/2

Proof: We already have the proof for K=L. For K>L, we have
E[[P/x — E[P{k]l] = E[|P}x — E[P{(]| | O, =0]P{O, , =0}
+ E[|P/x — E[P{«]l | O, =1]P{O, =1}
where

o = [1 P, <1
tL= o if P, 21

From lemma (2.8) we have that P{O, =1} = O[—}\?] Thus,

b 1=1-nlL
E[P{x] = 1 O[N], K>L

since the smallest value it can take on is 0, and the probability of being less
than 1 is O(1/N). Thus,

E[[P{x ~ E[P{k]| | O, ,=0]P{O, ,=0] = |1~ [1_ 0[—11\7]] | (1— O[IW]]

o)
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If O,,=1, the tag may be no farther from its expected position than is zero,

which is a distance of less than one. And so for K>L,

B[P}y — B[P/l | O,,=1]P{O, ,=1] = o[lﬁ]

Thus,
B2ty - BPLll = oL]

Combining this result with the previous lemma completes our proof.
o

We have now achieved our first sub-goal of proving a bound upon the
expected deviation of any tag from its expected position throughout its life-
time. To show how this piece of information can be useful, we now turn to
the problem of the interaction between tags, and in particular the forming of
intervals between clumps of tags. Because of the simplifications we have
made, we will be forced to proceed somewhat informally, making some intui-
tive assumptions along the way.

We let I; be the size of the jth interval from the right of the bounded
walk, where the first interval is the interval between the boundary and the
rightmost clump of tags to the left of the boundary. If 5 is greater than the

number of intervals, then we define I; to be zero.

Lemma 2.12

Subject to the assumption that the Law of Large Numbers applies, for all j,
and any £€>0, we have asymptotically that

E[] = C[zﬂw"'ﬁl-]”2 + 0[ 1 ]

N2

for some constant C.

Proof: We proceed informally. If at some time T, an interval is defined by
two clumps, C; and C,, the left and right clumps respectively, then each tag
whose expected position lies within that interval at that time must deviate at
least as far as the nearer of the two clumps from its expected position. They
may be even further away from their expected positions than this, since all
the tags in the clumps may have expected positions outside of the interval.
However, to prove our claim, we must maximize the expected size of an inter-

val, and so we must minimize the total deviations of the tags. Thus, we may
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specify that the tags are no further from their expected positions than is the
nearest clump. Thus, under this optimization scheme, all the tags which

have expected positions between C; and C, are in one of those clumps.

We first analyze the rightmost interval, I;. Assume at time 7, T, > N2,
that this interval is defined by the clump C, and the boundary. Let S, be the
set of tags whose expected positions (with respect to the unbounded walk) are
in I; at Ty; that is, those tags ¢ for which E[P, ] for =T, is in the interval.

At some later time 7,, the clump C,, along with any new tags which have
joined it in the interim, will reach the boundary, and a new clump C, will
define I;. (We are implicitly using condition 2.10 here). We let S, be the set
of tags with expected positions in I, at T,. Note that under this scheme, S,

and S, are not necessarily disjoint.

We continue this process indefinitely until M tags are involved, for some

arbitrarily large M.

Expected Tag Positions
NERRREERRRRNRRRRRRRIRRE

I+7 I-Z
+ Clump Positions

Figure 2.6 The Minimal Deviations Tags Must Make To Form Clumps.

In Figure 2.6, we represent this sequence of intervals laid out end to end,
showing how the tags must move to reach the nearest clump. Note that this
is not a snapshot taken at one particular time, but a sequence of shots, taken

one per interval.

We now make the assumption that we can apply the law of Large
Numbers to the absolute deviations. Note that the absolute deviations are
not independent, since tags that are joined together in a clump are clearly
correlated. Thus, the Law of Large Numbers can not be proven applicable
unless we are willing to be more specific about the random distributions
involved. It is difficult to see how there could be any covariance between the
absolute deviation of tags which have reached the boundary and those not
yet created. Assuming this is true, the Law of Large Numbers should apply.
(See for example, Feller [8] Volume I, Chapter X, exercise 10).
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Assuming this result, we have with probability one the result

4 o(1+¢) |° 1
zld,sM [_L]_V_ﬂ] + 0 o £>0

where d, is the deviation of the tag ¢t from its expected position at the times
when the measurements are taken. That is, different ¢ may refer to the same

tag at different times.

Condition 2.8 tells us that the expected distance between tags is less
than the expected deviation of the tags, and thus the size of the intervals
between clumps will be limited by the deviations. Let the expected interval
size between adjacent tags be y. We now show that having all of the dis-
tances between the expected positions equal to vy implies that the expected
interval size can be maximized if all the intervals between clumps are made
equal. Consider a pair of adjacent intervals such that one has I+ Z and the
other has I—Z expected tag positions between the clumps. We represent the
total interval by I’. Then recalling that the sum is minimized if the tags go
to the clump closest to their expected positions, the sum of the absolute devi-
ations of the tags over these intervals is at least

I+7 -z

2 2
d=2Y iv+2Y 1y

1€ I’ 1=1 =1

_ [(1+ 2242+ 2) , (I=ZV+2(I-2) ]
K 4 + 4

2
7[12+22I+Z]

which is minimal for Z=0. If we treat all intervals as equal, then the average
deviation per tag is equivalent to the average over any interval. Thus, divid-

ing by the 27 tags in the two intervals we obtain
E[d] = v [L}g‘]

which implies

Iy = 4E[d}]

1/2
Recalling that E[d,] = [2(%'@-] + O[Nlm] for £€>0, this gives us our
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bound for I, under the condition that we measure the interval just when a
clump reaches the boundary. For any time between T; and T,,,, the times
when clumps C; and C;,, reach the boundary respectively, the interval will be
at most the size of the interval at time T;. Since this is true for all ¢, it fol-

lows that the above is a bound on the expected size of I,.

For I;, j>1, we observe that the bound we obtained above was on the
size of the interval to the left of a clump when it first arrived at the boun-
dary, using the upper bound on the expected deviation of a tag. This bound
clearly applies to the interval to the left of any clump on the bounded inter-
val, and so applies for all ;. In fact, for the intervals to the far left, the
expected deviation of the tags should be far less, and so the intervals should

be much smaller.
o

2.5. Fitting the Model

We now verify that the EFD tree satisfies all the conditions of our model.
Condition (2.1) is trivially satisfied, since we are describing a random walk.
The tag moves exactly N times, and the sum of all the intervals moved plus
the initial interval is exactly one, so condition (2.2) is satisfied. We choose
the keys for the EFD at random from the (0,1) domain, and the tags move
over these fixed intervals, so condition (2.4) is satisfied. As long as a tag
remains on the tree, it moves exactly when the key it is attached too is
updated, which occurs with the probability given in condition (2.3). From
these last two conditions, we see that condition (2.6) also holds.

Considering condition (2.5), it is easy to see that the intervals were
chosen independently of any move sequence, and so the Z,; are independent
of the U, ;. As to the mutual independence of the Z, ;, we have to be careful in
that knowing a tag moved on an earlier update changes the probability that
the tag is no longer on the tree, and thus conditions the probability that the
tag moves on a subsequent update. However, removing this dependence was
precisely the purpose of treating the walk as unbounded in the model. For
the purpose of studying the behavior of a single tag, we can add an unlimited
number of dummy keys to the right of the domain, and allow the tag to con-
tinue moving as long as we wish. This clearly does not have any effect on the
key while it is on the domain. Thus, condition (2.5) applies to the domain of
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interest.

We now prove that the covariances are negative for the intervals over
which the moves take place, and thus prove that condition (2.7) is satisfied.

Since the intervals are fixed from the start, we drop the subscript ¢.

Lemma 2.13
Cov(U,;,U;) = 0

Proof: A set of N keys divides the interval into N+1 subintervals, each with
the distribution given by (2.1), each with variance given in (2.4). If we sum
over all N+1 intervals, the sum is exactly 1, which means that the variance of
the sum is 0. The variance of a sum of random variables is the sum of the
variances plus twice the sum of covariances. (See for example, [18] Theorem
5.8) Thus,

o > U
0= +2Q,Cov(U,;,U;
i=1 (N+l)2(N+2) i < ( ! J)

Noting that the pairwise covariances are all equal, and that there are (N;-l)

such pairs, we can solve for the general pairwise covariance to obtain

-1
(N+1)A(N+2) -

Cov(U,,U;) =

O

For condition (2.8), we notice that the expected number of moves of each
tag after the creation of the second one on the unbounded version of our EFD
is the same for all subsequent updates. Thus, the expected distance between
the tags is the expected size of an interval, which is 1/{N+1), and this satisfies
the condition. As was stated when they were defined, conditions (2.9) and
(2.10) are trivially satisfied by the EFD.

This completes the list of conditions. We did not solve for the exact dis-
tribution of our model. However, the results we obtained depended only
upon the conditions defining our model, and thus must also apply to the EFD

since it meets each of these conditions.

Lemma 2.14

The expected number of nodes in any subtree of the backbone of the EFD is
O(NV?) after sufficiently many updates.
Proof: Applying lemma 2.12 to the EFD, the expected size of any interval on
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the backbone is O[Nlu2 ] We let N; be the number of nodes in the jth sub-

tree of the backbone, where the first subtree is the right subtree of the root.
We let S; be the size of the interval between the nodes defining the jth sub-
tree. Since the keys are distributed uniformly over the interval (0,1), we have
that the expected number of keys between backbone nodes is (keeping in

mind that the backbone nodes themselves cannot be in the interval)
E[N;] = E[E[N; | L}]]

< E[NI}]

_ 1
- NO[N1/2]

= O(NI/Z)

8]

This is enough to conclude Theorem 1 holds on the EFD, which we

proved before.

2.6. What About the Real Tree?

We now consider how well the real tree satisfies the conditions of our
model. Condition (2.1) is trivially satisfied, since we are describing a random
walk. The sum of all the intervals moved plus the initial interval is exactly
one, so condition (2.2) is satisfied. As long as a tag remains on the tree, it
moves exactly when the key it is attached to is updated, which occurs with

the probability given in condition (2.3).

Again as in the case of the EFD, it is easy to see that the interval follow-
ing a tag is independent of whether or not the tag moves on any particular
update, if the tag is on the tree. As to the mutual independence of the Z, ,,
we again have to be careful in that knowing a tag moved on an earlier u'pdate
changes the probability that the tag is no longer on the tree, and thus condi-
tions the probability that the tag moves on a subsequent update. As in the
case for the EFD, we again can add an unlimited number of dummy keys to
the right of the domain, and allow the tag to continue moving as long as we
wish. This clearly does not have any effect on the key while it is on the

domain. Thus, condition (2.5) applies to the domain of interest.
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Again conditions (2.9) and (2.10) are trivially satisfied by the real tree.

This leaves us with three problem conditions, namely (2.4), (2.7) and
(2.8). This section concerns the problems associated with attempting to
make the real tree fit these assumptions. We will find a bounding distribu-
tion to replace that in (2.4) which should be sufficient to implement the proof
subject to the other two conditions. It will become obvious that the expected
distance between adjacent tags is O(1/N), but that the value is not identical
for all subsequent updates. However, lemma (2.12) could be adjusted to
accommodate this, provided that the expected positions of the tags do not
somehow form clusters, which seems unlikely. Thus, it seems that the real
tree is sufficiently close to satisfying condition (2.8) that the proof could be

attained.

Proving that the covariances between the intervals over which a tag
moves are non-positive has proven to be even more elusive. Attempts to
analyze these covariances occupy several pages of this section. Although a
full proof is not obtained, we present very convincing intuitive arguments
that indeed the covariance between successive updates is sufficiently small
that it does not change the Q(N32) expected internal path length. We thus

have
Theorem

Subject to the assumptions implicit in the preceding paragraphs, the
expected Internal Path Length of a tree whose keys are drawn from the Uni-
form (0,1) domain and which is subjected to a sequence of random updates,
will become Q(N*72). h

Although we cannot prove this theorem without the conditions, we can
turn to the evidence of very large scale simulations which we have performed.
The results of these simulations, which are presented in the following

chapter, strongly confirm this conjecture.

