Robin Hood Hashing

Pedro Celis

Data Structuring Group
Department of Computer Science,

University of Waterloo,
Waterloo, Ontario, N2L 3G1

ABSTRACT

This thesis deals with hash tables in which con-
flicts are resolved by open addressing. The ini-
tial contribution is a very simple insertion pro-
cedure which, in comparison to the standard al-
gorithm, has the effect of dramatically reducing
the variance of the number of probes required for
a search. This leads to a new search algorithm
which requires less than 2.6 probes on average to
perform a successful search even when the table
is nearly full. Unsuccessful searches require only
O(lnn) probes. Finally, an extension to these
methods yields a new, simple way of performing
deletions and subsequent insertions. Experimen-
tal results strongly indicate little degeneration in
performance for both successful and unsuccessful
searches.

Acknowledgements

I am deeply grateful to my supervisor, Professor J. Ian Munro, for introducing
me to the areas of analysis of algorithms and computational complexity and
for his encouragement and friendship throughout the course of my graduate
studies. Very special thanks are also due to Professor Per-Ake Larson, also
my supervisor, for his guidance, constant support, and friendship. They both
suggested the thesis topic, spent a great deal of time with me, and read and
reread all my work. Their ideas are present throughout this thesis.

Thanks are also due to the other members of the examining committee, Pro-
fessors Gaston H. Gonnet, Ian P. Goulden, Jeffrey S. Vitter, and Derick Wood
for their helpful criticism. I also thank the Natural Sciences and Engineering
Research Council of Canada for its financial support.

On a personal level, my deepest gratitude is to my wife Laura Eugenia, for
her love and continuing support, without which my graduate studies could not
have been accomplished. We would like to thank our families in Mexico for their
constant encouragement, and our daughter Laura Elisa and our many friends
in Canada for helping make our stay here a wonderful experience.

Contents

1 Overview of Hashing 1
1.1 CollisionResolution 1
1.2 Open Addressing v it vttt e v e v e e nenoaas 2
1.3 Comparison of Reordering Schemes 3

131 Ordered HashTables. 5
132 Brent'sMethod0ttt 5
133 Binary TreeHashing 7
1.3.4 Optimal and Min-Max Hashing 8
14 Summary e e e e st e et e e 9
15 ThesisOutlinettt eeenesoess 11

2 The Robin Hood Heuristic 12
2.1 The Robin Hood Approachto Hashing 12
2.2 A Family of Random Probing Schemes 13
23 ASingleFinalTable0.000cco.. 16
2.4 The Expected Worst Case for Robin Hood Hashing 18

8 The Distribution of psl 25
3.1 TheAsymptoticModel. 25
82 TheDistribution00ttt ueneas 27

4 New Search Algorithms S4
4.1 SpeedingupSearching..o vttt et o 34
42 Organ-PipeSearching00.000 0. 36
43 SmartSearching00ttt 38
44 ASmart findpositiomnc00 00000 39
45 SumMmAaryt it v ettt e e e 40

5 Simulation Results 42
5.1 Simulation Experiments00. ... 42
5.2 Results for Robin Hood Hashing 43
5.3 TheStandard Methodt v v 49
54 BrentsMethodt 51

5.5 Summary it it e e e 52

Deletions 54
6.1 Deletions in Hashing with Open Addressing 54
6.2 Deletions in Robin Hood Hashing 55
6.3 SimulationResults 57
6.4 SUMMArY v vt vt v vt v e ot oo s o s o n o nn oo 59
Conclusions and Further Research 63
7.1 Conclusionso eeeuneooes e e e e e 63
72 Further Researcht neenenn 64

List of Tables

3.1 Variance at variousloadfactors
3.2 Expected value and Variance of psl foracloseto 1.

5.1 Robin Hood: Number of probes to insert (E[psl])
5.2 Robin Hood: Variance of probe sequence length (V[psl])
5.3 Organ-Pipe Search: number of probes
5.4 Smart Search: numberofprobes
5.5 Organ-Pipe: average time (msecs) to insert arecord
5.6 Organ-Pipe: average time (msecs) for a successful search
5.7 Smart Searching: average time (msecs) to insert a record

5.8 Smart Searching: average time (msecs) for a successful search . .
5.9 Robin Hood: longest probe sequence length
5.10 Standard method: average number of probes to insert or search .
5.11 Standard method: average number of msecs to insert a record . .
5.12 Standard method: average number of msecs to search
5.13 Standard method: Longest probe sequence length
5.14 Brent’s method: average number of probes toinsert
5.15 Brent’s method: average number of probes tosearch
5.16 Brent’s method: average number of msecs to insert
5.17 Brent’s method: average number of msecs tosearch
5.18 Brent’s method: Longest probe sequence length

7.1 Comparison of Hashing Schemes for fulltables
7.2 Comparison of Hashing Schemes for nonfull tables

iv

List of Figures

11
1.2
1.3
1.4

2.1

3.1
3.2

4.1
4.2

4.3

44
4.5
4.6

5.1

6.1
6.2

6.3
6.4
6.5

Standard insertion algorithm 4
Standard search algorithm 4
Sample insertion in Brent’smethod -]
Sample insertion using Binary Tree Hashing 8
Robin Hood insertion algorithm 14
Vipsljve. @ oo e e s e 30
Vipsl)ve. E[psl], 30
Probability distribution of psl for a nearly full table 35
Expected Search Cost for Organ-Pipe Searching. 37
The Organ-Pipe Search Heuristic 37
Robin Hood insertion keepingcounters 38
The Smart Searching Heuristic 40
Expected Search Cost for Smart Searching. 41

Longest Probe Sequence Length for Robin Hood Hashing 48

Robin Hood insertion algorithm when deletions may have occured 57

Robin Hood insertion keeping counters when deletions may have

occured i .t e e e st e e e e e 58
Average Cost of Successful Searches after Deletions 60
Average Cost of Unsuccessful Searches after Deletions 61
Average Probe Position above Minimum after Deletions 62

Chapter 1

Overview of Hashing

One of the most natural and indeed important tasks in programming is the
implementation of a data structure servicing the operations of insert, delete
and find (also called member). Such a structure is often called a dictionary. A
hash table provides a convenient way to implement a dictionary.

Ideally, the purpose of a hashing scheme is to be able to determine solely
from the identification of a record, called the record key, the exact location where
the record is stored. Given a record to be inserted or located, a key to address
transformation is performed using a hash function h(k): K — {0,...,n -1}
which takes as an argument a key k in the specified universe K and returns an
integer h(k) between 0 and n— 1, where n is the size of the table. The record is
then inserted in the table entry specified by h(k). This causes no problems until
a record with key k’ has to be inserted and location h(k’) is already occupied.
In this case we say a collision has occurred. Handling collisions is the central
issue in hashing and the subject of this thesis.

1.1 Collision Resolution

Collisions are almost certain to occur even if the table is sparsely populated.
The famous *birthday paradox” (see for example [FEL88]) asserts that among
23 or more people the probability that at least 2 of them share the same birthday
exceeds 1/2. In other words, if we select a random function that maps 23 records
into a table of sizse 365, the probability that no two keys map into the same
location is only 0.4927. In general, a hash table of size n is likely (probability
> 1) to have at least one collision by the time it contains about \/xn elements.

There are two popular ways of handling collisions: chaining and open ad-
dressing. The idea of chaining is to keep, for each location, a linked list of the
records that Aash to that location. This implies that each entry in the table
must have enough space to contain a record and a link field. There are a number

2 CHAPTER 1. OVERVIEW OF HASHING

of interesting tradeoffs and techniques in connection with chaining. Our inter-
est, however, lies in an approach which calls for no additional storage, namely
open addressing.

1.2 Open Addressing

Open addressing seems to have first appeared in the literature in [PET57]. The
basic idea is to do away with the links entirely and to insert by probing the
table in a systematic way. When a collision occurs, one of the colliding records
is selected to keep the table location, while the other one continues probing
until inserted. The sequence of table entries to be inspected when inserting or
searching for a record is called the probe sequence. We can augment the hash
function with another parameter, the probe posstion or try number, and use it
to generate the probe sequence for a record. Thus the hash function becomes
h(k,s): K x {1,...,00} — {0,...,n—1}.

The simplest open addressing hashing scheme, known as linear probsng, uses
the hash function h(k,t) = (hi(k) + ¢ — 1) mod n, where h;(k) is an auxiliary
hash function. Another open addressing method, called double hashing, uses
two independent auxiliary hash functions h, (k) and h;(k) to compute h(k,t) =
(h1(k) + (¢ — 1) » ha(k)) mod n, where hy(k) is prime relative to n. Double
hashing performs much better than linear probing for high load factors because
it reduces the probability of two colliding records having the same remaining
probe sequence.

Two other open addressing schemes frequently mentioned in the literature
and used as models for analysis are unsform hashing, where the hash function
provides a random permutation of the numbers {0,...,n — 1}; and random
probing, where h(k,t) is simply a number chosen at random from {0,...,n—1}.
The difference between these two schemes is that random probing is memory-
less, meaning that a location may be probed several times before some other
location is probed for the first time. Uniform hashing is conjectured to be opti-
mal in the sense that it minimizes the expected number of collisions during the
insertion process (ULL72]. The conjecture has been proved for the asymptotic
case [YA085). Random probing is simpler to analyse and asymptotically has
the same performance as uniform hashing for nonfull tables under most conflict
resolution schemes. Random probing and uniform hashing are not usually im-
plemented, since empirical evidence shows that their performance is close to that
of double hashing which is less costly to implement. Their interest lies in the
fact that they are simpler to analyse and approximate closely the performance
of double hashing.

Depending on the ratio of the link field size to the record sise, open ad-
dressing can yield a better performance than chaining if the space allocated to
the links and overflow records is used to increase the table sise!. The stan-

1But see [KNU7 3] sec. 6.4 exercise 13 p. 548 for a way of reducing this and [FELLOW 7 3]

1.3. COMPARISON OF REORDERING SCHEMES 3

dard search algorithm is to probe locations h(k,s),s = 1,2,4.. in order until
the record is found. The standard snsertion algorsthm is to probe locations
h(k,t),¢ = 1,2,... until an empty location is found. The new record is placed
in that location. Figures 1.1 and 1.2 on page 4 show these algorithms. Initially
m = longestprobe = 0, where m is the number of records in the table and
longestprobe is the longest probe sequence length used by any one of the
records stored in the table. The table is filled initially by records having a
special key value empty. The problem of deletions is address in Chapter 8.

1.3 Comparison of Reordering Schemes

This section reviews several more sophisticated schemes for creating a hash
table. The key notion is that records already in the table may be moved as a
new one is inserted. Such an insertion algorithm we call a reordering scheme.
A reordering scheme can be used with any open addressing hashing method
but the performance measures presented below are for either random probing
or uniform hashing. As we have already noted, the performance of random
probing is similar to that of uniform hashing and double hashing.

When comparing hashing schemes, we are interested both in the cost of
loading the table and in the “quality” of the table produced, that is, both the
efficiency and the efficacy of the insertion technique. We will characterize the
quality of the hash table by the behavior of the following random variables:
the probe sequence length for a key (psl), which is equivalent to the probe
position where the key was placed; the longest probe sequence length (Ipsl);
the unsuccessful probe sequence length (upsl); and the longest unsuccessful
probe sequence length (lupsl). We will compare the expected value (denoted by
E[e]), and sometimes the variance (denoted by V[e]), of these random variables
for both the case of full and nonfull tables. For nonfull tables these expressions
are functions of a, the load factor, defined as & = m/n, where m is the number
of records in the table and n is its size. Several analyses of hashing schemes,
including the one we derive here, have been performed for infinite nonfull tables
with load factor a, where a < 1 — ¢, ¢ > 0. Throughout the thesis we refer to
this tables as a-full tables.

A very important but often neglected performance measure of a hash table
is the longest probe sequence length (Ipsl), since it provides a bound on both
successful and unsuccessful searches. This value can be used to limit the cost
of unsuccessful searches in any open addressing hashing scheme, as was done in
Figure 1.2. This elegant but sadly underutilized idea is due to Lyon [LYO78].

For standard uniform hashing with no reordering the following equations
can be established [PET57,GON81,GON84]:
for a nonfull table

for a discussion.

4 CHAPTER 1. OVERVIEW OF HASHING

table : array [1..n] of RECORD { all empty }
n {table size}, m {records inserted}, longestprobe {intially O} : integer

function insert(Record)
if m=n then return(FAIL) { table full }
k := Key(Record)
probeposition := 1
location := H(k, probeposition)
vhile table[location] <> empty do
probeposition := probeposition + 1
location := H(k, probeposition)
endvhile
longestprobe := max(longestprobe, probeposition)
table[location] := Record
nen+i
return(location)
end function insert

Figure 1.1: Standard insertion algorithm

function search(k)
probeposition := 1
location := H(k, probeposition)
vhile probeposition <= longestprobe and table[location] <> empty do
if key(table[location]) = k then return(location)
probeposition := probeposition + 1
location := H(k, probeposition)
end while
return(FAIL) { unsuccessful search }
end function search

Figure 1.2: Standard search algorithm

+1 -
E[psl] = "T [Hnt1 = Haeme1] & —a~1In(1 - @)

Vipsl] s 2+ o~ In(1 - a) — a~?In’(1 - a)

E[lpsl] = —log, n — log, (- log, n) + O(1)
and if we use Lyon’s trick

E[upsl] < —log, n — log, (- log, n) + O(1)

1.3. COMPARISON OF REORDERING SCHEMES 5

and for a full table
E[psl] =lnn+9—1+0(1)
E[lpsl] = 0.6315... x n + O(1)
E[upsl] = 0.6315... x n + O(1)

where v = 0.5772156649... is Euler’s constant.
The total number of probes needed to load a table for this method is simply
mE[psl], which for full tables is equal to nlnn + O(n).

1.8.1 Ordered Hash Tables

One of the first reordering schemes proposed in the literature was ordered hash
tables by Amble & Knuth [AMBKNU74|. The scheme was not intended to
improve the retrieval of records, but rather to improve the processing of unsuc-
cessful searches. The idea is very simple. Whenever two records collide, the
one with the smaller key is stored in the disputed location. When searching in
an ordered hash table, the search is unsuccessful whenever a probed location
contains a key larger than the search key. As noted, the distribution of the
probe position of the keys in the table remains unchanged; only the expected
cost of unsuccessful searches is improved, but not its expected worst case. For
uniform hashing and a nonfull table and using Lyon’s trick we have

Efupsl) = —~a"'In(1-a) + O (;:1_'_"_)

E[lupsl) < ~log, n — log, (— log, n) + O(1)
and for a full table

E[upsl]=lnn+'7—1+0(%)

E[lupsl] = 0.6315... x n + O(1)

The total number of probes required to load a full ordered hash table is the
same as for the standard algorithm, namely nlnn + ny — n + O(1).

1.3.2 Brent’s Method

Brent [BRE73| was the first to propose moving stored records to reduce the
expected value of the probe sequence length. During an insertion, a sequence
of occupied table entries is probed until an empty location is found. Brent’s
scheme checks whether any of the records in these occupied locations can be
displaced to an empty location further in their probe sequence, at a smaller

6 CHAPTER 1. OVERVIEW OF HASHING

cost, and the minimum is taken. Figure 1.3 shows graphically how one such
insertion of a record R might occur. In the example, instead of inserting the
record R in its fifth choice and increasing the total table cost by 5, record Rj3 is
displaced to its next choice, and then R is placed in its third choice, the place
formerly occupied by R3. The increase in the total table cost is thus reduced
from 5 to 4.

