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ABSTRACT

The properties of programming languages can be evaluated according to how they
affect programming-language independence in four dimensions. The four dimensions
are: 1) machine independence, 2) problem independence, 3) human independence, and
4) time independence. This paper presents a definition of independence, and shows how
that definition applies to each of the dimensions. By organizing language features in
this way, the strengths and weaknesses of many language designs can be identified, and
new directions for programming-language research become apparent. This paper also
presents the advantages of independence in these dimensions, occasionally presents the
advantages of dependence, and proposes methods of achieving independence.

This paper shows that each of the four dimensions can be treated as a discrete
domain, and that by classifying the elements of each domain according to their proper-
ties, the analysis of independence in these four dimensions is facilitated. The elements
of the machine domain are classified according to (a) architecture, (b) machine size,
(c) peripheral devices, and (d) operating system. The problem domain is classified
according to (a) discipline, (b) problem context, (c) system mode, and (d) problem-
solving methods required. The human domain is classified according to (a) user qualifi-
cations, (b) natural languages, and (c) the two classes users and implementors, and
(d) independence of the class implementors is considered alone. Finally the time dimen-
sion is treated in three time scales: (a) program processing, (b) project development,
and (c) language evolution.
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0. Introduction

Traditionally programming languages have been evaluated and categorized according to a large number
of diverse criteria. In this paper we show that these criteria can be organized according to how they
affect the independence of a programming language in four dimensions. The four dimensions treated
here are

1) machine independence
2) problem independence
3) human independence
4) time independence.

By organizing language-evaluation criteria in this way one can see more clearly how they interact. Furth-
ermore, this organization causes new language evaluation criteria to become apparent.

In addition to showing how the four dimensions encompass existing language evaluation criteria, we
show how independence in these dimensions is advantageous and we suggest methods for achieving
independence. When a strong case can be made for dependence in a particular dimension, it is also
presented.

The existing literature on the machine-independence dimension is substantial in quantity, and
although the other dimensions are not commonly referred to by the names used here, the literature on
them is also extensive. As a result, all the questions raised in discussing these four dimensions cannot be
dealt with in full detail. Instead, references are given to survey articles and books, where further discus-
sion and further references can be found, and to user manuals of languages that provide independence in
various ways. Only for topics not dealt with in existing literature, or where the approach of existing litera-
ture is quite different, is a deeper discussion given.

The technique used here to analyze independence is to treat each dimension as a discrete domain
(or a finite set). The machine domain, for instance, consists of all computers. The elements of the
domain are then classified into groups according to their properties, and the independence of program-
ming languages on these groups is studied. Again using the machine dimension as an example, the ele-
ments of this domain can be classified into groups according to the four characteristics: architecture,
machine size, peripheral devices, and operating systems, and programming-language independence of
these machine characteristics can then be studied.

0.1. Definition of Independence

In order to analyze the four dimensions, a precise definition of independence is needed. By treating each
dimension as a discrete domain and grouping the elements of the domain according to various classifica-
tions, a definition of independence can be formulated that consists of two conditions.*

A programming language can be said to be independent of a classification of the elements of

a domain if it:

(1) supplies the same level of computational power to all groups in the classification, and

(2) meets the computational needs of each of the groups in the classification.
The first condition insures that the language is neither biased in favour of nor biased against any particu-
lar group. The second condition insures that the language is useful for each of the groups. Without the
second condition even the empty language could be considered independent. Because of the two condi-
tions in the definition, the word independence in this paper is actually used to mean independence and
applicability. Independence is not treated as a binary property, but rather a language is assigned a degree
of independence based on the extent to which it meets these two conditions.

The definition given above can be used to evaluate language features and language-design criteria
as well as languages themselves. A language feature can be evaluated according to how it contributes to
independence in a language that employs that feature. A language-design criterion can be judged accord-
ing to whether it implies greater or lesser independence in a language.

* A definition of independence similar to the one presented here was developed independently by Heering and Klint.2?



1. Dimension 1: Machines

It is not within the scope of this paper to summarize all existing work dealing with machine indepen-
dence. Fortunately, several survey books have been written where summaries can be found, and these
can be described here.

Machine independence is often treated as a discipline to be practiced by programmers. Techniques
for writing portable programs are summarized by Wallis>* along with a bibliography of literature on the
topic, and by Brown.8 One would also expect that automatic translators could correct or identify machine
incompatibilities. Wolberg’’ and Brown® list techniques for such conversions, and Wolberg5’ also lists
commercial products available that work for existing languages.

One method of eliminating syntactic differences in the languages accepted by compilers for different
machines, and at the same time cutting compiler development costs, is to write a portable compiler. This
has led to the techniques of compiler bootstrapping, and retargetable compilers. Ganapathil? and Brown’
present surveys of portable and retargetable compilers.