We turn now to the analysis of the behavior of a tag on the real tree. To
get some feel for the complexity of the situation we begin by considering the
backbones of the tree of three nodes.

A backbone configuration on N nodes consists of specifying whether the
ith smallest node is a member of the backbone, for 1=i=N. The smallest
node is always a member of the backbone, thus there are 2N¥N-! possible

configurations. If we know the sizes of each of the subtrees, then we also
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know precisely the backbone configuration. It is well known that the number

. . 1 2
of binary trees on N nodes is N1 (m, the Nth Catalan number. Thus,

reducing our problem to studying the backbone greatly reduces the complex-

SN

A B C D E

ity of the problem.

Figure 2.7 The Five Trees of Size Three

For example, if we consider the five trees of size three (see Figure 2.7) we
see that there are four distinct backbone configurations, with only trees ‘D’
and ‘E’ not being uniquely identified by their backbone configuration. Since
‘D’ and ‘E’ have the same Internal Path Length, it follows that knowing the
asymptotic probability distribution of the four backbone configurations
would be sufficient to determine the asymptotic expected Internal Path
Length.

Thus, we have reduced the number of variables we have to consider from
five to four and can still determine the expected IPL exactly for three nodes.
However, this is the bad news, not the good news. A closer inspection of the
methods used by Jonassen and Knuth [12] shows that the inherent difficulties
of their analysis must also apply to our simplification, since combining only
the two rightmost trees still leaves us with essentially the same complexity.
Furthermore, for larger trees, the number of backbone configurations is still
exponential in the number of nodes in the tree. Thus we are unlikely to be
able to obtain the exact asymptotic distribution of the backbone

configurations as N becomes arbitrarily large.
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In considering the application of our model to trees in which the inser-
tions are made using new keys selected at random from the interval (0,1),
there is a problem in that the distribution of the moves after the creation of
the tag are not identical. To indicate the difficulties involved, we derive the

distribution for the distance moved on the first move of a tag.

To simplify notation, we define X, = M, ,, which is the distance of the
tag from the origin at the time of its creation. We define X, to be the dis-
tance moved on the tag’s first move, which must occur on some update ¢=1.
The distribution of X is just the distribution Uy defined previously. To see
this, note that the tag is attached to the smallest of N randomly distributed
variables. At first glance, knowing that the smallest variable is the last one
chosen may lead to the conclusion that the intervals surrounding it are
smaller, because it divides one of the N random intervals defined by the N—1
previous variables. However, the fact that it fell in the first interval also con-
ditions the size of the interval, and there is no paradox. See Feller [9] page 23

for a full discussion. Thus,
P{X0<x0} = 1—(1‘XO)N

We call the set of N—1 keys, other than the smallest, which are in the
tree at the time of the creation of the tag, the set of old keys. Some random
number of updates will occur before the key supporting the tag is deleted,
and thus some of the old keys will be replaced by new keys. Some of the new
keys may also be deleted and replaced by other new keys before the tag
moves, but we are only concerned with the set of remaining old keys and the
final set of new keys. We let R = <K{,K{,> where 0 = K{, < N—-1 is the
number of old keys which existed at time of the creation of the tag and still
remain when the tag makes its first move, and K{, is the number of new keys
inserted after the creation of the tag but prior to its first move. Thus,
K{,+ K{, = N-1. In Figure 2.8, we have a representation of this situation.
The old keys are distributed over the subinterval to the right of the tag,
while the new keys are distributed over the entire interval. Thus, assuming
X, = xg, P{X;>x; | X;}, is the probability that all K{,; old keys fall in the
interval (x,+x,,1), which has size 1—-x,—x,, given that they fall in the inter-
val (xg,1), which has size 1—x,, and that all the new keys fall in the interval
(0,x) U (xo+x,,1), which has size 1-x,. Thus, for K{ = <k,N-k-1> we get
the probability conditional on &
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Xo X,

Figure 2.8 Situation for the First Two Moves of a Tag

k
Xy N-k-1
Pk{X1>x1 |X0=XO} = [1— l—xo] [l_xl)

Since X, is independent of R/ and has the probability density function
N(1=x4)N~1, it follows that

1-xy

PX,>x} = [ PU{X,>x, P {X,}dz
0

1-x, 1
= __ X _ N-1-# o \N~—1
J [1 l—xo] [1 xl) N(1=x,)V"1dz,

1-x

{ N(l—xo—xl)"((l—xl)(l—xo))N“l"‘dzo

The old keys including the tagged key are equally likely to be deleted in

any order, and so

P{K{,=k} = +, 0sksN-1

Thus,
p Not !
P{X1>x1 = 7\7 .{ (1- xo_xl)k((l-xl)(l"xo))N_l-kd“o

This can be simplified to

NZ1 x,
Jj+1

P{X,>x;} = (1=-x,)V

=0

but we will study it in the preceding form. For K{'0 = N-1, we have
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e Xy N=1 N-1
PN"I{XI >xl} = J‘ [l- ] N[I—XO] dZO

Xo=0 1-x,
1-%,

= f N(1=xy=x;)N"1dz,
Xo=0

= (l_xl)N

which is of course the probability for a random interval as we would expect,
since in this case no key is deleted before the one which moves the tag. For
K{,=0, we get

1-x,

PoiX;>x} = [ (1=%)V " IN(1=x,)V"1dz,

Xo=0
= (l_xl)N_l(l-xxN)

Alternatively, we can compute this in the following way.

Position 0/1

of Tag

Figure 2.9 Interval as a Closed Loop

Assume the endpoints of the (0,1) interval are joined into a circle as in Figure
2.9. The new keys are distributed over the entire interval. However, the
tagged key has the distribution 1—(1—x,)" with respect to the endpoint, and
thus P{X,;>x,;} is the probability that the nearest of the other N—1 keys is

further than x; and that 1—x, is greater than x,. Since the new keys are
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independently chosen, we have
P{X,>x;} = (1-x,)VP{1-X, >x,}
= (1-x;)V"1P{X, <1-x,}
= (1=x)V"(1-x,")
We note that, for 0<x;<1, P {X,>x,} is monotonic in &, and

(1=x)N"1 > (1=x )V (1=x,V) 2 P{X,>x,} = (1-x,)V. Noting that the first

term is the probability distribution for intervals between N—1 keys, we can

thus prove
Lemma 2.15
1 L
N+1 - Bl =

Proof: The distribution function for X, is F(x;) = 1-P{X, >x,}. The expected

value is

. ,
E[X,] = JP{X,>x,}dz,
0
1

S{(I_XI)N_ldzl

L
N
Alternatively,

EX] 2 j.(l_xl)Ndzl
0

1
N+1

m]

Lemma 2.16

2 - 1
Var(X,) = m—)- = 0 [F]

Proof: Similar to the previous lemma, we have

Var(X,) = E[X,?]
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1
fx12F’(x1)dzl
0

1
1- fox,F(x,)dz,
0

1
J2x,P{X, >x,}dz,
0

1
< {QXI(I—XI)N_IJZI

1
2 -
—N—{XIN(I_XI)N 1dzl

We thus have the expected step size and the variance bounded for the
distance of the creation and the first move of a tag. We now proceed to show
that the upper bounds also hold for the distance moved on the second and

subsequent moves of the tag.

First, we extend our notation. Let X, = <X, X,;,X,, - - -, X,,> be the
vector of values on the zeroth, first, second and up to the mth move. We call
R/ the final partition of the keys prior to the mth move, where
R/ = <K/ Kl - K} »>. This vector represents the number of keys in
common with those present at the zeroth, first and up to the m—1th move,
with K/ ., the number of keys which are new, at the time the tag makes its
mth move. We will say a key is in common with the sth move on the mth
move, if it was inserted after the i—1th move but prior to the sth move, and
was not deleted prior to the mth move. We exclude the tagged key from our
count, and thus, ¥ K7 ,= N-1.

0<sjsm
Let R} = <K} 0K}, - K > be the number of keys in common
with the zeroth, first and up to the m—1th move, immediately after the
m—1th move. This is called the tnsttal partition prior to the mth move. It is
easily seen that K! . = 1 for 2<m, since one key is inserted as the final part
of the update that moves the tag. Also, there is one value of j0s5=m—1,
such that K} . = K/_, ;—1, since the tag moves onto one of the keys and it is
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no longer counted.
For m=2, we obtain conditional probabilities only, and obtain our

bounds from these. First, we restate what we have so far.

P{X,>xo} = (1= xo)"

X ko E
which we write in the form
1 xl k{,j

=l -2
=

For m=2, we see that the full probability distribution is complex, since
the distributions of K{, and KJ, will depend not only on the number of keys
deleted and the order of deletion between the first and second moves, but
also on the values of K{, and K{,. Furthermore, the size of the first move
depends upon whether the tag moves onto an old or new key, and K/, and
K/, also depend on this.

However, by using the following conditional probability, we circumvent
this complexity.

P>, 18, 82 = (112 ] [1- 2] ) e

1—x,—x 1-x
0~ X1 1

One interpretation of this is as follows. For each combination of values
xo and x;, and for each partition of the keys at the time the tag is moved, the

probability that the distance moved is greater than x, is the probability,that

1  Each of the keys remaining from the initial set fall outside the interval of
size xo+x;+x, given that they must fall in the interval of size 1—x,—x,.

2 Each of the keys remaining from those inserted subsequent to the crea-
tion of the tag but prior to the first move fall outside the interval of size

x;+x, given that they must fall in the interval of size 1—x,.
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3 Each of the keys inserted after the first move fall outside the interval of
size x,.

The above distribution is the consequence of the facts that all insertions are
independent, and that the conditional distribution of a uniform random vari-

able given that it falls in a given subinterval is uniform over the subinterval.

Noting that each of the terms in the above product is less than or equal
1-x,, and that the sum of the k{; is N—1, we obtain

P{X,>x, | X, Rf} = (1-x,)N"!
which immediately leads to

P{X,>x,} = (1—x,)N"1
Generalizing from this discussion we obtain

Lemma 2.17
P{X,, >x,}=(1-x,)N"1
Proof: Analogous to the above discussion we obtain
ko
f m xm m,)
P{X,>x, | X, R} =TT [1-—2
7=0 1- % x;

1=y

= (l—xm)N_l

since again each of the terms in the product is less than or equal to 1-x,,,
and the number of keys other than the tagged key is always N—1.

m]

Lemma 2.18

1
.

Proof: As in Lemma 2.15.
o
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Lemma 2.19

Var(X,,) < N(13+1) = o[ 1 ]

Proof: As in Lemma 2.16.
o
Recalling that the probability of a move, given that a tag is on the tree,
1s 1/N on any update, we easily find that the expected distance moved per
update is O(1/N?) and that the variance is O(1/N3).

Lemma 2.20

E[M,,] = o[#]

Proof: From Lemma 2.18 we have an upper bound on the conditional expecta-
tion given that the tag moves. If the tag is not on the tree, then it cannot
move. If the tag is on the tree, and it does not move then the distance moved

is also zero, and so

E[Mt,i] = E[E[M,,,- l Zt,i]]
= E[Mt,ilzt,i= 1]P{Z,),~=1}
= o1
i O[N?]

o

Lemma 2.21

Var(M, ;) = 0[-}\1/—3]

Proof: We have
Var(M, ;) = E[M, ;7]

and as in the previous lemma this

EEM, 2| Z, ]
o3 )%

°[i)
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We turn row to proving a lower bound on the expected distance moved
on the mth move, provided that the tag moves at least m times. We have
already shown in Lemma 2.15 that E[X;]= 1/(N+1), and of course
E[X,] = 1/(N+1). Recall that

k E
PG>, 1%, R = [1- 2| [1- 2 (1)

1=-x,

N-2
X9
> —— -

[1 l_xo'xl] (1=x;)

where the second value is the probability distribution only if the first and
second moves occur without any intervening updates (with the exception that
the key inserted after the first update may be replaced by another random
key). In this case, the first two moves were just over the first two intervals
out of N+1, and noting that the joint density of two intervals specified by N
uniform random variables is N(N=1)(1—x,—x,)¥"2, we have

P{X, >x,} =

l_xO—xl_X2

J J

1—x21—x1-x2[
x)=0 xu=0

N-2
1-X,~— X, ] (1-"2)N(N‘1)(1-xo-x1)N‘2dz0dz1
1-x,1-x;~x, B
- xlj;o x(;[o (I_XQ]N(N—l)(l_xo—xl—xﬂN_?dzod“l

1-x,

= f (1—x2]N(l—xl---xQ)N"ld:z1

xy=0

(l—xz)NH

This is the density of an interval specified by N+1 keys.