1st R 2nd R 3rd R 4th R 5th R

R, (&) o)

“+—— Breakeven line

Figure 1.3: Sample insertion in Brent’s method

The tables produced by Brent’s scheme have a very good E[psl], even when
completely filled. For random probing and a-full tables the expected values are

E(51]—1+£+“_3+3‘__a_5+gg_°_+931_293a8_319a°+..
P T e T T T 15 187 15 T 80 ~ 5670 5600

and for full tables
E|psl] = 2.4941...

So, if the standard search algorithm is used, a record can be retrieved in less
‘than 2.5 probes, on average, regardless of the table size. There has been no
successful analysis of the expected values of lpsl and upsl, but it is conjectured
|GONMUN79] that they are ©(/n) for full tables, and this was supported by
simulations. Simulations presented in this thesis, support the conjecture that
O(n Inn) time is needed to fill a table.

Brent’s method does not require any extra memory to process an insert
operation. If the search for an empty location is done on a depth first basis, as
suggested in | BRE7 3], the expected number of times the h3(e) hash function will

1.3. COMPARISON OF REORDERING SCHEMES 7

be computed is a?+a®+a®/3+- - - eventually approaching ©(,/n) for full tables
[KNU73]. The disadvantage of searching in this manner is that a number of
locations below the breakeven line will be probed. For example the fifth probe
position of the record R to be inserted would be probed unnecessarily. The
number of additional table positions probed during an insertion is approximately
a®+at+ $a®+a®+--- [KNUT3|. ~

Another way of searching for the closest empty location is to do a level
search as recommended in [GON84]. For double hashing, this would imply call-
ing the hy(e) hash function during an insertion up to ©(n) times instead of
6(y/n), which may be preferable to probing the extra locations. A disadvan-
tage of Brent’s method is that duplicate keys are not detected by the insertion
algorithm, so if duplicate insertion requests may occur, an unsuccessful search
should precede each insertion. To keep track of the value of longestprobe, the
probe position of the stored record that will be displaced must be determined
to establish if its new probe position will be the new maximum. The probe po-
sition of a stored record can be determined by searching for the location where
the record is stored in its probe sequence.

1.3.3 Binary Tree Hashing

Binary tree hashing is the natural generalization of Brent’s method. Not only
is the record being inserted allowed to displace other records in its probe se-
quence, but these displaced records may further displace other records in their
probe sequences. This is illustrated graphically by Figure 1.4. This method
was discovered independently by Mallach [MAL77] and by Gonnet and Munro
[GoNMuUN79].

Since this method is a generalization of Brent’s, it is expected to produce
better tables at a somewhat higher cost. An approximate model [GONMUN79]
yields the following for random probing and a-full tables?:

a* aof 2a° 83a’ 613a® 69a°

Ejpsl] =1+ 24+ 2 4 2o 2%, -
P = Y T "15 187105 * 720 ' 5760 _ 1120

and for full tables:
E[psl] ~ 2.13414...

These results have been validated using simulation. There is no analysis for the
expected values of Ipsl and upsl, but Gonnet and Munro, based on simulation
results, conjectured them to be about Ign + 1 s 1.44Inn + 1 for full tables.
As with Brent’s scheme, the expected cost of loading a full table has not been
successfully analyszed.

3The formula for El&)sl] for a-full tables is taken from [GON84] and differs slightly from
the one in [GONMUN79).

8 CHAPTER 1. OVERVIEW OF HASHING

1st R
2nd R, next Ry
3rd R next Rp next R, next R3

OO o) (%)

Figure 1.4: Sample insertion using Binary Tree Hashing

The natural order for inspecting the table when searching for an empty
location is by levels, as suggested in [MAL77] and [MAD80]3. However, the
amount of memory required to store the tree of locations probed is large, as
Mallach noted. Limited simulations done by the author of this thesis indicate
that the number of probes into the table appears to be about .5n%/2In n and the
amount of memory required to store the tree about .15n3/2In n. What is worse,
the variance of these two measures is very high, so the probability of requiring,
say, n? extra memory locations is significant.

Gonnet and Munro [GONMUN79]| show how to use an algorithm for the
transportation problem, presented in [EDMKAR72], to insert keys into the ta-
ble. This algorithm has a worst case runtime of O(n?logn) [FRETAR84], but
simulations done by the author of this thesis suggest that the expected cost of
loading a full table is ©(n%/2Inn), and the amount of extra memory required is
6(n), both with a small variance. While this is a great improvement over the
natural algorithm, it is still expensive both in time and memory.

As with Brent’s method, some additional probes are required to avoid du-
plicate keys and to keep track of the value of longestprobe.

1.3.4 Optimal and Min-Max Hashing

Both Brent’s method and binary tree hashing only move stored keys forward in
their probe sequences. Arbitrary rearrangements of the stored records must be

3The reader is warned that the analysis, conclusions and comments on Mallach’s work pre-
sented by Madison [MAD8DO0)] are incorrect.

1.4. SUMMARY -9

allowed to obtain an optimal hash table [P0076,R1V78,GONMUN79]. Poonan
was the first to note that the optimal placement of keys in a hash table is
a special case of the assignment problem [KON31}, which can be solved in
O(n? log n) time in the worst case [FRETAR84|. Neither the expected cost of
finding the optimal hash table nor the expected values of psl, Ipsl, and upsl
have been determined. For E[psl] and full tables the following bounds exist
[GON77,GONMUN79]:

1.688382 < E[psl] < 2.13414...

Simulation results indicate that E[psl] ~ 1.82.... If, instead of minimizing the
expected value of psl, we minimize the expected value of Ipsl (called min-max
hashing), the bounds become [GON81,RIV78]

Inn + v+ o(1) < E{lpsl]
Ipsl < 41gn =~ 5.77Inn with probability 1 — ¢

where ¢ is an arbitrarily small constant and the inequality holds for all n > ng(e).
This last inequality is not sufficient to prove that E[lpsl] = O(lnn). As a
corollary of a result obtained in Chapter 2, it can be shown that Eflpsl] =
©(In n) for full min-max hash tables. Both optimal and min-max hash tables,
in addition to being expensive to build, require ©(n) extra memory during the
insertion of a record.

1.4 Summary

In summary, we can say that binary tree, optimal and min-max hashing reduce
the expected values of psl and upsl dramatically, but at a very high cost for
table creation. The expected number of operations to construct a table using
one of these algorithms is high compared to the standard hashing scheme, and
also require a nontrivial amount of extra memory. These methods are best
suited for applications in which the set of keys is static and known in advance.
In that case, the cost of constructing the table can be amortized over a large
number of search operations, and the additional memory space required can be
released as soon as the table has been created.

Brent’s method is perhaps the one that offers the best overall tradeoff. It is
simple to program, the time needed for loading a full table seems to be 8(n Inn),
it requires no additional memory and has an expected successful search time
which is constant. However duplicate keys are not automatically detected during
the insertion process, that is, an unsuccessful search is a useful prelude to an
insertion. Furthermore, some additional probes into the probe sequence of a
stored record to be moved are required to determine if its new probe position
is the new maximum. But the greatest disadvantage of Brent’s method is the

10 CHAPTER 1. OVERVIEW OF HASHING

expected value of Ipsl and hence of unsuccessful searches; this is (/n), much
worse than the 6(In n) achieved by binary tree, optimal, and min-max hashing.

Ordered hash tables do not improve the expected value of psl nor Ipsl at
all. The method improves the expected cost of unsuccessful searches but not its
expected worst case. The loading cost is almost the same as for the standard
algorithm. If unsuccessful searches are expected to be frequent it should be
preferred over the standard algorithm. This method and the standard algorithm
are the only two that allow detection of duplicate keys with no additional probes
into the table.

As for the standard insertion algorithm, we can say that it is simple to
program and efficient to implement, and that the tables it produces have an
acceptable expected value of psl for moderate load factors. The main problem
with this scheme is that, when the table is full or nearly full, it will take ©(n)
steps to retrieve some keys and to perform unsuccessful searches. The solution
that has been suggested is

®A hash table should never be allowed to get that full. When the
load factor is about 0.7 or 0.8, the size of the hash table should be
tncreased, and the records in the table should be rehashed.” [MAU75]

This statement is sometimes interpreted as *Do not use hashing for real time
applications®. We will see that this is no longer the case.

What is needed is a hashing scheme that combines the best features of each
of the methods presented. Such a scheme should:

e Be as simple to program as the standard algorithm,
e Take only ©(nlnn) probes on the average to load a full table,
e Require no additional memory for insertions,

o Perform successful searches in a small number of probes on the average,
even if the table is nearly full,

o Have a ©(Inn) expected value of Ipsl and upsl.
And of less importance:
e Need no additional probes to detect duplicate entries
o Need no additional probes to keep track of the value of longestprobe

The method introduced and analyzed in this thesis, called Robin Hood hashing,
has all of these characteristics.

1.5. THESIS OUTLINE 11

1.5 Thesis Outline

In this chapter we have reviewed several reordering schemes that produce very
good hash tables; however, the better ones are expensive, in time and memory,
to implement. Each of these schemes involves a new insertion algorithm but
retains the standard search algorithm. In Chapter 2 we modify the standard
insertion algorithm to obtain a new method that we call Robin Hood hashing;
we algo define a family of hashing schemes that have the same expected value
of psl and prove that the expected value of lpsl is O(lnm) for Robin Hood
hashing. In Chapter 3 we study the probability distribution of the random
variable psl and its moments for a-full tables. In Chapter 4 we present some
modifications to the standard search algorithm to be used on a Robin Hood
hash table 8o as to achieve a small constant expected search time for a-full
tables, and loading of a table using ©(nInn) probes. In Chapter 5 we present
the results of simulating several of the methods presented here and Robin Hood
hashing. In Chapter 6 we discuss how deletions can be performed in hash tables
with open addressing and we present an algorithm to be used with Robin Hood
hashing. Simulations results for this new algorithm are also presented. Finally
in Chapter 7 we present our conclusions and suggestions for further research.

Chapter 2

The Robin Hood Heuristic

In this chapter we present a new algorithm to insert keys into a hash table. We
call this algorithm Robin Hood hashing. We then define a family of reorgani-
sation schemes that share the same expected probe sequence length (E[psl]).
Finally we prove that the expected longest probe sequence length (E[lIpsl]) is
O(lnm) for a Robin Hood hash table with m records. Searching and the cost
of loading are discussed in Chapter 4 and deletions in Chapter 6.

2.1 The Robin Hood Approach to Hashing

In the standard hashing algorithm, as the table fills, the problem may not be so
much the average search time, but its expected worst case. An expected value
for psl of Inn+ O(1) may be acceptable, but an expected value for lpsl of 8(n)
is certainly not. In other words, the problem is not so much the mean of psl,
but its high variance.

As an attempt to reduce the variance of the psl, consider the following mod-
ification to the standard open addressing hashing algorithm: when inserting, if
a record probes a location that is already occupied, the record that has traveled
longer in its probe sequence keeps the location, and the other one continues on
its probe sequence.

Notice that, in deciding which record keeps the location, we are not using
any knowledge of the remaining probe sequence of the colliding records, nor
any other information regarding the rest of the hash table. This implies that,
under random probing, the expected number of additional probes into the hash
table required to find an empty location is the same for both records. Therefore
the expected value of pal is not affected by this modification to the standard
algorithm but its distribution and hence the distribution of the lpsl will change.

Consider a collision of two records R; and R;, and assume that their probe
positions are ¢ and 7, respectively, with ¢ < j. One of the records must be moved

12

2.2. A FAMILY OF RANDOM PROBING SCHEMES 13

forward in its probe sequence, and we would like to make the decision without
any knowledge about the future probe sequences of the records. Which record
should be rejected to keep the increase in the variance at a minimum? We have
the following three cases: _
-1) ¢ < 5 < E[psl]: moving record R; will cause the variance to decrease
by a larger amount than moving record R;.
-2) ¢ < E[psl] < j: moving record R, will decrease the variance, moving
record R, would increase it.
-3) E[psl] < 1 < j: moving record R, will cause the variance to increase
by a smaller amount than moving record R;.
In all three cases moving the record that has probed the smallest number of
locations is the best option.

We call this new scheme Robin Hood hashing, since the principle of taking
from the rich and giving to the poor is followed. This does not modify the
average wealth (psl) per individual (record) but changes its distribution by
reducing the imbalance.

Under the standard scheme, a record inserted when the load factor is high
is almost guaranteed to probe many locations, but one inserted at a low load
factor will usually stay in its first probe position. Robin Hood hashing has a °
nice time-independence property: the distribution of the psl for a given record
is not affected by its position in the insertion sequence. The rules for breaking
ties do not affect the distribution of psl, but if ties are always broken in the
same direction (say the record with the lower key value keeps the location),
exactly the same final table arrangement is obtained for every permutation of
the insertion sequence.

Figure 2.1 on page 14 shows the insertion algorithm of Robin Hood hashing.
findposition is a function that determines the current probe position of a
stored record. It returns a sero value if the location is empty. In Chapter 4
we discuss ways of implementing this function; for the moment assume that the
function does a standard search for the record counting the number of probes.
The use of totalcost will also be discussed in Chapter 4.

The standard search algorithm (Fig. 1.2) can be used on a Robin Hood hash
table, but better search algorithms are described in Chapter 4.

2.2 A Family of Random Probing Schemes

Consider the family of hashing schemes in which the decision as to which
one of the colliding records stays in the location is not based on any knowl-
edge about their future probe sequence. Both the standard hashing algorithm
and Robin Hood hashing belong to this family. Other members of this family
are ordered hash tables, and signature hashing with variable length separators
[GONLARS82].

14 CHAPTER 2. THE ROBIN HOOD HEURISTIC

n : integer {table size}
table : array [1..n] of RECORD {initially all = empty}
m, totalcost, longestprobe : integer {intially = 0}

function insert(Record)
42 m=n then return(FAIL) { table full }
k := Key(Record)
probeposition := 0O
while k <> empty do
probeposition := probeposition + 1
location := H(k, probeposition)
totalcost := totalcost + 1
recordposition := findposition(location)
if probeposition > recordposition then begin
tempRecord := table[location]
table[location] := Record
Record := tempRecord
k := key(Record)
longestprodbe := max(longestprobe, probeposition)
probeposition := recordposition
end
endvhile
totalcost := totalcost + 1
longestprobe := max(longestprobe, probeposition)
R = ml
return(location)
end function insert

Figure 2.1: Robin Hood insertion algorithm

The insertion algorithm for all of the hashing schemes belonging to this fam-
ily is that of Figure 2.1 except for the condition probeposition > recordposi-
tion inside the if statement. In the standard algorithm this condition is changed
to recordposition=0 (meaning the location is empty); in ordered hash tables
to k < Key(table[location]) (the key of an empty location is larger than
any other); and in signature hashing with variable length separators to Signa-
ture(k, probeposition) < Signature(Key(table[location]), record-
position) (the signature of an empty location is higher than all other signa-
tures). Any other condition could be used here. The only restriction is that the
decision must be made without looking at the remaining probe sequence of the
colliding records. Brent’s method, binary tree hashing, optimal hashing, and
min-max hashing do not satisfy this restriction, and hence are not members of
this family.