It has been recognized that a large part of the machine-dependence of a program is due to the
operating system under which it is running. To counteract this problem, some have proposed not just a
portable compiler but a portable operating system and environment. Such projects are listed in Wallis.54

Rather than treating methods for writing portable programs, or methods for writing portable com-
pilers, the focus of this section is on the properties of a language itself that are conducive to machine
independence. To aid in this analysis the elements of machine domain can be classified according to the
properties:

a) architecture

b) machine size

¢) peripheral devices
d) operating system

By studying independence on each of these four properties individually the analysis is simplified.

1.a. Architecture Independence

What are the properties of a programming language that lead to architecture independence? Applying
the definition of independence given above to machine architectures would imply that if a language were
to be architecture-independent one could:

1) Run any program written for one architecture on any other architecture.
2) Take advantage of all the special features of any particular architecture.

These two goals may seem contradictory, but are not always so. From computing theory one knows that,
within the bounds of memory size and computational speed, all digital computers that can implement a
universal Turing machine, have equivalent computational capabilities. It follows that any special feature
of one architecture can be simulated on any other architecture, and in many cases this simulation can be
accomplished with no significant penalty in speed. It is therefore possible, with the language designer and
the language implementor working cooperatively, to achieve architecture independence.

Consider, for instance, the operators increment “++” and decrement “--” in the C language. They
were designed to take advantage of the autoincrement and autodecrement addressing modes of the PDP-
11 computer. Using these addressing modes can speed up a program by reducing the instruction count.
Although they were intended for the PDP-11, the increment and decrement operators can be easily imple-
mented on other computers, even though those computers do not have these special addressing modes,
and the implementation can be just as efficient as for any other language construct that performs incre-
mentation.

Why would one want a language to have both properties of independence? The desirability of the
first property is well recognized. It implies the portability of programs across architectures and thus per-
mits programmers to share algorithms, software vendors to access a larger market, and users to change or
mix manufacturers.
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The second property is desirable because of the realities of computer marketing. A manufacturer
can sell his computer only if it is better in some way than his competitor’s, or if it is cheaper. If it is dif-
ferent, the customer must be able to make use of that difference, that is, he must be using a program-
ming language that can take advantage of that difference. The major sources of compilers today are the
computer manufacturers and software houses under contract to computer manufacturers, and a computer
manufacturer will not in general be willing to finance a compiler project that does not make use of the
features of his architecture that make it superior to his competitor’s architecture.

There are many possible architectural variations. They include such things as operand alignment,
address size restrictions, special address modes, cache or memory page sizes, the varieties of data types
and their properties, character codes and their collating sequence, and complex microprogrammed instruc-
tions. With all these variations, it is unreasonable to expect programs to have the same space and time
characteristics on all machines. Similarly, variations in word sizes and floating point formats make it
unlikely that programs will produce the same results on all machines. Establishing strict standards for
machine design would be equivalent to abolishing architectural variations, and as explained above, this is
undesirable. Similarly, emulation of a standard machine on all target machines would be a rejection of
architectural variation and could be very costly. The language designer should therefore not expect per-
fect portability, but rather should be satisfied with producing acceptable results on most machines.

Surprisingly, major architectural properties such as parallelism need not affect a language design.
For instance, the writers of the CRAY FORTRAN compiler decided that the compiler could do an ade-
quate job of discovering parallelism automatically in unenhanced FORTRAN for their machine.* In the
opposite vein, the languages FP® and Lucid®?:53 demonstrate that it is possible to design languages for
parallel execution that are also practical on sequential machines. They do however require programmers
to change substantially their program-design techniques.

1.b. Machine-Size Independence

Another way to classify machines is by machine size. Machine size can be independent of architecture
since the same architecture can come in different sizes of machine.

Computers have been getting more powerful, that is, they have been getting faster, and their
memories have been getting larger. Nevertheless, new uses have been found for the less-powerful
machines since they have been getting physically smaller and cheaper. Machines equivalent to the 8K
minicomputers that once commonly appeared in small laboratories, and strained a programmer’s skills,
now appear in automobiles and household appliances. In addition, the consumer computer industry
markets a wide range of computers from hand-held and lap-top computers to small office systems. Thus
programming techniques for small computers have not disappeared; they have merely found new applica-
tions. Language designers accustomed to working on large mainframes should not abandon their poor
cousins who must work on small machines, and force them to use archaic languages like BASIC. Furth-
ermore, a large computer often has several small computers attached which handle peripheral functions,
and networks of computers of different sizes are becoming more common. Because of this, a program-
mer may have to deal with many different sizes of computers in the same day, and it would be advanta-
geous if he could do so in the same language.

Paraphrasing the definition of independence, one could say that a programming language that is
independent of machine size has two properties:

1) Programs written for one size of machine are, as far as is practical, able to run on the other machine
sizes.

2) The particular requirements of each machine size are met.