There is an easy and intuitive way to obtain this result. If for the first
move, assuming that no deletions have yet occurred, we move the tag to the
next largest key without deleting the key under the tag and then insert a new
key at random, we see that we have N+1 random keys. The presence of the
undeleted key (let us call it a shadow key) will in no way affect the next move
of the tag, since it is to the left of the tags current position. If we now

immediately move the tag again, then the distribution of the distance moved
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1s Just that of the distance between N+1 keys, since the new key is equally
likely to fall in any interval. The fact that the tag is on the second largest
key before the new key is inserted does not change this. In fact, we could
place the tag on any key before inserting the final key, and the distribution

would obviously remain the same.

We now extend this observation as follows. We define a shadow tag
which moves whenever the tag moves, but the keys over which the shadow
move are never deleted. The shadow and its tag begin at the same time and
position. New keys are inserted into the shadows domain only when the sha-
dow moves, that is only when the tag moves. We then consider the race
between the tag and its shadow to reach the end point of the domain, the
point 1. We designate the outcomes of this race by W, meaning the tag wins,

and W, meaning the shadow wins.

Lemma 2.22
P{ W,} = P{ W,}

Proof: Any intermediate deletion of a key which occurs in the tag process
removes the key from a class k/, ; and inserts a key into the class kf, ,,, where
j<m. This means that the replacement key is distributed uniformly over a
possibly larger interval, and thus the probability that the new key lies
between the tag and the end point is reduced, increasing the probability that
the end point is reached in any subsequent move. Note that the same argu-
ment applies to any point 2, x,<z<1, not just the end point.
O

We now attempt to justify the claim that the covariance between any

pair of moves is non-positive. Consider two moves X; and X,,, where without

loss of generality we assume m >k. Then

Cov(xkxxm) = E[(Xk— p"zk)(xm - p':l:,,‘)]

E[E[(Xk_ p"zk)(xm— p’zm) I Xk]]

1

{E[(xk_ u‘zk)(xm - u‘zm) I Xk= xk]f'(xk)dzk

w-
%

= {(xk‘ﬂzk)E[(Xm_Mm) | Xy=x,]f"(x;)dz,
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+ f+(xk‘ B JE(Xm—n, ) | Xp=x,]f"(x,)dz,

1y
%

Now to show that the covariances are non-positive, we need only show that

E(Xp—u, ) | X;] and (x;— ) are of opposite sign in each term of the above

sum. Unfortunately, we currently do not have a formal proof of this, but the

following intuitive argument seems convincing.
Consider the case X;=x;>u,. In this case, after the kth move the

remaining N—2 keys not affected by that move must be uniformly distributed
over the interval 1—x;, which is less than the expected size. In addition, as
the move is big, it seems reasonable to expect that the tag is closer to the end
point than in the unconditional case. Thus the expected distance between
the tag and the next smaller key or the end point whichever is closer is
reduced under this supposition. Subsequent updates delete some of these
abnormally dense keys and replace them with new keys independently distri-
buted over the entire domain. After some number of updates, the tag moves
for the mth time. If the tag moves from one of the keys in common with the
kth move to another, or to the end point, then the expected distance moved

would be less when x;>p, than otherwise. Thus, the expected distance
would be reduced and the sign inverted.

The problem with this argument is that the probability distribution for
the various K/, ; are not known to be independent of X;. Changing these pro-
bability distributions could negate the above argument, for example by
increasing the probability of i/, ; for the larger j at the expense of the smaller
J-

If we change our process model slightly to allow deletions and insertions
to be performed at random instead of being coupled, then it is easier to argue

for positive correlations between distances moved. In this case, Xg>n,, could

mean that there is a high probability that the number of keys in the tree has
been reduced because the number of deletions has exceeded the number of
insertions. But assuming that the number of keys is reduced would imply
that the expected distance moved on the next move is increased. This shows
that it is possible that one move being larger than expected may indicate an
increase in the expected size of the next move, even though the total remain-

ing distance is reduced. For our model, however, this argument does not
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apply, but we cannot prove that a similar argument does not apply. For
example, knowing that x; >, might lead us to believe that K/; would be

larger than expected since that condition produces larger than expected dis-
tances. But if this is the case, then the next interval at the time of the move

might also be larger than expected.

But any such effect would appear to be insignificant. The distribution of
the distance between keys is always (1—z)N. The fact that the distance
moved by the tag differs slightly from this distribution occurs only because
the tag has a tendency to be attached to a key preceding a slightly non-
random interval. Whatever the distribution of this interval may be (and it is
probably different for different updates), knowing that the interval is larger
than expected means that the rest of the keys are more densely distributed
than expected. This is because the remaining keys must be distributed over
a smaller interval than expected. This would seem to indicate the claimed
negative correlation. Successive updates would delete some of these nega-
tively correlated keys and replace them with independent keysﬁ,wbut this
could only increase the covariance to at most zero for totally independent
keys. Since the walk is bounded by the end point of the domain there must
always be some slight negative correlation, even when all keys are replaced
between moves.

In what follows, we make the assumption that the covariances are non-
positive between pairs of moves for a given tag. We also assume for similar
reasons that the correlation between moves of tags on distinct nodes is nega-
tive.

For the shadow walk, we can do better. We indicate the distance moved
by the shadow on the sth move by Y.

Lemma 2.23

Cov(Y,,Y;) =0
Proof: On the sth move of a shadow the density of the interval is given by
(1=y,)¥*~1 and this is the density for every interval, since it is derived by
the rule that there are N+i—1 keys. For this process, knowing that a key is
tagged does not change the distribution of the following interval. If we are

given y;, then the remaining keys have the uniform distribution over the

remaining interval. Thus, if Yi>Py then the expected distance between other
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keys is reduced. Inserting new independent keys does not change that result

for these keys are never deleted. Thus, the covariance is negative.
w

We now show that the shadow tag leaves the tree within O(N) moves
with high probability.
Lemma 2.24

The probability that a shadow tag remains on the tree for more than
(1+&)(e—1)N moves is O(1/N).

Proof: We compute a lower bound for the expected value of the sum of Y;
ignoring the creation or zeroth term, assuming an unbounded walk. A simple
model for this unbounded walk is to consider the keys to be on a circle. Then
in the unbounded walk the shadow simply continues around the circle
indefinitely. Our bound on the probability of not exceeding one after m
moves is then a bound on the probability of not traversing the circle at least
once. Noting that each move increases the number of keys by one, and that

no key is deleted we see that

EIX Y] = 31

i=1 =1

m+N1 N1

i=1 ¢ i=11 _.

= log(m+ N) — log(N) = log [—"—1-]-'—\}—1!]

and for m=(1+§)(e—=1)N

- l°g[(l+§)(ez_\r”N+N]

= log(e+£(e~—1))

1+¢'

for some & >0 where £€>0. Thus, for the sum to be less than one would
require a deviation of at least £’. By Chebyshev’s inequality we have

~ ” Var(ﬁY,-)
P{IZY, - E[XY]I>¢} = ——

i=1 i=1 3
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Clearly Lemma 2.19 applies to the shadow tags as well as tags and thus
Var(Y;) = O(1/N?). Since by Lemma 2.23 the covariances are less than zero,

then

Var( § Y, = § Var(Y;)

=':[%]

and for m=(1+§){(e—1)N

Making the substitution into the probability inequality above completes the

proof.
o

Lemma 2.25
Assuming an unbounded walk,

(1+&)mN 1

i=1 ' m

Proof: The number of moves is given by the binomial distribution, with a
probability of each success of 1/N. The expected value is (1+&)m and variance
is (1+E)m%. (See for example Feller [8] chapter IX) Using Chebyshev’s ine-
quality leads to the result

P S, - (148m| = £m} < (LEEm
i=1 ’ (Em)?

ol

We now conclude that O(N?) updates are sufficient to move the tag off
the tree with high probability.

Lemma 2.26

(1+£&)%e-1)N?
P{ ﬁ: M,,,-<1}=O[—11V]
=1

(m]
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Proof: With m=(1+§&)(e—1)N, we have from Lemma 2.25 that the probability
that more than m moves are made is 1— O(1/N). Given m or more moves, the
probability that the tag moved off the tree is 1- O(1/N), by Lemmas 2.24 and
2.22. Thus, the probability that the tag moved off the tree is at least
(1- O(1/N))?, which means the probability that it remains on the tree is
O(1/N).
o
We have now completed proofs for the tree on the real domain showing,
similar to lemma 2.8, that the probability of remaining on the tree for more
than O(N?) updates is O(1/N). To compute bounds on the variance, and
expected deviation as in lemmas 2.9 through 2.11 requires us to assume that
the covariances between the moves of the tag are non-positive. Having the
covariances negative for the shadow walk is not sufficient for this purpose,

since the shadow walk only gives us a bound in one direction.
Lemma 2.27

Assuming the covariances are non-positive, the expected deviation of a tag
from its expected position is O(I/VN).
Proof: We have from lemma 2.21 that the variance per update is O(1/N?%), and
assuming the covariances are non-positive, this leads to the variance on O(N?)
updates of O(1/N). Using this and the result of the previous lemma, we derive
the result using the analogous proofs of lemmas 2.9 through 2.11.

o

The next problem we encounter is that the expected distance between
tags can no longer be considered to remain constant throughout their life
times. The distribution of the moves is not the same for every update, and so
the expected distance between tags may vary. Arguing informally, we see
that bounding the expected deviation should bound the expected interval size
as in lemma 2.12. Consider those tags which are Q(l/\/ﬁ) apart. Then if
more than a constant number of these merge, the average deviation of these
(and the intervening tags as well) will be w(l/\/ﬁ), violating the expected
deviation computed above. This argument assumes that the expected posi-
tions of the tags are not somehow clustered around the expected position of

the clumps.

We now have an incomplete argument that the intervals between back-
bone nodes of the tree on the real domain are O(l/\/N). This would then lead
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us to conclude that the expected IPL of such a tree is Q(N*?) as claimed, sub-
ject to the hypotheses described above.

In the next section an approximation is presented representing what we
feel is the correct asymptotic coefficient for the size of the top most subtree
when it first becomes the right subtree of the root. This result is in excellent
agreement with the results of the extensive simulations we have performed.

In what follows, we compute a slightly different lower bound for the
Internal Path Length using a different assumption. However, this should be
taken only as another indication that the trees do indeed get bad. We firmly
hold that the previously computed lower bound is correct. The best bound

on the covariances that have yet been obtained is O(1/N*), as follows.

Lemma 2.28

1
Cov(M, M, ,) = O [-N—4]

Proof:
Cov(Mt,th,j) = E[Mt,th,j] - E[M,,,-]E[M,,j]
SE[Mt,th,j]

since the expectations are positive.

E[EM, M,; | Z,]]

E[Mt,th,j ‘ Z,,= IIP{Z¢,5= 1}

since the distance moved when the tag doesn’t move is zero

1
BXM, ;L

~FEXX)]

using the same argument for the second update,

1
X,?E[X.‘E[Xj | X1

Lupo( L)

since we already have shown in the proof of Lemma 2.18 that the expectation

given any previous set of moves is O(1/N)
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=0 [-]%,?]E[x,.]
- O[

A
N4

[m]

If we consider the sum of the covariances over ®(N?) updates, the sum of
the covariances between all pairs is O(1), which is insufficient as a bound for
our purposes. To get a total of O(1/N) would require a bound of O(1/N?%).