2.2. A FAMILY OF RANDOM PROBING SCHEMES e

Lemma 2.1 Under random probing, and for any hashing scheme sn which the
deciston as to which of the colliding records may stay in the location s not
based on any knowledge about their future probe sequence, the ezpected number
of probes required to snsert m records into a table of size n s

n{H, — Hy_p)

where H; = 2:',_‘1} is the i-th harmonic number. The variance of the total

number of probes requsred to insert m records is
n? (B — HD,| - n[Ha - Hoom]

where H‘-m = :=1 -}‘-

Proof: Since no knowledge about the future probe sequence of the colliding
records is used, then the probability that the next location probed is empty is
equal to 1 -~ !-;—1- regardless of which of the records was rejected. The number of
probes needed to perform the i-th insertion is then a geometrically distributed
random variable with parameter (probability of success) 1 — ii—‘-, and is inde-
pendent of the number of probes required for previous insertions. The expected
value and variance of the number of probes needed to perform the ¢-th insertion
are —%— and :_'.__'_11 respectively. The expected number of probes needed
to perform m insertions is simply

ud n _ 1
Zn—r+l—n E 1

r=1 I=n-m+1
n n-m

1 1

=n E - - =

=1 l = l

2[]1; 1 n-ml [u 1 n—ml
n - - =] —-n - - -
2

I=1

=] =1 l =1 i

= n? [Hr(uz) - Hv(tz—)m] —n[Hp, — Hom| O

These derivations are fairly simple and this could be the reason why, to the
best of our knowledge, they have not been published elsewhere.

16 CHAPTER 2. THE ROBIN HOOD HEURISTIC

Theorem 2.1 A record inserted using a random probing hashing scheme in
which the decision as to which one of the colliding records may stay in the
location 1s not based on any knowledge about their future probe sequences, has
an ezpected probe sequence length of

E[P811=-:;[Hn—-H-m]=—a—11n(1—a)+o())

for a table containing m < n records (x="2) and

Epsll=H,=lnn+++0 (%)

for a full table.

Proof: The average probe position of the m records inserted is the total number
of probes required to insert divided by m. O

Hashing schemes in the above family may have different distributions for the
random variable psl, but they all have the same E[psl].

It is important to distinguish between the variance of the psl (probe sequence
length) of a record and the variance of the mean psl of a table. The latter term
is

2 2
n 2 n m

for all schemes in the family. The variance of psl, however, is in general much
larger and depends on the particular scheme.

On page 3 we stated the value of E[ps]] for the standard method using
uniform hashing. For a nonfull table the effect of using uniform hashing instead
of random probing is equivalent to increasing the table size by one. For full
tables the value of E[ps]] is reduced by one.

2.3 A Single Final Table

For the standard hashing algorithm, the distribution of the psl for a record is a
function of its position in the insertion sequence. For example, the first record
inserted must be in its first probe position. But if it was inserted when the load
factor was o, it is in its k-th position with probability o*~1(1 - a).

When using Robin Hood hashing, all records inserted have the same distri-
bution for their psl, regardless of their position in the insertion sequence. We
prove this by showing that the set of records in the hash table uniquely de-
termines the table arrangement, independent of the order in which the records
are inserted, provided that ties are broken in a consistent fashion. By a consis-
tent tie breaker we mean one that always selects the same record (say the one
with the smallest key) to keep the location among all the records that are tied
with the same probe sequence value, regardless of the order in which the probes
occurred.

2.3. A SINGLE FINAL TABLE 17

Theorem 2.2 Every permutation of the insertion sequence produces the same
final Robin Hood hash table, provided that a consistent tie breaker ts used.

Proof: Suppose we have a function fiebreak(key, probetry) that gives a different
real value in [0,1) for each pair (key,probetry). Associate a label with each
record probe defined as label{key, probetry) = probetry+tiebreak(key, probetry).
Then each location contains the record with the highest label that probed it,
regardless of the order in which these probes occurred. Therefore, it will suffice
to show that each location receives the same record probes regardless of the
insertion sequence.

The record probes that a location receives is a function of the first probe of
all records and the set of records rejected from all locations. The set of record
probes that hit a location is a transitive closure defined as follows: initially,

Pi=9
Repeat until no £, can change
Pi=Pu{(R,e+1)|h(R,s+1)=4,[s=00r
I, (R, 8") : (R,s) € P, (R',9') € P, label(R', s') > label(R, 3){}

The second term of this expression can be read as: the (s + 1)-st choice of R is
t, and either s = 0 or R is rejected from its a-th choice. Then FP; is the set of
record probes that location f receives. Each insertion sequence of the records
in R corresponds to a particular order of computing the transitive closure. The
sets P; are completely defined by the set, R, of records in the table, and the k(s)
and label(e) functions, without reference to the order in which the records were
inserted. Since a transitive closure is always unique, the set of record probes a
location receives is independent of the insertion sequence. OO

This unique final table property also applies to some of the other hashing
schemesz in the family defined in Section 2.2. The above proof could be applied
to signature hashing by using the probe signature as the label; and to ordered
hash tables, by making the key value the label. Amble & Knuth [AMBKNU74]
proved that ordered hash tables always produced a single final table by showing
that inserting a set of records with their algorithm was equivalent to inserting the
same set in order of increasing key values using the standard insertion algorithm.

Rivest [R1V78] proved that the optimal hash table can always be obtained
by using the standard insertion algorithm and a permutation of the insertion
sequence. It is interesting to note that under Robin Hood hashing, the final
table obtained is not necessarily one that could be obtained by using a different
permutation of the insertion sequence and the standard insertion algorithm.
Consider for example a table of size 3 and the insertion sequence R, R, R,
applied to the Robin Hood insertion algorithm with a tie breaker that decides
in favor of the record with the smallest subscript. Let the hash function H(R,1)
be as specified in the table below.

18 CHAPTER 2. THE ROBIN HOOD HEURISTIC

1 2 3
R, 11238
Ry 1132
Rs 3|1]2
After inserting the 3 records the hash table will be
1 2 3

| R | Bi | Ry |

where each record is in its second probe position. Since no record is in its
firet probe position this table cannot be obtained using the standard insertion
algorithm and a different insertion sequence.

2.4 The Expected Worst Case for Robin Hood
Hashing

In the next chapter we will study the distribution of the probe sequence length,
psl, of Robin Hood hashing. In this section we derive bounds for the expected
value of the longest probe sequence length (E[lpsl]) and prove that for full tables
Ellpsl] = 8(In n).

Assume we have a set R = {R;,..., R, } of mrecords stored in a hash table.
Now define the following functions:

o Let 0: R ~ {0,...,n— 1} represent the table assignment, such that o(R;)
is the table location in which R; is stored.

o Let w: R — {1,...,00} be such that, w(R;) is the position in the probe
sequence of R; of the location in which it is stored.

o Let 8: Rx{0,...,00} — R be the backup function, defined as: 9(R;,j) =
o~ }(h(R;i, w(R:) — 7)), that is, the record occupying the location that
record R; probed j steps before its current location.

Assume that the value of the longest probe sequence length (lpsl) is ¢,
that is, at least one record (say Ryorse) is in the £-th position of its probe
sequence and none occur later. Consider the following intuitive argument: Let
Wo = {Rworst}. The location Ryorst probed in its (£—1)-st choice must con-
tain a record in at least its (£—1)-st probe. So there are at least two records,
Ryorst and 9(Ryorst, 1), in at least their (¢—1)-st probes, that is, £—1 or higher.
Let Wy = {Ruworst; #(Ruworet, 1)}. The records in W, are all in at least their
(¢—1)-st probes. Similarly if both records are moved back we find that at
least 4 mords: (Rworah ‘,(Rwonh 1)) '9(Rwonhz)s ‘9(‘9(Rwont: 1)1 1))) are in
at least their (£—2)-nd probes. Let Wa = {Ryorst; 9(Ruworsts 1), #(Ruworst, 2),
O(9(Ruworst, 1),1)}. Care must be taken in such an intuitive argument since we

2.4. THE EXPECTED WORST CASE FOR ROBIN HOOD HASHING 19

are sampling the table with replacement, so the cardinalities of the last two sets
are probably but not necessarily 2 and 4.

The preceding intuitive argument can be adapted into a more precise anal-
ysis. W; will denote a set of records that are in at least their (£—1)-th probe
positions and U;,;, the set of records that are stored in the locations that
the records in the set W; would hit if moved back one further position. More
formally, (note that Ryor,t is an arbitrarily chosen element in its £th probe
position)

Uo = {Ruoret}

Wo = {Ruoret}

U; ={R|R=96(R,)) for some R' € U;_;,1 < j <1}
Wi=Wi Ul

Each record in the set W; is in at least its (£ — ¢)-th probe position. If none of
the locations that we sample when moving back a record were repeated, then
the cardinality of the set %; would be 2°. Since we are sampling the locations
with replacement, the cardinality of W; is a random variable denoted by w;.
We will denote by u; the cardinality of the set ¥; — W;_, which is the number
of records that belong to the set W; but do not belong to the set W;_,.

We will first ind a bound for the expected value of w; using occupancy
distributions [DAVBARG2,JORKOT77]. w; is equal to w;—; +u;. The distri-
bution of u; is of the type called classical occupancy with specified boxes (see
for example chapter 14 of [DAVBAR62]) where the number of urns is n, among
which the number of specified urns is n—w;_; and the number of balls dropped
is w;_3 and we are interested in the number of specified urns that are hit. We
now define a new sequence of random variables v; such that E[v;] < E[w;] for
all <. Initially wg = vg = 1. Let v; be the number of urns hit when 2v;_; balls
are dropped at random. If we were to guarantee that the first v;_; of these
balls all went to different urns and the other half were dropped at random, then
there would be no difference between the random variables v; and w;. Since
this is not the case, the expected value of v; is less than the expected value of
w;. The distribution of v; is then of the type called classical occupancy. We
therefore have

1 3vi-2
E[V.' |V|'_1 = v,-...1] =mll- (1 - ;‘-)

Vivi | Vie1 = viea] = m(m — 1) (1 - 7:')%‘-‘

201 dvi_y
+m(l——1-) —m’(l—l)
m m

20 CHAPTER 2. THE ROBIN HOOD HEURISTIC

o[- -]
w2 (2]

which, using inequality 4.2.29' from [ABRSTE70), is bounded by

<m? (c—lw_;/m - e—iu;_;/(m—l))
2v;_3 201
+m[(1_1) -(:-2)]
m m

To get a bound on the expected value of the longest probe sequence we will first
prove the following three lemmas.

= O(m)

Lemma 2.2 E[v;] s asymptotically equivalent to E[v; | v;—1 = E[v;_,}].
Proof: We know that

Elv; | Vi-1]=m (1 _ (1 _ %)u,_,)

Removing the condition we get

Elvi] =m (1 -E [(‘ - %)w])

Using equation 4.2.29 again we get

B[ealtmt)] < [(1 -3) "'] <g[emieaim].

We have mentioned that v;_, has an occupancy distribution. Rényi [REN62]
establishes that an occupancy distribution converges to a normal distribution
as m — oo if ¢%/™ /m — 0, where b is the number of balls dropped (This result
is also presented on page 318 of [JOHKOT77]). The number of balls dropped
in the distribution of v;—; is 2v;_3 < 2m, so the condition is satisfied. Then
the moment generating function of v;_; converges to My,_, (t) = E[e*Vi-1| =

e#t+3t9” Using this equation with t = —2/m and t = —2/(m — 1), we get

1The inequality states that exp (- T—‘_—;) < 1-z < exp(—2) for £ < 1. The way we use it
hereilexp(— Ze) < (1- f)'<exp(—? ,Where0<z<yand0<s.

2.4. THE EXPECTED WORST CASE FOR ROBIN HOOD HASHING 21

exp (~2E{vi-1]/(m— 1) + 26 /(m — 1)?) < E [(1 -2)]

< exp (—2E[v;—,]/m + 2% /m?)

and since 02 = V[v;_;| = O(m), these bounds become asymptotically
1 Wi
e 3EVica]/(m-1) . B (1 - _) < e~ 3E[Vi-1]/m
m

Using inequality 4.2.29 from [ABRSTE70] on (1 — 1)3E[Vi-1] we obtain the
same bounds:

2E[V,_i]
~2EIVial/(m=1) < (1_ 1) Y < e~ 2BVioal/m
m

Consequently the difference |E[(1 ~ £)3Vi-1] — (1 — 1)?E[Vi-1]| is bounded and
goes to 0O as m — o0o0. 0O.

We can write E[v;] as m(1 — f;(m)). Then f;(m) obeys the following recur-
rence

fi(m) = (1 - %)’Elva-.n
fo(m) =1— %

fi(m) represents the fraction of urns not hit by the 2E[v;_,| balls. It is an
increasing function in m and decreasing in s.

Lemma 2.8 f;(27(m ~ 2) + 2) < fo(m).
Proof [By Induction]: Basis: for j = 1, we have
1

2(m-1)

4(m=1) (1~ (1- srary))
ntelm=1) = (1- 3=

- (- zmm)

fo2(m-1))=1-

22 CHAPTER 2. THE ROBIN HOOD HEURISTIC

1 + 1
m—1 4(m-1)3

=1-

1
<1l- -m— = fo(m)
Inductive step: assume true for j — 1 and prove for 5. Let m; = 2/(m —2) +2.
The induction hypothesis is
fi-1(my) < fo(my)

Now
1 \3ms(2=15-1(my))
fitm) = (1-)
< ¢~ 2(1~S5-2(m;))
which by the induction hypothesis is
< e~ 3(1—fo(m1))

< ~2(1-(1-3))

=g W~
< 1—-'1;=fo(m) o

Lemma 2.4 20 fi(m) < 3¢+ ig(m - 2)].

Proof: Let k be the smallest integer that satisfies m < my = 2* (mo — 2) + 2,
where my is an arbitrarily chosen constant greater than 2. Then k = [lg(m —

2) —Ig(mo — 2)].

-1 -1
S film) <3 filr)
=0 $=0
k-1 -1
=3 filme) + Y filmi)
=0 i=k
e~k—1
<k+ Y forn(m)
=0

<k+ (t-— k)fk(mk)

and by the previous lemma

e e i

- e

-

2.4. THE EXPECTED WORST CASE FOR ROBIN HOOD HASHING 23

< k+ (2= k) fo(mo)
=k+(e—k)(1-%)

1 1
=L{1-—}+—1] —-2) -} -2

(1- 2) + 2 Metm - 2 - agrmo -
and if we let mg = 3,
2
3
Theorem 2.8 The expected value of lpsl for a Robin Hood Hash table with m
records is bounded by E[psl] < E{lpsl] < 3E[ps]] + [Ig(m — 2)]

L+ %[lg(m—z)] a]

Proof: Define r to be the sum of probe positions of the records in W,._;. From
the construction of the sets W;’s we know that Wo C W, C --- C We—y. Ifa
record appears for the first time in the set W, its probe position is at least
(¢— k), and it appears in exactly (£ — k) of the £ sets W;’s. It follows that

r2wo+wit- o+ Wy

and therefore
-1
Elrjlpsl = £] > Z E[w;]
=0
-1
>) Elv]
i=0

-1
=Y _m(1- fi(m))

1=0
-1
=m (l - Zf.-(m))
=0
and by the previous lemma
> 2 (¢~ [iglm —2))).
It follows that
Efr] > 3 (Eltpsl] - [lg(m - 2)}).

Let N be the sum of the probe positions of the m records in R stored in the
hash table. Since V,_, is just a subset of R then E{N] > E[r] and

24 CHAPTER 2. THE ROBIN HOOD HEURISTIC

E|N] = mE[psl] > % (E[1psl] - [1g(m — 2))).
Solving for E[lpsl] we get
E[lpsl] < 3E([psl] + [lg(m — 2)].

The lower bound holds because psl < Ipsl for every table and there is a positive
probability that pal < lpsl O.

Corollary 2.4 The ezpected value of lpsl for a full Robin Hood hash table is
6(Inn).

Proof: Follows from the theorem and the fact that E[psl] = 6(Inn) for a full
Robin Hood hash table. O

Corollary 2.5 The ezpected value of 1psl for a full min-mazx hash table 1s
bounded by

Inn+q+ -;-+P(lnn)+o(1) < E[lpsl] < 3lnn + [Ig(n — 2)] + 3+ o(1)

where P(z) ss a periodic function with period 1 and magnitude |P(z)| < .0001035,
and by

—a"'In(1 - a) < E[lps]] < —3a"!In(1 — a) + [Ig(m — 2)]
Jor a-full tables with m records and load factor a = 2.

Proof: The lower bounds are from [GON81]. For every set of records, the
value of lpsl for a min-max hash table is less than the corresponding value for
any other hashing scheme. Therefore, E[lpsl| for min-max hashing is less than
E[lpsl} for any other hashing scheme; in particular it is less than the E{lpsl} for
Robin Hood hashing. The upper bounds are from Theorem 2.3 above. O

Chapter 3

The Distribution of psl

In Chapter 2 we introduced a simple modification of the insertion procedure
of the standard hashing algorithm. We then showed that all records inserted
using this heuristic have the same distribution of the probe sequence length,
regardless of the position in the insertion sequence. We also proved that the
expected position of a record in its probe sequence is In(n) + v + o(1) for a full
table, and that the expected value of lpsl is ©(In n).

In this chapter we derive the distribution of the probe sequence length for
a record in a Robin Hood hash table of infinite sise. To study the distribution
of the random variable psl for an infinite table we will introduce a probability
model based on balls and urns. It is important to note that the analysis pre-
sented below is for an infinite hash table and that we have not proved that an
analysis for finite tables would converge to the same result.

3.1 The Asymptotic Model

Consider the following urn model that corresponds to inserting all elements
in the table simultaneously. Assume that we have an infinite number of urns
and that we drop at random an infinite number of balls such that the average
number of balls per urn is a. Each of these balls is given a label of 1. After
the balls have been dropped, for each urn that contains more than one ball,
one ball is selected according to some criterion and the rest are marked. All
balls are left in the urn. For each marked ball with label 1, we create a new
unmarked ball with label 2 and drop it into a random urn. After all the new
balls have been distributed, we check the urns and for each urn that contains
more than one unmarked ball, we select one (unmarked) ball among those with
the highest label and mark the rest. We then create an additional unmarked
ball with label ¢ + 1 for each newly marked ball with label 1+ and drop it at the
urns. We continue in this fashion until each urn has an average of & unmarked

25

26 CHAPTER 8. THE DISTRIBUTION OF PSL

balls, or equivalently until a fraction a of the urns contain an unmarked ball
(since there can be at most one unmarked ball per urn).

In this model, urns represent table locations, balls represent probes into the
table, ball labels represent probe positions or try numbers, and marking a ball
represents rejecting a record from the location. An unmarked ball with label ¢
represents a record placed in its s-th probe position.

Notice that in a finite table, the total number of unmarked balls with a label
greater than ¢ (number of records after their i-th probe position) is equal to the
total number of balls, either marked or unmarked, with label ¢ + 1 (number of
records that probed their s + 1-st position). For an infinite file this corresponds
to the expected number of unmarked balls with label greater than s per urn
being equal to the expected number of balls (marked or unmarked) with label
t 4 1 per urn.

We define the following variables:

— Let A be the expected number of balls (marked or unmarked) per urn.

— Let ~; be the expected number of balls (marked or unmarked) with
label equal to s per urn.

— Let); be the expected number of balls (marked or unmarked) with
label less than or equal to s per urn. Then Ay = A; + 5.

— Let t; be the expected number of unmarked balls with label less than
or equal to ¢ per urn. The expected (per urn) number of unmarked
balls with label greater than ¢ is a — t;. We already mentioned that
the expected number of unmarked balls with label greater than & is
equal to the expected number of marked or unmarked balls with label
t+ 1. Hence 34y = a—t;.

From the definitions above it follows that A\; = 7, =t = a.

Consider an arbitrary but fixed urn. Each ball is labeled before it is dropped,
and the urn selected by a ball is independent of its label. Therefore the labels
of the balls in the urn, at some stage of the loading process described above,
can affect the labels of balls arriving later to the urn only in as much as they
can affect the expected (per urn) number of balls created with each label. If we
have an infinite number of urns, nothing that occurs in a single urn having a
finite number of balls can affect the values of the A;’s, and with probability 1
the number of balls in the urn is finite.

Another way of viewing this last observation is as follows. The balls in
an arbitrary but fixed urn can affect the distribution of the label of another
ball hitting the same urn only if that ball was created as a (direct or indirect)
consequence of marking those balls. Let us then divide our loading process into
two phases. The first phase is the same as the original loading process except
that all balls falling into the specified urn are placed in the urn but otherwise
ignored. The second phase consists of: a) marking the balls in the specified
urn exactly as would have been done in the normal loading process, and b)
creating additional balls with the appropriate labels until no new ball needs
to be created. The labels of the balls that fall into the specified urn in the

3.2. THE DISTRIBUTION 27

first phase are independent of each other. The labels of the balls created in
the second phase are not independent of the labels of the balls in the specified
urn. The balls (with any label) created in the second phase can be viewed as a
branching process (see for example chapter XII of [FEL68]). Every time a ball
is dropped two things can happen: the ball hits an empty urn, in which case
no descendant is created, or it hits an urn that contains one unmarked ball, in
which case one descendant is created. At the end of the first stage the number of
balls in the specified urn is finite with probability 1, and hence, with probability
1 all but a finite number of records have been placed in the table. Therefore the
fraction of occupied urns is «, the probability of hitting an urn that contains
one unmarked ball is «, and the expected number of direct descendants of a
ball is also a. Feller proves (section XIL5 in [FEL68]) that if we start with a
finite number of individuals and the expected number of direct descendants of
an individual is less than 1, then the total progeny is finite with probability 1.
Since the total number of balls created in the second phase is finite and they
are dropped among an infinite number of urns then, with probability 1, none of
them will fall into the specified urn.

A consequence of these two observations is that the labels of the balls in an
urn are independent of each other. Note that the second of these observations
does not hold if we have only a finite number of urns, since the effect of a single
urn on the A;’s can be arbitrarily large. For a finite number of urns the labels
of the balls in a specified urn are mutually dependent but the larger the number
of urns, the weaker the dependency. Neither does it hold if we have a full table,
since with probability 1 the number of balls in an urn is infinite. This is the
reason why the analysis presented below is valid only for infinite nonfull tables.

We have already studied the distribution of the number of probes required
to load the table in Theorem 2.1 (page 14). From that it follows that, A =
—In(1 - a).

3.2 The Distribution

In this section we find the probability distribution of the number of positions
probed by a key in an infinite Robin Hood hash table. We do this by establishing
a recurrence relation for ;.

Larson [LAR83] has proved for infinite a-full tables (@ < 1), that the dis-
tribution of the number of balls that hit an urn is Poisson with parameter A.

Consider an arbitrary but fixed urn. The urn will contain an unmarked ball
with label less than or equal to ¢, when it has been hit by at least one ball
with Iabel less than or equal to 1 and no ball with label higher than i. Let
¢i(z, s) denote the probability that the urn is hit by z balls, s of which have a
label higher than s. Then ¢;(z,s) is the product of a Poisson and a binomial
distribution as follows:

28 CHAPTER 3. THE DISTRIBUTION OF PSL

wen =) (3) (552)

The Poisson factor gives the probability that the urn receives z balls. (A —
Xi)/A is the probability that a ball is labeled higher than 3. This probability is
independent of the labels of other balls in the same urn. Hence, the probability
that s out of z balls have a label higher than ¢ has a binomial distribution. The
probability that the urn receives at least one ball with label less than or equal
to + and no ball with label higher than ¢ is

t; = i q.-(z, 0)

z=1

R 00 -
=023 ey

v z!

= = OA) (12 N,

Define p;(c) to be the probability that a record probes at least : locations
before being placed in the table. Then api41(a) is the number of unmarked
balls with label greater than ¢ per urn. We already mentioned that this is equal
to the expected number of marked or unmarked balls per urn with label equal
to ¢ + 1. Therefore, p;() satisfies

api+1(a) = %41
and from the relation 7,4, = a—{;,

=1-8
Ps+1(a) =1 «

e~ (A=4)) (1 - e-Ai)
= .

Since A = —In(l1—a) and A; =91 +---+% = a(p1(a) + - - - + pi(a)), we have

l1-a
. =1-(2== a(pi(a)+-+pi(a)) _
Pit1(a) =1 (e) (‘ ' 1) .

We summarige this in the following theorem.

Theorem 8.1 In the asymptotic model for an infinste Robin Hood hash table
with load factor a (a < 1), the probability p;(a) that a record is placed sn the
i-th or further position in its probe sequence is equal to

pl(a) =1

1 —a (i § a .es .
p.-+1(a) =1- (—-;—-) (e (pi(a)+-+pi(a)) _ 1) .

3.2. THE DISTRIBUTION 29

« Robin Hood Standard

Hashing Method
0.7 0.527 2.906
0.8 0.700 6.428
0.9 0.983 16.207
0.95 1.230 35.739
0.99 1.618 194.328
0.9999 1.872 1992.110
1.0” 1.883 00

Table 3.1: Variance at various load factors

The expected value of this distribution can be obtained by noting that

E[psl] = p1(a) + pa(a) + - -

which can be solved from the equation

Poo=0=1— (lea) (c""‘[p’l' - 1) ,

yielding
E[psl] = —a"!In(1 - a),

which agrees with the expected value of psl proven in Theorem 2.1.
The variance of this distribution is given by

V(a) =3 (i + o~ la(t -))* (5s(a) - piva(a) -

=1

The variance for the standard method was given on page 3. Table 3.1 shows the
variance of psl at various load factors for the standard method and for Robin
Hood hashing. The reduction is quite dramatic. The value at & = 1~ was
obtain by linear numerical extrapolation. Figure 3.1 shows how the variance
increases with the load factor and Figure 3.2 shows the relation between E[psl]
and V[psl|.

The variance can be computed to any specified tolerance (ignoring the ef-
fects of roundoff errors caused by finite precision arithmetic) using the following
procedure. Let ri(a) = a(pi(a) + - - - + peo(@)) and let gi(a) = pi(a) — pi+1(a)
denote the probability that a record is placed in its i-th probe position. Then

i ri(a) = af: f:w(a)

=1 g==1 y=¢

30

CHAPTER 3. THE DISTRIBUTION OF PSL

2.0 1
1.8
1.6 4
144
1.2 4
1.0 1
0.8 4
0.6
0.4 1
0.2 4
0.0 4

PODP—rp <

T

7 8 9
Load Factor

Figure 3.1: V[psl] vs. o

2.0

18-
1.6
14
1.2
1.0
084
0.6 -
0.4
0.2
0.0

copP—mp<d

L

Ll

-

T T

234567 891011121314151617181920
Average

]

Figure 3.2: V|pal] vs. E[psl]

= az:ip.-(a)

=1

00 oo

=a) id gi(a)

s=1 g=¢

=a) M,

=1

3.2. THE DISTRIBUTION 31

Using this we can write the variance formula in terms of r;(a) as

V(@) = 23" ri(a) - Bipsl] - Bipel]?

=1

s -—a 1-a
=-Z-Er,-(a)+ln(1a)-h‘(i,),

=1

We can establish a recurrence relation for r;(a) from the recurrence relation for
pi(a) as follows:

1 1-
pila) = =- __&_‘_"_ea(m(a)+---+m-x(a))
=1_1-a .zipalj-ri(a)
a a
1
= — — e~ rifa)
p (1 e T) .
which implies

api(a) = 1— ")
ri(a) = rigi(a) =1 — e "ile),

Hence a recurrence relation for ri(a) is
rivila) = (@) — 14+, i1,

where r)(a) = aE[psl] = —In(1—a). Equation 4.2.37 from [ABRSTE70)] states
that for z < 1.5936, e™* < 1 — Z. Therefore, if ri(a) < 1.5936,

rivifa) =rifa) -1+ 7@ <rfa)-1+1- ELZ?_) = -r—"-(;-)-,

from which it follows that

r,-(a)
TRG k>0,

ritu(a) <

and hence,

d

Z ri(a) < ri(a).

F=i+1

32 CHAPTER 3. THE DISTRIBUTION OF PSL

Therefore, if we stop the summation when the last term added is less than ¢
(e < 1.5936), the sum of the remaining terms is less than ¢. In Table 3.2 we show
the expected value and the variance of psl for values of a close to 1. Ignoring
the effect of roundoff errors the variance is accurate to 10 decimal digits.

Roundoff errors will not present a serious problem in the computation of
V (a) since the recurrence for r;(a) is in a sense self-correcting. It is easy to prove
that if the absolute error of r;(a) is & and |&| < 1 then || > |6i41] > Since
ri(a) converges very rapidly to sero the total number of terms added as well as
the accumulation of absolute errors will be small. For example, computing the
last row in Table 3.2 required only the first 34 terms of the sequence ri(a).

Table 3.2 serves to illustrate an interesting point. For load factors close to 1,
increasing a has the effect of shifting the distribution to the right without chang-
ing much its form. If a is increased such that the expected value is increased
by exactly 1, all the central moments of the distribution remain basically the
same. In the process of shifting the distribution to the right, a small oscillation
will occur in the values of the central moments.