If we assume that the covariance between moves in which there are no
common keys is negligible then we can obtain a different bound. Note that
for two sets of keys with none in common, the intervals between the keys of
one set are independent of the other. This implies that the covariance
between any interval of one set and one in the other is zero. However, know-
ing that we are to the right of some interval which is larger than expected in
the first set indicates that we are closer to the end point than expected after
the update that moved over that interval, and so the expected distance to the
end point may be reduced. We assume this is the case, and thus that the
covariance is either zero or negative, and can be safely neglected in our upper

bound computation.
We now consider updates which are at least 2NInN updates apart.
Lemma 2.29

The probability that a key remains on the tree throughout 2NInN updates is
O(1/N?).
Proof: The probability that the key remains is

[1_1_]2N1nN ) N2N]n[1—lﬁ)
N

fl
p———u
= |~
| ——
P
z|~
Nere—
—
2
+
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Using this lemma we see immediately that the expected number remain-
ing after 2NInN updates is NO(1/N?) = O(1/N). Thus, the probability that

there are 1 or more keys in common is O(1/N).

Lemma 2.30

For any update, the total covariance of that update with all updates more
than 2NInN updates away, but within O(N?) updates, is O(1/N?), under the
assumption of negligible covariances for independent key sets.

Proof: Under the assumption, we only need compute the sum for those which
contain at least one key in common. From the preceding comments, the pro-
bability of this is O(1/N), and from Lemma 2.28 the covariance in that case is
O(1/N*). We have O(N?)—2NInN updates to consider, and so the sum is
O(N?)O(1/N*)O(1/N) which is O(1/N3).

O

Lemma 2.31

The sum of covariances for any update with those within 2NInN updates is
O(InN/N®).
Proof: The covariances are O(1/N*) by Lemma 2.28, so for O(NInN), the total
is O(InN/N?3).

o

Lemma 2.32

InN
) Cov(M, M, ;) = O[DT]
O(N?)
Proof: From the preceding two lemmas, the total covariance of any update of
a tag with all other updates is O(InN/N3), so for O(N?) the result follows by
multiplication.

o

With this bound on the sum of the covariances, we get the same bound
for the variance of the sum, since the sum of variances is O(1/N). This means
that the expected deviation is O(VW[\T). Arguing in a manner similar to
that used to obtain the previous bounds this gives us a bound on the
expected size of a subtree of the backbone of O(Vm). This means there
must be at least ﬂ(\/m) such subtrees. And so we obtain
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Lemma 2.33

Under the hypothesis that the covariances are negligible when moves are over
independent sets of keys the expected Internal Path Length is Q(N3’2/\/lnN).

Proof: As in Theorem 1, we form the sum

—_— 3
,‘\/ = N2

We emphasize that this bound is considered to be too weak.

2.7. What We Really Expect to Happen

In this section, an informal argument will be given to suggest that the
asymptotic expected size of the subtree of the root when it first becomes the
right son of the root is approximately VorN = 2.506VN. This model will
also be wused to argue that the number of backbone nodes is
Vo/mN = 080V N.

We have developed a series of models of the behavior of trees, from the
EFD model to the more general but incompletely analyzed models where keys
are drawn from the uniform domain at random. In the EFD model we com-
puted the expected interval size of the topmost interval at the time the upper
tag reached the boundary by computing the expected interval between the
tags under the condition that they did not bump into one another. Thus we
obtained the result that the lower tag would be an expected VaN steps from
the boundary at this time.

The next model was that of a random walk with random step sizes. The
distribution for each step was that of the interval between two adjacent keys
out of N distributed over the interval (0,1). Let us alter this model so that
the domain is (0,N+1), thus making the absolute expected step size 1." That
is, it will now have the same expected step size as the EFD model. The pro-

bability distribution of an interval is now

P{X>z} = (1~ Nil N

We can now describe the interval between an adjacent pair of tags as a
random walk in a manner analogous to the analysis of the EFD. That is, we

assume that it is equally probable that the lower or upper tag is moved each



62

time the interval is changed, and that the distribution of the size of the move
is given in each case by the above distribution. We let C be the random vari-
able indicating the size of the change and thus we can describe the distribu-

tion f(c) in terms of the random variable X by

f(e) = 51.(le))

It is easily seen that, due to symmetry, all odd moments of this distribution
are zero. Also, applying symmetry again, we find the second moment of C to
be

NeL N-1
2 = 2 -

E[C7] {z N+1 [l N+1] dz

N+1

= 2N+

i

2’ N-.oo

This is also the variance of C, since the expected value is zero.

In comparison we note that the variance per change for the EFD model
was 1. Intuitively, the primary difference between the EFD model and the
system using the uniform domain with independent insertions is that in the
latter the variance of the steps is increased. The number of steps may now
be greater than or less than N, but asymptotically at least it seems reason-
able to assume that taking steps of size approximately 1 would mean that we

require N steps on average for the tags to fall off the tree.

We repeat that this model assumes that the absolute sizes of the changes
in the interval are asymptotically independent random variables with the dis-
tribution of the intervals between N uniformly distributed variables. This is
the reasonable, if unproven, extrapolation of the results in the preceding sec-
tion. We now want to consider the conditional random walk based on this
distribution wherein we want the expected size of the interval given that the

interval has never been less than or equal to zero.

We approximate the preceding random walk with the following discrete
random walk. We define a random walk by

N
Sv= X X;

=1
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where the distribution of the random variables X; are given by
.= -V3
z= Vg

1

2
r(z) = 1
2
We have then a simple random walk, as defined in Feller (8] for example,
except that the step sizes are V2. We choose this step size so that the second
moment will be equivalent to that of the preceding random walk. This walk
can be readily modeled by coin flipping, where a head corresponds to a posi-

tive step and a tail to a negative one.

It can be readily seen that this distribution has all odd moments equal
zero, and that the second moment (and the variance) is equal to 2. We expect
Sy to behave then somewhat like the previous random walk. It is easy to see
that asymptotically these two unbounded walks should converge in distribu-
tion. Whether convergence also holds when we apply the condition that the
walks never go below the origin is open, but it seems reasonable that first and
second moments would be asymptotically equivalent and thus that the

expected interval would be equivalent.

Recalling that the expected deviation for the EFD is \/;r—N., and that the
step size is one, we see that the deviation for this walk is \/m, the proof
being as in Lemma 2.1. We note that this does not take into account the
slight negative correlation that we believe may occur. In particular, if the
variance in the intervals is partly responsible for the final deviation, then
having a positive deviation means the upper tag has moved slightly farther
than expected per move, and thus the number of moves of the upper tag may
be slightly less than N. We could guess that the upper tag moves N— O(\/YV—)
times when it and the lower tag are known to diverge. Thus, the estimate of

VoaN may be slightly high for smaller N, but we expect it to be asymptoti-
cally correct. This argument applies less strongly to intervals generated by
i<N- O(\/N) moves, since the effect is entirely due to the fact that the upper
tag cannot move beyond the endpoint.

Using the approximation Vomi for the interval following a tag at posi-

tion ¢, we find that the probability of the sth node being tagged is approxi-
mately 1/Vomi. And thus the expected number of backbone nodes is

N 4 —

1 OV N

EB] =3 ~ ~ 0.798..VN
[ ] i=1 Y 21 ;217
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However, this assigns a probability of 1/V2m = 0.3989 to the first node being
tagged when in fact we know that it is always tagged. Similarly, this formula
slightly underestimates the other low order nodes as well. Thus, for any N,
the number of nodes predicted by this formula should be a bit less than actu-

ally measured.

Assuming that the convergences outlined above are correct, we have
again that the expected IPL of the tree after sufficiently many updates is
©(N32). The simulations presented in the next chapter lend strong support to
these conjectures, the values for large N being almost exactly those predicted.

We can get a crude estimate of the coefficient of the leading term for the
expected IPL by pushing our approximation a bit further, although we now
depart somewhat from reality. In the idealized situation in which the ith
backbone node is at its expected position, we assume that the size of the ith
subtree should be linear in . Thus, the sth subtree from the left should con-

tain

Vom N. 1 s
QﬂNm c ™

nodes, where ¢ is a constant and will now be ignored. Since there are B
backbone nodes on average, the root of the sth subtree from the left of the
tree is at a depth of approximately VoN/m—i from the root. Ignoring any
contribution the IPL’s of the right subtrees might make to the leading
coefficient, that is assuming the subtrees are roughly balanced, we can com-
pute an approximation to the leading term of the IPL by

VoN/w VaNm V2N
J wi(VeNm-i)di= [ VorNidi— [ =itdi

$=1 =1 1=1

372
—_ 2N
VNN [—-ﬁ ]

2 - 3

u

1/2
=12 ppe
3|

Q

0.266 N%/2
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Despite the lack of justification for this model (or perhaps because of it)
this value nevertheless agrees quite well with the simulation results presented
in Chapter 3.

2.8. Further Comments and Observations

In a previous section, it was claimed that a tree on an EFD would be
more skewed because the variance of the tag motions would be reduced by
the absence of insertions, resulting in a reduction of expected subtree sizes.
In view of this, it seems somewhat paradoxical to claim that the analysis for
general trees holds true for insertions from any distribution, provided the
insertions are identically and independently distributed random variables
with finite mean and variance. To verify the claim, we consider the usual
method of generating random variables of some desired distribution
F(z) = P{X=<z} from the uniform distribution U by setting X=F~1(U); that is,
generating the inverse function value of a uniform variate. (See Knuth [15]
chapter 3.4.1). We note that such a transformation does not alter the rela-
tive rank of the variates when applied uniformly to each, and that the shape
of the tree depends only on the relative ranks of the keys. Thus, applying

such a transformation does not affect our result.

The resolution of the paradox lies in the observation that the reduction
in variance on EFD trees comes from a perfect correlation between a deletion
and the subsequent insertion. Thus, on EFD trees the number of nodes in any
right subtree of a backbone node changes if and only if the backbone node or
its parent moves. We assume on general trees that no such correlation exists

between deletions and insertions.

We conjecture that the subtrees remain somewhat balanced, so that they
do not contribute significantly to the N%2? term. The only theoretical
justification for this is that each subtree is moving as a whole to the right.
Thus, on average every node is moving at the same rate, and there should
therefore be no overall skewing effect. Of course, we know this is not strictly
true, since some trees must be growing as they move, while others shrink
away and disappear. In fact, as will be evidenced in the next chapter, results
from simulations suggest that the subtrees are somewhat right skewed, but
that the IPL is less than the IPL of a random tree of the same size. Whether
these effects persist for arbitrarily large trees is open and would make an
interesting simulation project. The large variance due to random rates of
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motion may be offset somewhat by the rebalancing effect that occurs when

the right subtree of a node scheduled for deletion is empty.

We can view the dynamics of a subtree as a complex flow of nodes from
right to left over the subtree as it moves to the right. The two backbone
nodes defining the interval containing the subtree will move gradually to the
right, as will the root of the subtree. Insertions will fall at random over the
entire interval, adding to both the left and right portions of the subtree.
Deletions of the key at the left end of the interval cause the leftmost node of
the subtree to be removed, thus reducing the left portion of the subtree.
Deletions of the key at the right end of the interval open the gap to the right,
thus causing the right side of the subtree to grow on average. However, dele-
tions of the root of the subtree will cause right to left rebalancing within the
subtree even as they do within the entire tree. Deletions of the subroots of
the subtree will have similar effect on those smaller subtrees. Thus, there will
be a tendency for the subtree to grow to the right and be reduced at the left,
offset by the motion of the root of the subtree which causes the subtree to
rebalance from the right to the left.

>l

-
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Figure 2.10 Flows In Subtrees

In Figure 2.10 the dashed arrows indicate the motion of the backbone nodes
defining the interval containing the subtree. The vertical straight lines
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indicate the addition of nodes to the subtree through insertions. The arcs
indicate the rebalancing of the subtree induced by deletions and the deletion
of material from the tree as the lower backbone node moves to the right. The

entire process appears to be very complex.

Generally speaking, it is unlikely that every deletion will be exactly
paired with a subsequent insertion in most real world uses of binary trees.
This problem is also mentioned by Knott [14] and others. We present no
theory to generalize our results, however it seems intuitive that the result of
our scheme is worse than any scheme in which the deletions and insertions
occur in random fashion. If a large batch of deletions occur at random and
then an equal number of insertions follow, the conjecture is that the resulting
tree will on average be better balanced than a similar tree in which the dele-
tions and insertions are paired. The idea is that in the batch version the
insertions will be split up over a reduced number of nodes forming larger sub-
trees that are randomly balanced, but are fewer in number than in the paired
version. More specificly, the number of backbone nodes will be reduced after
the batch of deletions on average, and the average interval between the back-
bone nodes should be larger, than would be the case for a tree of N nodes
after the same number of updates. Since the next batch of insertions will be
uniformly distributed over each of these intervals, the tree will be less skewed
on average than the paired model suggests. As an extreme example, if all N
nodes are deleted, then N new keys inserted, the resulting tree will have an
expected IPL of O(NIgN).