3.2. THE DISTRIBUTION

a Elpsl] Vipsl
0.999664076800000 8.001315823171590 | 1.858139243052232
0.999798446080000 8.511169078813680 | 1.866079401322557
0.999879067648000 || 9.021370218606829 | 1.871527896538105
0.999927440588800 9.531796488394859 | 1.875199517231543
0.999956464353280 || 10.042367691591898 | 1.877691681261172
0.999973878611968 || 10.553031774223938 | 1.879338720554571
0.999984327167181 || 11.063755138536856 | 1.880452782253256
0.999990596300308 || 11.574516205192676 | 1.881172428971951
0.999994357780185 || 12.085301173608965 | 1.881662617015195
0.999996614668111 }| 12.596101251430808 | 1.881969228803765
0.999997968800867 || 13.106910855958161 | 1.882183027132164
0.999998781280520 |i 13.617726453164405 | 1.882310200529520
0.999999268768312 || 14.128545811978501 | 1.882403238711074
0.999999561260987 || 14.639367527359419 | 1.882454476688046
0.999999736756592 | 15.150190716472672 | 1.882494905033230
0.999999842053955 || 15.661014825681323 | 1.882515173687757
0.999999905232373 | 16.171839508448106 | 1.882532293661257
0.999999943139424 || 16.682664548281976 | 1.882540811550456
0.999999965883654 || 17.193489809878379 | 1.882547039215162
0.999999979530193 || 17.704315209740438 | 1.882551897182168
0.999999987718116 j| 18.215140694818758 | 1.882552445419591
0.999999992630869 || 18.725966233239235 | 1.882556986109655
0.999999995578522 || 19.236791804066193 | 1.882554050563478
0.999999997347113 || 19.747617395165321 | 1.882559604296574
0.999999998408268 || 20.258443000532866 | 1.882554143979192
0.999999999044961 || 20.769268617700754 | 1.882561185802651
0.999999999426976 || 21.280094224137862 | 1.882553669736858
0.999999999656186 {j 21.790019851274725 | 1.882562303706443
0.999999999793711 || 22.301745445239809 | 1.882553019490445
0.999999999876227 || 22.812571044804227 | 1.882563180358687
0.999999999925736 || 23.323396704852990 | 1.882552359244798
0.999999999955442 || 23.834222327948908 | 1.882563897004573
0.999999999973265 || 24.345047951303751 | 1.882551762771584
0.999999999983959 || 24.855873920875710 | 1.882564479259102
0.999999999990375 || 25.366699544487133 | 1.882551265572360
0.999999999994225 || 25.877525168158416 | 1.882564931761678
0.999999999996535 || 26.388350791866402 | 1.882550886543640
0.999999999997921 || 26.899179085802461 | 1.882565252280429
0.999999999998753 || 27.410000259208050 | 1.882550636515376
0.999999999999252 || 27.920818465773641 | 1.882565437145715
0.999999999999551 || 28.431656451540576 | 1.882550521555459
0.999999999999731 |{| 28.942492377092564 | 1.882565484104902
0.999999999999838 || 29.453352340925230 | 1.882550544643252

Table 3.2: Expected value and Variance of psl for a close to

33

Chapter 4

New Search Algorithms

We have presented a simple modification to the standard insertion algorithm
and analyzed its effect on the random variables psl and lpsl. If we use this mod-
_ified insertion algorithm together with the standard search algorithm then, for
full tables, the expected number of probes for successful, worst successful and
unsuccessful searches is ©(Inn). Each collision in the insert procedure requires
the evaluation of the function findposition to determine the probe position
of the record encountered. If this function determines the probe position of the
record by doing a successful search with the standard algorithm counting the
number of probes needed, then the cost of loading a full table will be &(n In® n).
Fortunately, we can improve the performance of Robin Hood hashing by modi-
fying the search algorithm and the findposition function.

4.1 Speeding up Searching.

In Chapter 2 we saw that it is very unlikely for any record to have a very long
probe sequence, since there would have to be a host of other records with very
long probe sequences. Similarly, it is very unlikely for a record to have a very
short probe sequence. For example, the probability of a record being in probe
position 1 is l'—;ﬂ (e* — 1), which goes to 0 as the table becomes full.

As the load factor increases, the average probe position for a full table in-
creases at a logarithmic rate, but the variance appears to remain bounded by
a constant. This means that most of the probability mass is found around the
mean. Figure 4.1 demonstrates graphically this clustering effect.

" This figure suggests the following question: If the probability that a record
is stored in the first location of its probe sequence is so small, why probe there
first? This is the key observation leading to the proposed search heuristic.

As the reader might have guessed already, a faster way to search for a record
is to start at a location close to the mean position, and then move away from it

34

4.1. SPEEDING UP SEARCHING. 35

0.4
P 0.3 S
r
o
b
a
b 0.2
i
1
i
v 0.1 -
y
1 L] ¥ LD T I I 1 T I

Ll |
E(pel}

probe position

Figure 4.1: Probability distribution of psl for a nearly full table

in both directions (possibly at different rates). There are many search sequences
that fit this description but let us refer to them collectively as mean centered
approaches to searching. More precisely, a mean centered search heuristic is one
that finds a key that is ! positions above (or below) the mean within ¢l probes.
We then have the following:

Theorem 4.1 Any mean centered approach for searching an infinite a-full Robin
Hood hash table has an expected search cost of O(1). '

Proof: The number of probes made before reaching a location that is [steps
away from t = |E[psl]| is O(l). The cost of searching will then be

E[search cost] = i O(l) Pr{|psl - t| =1}

=0

-0 (f: Pr{lpsl - Elpal]| > z})

=1

()

i=1

36 CHAPTER 4. NEW SEARCH ALGORITHMS

o)

Since V[psl] < 1.883 for a < 1 — ¢, we conclude
E[search cost] = O(1) o

4.2 Organ-Pipe Searching

A natural question to ask is: How should a Robin Hood hash table (or any hash
table for that matter) be searched in order to minimise the expected number of
probes into the table? Referring back to Figure 4.1, it is clear that if we search
first the probe position having the highest associated probability, then the next
highest, and o on, we have an optimum search strategy. We call this technique
organ-pipe search. From the previous theorem, we know that the expected cost
for organ-pipe search will be O(1).

The actual number of probes required can be estimated as follows: compute
using the formulas of Theorem 3.1 (page 29) the asymptotic probability dis-
tribution; compute from that the expected cost of using this search heuristic.
As a — 1, the search cost appears to be bounded by 2.57. Figure 4.2 shows
how the expected search cost of organ-pipe searching increases for different load
factors.

To do organ-pipe searching, one must determine the most likely location for
a record, the next most likely, and so on. The easiest way to do this is to keep
counters of how many records there are in each probe position, and then use
these counters when searching.

Some additional memory will be required to store the counters. In Sec-
tion 2.4 we proved that less than about 4.441n n + 34 different probe positions
are expected to contain all the records, so only ©(Inn) counters are needed.
From the simulation results presented in the next chapter, it appears that far
fewer (1.151n n+2.5) are really needed. For all intents and purposes, 30 integers
should be sufficient.

To reduce the overhead of the search algorithm, we will assume that the
number of records observed at each probe position always follows an organ-pipe
pattern, as the probability distribution does. This does not always hold since it
is possible to find situations where, for example, one record is stored in probe
position 1 and none in probe position 2. However, doing a true organ-pipe
search will not reduce the expected number of probes significantly and will add
to the overhead of the algorithm.

A modified insertion algorithm maintaining the counters needed by an organ-
pipe search is shown in Figure 4.4, and the algorithm for organ-pipe search is
given in Figure 4.3. Initially, tallest is equal to 1; longestprobe is equal to
0; m is equal to 0, and the array count is filled with seros except for count [0]
and count[1] which are —1. On entry to the search procedure the values of

4.2. ORGAN-PIPE SEARCHING

Organ-Pipe Heuristic

Standard
5.0 -
4.5 A
40 -
3.5

3.0 4

o oo n’d

Organ Pj
2.5 : gan Tipe

2.0 4

1.5

l'o 1 ¥ T 1 T 1 I T A 1
0.1 02 03 04 05 08 07 08 09 1.0
Load Factor

Figure 4.2: Expected Search Cost for Organ-Pipe Searching

37

function search(k)
upposition := tallest
uplocation := H(k, upposition)
downposition := upposition-1
downlocation := H(k, downposition)
for i:=1 to longestprobe do
if count[upposition] > count [downposition] then
if key(table[uplocation]) = k then return(uplocation)
upposition := upposition + 1
uplocation := H(k, upposition)
olse
if key(table[downlocation]) = k then return{ downlocation)
downposition := downposition - 1
downlocation := H(k, downposition)
end for
return(FAIL) { unsuccessful search }
end function search

Figure 4.3: The Organ-Pipe Search Heuristic

38 CHAPTER 4. NEW SEARCH ALGORITHMS

table : array [1..n] of RECORD {all empty}
count : array [0..30] of integer <{all O except count[0l=count[1]= -1}
n, m, tallest {intially 1}, longestprobe {intially O}: integer

function insert(Record)
if m=n then return(FAIL) { tadble full }
count [longestprobe+l] := O
k := Key(Record)
probeposition := 0
while k <> empty do
probeposition := probeposition + 1
location := H(k, probeposition)
recordposition := findposition(location)
if probeposition > recordposition then begin
count [probeposition] := count[probeposition]+1
count [recordposition] := count[recordposition]-1
tempRecord := table[location]
table{location] := Record
Record := tempRecord
k := Key(Record)
longestprobe := max(longestprobe, probeposition)
probeposition := recordposition
end
endvhile
while count[tallest+i]>count[tallest] do tallest := tallest + 1
count [probeposition] := count[probeposition]+i
count [longestprobe+1] := -1
n = n+l
return(location)
end function insert

Figure 4.4: Robin Hood insertion keeping counters

count [0] and count[longestprobe+1] are equal to —1 to force all probes to
be in the range from 1 to longestprobe.

4.3 Smart Searching

Close inspection of the algorithm for organ-pipe search reveals that every probe
into the table involves two comparisons. If the hash table is in core, it might
be slightly faster not to use the counters. Furthermore, we can save the 6(Inn)
extra memory.

Consider the following search heuristic which we call smart searching. Let

4.4. A SMART FINDPOSITION 39

t denote the average probe position of the records in the table truncated to
the nearest integer. Then, when searching, consider the locations in the order
t,t+1,t~1,¢42,t—2,..., until the range from 1 to longestprobe is covered.
Figure 4.5 shows this algorithm.

Since smart search is a mean centered approach for searching, the expected
number of probes to find an element in an infinite a-full table is bounded by
a constant. It is somewhat higher than that of organ-pipe search, but each
probe involves one key comparison and no overhead (besides that required for
the loop), so it may be slightly faster, depending on the cost of doing key
comparisons.

The expected number of probes required for a search using this heuristic
can be estimated in a similar fashion: first compute the asymptotic probability
distribution, then the cost of searching given this distribution. Figure 4.6 shows
how the expected cost of doing smart searching varies for different load factors.
As a — 1, this value appears to be bounded by 2.84.

4.4 A Smart findposition

In Figure 2.1 the function findposition was used for the first time. This
fanction computes the probe position of a record already in the table.

At that point we said that this could be done by examining the sequence of
locations generated by the hash functions for the key until we find the location
where the record is currently stored. If we examine the probe sequence in the
order 1,2,3,..., the total cost to load a full table is ©(nIn? n) because when a
record is moved from probe poszition ¢ to probe position t+ 1, § steps are required
to determine that the other record is in a probe position greater than 1.

If double hashing is the method being used to generate the probe sequence
then the value of the function can be obtained by performing a division in a
finite field. This operation is not usually available in hardware and the number
of operations required in a software implementation is ©(Inn). Hence the total
cost to load a full table would be 8(n In® n).

We can use the same trick here and examine the sequence in a mean centered
order. Both heuristics mentioned before are applicable. Notice that we do not
have to probe the hash table, we need only “probe” the probe sequence by
inspecting the values generated by the hash function. Now findposition will
require only a constant number of steps on average to determine the probe
position of a stored record.

Hence loading a Robin Hood hash table up to a load factor a < 1 takes, on
the average, the same number of probes as for the standard method, and each
probe costs O(1). We therefore have the following result.

Theorem 4.2 The ezpected cost of loading a Robin Hood hash table up to a
load factor a < 1, i3 within a constant factor of the cost of loading using the
standard method.

40 CHAPTER 4. NEW SEARCH ALGORITHMS

table : array [1..n] of RECORD
n, m, totalcost, longestprobe : integer

function search(k)

meanposition := trunc(totalcost/m)

downposition := meanposition

upposition := downposition + & .

while(downposition >= 1 and upposition <= longestprobe) do
downlocation := H(k, downposition)
if key(table[downlocation]) = k then return(downlocation)
uplocation := H(k, upposition)
if key(table[uplocation]) = k then return(uplocation)
downposition := downposition-1
upposition := upposition+i

end while

wvhile(downposition >= 1) do
downlocation := H(k, downposition)
if key(table[downlocation]) = k then return(downlocation)
downposition := downposition-1

end while

vhile (upposition <= longestprobe) do
uplocation := H(k, upposition)
if kxey(table[uplocation]) = k then return(uplocation)
upposition := upposition+i

end for

return(FAIL) { unsuccessful search }

end function search

Figure 4.5: The Smart Searching Heuristic

4.5 Summary

In this chapter we have shown how a Robin Hood hash table can be searched to
substantially reduce the expected search time and have discussed two algorithms
for doing so. We then explained how to use the same idea to determine the probe
position of a record in the table in a constant number of steps on the average.

4.5. SUMMARY

a0 o0~

Smart Search Heuristic

Standard
5.0
4.5 -
4.0
3.5
3.0
25 | Smart Search
2.0

1.5 +

l'o T 1 v 1 ¥ T 1 1 ¥ i

61 02 03 04 05 06 07 08 09 10
Load Factor

Figure 4.6: Expected Search Cost for Smart Searching

41

Chapter 5

Simulation Results

In this chapter we present the results of some rather extensive simulations.
There are several reasons for performing the simulation experiments. The most
important one is to validate the results of the analysis in the previous chapters
and show that they can be used to predict the performance of double hashing
combined with the Robin Hood heuristic. Secondly, we would like to know the
performance of full tables and the expected value of the longest probe sequence
length (E{Ipsl]), which could not be determined theoretically. A third reason is
to compare execution times. Unfortunately the execution times reported are not
very accurate, as explained below, and the cost of performing operations on the
keys (key comparisons and computation of hash functions) affects the conclu-
sions that can be drawn from the timing estimates; nonetheless, a comparison
of execution times is interesting.

5.1 Simulation Experiments

Simulations of the standard hashing, Brent’s, Robin Hood with organ-pipe
searching, and Robin Hood with smart search reordering schemes were per-
formed. Double hashing was used to generate the probe sequence. Keys were
pairs of 31-bit integers generated by a pseudorandom number generator de-
scribed on page 30 of [KNU69]. The hash functions used were h,(K;, K3) =
K; mod n and ha(K;, K3) = K3 mod (n—2) + 1, where K; and K3 are the two
integers forming the key and n, the table size, is a prime number.

Simulations were done for table sizes of 1021, 4093, 16273, 65537, and
262139. Statistics were collected at load factors as close as possible for these
table sizes to 60%, 70%, 80%, 90%, and 100%. For each file size, 210 simulation
experiments were performed. The simulations required more than a hundred
hours of cpu time on a pair of Vax-11/780’s.

The following five performance measures were recorded: average number of

42

5.2. RESULTS FOR ROBIN HOOD HASHING - 43

probes to insert; average number of probes to search; average time to insert;
average time to search; and the longest probe sequence length. 95% confidence
intervals for each of these performance measures were also computed. Whether
or not the theoretically predicted value lies within the 95% confidence interval
is indicated with a 4/ or X in the tables summarising the results.

The load on the computing systems used to perform the simulations affects
the cpu time reported to the user. The simulation experiments were done under
different system loads and on different configurations, so the figures reported in
milliseconds should be approached with some skepticism.

5.2 Results for Robin Hood Hashing

~ 60% s 70% ~ 80%
n || pred | simulation pred | simulation pred | simulation
1021 || 1.525 | 1.525+.005,/ || 1.717 l.714:i:.006\/ 2.006 | 2.004-+.008./

4093 || 1.527 | 1.529+.003,/ || 1.720 | 1.723+.004,/ || 2.011 | 2.016+.005,/
16273 || 1.527 | 1.527+.001,/ || 1.720 | 1.720+.002,/ [| 2.012 | 2.011+.002,/
65537 || 1.527 | 1.528+.001,/ || 1.720 | 1.720+.001y/ || 2.012 | 2.012+.001/

262139 || 1.527 | 1.527+.0004/ |{ 1.720 | 1.7204.000/ || 2.012 | 2.012+.001/

~ 90% 100%
n || predicted | simulation || approz | simulation
1021 2.546 | 2.531+.012x 7.507 | 7.526%.183,/
4093 2.556 | 2.557+.006,/ 8.895 | 9.026+.205,/
16273 2.558 | 2.857+.003/ || 10.275 10.423:!:.171\/
65537 2.558 | 2.559+.002¢/ || 11.668 11.659:!:.176\/
262139 2.558 | 2.558+.001+/ || 13.054 | 13.115+.170,/

Table 5.1: Robin Hood: Number of probes to insert (E[psl])

Validation of the model of Robin Hood hashing is necessary for two reasons: the
analysis assumed random probing, even though double hashing is the preferred
method in practice; the formulas obtained are for tables of infinite size, hence
we want to see how accurately they predict the performance of finite tables.

Tables 5.1, 5.3, and 5.4 show the predicted and experimentally observed
values for the number of probes per record needed for loading a table using
the Robin Hood heuristic, and for searching it using the organ-pipe and smart
search heuristics, respectively. Table 5.2 shows the predicted and experimental
values of the variance of psl.

As mentioned in Chapter 4, the function findposition “probes” only the
probe sequence of the stored record and not the hash table. These “probes®
are not counted in the figures presented in Table 5.1. The predicted values

44 CHAPTER 5. SIMULATION RESULTS

~ 60% & T0% ~ 80%
n || pred | simulaiion pred | simulation pred | simulation
1021 || .4024 | .4007+.0042,/ || .5256 .52224.0046+/ || .6984 | .6943+.0062+/
4093 }i .4029 | .40361.0022,/ || .5266 .5264+.0027,/ || .6999 | .70021.0033,/
16273 || .4030 | .4037+.0010/ || .5266 .5268+.00114/ || .7000 | .6993+.0015./
65537 || .4031 | .4037+.0006,/ || .5266 | .5268+.0007+/ || .7000 | .7002+.0009./
262139 || .4031 | .4031+.0003,/ || .5266 | .5266+.0003/ || .7001 | .7001+.0004,/

~ 90% 100%
n || predicted | simulation approz stmulation
1021 9794 | .9657+.0080x 1.8282 | 1.8179+.0160/
4093 9821 | .9800-.0043/ || 1.8634 | 1 .8635+.0077,/
16273 9826 .9811:i:.0021\/ 1.8761 | 1.8775+.0044/
65537 .9828 | .9830+.00104/ || 1.8805 | 1.8815+.0022/
262139 9828 | .9826+.0005,/ || 1.8819 | 1.8813+.0011,/

Table 5.2: Robin Hood: Variance of probe sequence length (V[psl])

in Table 5.1 were computed using the formulas of Theorem 2.1 and those in
Tables 5.2, 5.3, and 5.4 from the probability distribution of Theorem 3.1. The
reader is again reminded that the actual load factors are as close as possible
to the table heading value but do differ fractionally, hence the values in the
predicted column do indeed differ. For the case of full tables the probability
distribution of psl was approximated by that of an a-full table with load factor
a=1- % This approximation appears to give acceptable results.

The predicted values of the mean and the variance of psl agree with the
values observed in the simulations. Only in one of the 20 (5%) sets of experi-
ments the moments of the distribution are outside the 95% confidence interval
and most of the remaining predictions are well within the confidence intervals.

The estimates for the number of probes required to search are based on an
asymptotic model. For a-full tables the accuracy of the estimates improves
with the table size, as might be expected. For full tables the approximations
are mostly outside the confidence intervals, but only by less than .15 probes for
smart search and less than .01 probes for organ-pipe searching. We conclude
that for all practical purposes these estimates are adequate.

The number of probes to load a Robin Hood hash table is the same when
using the organ-pipe or the smart search heuristics, but the cpu time may differ
since different heuristics are used in findposition. Tables 5.5 and 5.7 show
the insertion time per record using each of these heuristics. Tables 5.6 and 5.8
show the search time.

The motivation for introducing smart search was that it might be faster than
organ-pipe searching. Even though the number of probes is higher, each probe
will require one less comparison. It appears that loading using smart search is

5.2. RESULTS FOR ROBIN HOOD HASHING

45

n

pred

~ 60%
simulation

pred

~ T0%
stmulation

pred

=~ 80%
stmulation

1021
4093
16273
65537
262139

1.526
1.527
1.527
1.527
1.527

1.525£.005+/
1.520+.003,/
1.527+.001/
1.528+.001y/
1.527.000/

1.718
1.720
1.720
1.720
1.720

1.706£.005 X
1.7194.003/
1.720+.002/
1.720£.001,/
1.720.000,/

1.903
1.905
1.905
1.906
1.906

1.900%.009/
1.907.005,/
1.905+.002/
1.906:£.001/
1.906:£.001,/

n

predicted

~ 90%
simulation

approz

100%

stmulation

1021
4093
16273
65537
262139

2.169
2.172
2.172
2.172
2.172

2.150=£.007x
2.164.004x
2.168+.002X
2.172+.001y/
2.172+.001y/

2.549
2.546
2.552
2.556
2.543

2.568+.053,/
2.5761.056,/
2.552+.002,/
2.553+.001%
2.552+.001 %

Table 5.3: Organ-Pipe Search: number of probes

n

pred

s 60%
stmulation

pred

~ 70%
simulation

pred

~ 80%
stmulation

1021
4093
16273
65537
262139

1.526
1.527
1.527
1.527
1.527

1.525%.005y/
1.529+.003/
1.527+.001/
1.528+.001/
1.527+.000/

1.718
1.720
1.720
1.720
1.720

1.714%.006/
1.723:.004/
1.720+.002/
1.720.001/
1.720.000,/

1.968
1.968
1.968
1.968
1.968

1.964£.005y/
1.973:.002x
1.974:.002x
1.968:.001y/
1.968.000+/

n

predicted

~ 90%

stmulation

approz

100%
stmulation

1021
4093
16273
65537
262139

2.214
2.218
2.220
2.220
2.220

2.201%.010x
2.218+.006,/
2.218:+.003,/
2.221:+.001/
2.219%.001y/

2.612
2.650
2.696
2.613
2.831

2.741+.022%
2.7604.023 %
2.763+.020%
2.777+.021 %
2.761+.020%

Table 5.4: Smart Search: number of probes

slightly faster (by about 20%) than when using organ-pipe searching, although
this could also be attributed to the cost of keeping track of the counters in the
later method. The search time per key for organ-pipe searching also appears

higher (by about 20%) than the corresponding time for smart search.

46 CHAPTER 5. SIMULATION RESULTS

n ~ 60% w5 70% ~ 80% ~ 90% 100%
1021 | .1239+£.0022 | .1467+.0025 | .1817+.0027 | .2487+.0031 | .9167+.0270
4093 | .1233+.0007 | .1470+.0011 | .1833:+.0012 | .2534+.0015 | 1.1407+.0315
16273 | .1229+.0004 | .1461+.0004 | .1826+.0005 | .2531+.0007 | 1.3301+.0252
65537 | .1315+.0002 | .1565+.0003 | .1957+.0003 | .2717+.0004 | 1.6095+.0281
262139 | .1360%.0003 | .1617+.0003 | .20194.0004 | .2796+.0006 | 1.8440+.0244

Table 5.5: Organ-Pipe: average time (msecs) to insert a record

n ~ 60% 5 T0% s 80% ~ 90% 100%
1021 | .0975+.0019 | .1000£.0015 | .1036%.0015 | .1092%.0009 | .1199+.0017
4093 | .0963+.0006 | .1006+.0005 | .1050+.0006 | .11094.0005 | .1204+.0013
16273 | .0977+.0003 | .1022+.0004 | .1069+.0003 | .1130+.0003 | .1220+.0003
65537 | .1031.0002 | .1080+.0002 | .1130+.0002 | .1198+.0002 | .1295+.0002
262139 | .1067+.0002 | .1121+.0003 | .1172+.0002 | .1245+.0003 | .13484.0003

Table 5.6: Organ-Pipe: average time (msecs) for a successful search

The second reason for performing simulation experiments was to determine
the value of E[lpsl]. In Chapter 2 we proved that E[psl] < E[lpsl] < 3E[psl] +
1.443 In m, which for full tables means that Inn + O(1) < E[Ipsl] < 4.443Inn +
O(1). Gonnet [GON81] proved that Inn+ O(1) is a lower bound for E[lpsl] for
min-max hashing (and hence for all hashing schemes) using random probing.

The length of the longest probe sequence is presented in Table 5.9 and Fig-
ure 5.1, For a fixed load factor, the longest probe sequence length grows slowly
when the table size is increased. Figure 5.1 seems to indicate that the growth
is, at most, logarithmic in the table size.

For full Robin Hood tables, the E[lpsl] seems to be about 1.151n n+2.5. This
is better than the conjecture of 1.44 In n+1 for binary tree hashing [GONMUN79].
From the simulations of min-max hashing presented in [GONMUN79] it would
appear that the expected length of the longest probe sequence for that method
is about 1.15In n + 0.5; however, the file sizes used there are too small (101 and
499) to give such a conjecture much credence.

5.2. RESULTS FOR ROBIN HOOD HASHING

47

n ~ 60% ~ 70% ~ 80% ~ 90% 100%
1021 | .1133%.0020 | .1312+.0021 | .1601£.0026 | .2117+.0030 | 0.7291+.0224
4093 | .1151-:.0010 | .1340-.0011 | .1633+.0012 | .2189+.0013 | 0.9162+.0225
16273 | .11434.0004 | .1327+.0004 | .16214+.0005 | .2181+.0006 | 1.0674+.0188
65537 | .1207-.0003 | .1508-:.0003 | .1834+.0003 | .2461£.0005 | 1.3447+.0307
262139 | .12314:.0002 | .14274.0002 | .1736+.0002 | .2326+.0003 | 1.42114.0176

Table 5.7: Smart Searching: average time (msecs) to insert a record

n ~ 60% ~ T0% w5 80% w5 90% 100%
1021 | .0798+.0016 | .0819+.0017 | .0872+.0014 | .0890+.0014 | .0965+.0012
4093 | .0814+.0006 | .0849+.0006 | .0890+.0006 | .0910.0005 | .0992+.0006
16273 | .0814+.0002 | .0847+.0002 | .0901+.0002 | .0916+.0002 | .1001+.0003
65537 | .0883-£.0002 { .0919+.0002 | .0977+.0002 | .0998+.0002 | .1099+.0003
262139 | .0906+.0001 | .0945+.0001 | .1005+.0001 | .1028+.0001 | .1135+.0003

Table 5.8: Smart Searching: average time (msecs) for a successful search

n

~ 60%

~ 70%

~ 80%

~ 90%

100%

1021
4093
16273
65537
262139

3.629+.065
3.967+.024
4.014+.016
4.029+.023
4.098+.040

4.000+.013
4.062+.033
4.262+.060
4.6141.066
4.9671.024

4.329+.064
4.800+.054
5.0002:.000
5.0002.000
5.022+.020

5.105+.041
5.329+.064
5.7714.057
6.000:.000
6.000%.000

10.443+.187
12.133+.208
13.819+.172
15.181+.178
16.815%.179

Table 5.9: Robin Hood: longest probe sequence length

we o0 M

CHAPTER 5. SIMULATION RESULTS

Longest Probe Sequence

17 100%
15 4
13 4
11 -
9
L . . o 90%
5 "0 Py s 70% 80%

g ——— 5 I Sy S & 60%
3

1 ¥ 1
1k 4K 16K 256K

Figure 5.1: Longest Probe Sequence Length for Robin Hood Hashing

5.3. THE STANDARD METHOD 49

5.3 The Standard Method

Brent’s method and standard double hashing were also simulated to compare
their performance with that of Robin Hood hashing. These three methods are
the only open addressing schemes that permit loading a full table in ©(nlnn)
time. The other three schemes discussed, binary tree, optimal and min-max
hashing appear to require {}(ny/n) time to load a full table. Tables 5.10, 5.11,
5.12, and 5.13 show the simulation results for the standard method. The differ-
ence in the average time to insert and search a record is probably due to the to
the overhead of keeping track of the value of longestprobe.

n ~ 60% w5 T70% 3 80% a4 90% 100%
1021 | 1.524+.005 | 1.714%.006 | 2.006+.007 | 2.540+.012 | 6.542+.078
4093 | 1.528+.003 | 1.724+.004 | 2.014+.004 | 2.558+.006 | 7.894+.081
16273 | 1.527+.001 | 1.719+.002 | 2.009+.002 | 2.556+.003 | 9.311+.074
65537 | 1.527+.001 | 1.720+.001 | 2.011+.001 | 2.558+.002 | 10.686+.079
262139 | 1.527+.000 | 1.720+.000 | 2.012+.001 | 2.5594.001 { 12.024+.085

Table 5.10: Standard method: average number of probes to insert or search

n ~ 60% s 70% s 80% ~ 90% 100%
1021 | .0686=X.0019 | .0705+.0023 | .0754%.0029 | .0840+.0028 | .1475+.0033
4093 | .06663.0006 | .0697+.0007 | .0748+:.0007 | .08413.0007 | .173424-.0016
16273 | .0669+.0002 | .0703+.0002 | .07534-.0002 | .0847+.0002 | .19984-.0014
65537 | .0735+.0002 | .0772+.0002 | .0830:£.0002 | .0935+.0002 | .2507+.0016
262139 | .0753+.0001 | .0792+.0001 | .0853+.0001 | .0965+.0001 | .29014.0018

Table 5.11: Standard method: average number of msecs to insert a record

An interesting observation is that for full tables, the average number of
probes required by Robin Hood hashing to insert a record is about 1 more than
the corresponding value for the standard method. We proved in section 2.2
that these two schemes require the same average number of probes to insert
if random probing is used. However random probing is memoryless, but the
simulations were done using double hashing which is not.

The issue here is the difference between random probing and uniform hashing
(or double hashing) for the standard method. Our simulations for the standard
method do match the analysis for uniform hashing (page 3). Under the Robin
Hood heuristic, the probe sequence length for each element is virtually the same.
This, of course, minimizes the expected number of repeated probe values in the
portion of the probe sequence encountered, subject to the constraint that the

50

CHAPTER 5. SIMULATION RESULTS

expected value of the sum of the psl of all the records is nlnn+~+o0(1). Hence
we are not at all surprised by the virtually complete agreement between Robin
Hood under random probing and under double hashing.

n ~ 60% w5 70% ~ 80% a5 90% 100%
1021 | .0534£.0020 | .0578=+.0017 | .0623+.0013 | .0721+.0016 | .1381+.0020
4093 | .0535+.0007 | .0584+.0006 | .06334-.0005 | .0739+.0005 | .1645+.0016
16273 | .0540+.0002 | .0581+.0002 | .0642+.0002 | .0748+.0003 | .1925+.0013
65537 | .0607+.0001 | .0653+.0001 | .0718+.0002 | .0836+.0002 | .2438+.0016
262139 | .0628+.0001 | .0677+.0001 | .0745+.0001 | .0867+.0001 | .2842+.0018

Table 5.12: Standard method: average number of msecs to search

Robin Hood hashing takes more time to insert than the standard method
mainly because of the overhead involved in the findposition function. The
difference depends on the load factor, but goes from 50% more for a 60% load
factor to six times more for a full table.

The number of probes required to search starts to be lower for organ-pipe
search than for the standard algorithm at a load factor of about 80%. This
is the point at which the heuristic begins to differ from the standard search
algorithm, as a comparison of Tables 5.3 and 5.4 with Table 5.1 shows. In spite
of the higher number of probes required to search, the search time for full tables
is only 43% more for the standard method at n = 1021 and 250% more at
n = 262139, when compared with smart searching. This is because each probe
requires less overhead. This suggests that perhaps a good combination is to use
the Robin Hood insertion algorithm with the standard search algorithm when
the load factor is below 90% and with smart search when it is above.

n ~ 60% ~ T70% ~ 80% 5 90% 100%
1021 | 9.438+.252 | 12.991+.396 | 20.281+.724 | 36.424+1.372 | 649.04+25.11
4093 | 12.105+.331 | 16.552+.453 | 24.904+.645 | 47.152+1.403 | 2574.21106.6
16273 | 14.343+.258 | 19.495+.421 | 20.900+.668 | 56.791+1.233 | 10374.+449.
65537 | 16.695+.298 | 23.181:+.420 | 35.710+.692 | 70.191+1.485 | 41918.11688.
262139 { 19.019+.288 | 26.829+.437 | 41.591+.689 | 81.367+1.513 | 164230.1:7153.