In the analysis of the Hibbard scheme, the expected IPL is @©(N37?)
independent of the shape of the subtree. Thus, the analysis applies to any
deletion scheme that replaces the deleted element with its successor when it
exists, and with the left son otherwise, but makes any changes it likes to the
rest of the right subtree of the deleted node; the only limitation is that no

other changes outside the right subtree can be made.

The lower bound of Q(N%2) applies to an even larger class of algorithms.
For example, algorithm 1 of [5] uses the rule choose the successor or else
choose the predecessor as the replacement node. A quick analysis shows that
the expected interval sizes between backbone nodes will be much reduced
since tags can only become co-joined if two successive subtrees are empty
when the tagged key is deleted. In Chapter 6 of [5] a deletion algorithm

called RR for recursive replacement is given. This algorithm has the rule
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recursively delete the successor or else the predecessor and replace the
deleted node with the resulting key. Again, it is easily seen that in this
scheme tags are never co-joined, since if a backbone node cannot move right
when its key is deleted, it moves left, pushing as many nodes as necessary to
the left as well. It is conjectured that this algorithm results in trees in which
the expected IPL is Q(N?).

Knuth [16] presents an improved algorithm that differs from Hibbard’s
only in checking for an empty left subtree before choosing the successor to
replace the key. If the left subtree is empty, then the right son replaces the
node containing the deletion key. He shows that for one application, his rule
always results in a tree that is at least as well balanced as the one produced
by the Hibbard algorithm when applied to the same tree, and is often better.

However, we have the following corollary to our previous claims.

Corollary

Assuming that the model using tdentical distributions for the moves 1s
sufficiently accurate, updates using the Knuth algorithm for deletions results in
a tree with O(N'2) expected search cost.

Proof: In the previous analysis only the backbone deletions are considered,
and thus the only deletions that could change the results of the analysis are
those involving the leftmost node in the tree. Even then, the result differs
only if the right subtree of that node has at least two nodes in its backbone.
In that case, the leftmost tag moves to the right as before, but one or more
additional tags must now be inserted between the two smallest tags. For
example, if we delete ‘a’ from the left tree in Figure 2.11 using the Knuth
algorithm, then both ‘b’ and ‘¢’ are added to the backbone, forcing us to
introduce the tag labeled ‘0’. This can only reduce the size of the resulting
subtrees, and increase the length of the backbone, and so the average IPL is
still Q(N%2).

We turn now to the upper bound. We observe that for any sequence of
insertions and deletions, the tags created by the Hibbard scheme will also be
created by the Knuth algorithm, and that for any update these tags behave
in identical fashion under either algorithm. Furthermore, the Knuth algo-
rithm can only create additional tags (i.e. backbone nodes) from nodes which
are in the right subtree of the leftmost backbone node. Finally, if after any
update using the Knuth algorithm, we switch to the Hibbard algorithm, the
tags which already exist at the time of the switch will behave exactly the



69

Figure 2.11 Adding New Tags by Knuth Deletion

same as if we continued with the Knuth algorithm. Let f(N) = o(\/l_\’-ﬂ), but
o(1). We can use Kolmogorov’s inequality (See e.g. Feller | [9] Chapter V.8
(e)) in the following way to see that the probability of the f(N)th node being
in the leftmost subtree is zero. We pick a random time ¢, and note that for
the f(N)th node to be in the leftmost subtree, there can be no tagged node
between it and the smallest node. We now consider the tag which was on the
smallest node at time t— f(N)N/2. Its expected position is currently f(N)/2N.
However, it must now either be on the current smallest node or to the right of
the f(N)th node. In either case, it must either have deviated by Q(f(N)/N)
from its expected position, or the number of nodes in an interval of size
O(f(N)/N) must deviate by Q(f(N)) from the expected number, or both. The
variance in the position of a tag over f(N)N/2 updates is O(f(N)/N), and the
variance of the number of nodes in an interval of size f(N)/2N, is the variance

of the binomial with the corresponding probability, which is

f(N) |, L(N) f(N)
NN [l 2N ] <2

Applying Kolmogorov’s inequality to either of these situations leads to the
probability being O(1/f(N)) which is asymptotically zero. We have already
observed that the Knuth algorithm increases the density of nodes on the
backbone, and so the probability of the f(N)th node being in the first subtree
is even less under the Knuth algorithm. Thus, the special effect of the Knuth
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algorithm cannot operate to the right of the f(N)th node, meaning the tags to
the right of that node behave exactly as they would under the Hibbard algo-
rithm. We conclude by noting that even if the Knuth algorithm were able to
linearize the leftmost f(N) nodes of the tree, the number of nodes on the
backbone would still be 0(\/_1\7), since the tags would still have N— f(N) nodes
over which the deviations could occur. Since the subtrees also still contain
O(\/_JV) nodes each, the asymptotic result is unchanged.
o

We should mention that the Knuth algorithm is free to increase the
rebalancing effects on the right subtrees, and, guessing that the leftmost sub-
tree is probably bounded by a small constant, we expect almost no change in
the behavior of the backbone. Simulation results suggest that the Knuth
algorithm produces a slightly smaller average cost than the Hibbard.
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Chapter 3

Extended Hibbard Simulations

3.1. Introduction

In Chapter 2, it was argued that we expect the IPL to be @(N%2) for both
the Hibbard and Knuth schemes after more than N? updates have been made.
The leading coefficient was estimated, but there is reason to believe that this
estimate is not very precise, and, even if it is, the resulting estimate of the
expected IPL is not precise. In large part this is because of the unknown
structure of the subtrees of the nodes of the backbone. Furthermore, neither
the expected length of the backbone nor the expected size of the right subtree
of the root has been precisely determined. Finally, the distribution of the

sizes of the subtrees of the backbone nodes is also unknown.

In this chapter we improve our understanding of the updating process by
studying various simulations that we and others have performed. In this way
we are able to estimate some of the relevant parameters of the process,
including the coefficient of the leading term of the IPL. First, we review the
data obtained from the simulations in Eppinger [7] and Culberson [5] using
the evidenced lower bound as a guide to further analysis, and thus obtain our -
first estimate of the coefficient of N¥2. During the process of developing the
theoretical analysis of Chapter 2, we performed many further simulations to
test various parameters and to guide the analysis. In this chapter we present
the results of these simulations which lead to further insights into the updat-

ing process.

Although we have packaged the simulations and the theory into separate
chapters, we wish to emphasize the interaction of the two during the develop-
ment of our understanding of the problem. In particular it should be noted
that the simulations performed by Eppinger were the first published indica-
tion that the Internal Path Length increased under the updating process.

3.2. Previous Simulations

In this section we re-evaluate the data from the extensive simulations of

Eppinger [7] and Culberson [5] using our estimated lower bound as a guide.
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Previously, they conjectured that the IPL was Q(Nlog®N) when the Hibbard

or Knuth algorithms were used for many deletions. 3

Table 3.1

Empirical Mean Internal Path Lengths
from Simulations by Culberson and Eppinger

Number of Hibbard Algorithm Knuth Algorithm

Nodes Mean IPL  # Iterations # Trees Mean IPL # Iterations

32 - - - 132.4 7500

64 349.9 10000 200 345.2 50000

128 889.8 50000 200 880.0 80000

256 2251.3 120000 100 2232.2 _150000

512 0737.1 500000 50 5643.1 500000

1024 14687.2 2500000 25 14348.3 2000000

2048 37876.0 9000000 20 - -

Table 3.1 presents average IPL’s from simulations of the Hibbard algo-
rithm as measured by Eppinger [7] and for the Knuth algorithm from Culber-
son [5]. These values were obtained from the published ratios by multiplying
by the expected IPL’s of random trees using the formula for random trees
given in Knuth [16] pp 427. In these simulations, a random tree was first gen-
erated, then the prescribed number of iterations were performed. During this
process the IPL was computed at frequent intervals. The process was then
repeated for the indicated number of trees. The average IPL’s shown in
Table 3.1 are obtained only from data collected after the first N? updates,
since only then did the trees appear to be stable. The analysis of Chapter 2
shows that this conjecture was justified. The extent of the simulations is
shown by the large number of iterations and the number of trees simulated in

Table 3.1. The Knuth algorithm was run on 50 trees in each case.

A regression analysis was used to fit the data from Table 3.1 to functions
involving N%¥2, N%1 Nig(N) and N, where lg(N) = logy,(N). The term Nlg(N)
arises naturally in an estimate of the IPL if we assume the subtrees are bal-
anced. The term N°% is included as an arbitrary term asymptotically
between N¥2 and Nlg(N). Observe, however, that for N less than 65536, N%4
is less than Nlg(N). A tabulation of the coefficients obtained are presented in
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Table 3.2

Regression Coefficients for Data from Eppinger and Culberson
N3/2 N¥%  Nlg(N) N Constant Mean Square

Hibbard 0.405 - - - 634.73 304850.0
0.270 - 0.570 - -14.38 79.1
0.259 - 0.726  -1.228 18.44 5.5
0.201 1.369 0.018 - -7.42 3.9
0.199 1.412 - - -7.19 2.7
0.199 1.405 - 0.021 -7.79 4.0
Knuth 0.434 - - - 272.04 60566
0.256 - 582 - -9.51 5.9
0.248 - 0.659  -0.527 -1.42 2.0
0.190 1.210 0.112 - -13.21 4.7
0.174 1.497 - - -14.08 3.3
0.172 1.512 - -0.040 -13.51 4.9

Table 3.2. Also included is the residual mean square to show how well the

various formulations fit the data. All the regressions are unweighted.

When we compare the leading coefficient of these regressions with the
value 0.266 computed in the approximation model of section 2.4, we see that
the experimental results strongly support the conjecture that the subtrees
are balanced well enough that they do not contribute to the N2 term. On
the other hand, excellent fits are obtained by replacing the Nlg(N) term with
N4 When both of these terms appear in a regression for the Hibbard algo-
rithm, more significance is attached to the N%4 term than to Nlg(N).

3.3. Measuring the Right Subtree

The simulations in this section were designed to measure the size and
characteristics of the right subtree of the root after N? updates have been
made. These simulations were progressively extended to include extra data
gathering as our understanding increased and we required more detailed
information. Originally only the length of the backbone and the size of the
right subtree were measured. Later, we extended the lengths of the runs
measuring the IPL in addition to the backbone and right subtree size. The
purpose was to allow comparison with the IPL’s obtained by Eppinger. Since
we gathered data at specific times as described below, we wished to test that
this did not significantly affect our measures. Finally, the lengths of the runs
were extended even further, this time gathering information on the structure
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of the top five right subtrees of the backbone in addition to the previous
data. In addition, three long runs were performed for trees of size 8192 gath-
ering all types of data throughout. We were now particularly interested in
determining whether the subtrees themselves exhibited any left or right
imbalance. In all cases, the data was gathered only when a new right subtree

of the root was created.

Figure 3.1 Collect Data When X Deleted.

Figure 3.1 illustrates the times at which the data was gathered. A new
right subtree for the root is created when the key in the current root is
deleted, and the right subtree of the root is empty. Note that at these times,
the interval containing the new subtree has had the maximal time for growth,
since any further change to this interval can only decrease the interval size
by moving the root towards the right of the domain. This, of course, is not
the same as saying that the right subtree is at its maximum size, or that it is
the maximal subtree in the tree. However, it should give a good approxima-

tion to the subtree sizes as estimated in Chapter 2.