Table 5.13: Standard method: Longest probe sequence length

The observed values of the longest probe sequence length are high for the

standard method. We see this as the main drawback of the standard algo-
rithm. The values obtained are in agreement with the expected values of Ipsl
for uniform hashing [GON81] of E[lpsl] = .6315...x n+ O(1) for full tables, and
E(lpsl] = ~log, n — log, (— log,) + O(1) for a-full tables.

5.4. BRENT’S METHOD

5.4 Brent’s Method

Brent’s method was also simulated. The results of the simulation are shown
in Tables 5.14, 5.15, 5.16, 5.17 and 5.18. To insert records into the table, a
level search was performed for the empty location. Brent’s original sugges-

tion {BRE73] was to perform a search in a depth first manner, but this would
increase the number of locations probed to insert each record.

n

5 60%

5 T0%

~ 80%

~ 90%

100%

1021
4093
16273
65537
262139

1.645+.007
1.6494:.004
1.6481.002
1.648+.001
1.6481.000

1.8961.008
1.901:+.005
1.898+.002
1.898+.001
1.899+.001

2.278+.011
2.2821.006
2.280%.003
2.281+.001

2.282+.001

2.991+.016
3.001+.008
3.002+.004
3.003+.002
3.004+.001

8.992+.187
10.610%.179
12.0851-.182
13.559+.176
14.929+.156

Table 5.14: Brent’s method: average number of probes to insert

n

~ 60%

w5 T0%

w5 80%

~ 90%

100%

1021
4093
16273
65537
262139

1.365::.003
1.368%+.002
1.368+.001
1.368:.000
1.3682.000

1.466%.003
1.468+.002
1.468+.001
1.467+.000
1.468+.000

1.599+.004
1.601+.002
1.601:£.001
1.601+.000
1.601+.000

1.802+.004
1.8051.002
1.8051:.001
1.8054.001
1.806-£.000

2.439+.008
2.4681.004
2.484:+.002
2.491+.001
2.496+.001

Table 5.15: Brent’s method: average number of probes to search

n 5 60% ~ 70% 5 80% ~ 90% 100%
1021 | .1554+.0019 | .1660+£.0022 | .1814+.0023 | .2104+.0026 | .4611+.0082
4093 | .15631.0005 | .1672+.0006 | .1833+.0007 | .2136+.0007 | .5361+.0076
16273 | .15844-.0002 | .1692-:.0002 | .1857+.0002 | .2171+.0002 | .6111%.0079
65537 | .1681+.0002 | .17984.0003 | .1978+.0003 | .2317+.0003 | .7232+.0086
262139 | .1716£.0003 | .1837+.0003 | .2022+.0004 | .2370+.0004 | .8123+.0079

Table 5.16: Brent’s method: average number of msecs to insert

Notice that the number of probes needed to insert using Brent’s method

is higher than for Robin Hood hashing, but the cost in milliseconds is lower
at high load factors. In checking that a location in the table was empty, we
only did a comparison on the first integer of the key. If key comparisons were

52 CHAPTER 5. SIMULATION RESULTS
n ~ 60% s T0% ~ 80% ~ 90% 100%
1021 | .0475+.0016 | .0518+.0017 | .0541-+.0014 | .0584+.0010 | .0689+.0010
4093 | .04961+.0004 | .05241+.0003 | .05531+.0003 | .0598+.0003 } .0720+.0003
16273 | .0513+.0001 { .0538+.0001 | .0572£.0001 | .0616+.0001 { .07451.0001
65537 | .0573+.0001 | .0606+.0001 | .0635+.0001 | .0685+.0001 { .0832-.0001
262139 | .0597+.0001 | .0626+.0001 | .0662+.0001 | .0715+.0002 | .0869+.0002
Table 5.17: Brent’s method: average number of msecs to search
n| ~60% ~ 70% ~ 80% & 90% 100%
1021 | 4.533+.083 | 5.390+.100 | 6.543+.110 | 8.924+.168 | 40.476+1.856
4093 | 5.233+.090 | 6.243+.110 | 7.552+.127 | 10.352+.165 | 78.724+3.518
16273 | 5.729+.083 | 6.957+.104 | 8.576+.118 | 11.867+.170 | 154.1118.05
65537 | 6.424-£.085 | 7.62941.091 9.514:4.130 | 13.071+.194 | 305.67+14.50
262139 | 6.9901+.080 | 8.452+.101 | 10.501+.134 | 14.391+.163 | 590.041+25.73

Table 5.18: Brent’s method: Longest probe sequence length

more expensive (for example if keys were character strings) this relation could
be reversed.

No checking for duplicate keys was performed during the insertions. Check-
ing for duplicates would increase the number of probes required for Brent’s
method since an unsuccessful search (its weakest point) would precede each in-
sertion. Checking for duplicates does not increase the number of probes required
by Robin Hood hashing.

~ Searching using Brent’s method requires about .06 probes less and about
30% less time than using smart searching on the average for full tables. The
weakest point of Brent’s method is the E[Ipsl] (and hence unsuccessful searches)
which appears to be 8(,/n) for full tables and 6(ln m) for a-full tables.

5.5 Summary

The main conclusion we can draw from this chapter is that the results from
the theoretical analysis can indeed be used to predict the performance of Robin
Hood hashing combined with double hashing. From the simulations it appears
that for full tables E[lpsl] = 1.15In n+2.5 for Robin Hood hashing and Eflpsl] =
1.15,/n+ O(1) for Brent’s method. For nonfull tables these values appear to be
o(ln m) and ©(In m) respectively.

Smart search appears to be faster than organ-pipe searching even when keys
are two integers long. The time to insert a record appears to the lowest for the

5.5. SUMMARY 53

standard method, and the time to retrieve a record appears to be the lowest for
Brent’s method. But in both cases, the execution time for Robin Hood hashing
is not much worse and the longest probe sequence length is many times better.

Chapter 6

Deletions

In this chapter we discuss the standard way of handling deletions in hash tables
with open addressing and show how it applies to Robin Hood hashing. We then
slightly modify the Robin Hood insertion and search algorithms to improve their
performance when deletions may have occurred. The study presented in this
chapter is explorative in nature, a full analysis has not been attempted. All
conclusion are based on simulations.

6.1 Deletions in Hashing with Open Address-
ing

It is surprising to notice that the obvious way to delete a record does not work
for a hash table with open addressing. We cannot simply remove the record
and mark its location as empty. The problem arises because a search, using the
algorithm in Figure 1.2 on page 4, for a record will fail if the desired record was
rejected from that location during insertion.

In general, deletions can be handled by marking with a special code the
table entry that contains the record to be deleted. There will then be three
kinds of table entries: empty, occupied and deleted. When inserting, deleted
table entries are treated as if they were empty, but they are treated as if they
were occupied during searches.

It is fairly easy to see that if the standard insertion and search algorithms
(modified to handle deleted entries correctly) are used, then after a sufficiently
large number of deletions followed by insertions the E[psl] = (1 — a)~! and
E[upsl] = n. (1 — B)~?! is the expected number of probes to insert a record
when the ratio of occupied entries is f, but all records in the table were inserted
when this ratio was a. Since all records in the table are now either occupied or
deleted, and the value of longestprobe can only increase, unsuccessful searches
take n probes. Hence the performance deteriorates to something worse than

54

6.2. DELETIONS IN ROBIN HOOD HASHING 55

the performance of linear probing (which is E[psl] ~ { (1+ (1-a)™!) and
Efupsl] » 4 (1+ (1—a)7?)).

Peterson [PET57] and Larson [LAR8 3] also discuss the effect of deletions on
hashing with open addressing. As far as we know, there have been no “positive”
results published on doing deletions and subsequent insertions on hash tables
with open addressing. By “positive® we mean substantial improvements over

Ejpsl) = O (2;) and Efupsl] = O(n) in the steady state.

l-a

6.2 Deletions in Robin Hood Hashing

Deletions in a Robin Hood hash table can be performed by marking the table
entry as empty and using the algorithms of Figures 2.1, 4.4, 4.3 and 4.5. This
is because in these algorithms we don’t stop a search when an empty location
is found. However, simulation results show that this will cause the distribution
of the psl to spread out, with a resulting increase in the search cost.

Our main concern for an efficient algorithm to perform deletions and subse-
quent insertions in a hash table is, as before, the variance (and not the expected
value) of psl. With this in mind, we propose the following modifications to the
algorithms for Robin Hood hashing: to delete a record, mark the table entry as
deleted but keep the key value; when inserting, a deleted element is displaced
if and only if it would be displaced if it were not flagged as deleted; when a
deleted element is displaced, it is discarded and the insertion is complete.

We would expect this to make the expected value of psl increase without
bound, but keep the variance bounded by a small constant. The expected value
will increase without bound because once a location contains a record at probe
position ¢, then in the future it can only contain records that are at or past
probe position 1.

We expect the variance to remain bounded, and hence most records to be
at a probe position close to the average probe position. Our intuition is that,
when a record is at a probe position which is small compared to the average,
it is unlikely that it will be placed in that location even if it contains a deleted
key. If its probe position is large, it i3 very likely that the record will be placed
in that location even if the location is occupied.

Unfortunately, we have not been able to analyse the behavior of this al-
gorithm., However extensive simulations strongly indicate that the variance of
psl after a large number of updates remains bounded by a small constant, and
is never greater than that of a full table in which no deletions have occurred.
Therefore, the cost of a successful search (we explain the algorithm below) after
an arbitrary number of insertions and deletions into the table remains bounded
by the cost of a successful search in a full table with no deletions. Unsuccessful
searches are similarly bounded.

We have already mentioned that the average probe position grows without
bound. This would imply that the cost of doing an insertion also grows without

56 CHAPTER 6. DELETIONS

bound, since each key has probed positions 1 to about the average probe posi-
tion. We can reduce and bound this cost by keeping track of the value of the
smallest probe position among the records (deleted or otherwise) in the table.
The insertion procedure then starts at a probe position equal to this value, since
a placement before that position is not possible. Empty locations are treated
as containing a deleted record in probe position 0.

The most efficient way of keeping track of the smallest probe position is to
have counters of how many records are at each probe position. This is similar
to the approach of the algorithm in Figure 4.4, but now we also count deleted
‘entries. Only ©(Inn) counters are needed and we conjecture, based on the
simulations of the previous and present chapters, that about 1.15Ilnn + 2.5
different probe positions will contain all the records in the table.

In Figure 6.1 we show a modified version of the algorithm of Figure 2.1
to perform an insertion into a Robin Hood table when there may be deleted
elements in the table. The new variables used are dshortestprobe and the
array dcount, which we use solely to keep track of the value of shortestprobe.
Initially, dshortestprobe is equal to zero and the array dcount is equal to
gero, except dcount [0] which is equal to n. findposition returns 0 for an
empty record (as before) and for a deleted record it returns the probe position
where it was before being deleted!. The only modification required to the smart
search heuristic of Figure 4.5 is to change the condition downposition>=1 for
downposition>=dshortestprobe in the while loops.

In Figure 6.2 we present a modified version of the algorithm of Figure 4.4.
The difference between the arrays dcount and count is that the first one also
counts deleted records (empty records are considered as deleted in probe position
sero) while count does not. The array dcount is used only to keep track of
dshortesprobe and is not used by the search algorithm. The sum of the values
in the array dcount is equal to n, but the sum of the values in the array count
is equal to m — 2. Initially the elements in dcount are all equal to 0 except
dcount [0] which is equal to n; the elements of count are equal to 0 except
count [0] and count[1] which are equal to —1; tallest is equal to 1. To
delete a record from the table, the record must be marked as deleted, count[i]
must be decremented and shortestprobe and longestprobe must be updated
if necessary. The only changes required to the organ-pipe search heuristic of
Figure 4.3 of page 37 are: the starting value of i in the for-loop should be
shortestprobe (instead of 1) and the array count should be indexed modulo
its sige.

1Actually, it is better to return the probe position minus one for deleted records, therefore
breaking ties against the deleted element.

6.3. SIMULATION RESULTS 57

table : array [1..n] of RECORD <{all empty}

dcount : array [0..csize-1] of integer; {all O except dcount[0]}=n}
totalcost, shortestprobe, longestprobe : integer {all O}

n, n : integer

function insert(Record)
if m=n then return(FAIL) { table full }
k := Key(Record)
probeposition := shortestprobe
while (k <> empty) and (k <> deleted) do
probeposition := probeposition + 1
location := H(k, probeposition)
totalcost := totalcost + 1
recordposition := findposition(location)
if probeposition > recordposition then begin
tempRecord := table[location]
teble[location] := Record
Record := tempRecord
increment dcount [probeposition mod csize]
decrement dcount{recordposition mod csize]
k := key(Record)
longestprobe := max(longestprobe, probeposition)
probeposition := recordposition
end
endvhile
while (dcount(shortestprobe mod csize] = 0) do increment shortestprobe
m = a+l
return(location)
end function insert

Figure 6.1: Robin Hood insertion algorithm when deletions may have occured

6.3 Simulation Results

We simulated Robin Hood hashing with deletions and insertions for different
table sizes and load factors. Algorithm 6.2 was used for insertions and the organ-
pipe algorithm for searching. Figure 6.3 shows the expected number of probes
to find a key after a number of replacement operations (a deletion followed by an
insertion) were applied to the table. The cost of searching increases at first, but
stabilizes after a large number of replacements have been made. We conjecture
that the probability distribution of the psl reaches a steady state when there
are no empty locations left in the table, only occupied or deleted ones.

After the steady state has been reached the cost of searching seems to depend
only on the load factor a and not on the table size, and is never greater than the

58 CHAPTER 6. DELETIONS

table : array [1..n] of RECORD <{all empty}
count : array [0..csize-1] of integer

{211 0 except count[0]=-1 and count[1]=-1}
dcount : array [0..csize-1] of integer {all O except dcount[0]=n}
shortestprobe, longestprobe, dshortestprobe, dlongestprobe: integer
n, m, tallest : integer

function insert(Record)
if m=n then return(FAIL) { table full }
count [longestprobe+i] := 0
count [shortestprobe-1] := 0
k := Key(Record)
probeposition := dshortestprobe
while (k <> empty) and (k <> deleted) do
probeposition := probeposition + 1
location := H(k, probeposition)
recordposition := findposition(location)
if probeposition > recordposition then begin
increment count [probeposition mod csize]
decrement count [recordposition mod csize]
increment dcount{probeposition mod csize]
decrement dcount[recordposition mod csize]
tempRecord := table[location]
table[location] := Record
Record := tempRecord
k := Key(Record)
longestprobe := max{ longestprobe, probeposition)
probeposition := recordposition
end
endwhile
increment count [probeposition mod csize]
dlongestprobe := max(dlongestprobe, longestprobe)
while count[(tallest+1l) mod csize]>count[talleat mod csize]
increment tallest
vhile count[smallest mod csize] = O increment smallest
vhile count[dsmallest mod csize] = O increment dsmallest
count [longestprobe+i] := -1
count [smallestprobe-1] := -1
B o= m+l
return(location)
end function insert

Figure 6.2: Robin Hood insertion keeping counters when deletions may have
occured

6.4. SUMMARY 59

cost of searching a full table where no replacements have been made (< 2.6).