Unlike previous simulations, this one performed updates for a long time
on a single tree. This makes the simulation more efficient since the subtrees
in the initial tree must all be discarded from the analysis, to ensure that all
the measured subtrees are between tags created during the updating process.
The data analysis routines checked the number of nodes in the backbone of
the initial tree and discarded that many subtrees from the calculations. This
means that approximately N? updates were wasted on each initial tree. If
there are B nodes in the backbone of a tree at any point in the simulation,
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then after B more subtrees have been removed, the tree is made up entirely
of new keys, and the shape of this new tree will be independent of the shape

of the previous one.

Table 3.3

Right Subtree For Hibbard with Leaf Insertion
Number of Millions of Number of Subtree Size Backbone

Nodes Updates Subtrees Avg Var Avg Var
512 7 236 51.9 801.8 184 4.2
1024 22 237 79.6 1765.0 254 4.4
2500 70 209 118.4 3652.2 40.8 6.4
4096 140 188 158.3 6529.5 51.5 8.4
8192 600 270 233.1 15466.2 71.1 14.7
8192 400 169 229.6 15250.6 723 13.7
8192 400 181 219.3 135328 73.2 10.0

Table 3.3 summarizes the results of these simulations. These are the
cumulative results from all three stages of the simulations. The column titled
“Number of Subtrees’’ shows how many subtrees were used in computing the
averages. The standard deviation of the subtree sizes is high, being approxi-
mately equal to one half of the mean in each case. The variance on the length
of the backbone, on the other hand, is small, indicating a negative correlation
between the subtrees. The number of updates is the number performed dur-
ing the simulation. In general, the last new subtree occurred slightly prior to
this time, and thus the number of updates required to generate the indicated
subtrees was slightly less. Again recall that the first B subtrees generated are
not counted, where B is the number of nodes in the backbone of the initial

tree.

In Table 3.4, the averages for the sizes of the subtrees and the lengths of
the backbone are expressed as multiples of N2, These values are close to,
but generally less than, the value of Vom = 2.5 computed in the approxima-
tion model found in Chapter 2. The data in Table 3.4 tend to confirm this
conjecture. If we compute the average of the three runs for 8192, we find the
coefficient for the subtree size is 2.512 and for the backbone it is 0.798 which
agree fairly well with the conjectured 2.506 and 0.798 respectively.
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Table 3.4

Average Subtree and Backbone Values
Expressed as Ratios to VN
Number of Nodes Right Standard Backbone Standard
In the Tree (N) Subtree Deviation Length Deviation

512 2.29 1.25 0.813 0.091
1024 2.49 1.31 0.793 0.066
2500 2.37 1.21 0.816 0.051
4096 2.47 1.26 0.805 0.045
8192 2.58 1.37 0.786 0.042
8192 2.54 1.36 0.799 0.041
8192 2.42 1.29 0.809 0.035

Table 3.5

Average IPL From Extended Hibbard Simulations
Tree Size Number of Subtrees Average IPL Variance

512 107 5,505 112,004
1024 137 13,999 645,567
2500 112 48,604 4,230,873
4096 118 94,987 21,450,140
8192 270 250,201 214,230,784
8192 169 254,515 201,874,000
8192 181 259,200 77,005,696

Table 3.5 shows the average IPL computed during the two extensions to
the simulations. We repeat that these values are computed using data col-
lected at the special times when a new right subtree has been created at the
root. Deleting the root when it has no right subtree moves every other node
in the tree up one level. Thus, we would expect the IPL to be reduced by
O(N) from the IPL previous to that update. However, in comparing the
values obtained for trees of sizes 512 and 1024 in Table 3.5 with the values in
Table 3.1, we see that the results are in reasonable agreement nonetheless.

The column indicating the number of subtrees indicates the number of data
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points used in computing the means and variances.

Table 3.6

Regression Coefficients for Data from
New Simulations of Hibbard’s Algorithm.

N372 N*%  Nlg(N) N Constant Mean Square
0.339 - - - 3975.60 11644000
0.277 - 0.461 - 310.01 10326000
0.368 - -2.216  26.907 -2514.70 13641000
0.656 -9.645 4.895 - -1361.40 13615000
0.238 1.000 - - 494.64 10351000
0.460 -3.041 - 18.689  -2178.60 13632000

In Table 3.6 we have the results of various regressions of the data in
Table 3.5. Notice that the coefficient of N2 seems to be fairly stable, but
that the coefficient of N5* varies greatly, even changing sign. Invariably, the
error associated with N¥2 was much better than that of N54.

Table 3.7

Regression Coefficients for Combined Data
from Simulations of the Hibbard Algorithm

N2 NV VIgN  Ne Nlg(N) N Constant
0.341 . . - - 2707.50
0.269 - - 0.517 - 191.09
0.317 . - -0.732  12.003 -567.80
0.528 ; -6.373 3.380 - -326.23
0.223 ; 1.145 - - 295.98
0.359 - -1.213 - 10.201 -551.13
-0.216 2.017 . - - 369.87
1.885 -6.705 ; 2.220 . -327.23
0.747 -1.828 . - 0.4249  -544.30
7.869  -32.499 . 14.806 -57.989 1345.00
143.670  -715.320  719.730 -149.470 80.270  -1760.90
. 1.233 . - - 1271.70
; 1.150 - - 2.200 121.36

. 1.115 . 0.234 - 274.45 -
- 1.361 - -1.370  14.815 -640.95
- 1.021 0.569 - - 326.36

If we combine this data with that from Eppinger [7] we increase the

number of data points to 9, at the same time obtaining duplicate values for

512 and 1024 and of course 8192. Regressions were performed for various
combinations of N%2, Nlog,N, N3’2/\/lgN, N, N%% and a constant term. The
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results are tabulated in Table 3.7. The N3’2/\/l_g7\l_ term was included since it
is an alternative lower bound computed in the previous chapter. No clear
preference was indicated throughout the regressions for this term over the
N3? term, and this is reflected in the rather erractic behavior of the
coefficients when these two terms are both included. However, the length of
the backbone and the size of the subtrees reported in Table 3.4 strongly sup-
port the N¥2 model over the N¥2/VIgN model. In particular, in the latter
model the length of the backbone should differ by a factor of about 1.2 for
trees with 8192 nodes from those with 512, as should the size of the right sub-
tree. No such difference is evident. These results are in good agreement with
those of Table 3.2. There seems to be good evidence for the approximation

model.

We now turn to the results of the third stage of the simulation. Follow-
ing [5] we define the Left Normal Measure (LNM) of a tree to be the sum over
all nodes of the tree of the number of nodes in the left subtree of the node.
The Right Normal Measure (RNM) is defined analogously to be the sum over
the right subtrees. If the tree is balanced, we expect LNM = RNM.

In these simulations, the measure was taken for each of the topmost five
right subtrees of the backbone each time data was gathered. We define the
Left Measure (L) of a subtree to be the total over all the samples of the LNM
of the subtree divided by the total over all samples of the number of nodes in
the subtree. That is, it is an average measure of the LNM, although the term

average is a bit fuzzy here since the size of the subtree also varies from sam-
ple to sample. The Right Measure R is similarly defined.

The Left and Right measures for each of the top five subtrees is
presented in Table 3.8. Notice that the subtrees exhibit a tendency to be
skewed to the right. This would seem to contradict the assumption that the
subtrees are balanced. Also presented is an estimate of the average search
path length. This is just the sum of the Left and Right measures. (In [5] it is
shown that LNM + RNM = IPL). For comparison, the expected search cost
of the random tree of the nearest integral size (See Knuth [ [16] Chapter
6.2.2), is also listed. In every case, the random cost exceeds our average cost.
We thus seem to confirm the conjecture that the subtrees are reasonably well
balanced. We conjecture that the difference R—L is bounded by a constant,

or at least that g+£’ converges to zero. That is, we guess that the right
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Table 3.8
Tree size = 512 Number of Subtrees Used = 35
Average Average Left Average Right Average Path Expected Path of
Subtree Size Measure Measure Length A Random Tree
51.171 2.280 2.683 4.963 5.215
57.771 2.254 2.852 5.105 5.453
49.800 2.180 2.687 4.867 5.178
43.486 2.096 2.756 4.852 4.902
46.400 2.088 2.723 4.811 5.025
Tree size = 1024 Number of Subtrees Used = 73
Average Average Left Average Right Average Path Expected Path of
Subtree Size Measure Measure Length A Random Tree
75.918 2.602 3.052 5.654 5.958
77.753 2.492 3.051 5.543 6.007
72.301 2.446 3.096 5.543 5.857
72.096 2.472 2.996 5.467 5.857
71.301 2.473 2.978 5.451 5.830
Tree size = 2500 Number of Subtrees used = 47
Average Average Left Average Right Average Path Expected Path of
Subtree Size Measure Measure Length A Random Tree
117.872 2.782 3.385 6.168 6.795
119.745 2.792 3.447 6.239 6.827
103.553 2.653 3.365 6.018 6.553
116.234 2.791 3.398 6.189 6.762
106.468 2.662 3.390 6.052 6.590
Tree size = 4096 Number of Subtrees Used = 27
Average Average Left Average Right Average Path Expected Path of
Subtree Size Measure Measure Length A Random Tree
173.444 3.165 3.722 6.887 7.533
179.111 3.139 3.754 6.893 7.599
177.333 3.112 3.752 6.863 7.977
163.815 3.176 3.598 6.774 7.430
162.630 3.087 3.679 6.766 7.418

subtrees remain well balanced for large trees.

Finally, we include a plot of the 270 subtrees from the first simulation of
8192 in Figure 3.2. This gives at a glance an idea of the range and scatter of

the subtree sizes when they first are made right sons of the root.
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Tree size = 8192 Number of Subtrees Used = 270
Average Average Left Average Right Average Path Expected Path of
Subtree Size Measure Measure Length A Random Tree
233.081 3.352 3.988 7.340 8.113
231.537 3.335 4.021 7.355 8.096
222.900 3.337 3.931 7.268 8.027
214.963 3.318 3.930 7.248 7.956
220.885 3.315 4.003 7.318 8.009
Tree size = 8192 Number of Subtrees Used = 169
Average Average Left Average Right Average Path Expected Path of
Subtree Size Measure Measure Length A Random Tree
229.621 3.387 3.970 7.356 8.087
218.663 3.341 3.956 7.297 7.983
226.746 3.334 3.993 7.327 8.062
217.970 3.291 3.970 7.261 7.983
218.089 3.267 3.945 7.213 7.983
Tree size = 8192 Number of Subtrees Used = 181
Average Average Left Average Right Average Path Expected Path of
Subtree Size Measure Measure Length A Random Tree
219.271 3.352 3.947 7.299 7.992
209.569 3.354 3.848 7.201 7.910
205.840 3.320 3.856 7.175 7.872
208.033 3.255 3.904 7.159 7.891
209.370 3.322 3.845 7.167 7.901

3.4. Further Subtree Simulations

The simulations described in this section have two purposes. First, they
extend the results on the size of the subtrees previously obtained to
significantly larger trees. Second, they provide confirmation of those previ-
ous results since, as the following description will make clear, the method of

the simulation is different.

For the first point, we first notice that to achieve useful results from the
above simulations, we require 2(N?) updates. Since the expected cost of an
update becomes Q(N2), this implies that the cost of the simulations increases
at the rate Q(N>?). After describing the following simulation, we will show
that this cost grows as Q(N¥2gN). This gives us a speedup factor of Q(N/gN).
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1031.50 — Subtree Sizes from 8192
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From 600 Million Updates
Figure 3.2 The 270 Subtrees of 8192

Note that in the previous simulation for the tree of size 8192, 600 million
updates were performed to obtain the desired number of subtrees. This
requires the generation of 1.2 billion random numbers. The random number
generator used was algorithm M of Knuth [15], which has been extensively
tested. The agreement of the results of the following simulation with those of
the previous further increases our confidence in this generator.

In this simulation, only the backbone nodes of the tree are stored. This
not only reduces the simulation time, but also reduces the memory required
for large trees.

The updates are classified according to their effect on the backbone.
There are four possibilities:

1 delete from the backbone, and insert in a subtree,

delete from the backbone, and insert into the backbone,

2
3 delete from a subtree, and insert into the backbone,
4

delete from a subtree, and insert into a subtree.
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The last of these has no effect on the backbone, and yet it accounts for all
but 0(1/\/-17) of the updates, under the assumption that the backbone con-
tains O(I/VN) nodes. Elimination of these updates is the basis for the reduc-
tion in the cost of these simulations.