Fig 6.4 shows the expected size of the interval of probe positions that contain
all the records in the table. The size of this interval represents the cost of
performing unsuccessful searches when we use either the smart search or organ-
pipe heuristic. The size of the interval grows at first when replacements are done
and stabilizes after a large number of them have been performed. However, the
value of the interval when the steady state is reached depends not only on the
load factor but also on the size of the file. For a fixed load factor the interval
grows logarithmically with the file size. In any case, the size of the interval
seems to be less than about 1.15Inn + 2.5.

Fig 6.5 shows the expected distance of the average psl from the smallest
probe position among the records in the file. This represents the expected
number of probes needed in a successful search if the standard search algorithm
is used. The average cost of an insertion is equal to the average position above
the minimum of the records in the table plus the expected number of probes
required to hit a deleted location. From this we conjecture that the cost of an
insertion after the steady state has been reached is ©(Inn + (1 — a)™!).

6.4 Summary

In this chapter we presented a variation of the insertion algorithms to be used
when deletions may occur. Simulation experiments indicate that the hash tables
produced by this new algorithm retain good expected costs for both successful
and unsuccessful searches. We conjectured that the cost of doing insertions into
a Robin Hood table with load factor a, is O(lnn + (1 — a)™1).

As far as we know, these are the only algorithms for hash tables with open
addressing in which the cost of searching remains low even if deletions may
have occurred. However, the cost of performing an insertion can be high if o
is close to 1. This will also be true for any other replacement algorithm since
6({1 — a)~!) probes into the table are needed to find any deleted location.
Proving that the variance of psl remains bounded after an arbitrary number of
insertions and deletions have been performed remains an open problem.

CHAPTER 6. DELETIONS

27 . n=1021
28 -
AP - 0977
a5 / ™~ /\\/\/ o
VA e — 9577
L /\/\\\ »V_//l\\/\/\/_/_/\,’\\/f\/\ 0%
» 23

®® TOo ~
[T

. S e N S N //\/»—\/\/v RO"7
22 A //\/\/"\/\/\/_r/\' 70%
T / - /\/"" \/\/‘\/\,\N\/\,—\, 80

T r —
0 3 15 83
Replacementalan
27 . n = 4093
28 s
" PSR i e e e PN\ b
25 . e P+ e~ 05T
24 / e A 105
P 2.A S e e AN BOTE
4 22 e e e\ 1070
o
b 21 TN TN T e 0%
e 20
* 19
1.8
1.7
1.8
4 T v T
[} 3 15 83
Replacemental/an
271] n=16273
28
25
2.
r 23
4 22
° e
b 21 e B I e el | 3
e 20 -
' 19
[]
1.7
1.8 -
T . Y +
0 3 15 83

Replacemental/an

Figure 6.3: Average Cost of Successful Searches after Deletions

6.4. SUMMARY

n=02]

NV =N pRVAY b
N\ . - 20y
8. // S \/;,\\/vy 70%

//—// /-7%‘:’\ RO w0

—_ €A S -
S

1

2 4

15
Replacements/ an

n =4093

 — 99%%

2 \/—\>C‘l,/\>/\/~ ORA 95%
S — 90%%

\{\‘/\ N’ 80%

5. AN e NSO T A
e

s

—_—% XN~

\

R

T . _

] 3 15 83

Replacements/ an
n=]6273
18
1 /\/\/\M 9%
n T 95%
t
e P SOOI e
r f0%
SR 7

v AN ORI
1 8-
] 2‘7/
; /
s 4
e

[3 15 (1}

Replacementas/ an

Figure 6.4: Average Cost of Unsuccessful Searches after Deletions

61

62

CHAPTER 6. DELETIONS

n=|02]1

I 8. 0%
b e e 5%
° A\ \\/ = 907%
v .

L

Replacemental an

n =093
12
A
v
.
: A
’ - 05%
b 8- 00%%
: T~ Rt
v - -’ 0%
e 802
M ‘-
i
n

Replacemental an

n=16273

: AN N S,

E

a1 8

(i
5
§
4

T T
[} 3 15 83
Replacrmental an

Figure 6.5: Average Probe Position above Minimum after Deletions

Chapter 7

Conclusions and Further
Research

In this chapter we present our conclusions and some ideas for further research.

7.1 Conclusions

We consider the main contribution of this thesis to be the introduction of a new
reordering scheme which we have called Robin Hood hashing. This new scheme
is obtained by rather simple modifications to the standard insertion and search
algorithms.

We were able to prove that the expected value of the probe sequence length
(E[psl]) is O(Inn) and that the expected value of the longest probe sequence
length (E[lpsl)) is also O(Inn) even for a full table. An asymptotic model giving
the probability distribution of the probe position of a record was developed and
taking the limit numerically we showed that the variance (V[psl]) is less than
or equal to 1.883 for any a £ 1 —¢, € > 0. The strongest feature of this new
method is that the variance is reduced to a small constant . This enables us
to perform successful searches in a constant number of steps on average and
unsuccessful searches in O(In n) steps.

The standard method, optimal hashing and min-max hashing minimize re-
spectively the number of probes required to insert, perform a successful search
and perform an unsuccessful search. Robin Hood hashing comes within a small
constant factor of each of these three lower bounds simultaneously.

Furthermore, we presented modifications to our algorithms for handling dele-
tions and subsequent insertions, and indicated using simulations that the cost
of successful and unsuccessful searches remains low. As far as we know, no
previous work has shed encouraging light on this problem for the case in which
conflicts are resolved by open addressing.

63

64 CHAPTER 7. CONCLUSIONS AND FURTHER RESEARCH

Method Insert Cost | Successsful Unsuccessful
Standard Inn+0(1) | Inn+O(1) & .6315...xX n
Brent’s O(Inn)t £z 2.49% 1.15\/n + O(1)}
Binary Tree 0(v/n)t &~ 2.13% 1.441nn + O(1)t
Optimal Q(v/n)t & 1.82¢ O(Inn)t

. 8(Inn)t
Min-Max Q(v/n)t o183t | 5 sinna o(1)
Smart Search |- & 2.78% 1.15lnn + O(1)t
Organ-Pipe Inn+0(1) ~2.56f | <2.44lnn+0(1)

t Conjectures based on simulation
$ Obtained by numerscal extrapolation

Table 7.1: Comparison of Hashing Schemes for full tables

7.2 Further Research

Tables 7.1 and 7.2 summarize what is currently known about the performance
of hashing with open addressing. The cost measures are given in number of
probes. The insertion cost is equal to the total number of probes required to
insert divided by the total number of keys inserted. Simulation studies show that
©(n) extra memory is required by binary tree, optimal and min-max hashing
during insertions. Organ-pipe search requires ©(Inn) extra memory to keep
track of the observed frequencies. The search cost for Brent’s, binary tree and
Robin Hood hashing have been analyzed only for nonfull tables, and the numbers
presented in the table are numerical extrapolations to a = 1.

From Table 7.1 it is clear that simulation has been useful in answering many
questions in this area. The obvious open problems are to prove that the conclu-
sions based on the simulation experiments are correct. From Table 7.2 one gets
the impression that the case of nonfull tables has been somewhat neglected by
previous simulation studies. Even though the analysis for full tables provides a
bound on the performance of the hashing scheme in question, a study of nonfull
tables is also important since in reality most hash tables are not allowed to
become full.

Regarding Robin Hood hashing we see the following as the main open prob-
lems:

. .Finding E[lpsl]. We have proved bounds of E[psl] < E[lpsl] < 3E[psl] +
[lgm]. The bounds are reasonably tight only for full tables.

o Finding the probability distribution of psl for full tables.

e Finding the steady-state distribution and the moments of psl when dele-
tions and subsequent insertions occur. We have provided simulation re-
sults only.

7.2. FURTHER RESEARCH 65
Method Insert Cost Successsful Unsuccessful
—log, n
Standard ~la(l-a) ~lnli-a — log, (—log, n)
+0(1)
Brent’s 9‘(—11(1'—"’)-) t 1+%+9‘: i’i— 6(Inm)t
“ a® | 2a° Oa§
1t s
203a® _ 310>
56 5600
Binary Tree 7 1+8+%+%&— | ?
91_'. 22_'.4. 83a’
18 7 16 ' 720
613a® _ 69a° +
5760 1120
Optimal 7 ? ?
Min-Max ? ? ?
o(lnm)t
gmart iefarch -l"(l;") No explicit for- | < —a~lln(l-a)
rgan-tipe mula but can be +[1g m]
_ computed for any
a<l
t Conjectures based on Simulation

Table 7.2: Comparison of Hashing Schemes for nonfull tables

Throughout this thesis we have concentrated on the use of the Robin Hood
heuristic for internal hash tables and most of our concerns have included execu-
tion time (e.g. the motivation for the introduction of the smart search heuristic).
But Robin Hood hashing may also be a good alternative for external dictionar-
ies, especially since it appears that deletions can be handled with no significant
degradation of performance. In that case the main concern is the number of
external probes. There are several modifications to our algorithms that seem ap-
propriate when they are intended to be used for external files. One is to modify
the organ-pipe heuristic to further reduce the expected number of probes re-
quired for a successful search. This could be done by stopping the search on
the upper end of the probe sequence when we probe a location that contains a:
record with a smaller probe number, or if it is empty. Another modification is to
have an internal table that contains for each bucket the value of the maximum
probe position (or the maximum and the minimum) among the records in the
bucket. About 4 (8) bits per bucket should be enough in most practical cases.
An analysis of the distribution and the moments for psl when used with buckets
would also be required, as well as an analysis of the expected value of 1psl.

Bibliography

[ABRSTE70] Abramowitz, M. and |. Stegun, Handbook of Mathemat-
1cal Functions, Dover Publications, Inc., New York

[AMBKNU74] Amble, O. and D.E. Knuth, “Ordered Hash Tables,” The
: Computer Journal, Vol. 17, No. 2, pp.135-147, May 1974

[BRE73] Brent, R.P., “Reducing the Retrieval Time of Scatter Stor-
age Techniques,” Communications of the ACM, Vol. 16,
No. 2, pp.105-109, February 1973

[DAVBARG62] David, F.N. and D.E. Barton, Combinatorial Chance,
Charles Griffin & Company Limited, London 1962

[EDMKART72] Edmonds, J. and R.M. Karp, “Theoretical Improvements
in Algorithmic Efficiency for Network Flow Problems”, Jour-
nal of the ACM, Vol. 19, No. 2, pp.248-264, April 1972

[ERDRENG61] Erdds, P. and A. Rényi, “On a Classical Problem of Prob-
ability Theory”, Magy. Tud. Akad. Mat. Kutaté Int.
Kéal., Vol. 6 pp.215-220, 1961

[FELLow73| Feldman, J.A. and J.R. Low, “Comment on Brent’s Scat-
ter Storage Algorithm®, Communications of the ACM, Vol.
16, No. 11, pp.703, November 1973

[FEL68] Feller, W., An Introduction to Probability Theory and its
Applications, Vol. I, John Wiley & Sons, New York, 1968
[FRETARS4) Fredman, M.L. and R.E. Tarjan, “Fibonacci Heaps and

Their Use in Improved Network Optimization Algorithms”,
Proc. 25th Annual IEEE Symposium on Foundations of
Computer Science, pp.338-346, October 1984

[GONTT] Gonnet, G.H., “Average Lower Bounds for Open Address-
ing Hash Coding”, A Conference on Theoretical Computer
~ Science, pp.159-162, University of Waterloo Waterloo, On-

tario, August 1977

66

BIBLIOGRAPHY

[GONMUNT79]

[GoN81]

[GONLARS82]

[Gon84]
[JouKoT77]
[KON31]

[KNU69]

[KNU73]

[LAR83]
[Lyo78]

[MaD80]

[MAL77]

[Mau75]

67

Gonnet, G.H. and J.1. Munro, “Efficient Ordering of Hash
Tables”, SIAM Journal on Computing, Vol. 8, No. 3,
pp.463-478, August 1979 (a preliminary version was pre-
sented at the 9th ACM STOC May 1977)

Gonnet, G.H., “Expected Length of the Longest Probe
Sequence in Hash Code Searching®, Journal of the ACM,
Vol. 28, No. 2, pp.289-304, April 1981

Gonnet, G.H. and P.-A. Larson, “External Hashing with
Limited Internal Storage®, Technscal report CS-82-88, Com-
puter Science Dept., Univ. of Waterloo, October 1982

Gonnet, G.H., Handbook of Algorithms and Data Struc-
tures, Addison-Wesley, Reading Massachusetts 1984

Johnson, N.L. and S. Kotz, Urn Models and their Appls-
cation, John Wiley & Sons, New York 1977

Konig, D, “Graphok és Matrixok”, Matematikas és Fizikas
Lapok, Vol. 38, pp.116-119, 1931

Knuth, D.E., The Art of Computer Programming, Vol.
II: Semtnumerical Algorithms, Addison-Wesley, Reading
Massachusetts, 1969

Knuth, D.E., The Art of Computer Programming, Vol.
III: Sorting and Searching, Addison-Wesley, Reading Mas-
sachusetts, 1973

Larson, P.-A., “Analysis of Uniform Hashing”, Journal of
the ACM, Vol. 30, No. 4, pp.805-819, October 1983

Lyon, G.E., “Packed Scatter Tables®, Commaunications of
the ACM, Vol. 21, No. 10, pp.857-865, October 1978

Madison, J.A.T., “Fast Lookup in Hash Tables with Di-
rect Rehashing”, The Computer Journal, Vol. 23, No. 2,
pp.188-189, May 1980

Mallach, E.G., “Scatter Storage Techniques: A Unifying
Viewpoint and a Method for Reducing Retrieval Times”,
The Computer Journal, Vol. 20, No. 2, pp.137-140, May
1977

Maurer, W.D. and T.E. Lewls, “Hash Table Methods”,
ACM Computing Surveys, Vol. 7, No. 1, pp.5-19, March
1975

68

[PET57]

[Poo76]

[RENG62]

[RIv78]

[ULL72]

[Yao85]

BIBLIOGRAPHY

Peterson, W. W., “Addressing for Random-Access Stor-
age”, IBM Journal of Research and Development Vol. 1,
No. 2, pp.130-146, April 1957

Poonan, G., “Optimal Placement of Entries in Hash Ta-
bles®, ACM Computer Science Conference (Abstract only),
Vol. 25, 1976, (Also DEC Internal Tech. Rept. LRD-1,
Digital Equipment Corp., Maynard Mass)

Rényt, A., “Three New Proofs and a Generalization of a
Theorem of Irving Weiss”, Magy. Tud. Akad. Mat. Kutaté
Int. Ko2l., Vol. 7 pp.200-209, 1962

Rivest, R.L., “Optimal Arrangements of Keys in a Hash
Table”, Journal of the ACM, Vol. 25, No. 2, pp.200-209,
April 1978

Ullman, J.D., “A Note on the Efficiency of Hash Func-
tions®, Journal of the ACM, Vol. 19, No. 3, pp.569-575,
July 1972

Yao, A.C., “Uniform Hashing is Optimal”, Journal of the
ACM, Vol. 32, No. 3, pp.687-693, July, 1985

	CS-86-14.pdf
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	page16
	page17
	CS-86-14
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