Insert

S - Start. D - Delete. I - Insert.

Figure 3.3 Backbone Simulation Model

In Figure 3.3, node S indicates the state of the process before starting an
update. Node D corresponds to the deletion of a key from the backbone, and
I to the insertion of a new key into the backbone. An update of type 1
corresponds to the path S—D— S, an update of type 2 to the path S—D-I-§
and one of type 3 to S—I—S. All updates of type 4 are ignored. In our model,
a deletion occurs in the backbone with probability P(Dg) = B/N, where B is
the number of nodes in the backbone at the time of the update, and N is the
total number of nodes in the tree. An insertion is made into the backbone if
the new key is smaller than the smallest key in the backbone, so the probabil-
ity of this event per insertion is P(Iz) =K, where K, is the value of the smal-
lest key, and the keys are Uniform(0,1). On each update, the process must
first simulate either event D, corresponding to the deletion in an update of

type 1 or 2, or event I corresponding to the insertion in an update of type 3.
Referring to Figure 3.3, the process should reach node D with probability

P(Dp)
P(Dg) + (1- P(Dp)) K,

P(D) =

and node I with probability P(I) = 1-P(D) from state S. If D is chosen, then
an insertion may be performed after the deletion, with a probability deter-
mined by the smallest key after the deletion.
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When the deletion of a key must be simulated, it is first necessary to
select one backbone node v at random. Then the number of nodes N,, in its
right subtree must be determined. We make the assumption that for large N
a sufficient approximation to the behavior of the trees is achieved by assum-
ing that the nodes which are not in the backbone are randomly distributed
over the tree. Thus, we assume that the probability of a node falling in the
interval following a backbone node is proportional to the size of the interval.
We assume that the number of nodes in the interval is independent of all
other previous updates. We generate a Binomial random variable,
Binomial(K,,,— K, , N—B), where the first parameter is the size of the inter-
val to the right of the node, and the second is the number of nodes not in the
backbone. We use N—B since the B nodes of backbone cannot be in any
right subtree. If v is the root of the tree, then the next larger key is the
dummy root of the tree with value 1. An algorithm for generating Binomial
variables using the Beta algorithm is given by Knuth [15] and runs in log(N)
time. The Beta algorithm used was algorithm BB of Cheng [3].

If the number of nodes in the right subtree of the selected node comes up
zero, then the node is deleted from the backbone. Otherwise, we generate a
random value having the distribution of the smallest of N,, keys uniformly
distributed over the interval, and use that as the new key for the selected
backbone node. Again, we assume the uniform distribution and that the
interval is independent of previous updates. Recalling that the distribution
of the smallest of ¢ keys over (0,1) is 1—(1—u)¥, and noting that 1—u is uni-
formly distributed if u is, we see that variates having the distribution of the
smallest key can be generated by 1— UY!, where U is a random variable with

the uniform distribution, and scaling over the given interval.
To insert a key, we generate a Uniform(0,K,) random variable, where K,
is the smallest key in the backbone.

To allow the efficient insertion and deletion of keys in the backbone, we

make use of the data structure in Figure 3.4.
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Figure 3.4 Data Structure for the Backbone

The operations that must be accommodated are:

1 Delete a random node.

2 Insert a smallest new node.

These operations can be easily accommodated in O(1) time by keeping the
nodes in the first B elements of an array. The elements are also members of a
doubly linked circular list, where the pointers point to the next larger and
next smaller members of the backbone, as in Figure 3.4. There is a dummy
zeroth element assumed to contain 0 or 1, depending upon which pointer is
used to reach it. To select a random node from the backbone, we select a
random index from 1 to B. To delete a node, we simply move the last ele-
ment of the array into the position occupied by the node, and adjust the
pointers appropriately. To insert a node, we simply add it to the end of the
array, and link it as the next larger node after the zeroth element, since to be

inserted it must contain the new smallest key.

From the theory developed in Chapter 2 we know that the number of
nodes in the backbone is ®(N'/2), and that the probability of inserting a new
node into the backbone is O(1/N). Thus, P(D) P(I), and so most of the
updates that we do will require a deletion. Since we must generate a Binomi-
ally distributed random variable for each deletion, we require log(N) time to
do an update. Each simulated update is worth N2 ‘real’ updates, and so the
total time required to simulate ©(N?) updates is (N¥2logN). Comparing this
with the Q(N®2) for the simulation of the actual trees computed above, we

have a speed up factor of (N/logN).

These simulations were run for each size of tree used in the above simula-
tions, and in addition for trees of size 25,600 and 100,000. Table 3.9 shows
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Table 3.9

Backbone Simulation Results

Number of Millions of Number of Subtree Size Backbone
Nodes Updates Subtrees Avg Var Avg Var
512 4 139 50.27 755.6 19.55 4.1
1024 10 106 78.38 1747.9 27.12 4.9
2500 35 93 115.54 3734.3 42.27 7.7
4096 80 94 153.41 7440.8 54.01 8.8
8192 220 84 206.18 10267.0 74.56 11.4
25600 1700 95 391.00 32750.8 133.02 14.5
100000 20000 122 776.15 170902.3 260.31 28.4

the results of these simulations. Note that the number of updates is an
approximation of the simulated updates that would have been performed on
a real tree to obtain the same number of subtrees. As a note of interest, the
simulation of the 100,000 node tree required 179 hours of CPU time on a vax
11/780. The simulation of 8192 using actual trees for 600 million updates
required more than 115 hours. It is estimated that more than 13,000 hours
would be required to do a real simulation of 20 billion updates on a tree of
size 100,000.
The following table compares the results of these simulations.

Table 3.10

Subtrees and Backbones from Simulations
Values Expressed as Ratios to VN

Full Tree Simulations Backbone Model
Number of  Right Right

Nodes Subtree Backbone Subtree Backbone
512 2.29 0.81 2.22 0.86
1024 2.49 0.79 2.45 0.85
2500 2.37 0.82 2.31 0.85
4096 2.47 0.81 2.40 0.84
8192 2.51 0.80 2.28 0.82
25600 - - 2.44 0.83
100000 - - 2.45 0.82

As can be seen, the results are reasonably close to the earlier simulations and
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theory, but the subtrees are a bit smaller and the backbones are a bit longer
in the backbone simulation. For 100,000, the difference in the length of the
backbone and the predicted length assuming the Vo/n coefficient is about 8
nodes. The difference in the subtree size and the predicted value is about 16
nodes. The values are generally smaller for smaller trees. These differences
seem small compared to the measured size of the subtrees, but the con-
sistency of the difference would seem to indicate that the backbone simula-

tion is not as accurate as we would like.

There are several possibilities for the difference. Perhaps there is some
loss of accuracy due to truncation in the computation of the Beta variates
and the resulting Binomial variates. However, double precision was used
throughout, and furthermore it seems unlikely that there would be any

discrepancy in the smaller trees such as 512.

A more realistic hypothesis is the following. If we consider for example
two tags when they are first created, then there is no key between them, but
the interval between them has an expected size of approximately 1/N. We
expect about one half of the keys to be deleted and replaced before the lower
tag moves in the real tree. Assuming the lower tag moves before the upper,
we then have that the expected number of keys in the interval is the expecta-
tion generated by N/2 random keys falling at random. But the backbone
simulation assumes that all the non-backbone keys are falling at random, and
thus over estimates the probability of there being a key in the interval. Simi-
lar arguments would seem to apply for all inter-tag intervals, the effect being
greatest when the tags are close together. This means that the tags are
slightly less likely to clump together and thus the backbone would be longer
on the backbone model. Whether or not the two models converge is not

clear.

3.5. Exact Fit Domain Simulations

In the discussion on trees on Exact Fit Domains in Chapter 2, it is shown
that the expected interval size of the right subtree at the time it first
becomes the right son of the root is approximately VaN. Simulations were
run for EFD’s for various values of N. The following tabulation shows the

accuracy of our simulation methods.
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Table 3.11

Average Right Subtrees on EFD’s
Number Right  Variance Backbone Variance Number of Ratios to VN

of Nodes Subtree subtrees RST Backbone
256 28.07 205.4 17.49 3.6 256 1.755 1.093
512 40.07 375.3 24.86 4.7 269 1.771 1.099
1024 54.13 787.8 36.18 6.7 224 1.692 1.131
2500 88.32 1995.9 56.20 12.0 192 1.766 1.124
4096 115.02 4358.5 71.27 16.1 215 1.797 1.114

We see that the subtree sizes agree with 1.772V'N as predicted and that
the length of the backbone also agrees with the predicted 1.128VN.
Table 3.12

Average Internal Path Lengths of EFD Trees
Tree Size Number of Subtrees Mean Internal Path Length  Variance

256 135 2408.2 44388
512 92 6186.4 181531
1024 108 17282.4 1210317
2500 88 60395.6 9617220
4096 115 124916.9 33556912

As for general trees, these simulations were also extended and a‘ata gath-
ered on the Internal Path Length, again at the special times when a new right
subtree of the root was created. In Table 3.12 the average IPL’s are
displayed. Using regression analysis, the coefficient of N2 ranges from 0.422
to 0.478. The results found were 0.474N%2 — 0.565Nlog,N + 6..919N,
0.422N%2 + 0.285Nlog,N, and 0.478N%2,
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Chapter 4

In Search of Improved Algorithms

4.1. Introduction

In this chapter we seek deletion algorithms that result in trees with good
average internal path length, without resorting to any explicit rebalancing
schemes. Empirically Eppinger [7] and Culberson [5] found that alternating
between left and right versions of the Hibbard or Knuth algorithms resulted
in O(NlogN) internal path length. The intuition behind this is discussed in
section 4.5, but the result has not yet been proven.

One of the most intriguing aspects of the Hibbard algorithm is that
despite its obvious asymmetry, if we do a sequence of random insertions and
then do one or more random deletions, the distribution of tree shapes is the
same as that generated by the appropriate number of random insertions
alone. However, deletions do not preserve the distribution of trees generated
by random insertions, and as a result insertions following the deletions des-
troy this randomness property of the shapes. Knott [14] was the first to
observe this subtle change in the distribution. The distinction hinges on the
idea that the random tree shapes and the random values remaining after a

deletion are not independent.

In the following sections we consider the problem of finding a deletion
algorithm that maintains the distribution of trees generated by random inser-
tions. The probability distribution of the IPL for randomly built trees using
leaf insertion is known (See Knuth [16] section 6.2.2), and in particular, the
average IPL is O(NlogN). Thus, knowing that a deletion algorithm leaves us
with random trees implies good average case behavior. We also explore the
possibility of using the root insertion algorithm of Stephenson [19] with some

of our deletion algorithms.

We continue to assume that insertions are random and that deletions are
equally probable over all keys in a tree. A deletion scheme consists of a pair
of algorithms; one for insertion and one for deletion. A deletion scheme is
deletion insensitive (DI) if the expected cost of accessing an item after a ran-
dom sequence of deletions and insertions is the same as in a tree of the same



89

size built by a random sequence of insertions. Otherwise the scheme is
deletion sensitive. Knott’s result shows that coupling Hibbard deletions with
leaf insertions yields a deletion sensitive scheme. Knuth [17] discussed gen-

eral properties of data structures that preserve randomness.

We wish to study Deletion Insensitive schemes, and in particular we are
interested in those schemes that use the leaf insertion algorithm. In the fol-
lowing sections we will consider schemes in which the time requirements are

restricted to O(logN) for any access on average.

4.2. Exact History Algorithms

One way of obtaining a deletion insensitive scheme is to design our dele-
tion algorithm so that deleting an element leaves us with the same tree that
would have been generated if the deleted element had never appeared in the
insertion sequence. We now explore some of the problems and possibilities of
such an algorithm.

To aid in the arguments that follow, some notation will be necessary.
We designate by k; the sth element of an insertion sequence, and by d; the
deletion of k; from the tree. Thus, a sequence of 4 insertions followed by the
deletion of the 2nd key inserted followed by a fifth insertion could be desig-
nated by <k, ko ks ky,doks>.

Suppose we build a tree T from an insertion sequence ¢ = <k, - - -k, >.
We say that o generates T. We then use an algorithm A to delete an element
k; from T. If A always generates the tree that would be generated by the
sequence o— <k;>, we say that A is an FEzact History Deletion (EHD) algo-
rithm. Trivially any EED algorithm is DI when coupled with the leaf inser-
tion algorithm. Unfortunately, there can be no EHD algorithm unless we
store information about the order of the insertions. This is because many
trees have several possible generating sequences. For example, the sequences
<2,1,3> and <2,3,1> each generate the same tree. Thus, when we store a
sequence in a tree we may lose information about the order of the elements in
the sequence.

If we store both the key and the index of the key in the sequence (the
sequence number), then it is possible to design an efficient algorithm that is
EHD. At each node of the tree we will have a tuple, (k,s), which consists of a
key k and a sequence number s. It is trivial to prove that leaf insertion
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acting in the usual way on the keys preserves the heap property on the
sequence numbers; i.e. the sequence number at any node is less than any of

its descendants.
If the nodes of a tree are tuples and the tree is so ordered that

(1) the search property is maintained on the first elements of the tuples

and

(2) the heap property is maintained on the second elements of the tuples

we call the tree a history tree.

These are equivalent to the Cartesian Trees described in Vuillemin [20].
However, we wish to view deletions from the point of view of rotations and
then extend these notions to the probabilistic algorithms of the following sec-

tions.
First, we prove the following lemma.

Lemma 4.1

A set of tuples with unique keys and sequence numbers determines a unique
history tree.

Proof: By induction, on noting that the root of a tree is uniquely determined
by the smallest sequence number. The basis for trees of size one is obvious.
For the induction step, assume that it is true for trees of size 1,--- ,n~1.
Then for trees of size n, uniquely determining the root determines the set of
tuples in the left and right subtrees, but these are of size <n.

D

To show that a deletion algorithm is EHD, we need only show that given
a history tree as input, performing the deletion produces a new history tree.
We note that by the heap property on sequence numbers, the replacement for
the doomed node must be either the left or right son. By doing the proper
single rotation (see for example [10] pp 87), we can move the node with the
smaller sequence number up, and the doomed node toward a leaf position.
We continue to rotate the doomed node in this fashion, until one of the sons
of the doomed node is empty, then simply replace the node with the remain-
ing son. It is easily seen that this algorithm visits each of the nodes in the
paths to the successor and the predecessor nodes at most once. Note that it

merges those nodes into a single path.

Figure 4.1 is an example of an exact history tree. We wish to delete the
node (7,1) using our EHD algorithm. We first rotate the root left since the
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Figure 4.1 Exact History Deletion Using Rotations

sequence number ‘2’ of the right son of the root is less than the ‘6’ in the left
son. To go from the second tree to the third, we do another rotate left, since
now the ‘5’ is less than ‘6’. However, the right son now becomes empty, so we

can delete the node and use the left son as the replacement.
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Stephenson [19] gives a method for inserting values into a binary search
tree by inserting the new element at the root. The algorithm is best

explained by an example.

Figure 4.2 An Example of Root Insertion

We wish to insert a new value ‘N’ into the tree on the left of Figure 4.2,
where the position of the new value would be at the external node ‘X’ if we
used leaf insertion. The dashed lines indicate portions of the tree that are
changed when we use Stephenson’s root insertion algorithm. The tree on the
right shows the result after the new node is inserted. The insertion at the
root has the effect of splitting the tree on the dashed edges.

If we were inserting tuples using the root insertion, then it is easy to see
that the heap property is again maintained, except now we have a max-heap;
i.e. the maximum, or newest, sequence number is at the root. If we now
apply the EHD algorithm described above (suitably modified to rotate up the
maximum instead of the minimum) to delete ‘N’ it has the effect of ‘zipping
up’ the paths to ‘d’ and ‘e’, the predecessor and successor of ‘N’, into the sin-
gle path of the original tree. Stephenson [19] shows that the root insertion
algorithm operating on any input sequence o, generates the same tree as the
leaf insertion algorithm operating on the sequence @, the reverse of o. Thus,
our EHD algorithm can be coupled with either insertion algorithm to give us
a DI algorithm pair, with expected IPL of O(NlogN). However, it does require

the storage of sequence numbers.
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4.3. Possible History Deletion Algorithms

In this section we consider algorithms that do not require the storage of
historical information. Note that the heap property of history trees implies
that some information about the input sequence is implicit in the tree struc-
ture. In particular, if an insertion sequence o = <k, - - -k, > would generate
a given tree T, we then say that o is a possible history sequence for T. In gen-
eral, the set ¥(T) of possible history sequences for a given tree T will be a
proper subset of the set of n! possible orderings of the elements of T, when-
ever n>2.

If a deletion algorithm deleting a key k; from a tree T always produces a
tree T’, such that there is a sequence o’ € ¥(T’) with ¢’ = o~ <k;> and
o € ¥(T), we say that the algorithm is a Possible History Deletion (PHD) algo-
rithm. The idea behind this definition is that if we could design an algorithm
that generates the left and right rotations with the proper probabilities, then
we should have a DI algorithm. It is easy to see that the set of possible left
and right rotation sequences for moving a node to a leaf position (or
equivalently until one son is empty) and then deleting the node, results in the
set of trees generated by the set ¥(T) with the corresponding element

deleted. If there are a nodes in the path to the predecessor and b in the path

a+bd

. ) possible rotation sequences.

to the successor, then there are (

Again, unfortunately, we suffer from the information loss due to many
sequences mapping onto one tree. The proper left-right probability for any
rotation depends on the relative sizes of the two subtrees. Unless we are wil-
ling to store this information, and keep it updated, or to count the nodes
before each rotation, it does not appear that such proper probabilistic rota-

tions are possible.

One obvious PHD algorithm is to choose between left and right rotations
at random as they arise with equal probability. Figure 4.3 shows an example
of the type of behavior of this algorithm. The IPL increases quickly, then lev-
els off near 2.35 times its initial expected value for trees of size 1024. The
ratio of final to initial path lengths appears to increase with tree size. At the
same time, the length of the backbone decreases from its initial expected
value. The trees remain left-right balanced, so it seems that somehow the
lengths of the paths near the center portion of the tree must increase. We

have no analysis of this algorithm.
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Figure 4.3 PHD Simulation Results

In Table 4.1, the ratio of the average final Internal Path Length to the
expected initial value is given for various tree sizes. A good fit for these
values is 0.237logn—0.14. This implies that the IPL is Q(nlog?n). The expected
length of the backbone is the nth harmonic number. From the table it
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Table 4.1

Simulations of the Possible History Deletion Algorithm
Using Equally Probable Rotations.
Number of Average Ratio of  Average Measured

Nodes Final IPL/Initial Backbone
32 1.139 3.842
64 1.269 - 4.317
128 1.443 4.382
256 1.681 4.754
512 1.946 4.774
1024 2.345 4.831

appears that the backbone under the PHD scheme is growing much more
slowly than for random trees, being almost constant over the range 256 to

1024.

The above approaches to finding a deletion insensitive algorithm are
based on changing the tree during deletions to approximate the effect of
deleting the element from the input sequence that generated the tree. It is
interesting to note that the Hibbard algorithm preserves the shape distribu-
tion of trees under pure deletions, yet it is not a PHD algorithm. Whenever
the successor exists and is not the right son of the deleted node, the Hibbard

algorithm fails to generate a historically consistent tree.

4.4. Coupling Root Insertion with Hibbard Deletion

Another approach to deletion insensitivity is to couple one of our dele-
tion algorithms with the root insertion algorithm mentioned above, By con-
sidering trees of size three, it is possible to show that coupling root insertion
with Hibbard deletion does not preserve the random distribution precisely.
Nevertheless, root insertion does have the property that insertions tend to
reorganize the existing tree in a random fashion. For example, the distribu-
tion of the key of the root is random, depending only on the last insertion.
Simulations have been run for trees of size 512 and 1024 nodes using this
combination. No significant shift in either left-right balance, length of back-

bone or internal path length was detected. Thus, from an experimental
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viewpoint, this appears to be a deletion insensitive algorithm pair.

4.5. Symmetric Algorithms
The main result of this thesis is the claim that the Hibbard algorithm,

and many other asymmetric algorithms similar to it, cause harmful deteriora-
tion in binary search trees when used for a long sequence of updates.
Although this result is of benefit in that it warns against the use of asym-
metric algorithms, it would be useful to have an algorithm that has

guaranteed good average case behavior.

In the preceding sections, we searched for algorithms that were deletion
insensitive, thus guaranteeing good average case behavior. Unfortunately, it
seems that any such algorithm requires either extra memory or extra process-
ing time or both. However, one positive indication from this search was that
the use of a root insertion scheme did, at least empirically, preserve the
expected IPL of random trees, even when coupled with the asymmetric Hib-
bard algorithm. An interesting open problem is to prove that this is indeed

the case.

Eppinger [7] also simulated a symmetric version of the Hibbard algo-
rithm, in which each deletion decides randomly whether to use the successor
or the predecessor as a replacement, using the opposite son if the chosen
replacement does not exist. In all the simulations that he ran, the IPL was
reduced from that of the random tree, and did not show any signs of increas-
ing again even after several times N? updates. Symmetric versions of various
other deletion algorithms, including Knuth’s [16] were tested empirically in
[5] and in each case the IPL was reduced over that of random trees. However,
to date there is no theory that proves that the trees do not eventually degen-
erate. Note that the PHD algorithm of section 4.3 was symmetric, randomly
deciding between left and right rotations at each step. Yet, empirical evi-
dence suggests that the IPL under that scheme increased by a factor of at
least O(logN). Thus, symmetry is not a guarantee of good behavior.

The following is an intuitive argument that the symmetric Hibbard and
Knuth algorithms do indeed yield good average case behavior. We will base
the argument on the Hibbard algorithm, but the line of thinking clearly
applies even more strongly to the symmetric Knuth algorithm. If we consider
the movement of the root over the domain, then we see that it performs a

symmetric random walk. Furthermore, the ends of the domain act as a type
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of reflecting barrier for this walk. For example, if the right subtree is empty
and the algorithm decides to choose the successor as replacement, it finds
that the successor does not exist, so the left son becomes the new root. Since
the left son may have (probably will have) a large right subtree, the root of
the tree has effectively jumped back to a random point on the domain.

If every step of the random walk performed by the root had the same
probability distribution, then we should expect that it would appear in any
subinterval z,2+Az with equal probability. For example, with a simple
discrete random walk, with simple reflecting barriers, the probability of being
at each point is equivalent if the probability distribution is symmetric. (See
Cox and Miller [4] Chapter 2.2(v)) These distributions correspond to the uni-
form distribution of the root of a random tree. If the reflecting barriers are
changed so that on reflection the particle jumps to some random point on the
interval instead of to an adjacent point (in the discrete case) then a simple
application of the theory of Markov processes shows that the probability of
being near the end points of the domain is reduced, increasing the probability
of being near the center. (The discrete case applies directly to EFD trees and
thus proves that the root of an EFD tree is at least as likely to be centered
after some number of updates as is the root of a random EFD tree). In gen-
eral then, we expect that the root is more likely to divide the tree in nearly
equal portions after a large number of updates have been made, improving

the balance of the tree at the root.

It seems reasonable that the argument should apply to the roots of each
of the subtrees; however, in these cases one or more of the ‘barriers’ are
ancestors of the root. Thus, these barriers are themselves moving at random.
The interdependencies now become very complex. However, one further
observation can be made. If indeed the root of a subtree is more likely to be
centered on the sub-interval, even when the parent of the root is at the end
of its interval, then deletion of the parent moves that root nearer to the
center of its interval. Thus, if the conjecture that the subtrees are morevlikely
to be balanced is true, there should be a positive feedback upwards to the
root of the tree increasing even further our conjectures on the amount of
improvement at the root.

Admittedly, the above arguments are imprecise and incomplete, perhaps

to the point of wishful thinking. The point in presenting them is that they
might suggest to some reader a method of analyzing these symmetric
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algorithms. An analysis showing that the average IPL of a tree is reduced
when subjected to updates using a symmetric algorithm would be of great
theoretical and even practical interest, in large part because it would be a

positive result.
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