These are not easily achievable objectives. If one looks at existing programming languages, one
sees that perhaps the most significant differences are between those intended for use on small machines
and those intended for use on large machines. PL/I, for instance, is intended for large machines and
would be very difficult to implement with small machines as either the host or the target machine.

* The problem of discovering and scheduling parallelism is NP-complete in the general case.l?
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FORTH, on the other hand, was designed for small machines and could easily run on large machines,
but since it lacks the features that large-machine users have grown accustomed to, it is hardly used there.

There are certain language properties that reduce a language’s suitability for use on small machines:

dynamic memory allocation and garbage collection
a large number of standard types and operators

a large library of standard functions

thorough error checking

a non-regular syntax

Any of these properties alone can be implemented on small machines, but taken together they become
unmanageable.

Just as users of large machines demand a rich language, users of small machines demand special
properties of a language too. The compiler must be small and fast, and the code generated, including the
run-time library, must be compact and fast, therefore the language must permit the generation of simple
efficient programs.

Interpreters are often preferred over compilers when the development machine is small, because an
interpreter can usually be made smaller than a compiler. In addition, an interpreter can provide a com-
plete development environment, in which the user can quickly edit and test his code without the time con-
suming operations of loading and running a separate editor, compiler and linker.

1.b.1. Achieving Machine-Size Independence

The needs of large machines (a rich language) and the needs of small machines (a small, fast language)
are hard to reconcile. One way to meet these requirements is to organize a language as a series of two or
more dialects, growing in complexity to meet the needs of larger machines. The smaller dialects would
be proper subsets of the larger dialects, thus achieving independence with increasing machine size.

Independence of decreasing machine size could be provided by translators from the larger dialects
to the smaller ones. To permit the writing of such translators, the smaller dialect must be as suitable a
target for automatic translation as is the assembler language of the larger machine. Because of the limits
on physical memory and on the speed of small machines, not all programs written in the larger dialect
would be useful on small machines, but for those that are useful, downward independence of machine
size will have been achieved.

The use of dialects suitable for different machine sizes would permit the development of programs
on a large, comfortable host system in a full powered language, followed by translation for a small target
system. Alternatively, the programmer could work directly on the small target machine and pass his
large language through a series of translators until machine code for his target results. In this case, each
one of these translators must be small enough to run on his target machine.

A language organized in versions of increasing complexity would also be easy to implement from
scratch. The smaller versions could be implemented first, which could then be used to bootstrap the
larger more complex versions.

1.c. Peripheral-Device Independence

One can categorize computer systems according to their peripheral devices, and then analyze
programming-language independence on these categories. A programming language should be able to
make use of all the peripherals attached to a machine, otherwise some other programming language will
be needed to fill the gaps.

Traditionally, peripheral independence has been handled by dividing peripheral devices into classes
and providing language constructs to handle those classes. There are usually at least two classes: sequen-
tial devices and direct-access devices.

The ultimate device independence would be achieved by making all peripheral devices look exactly
like memory. Since peripheral devices are simply storers or suppliers of information, why not handle
them all as memory?
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Virtual memory is an example of this concept, and programs running on a virtual-memory system
constantly access secondary storage, even though they contain no I/O instructions. Other examples can
be drawn from the Multics operating system,® which has a unified syntax for accessing variables and
files, and from the concept of permanent variables,!! variables that keep their value between runs of a
program, presumably because those variables are actually in secondary storage.

1.c.1. The Benefits of Device Dependence

Although theoretically all I/O statements could be eliminated from a programming language, they con-
tinue to exist because they usually allow the programmer to handle I/O devices more efficiently than if he
relied totally on automatically generated code. Since I/O operations usually require execution times that
are orders of magnitude greater than those required for computation, efficient handling of I/O is an
important consideration.

Peripheral dependence can have even greater benefits for a language. Consider for instance the
language APL.22 Because it relies fundamentally on a special character set, it requires special peripherals.
The special shapes of the characters and the systematic way that operators are overprinted to generate
new operators, greatly assist the programmer in visualizing the highly complex and rich operators of
APL. Attempts to map the APL character set into ASCII have been largely unsuccessful because they
destroy the connection between the shape and the meaning of the operator. Modcap® is another example
of a language that makes good use of non-ASCII characters.

Modcap’® is another example of a language that makes good use of The character set conundrum
afflicts almost all programming language designers—how to assign the rather limited set of ASCII special
characters to denote a rich set of programming language operators. The matching of some characters and
operators is obvious and easy: “+” for addition, “-” for subtraction, “/” for division, etc. Usually the
first great decision comes when one must chose a character for use as a comment delimiter. The symbols
“gr, “gr “/% ... */”, and “4” have all been used by various languages, simply because they were left
over after all the meaningful operators had been assigned, and not because they represent the concept of a
comment in any way.

One solution to this language design problem would be to select ASCII characters where they were
suitable, and to design new characters when no suitable ASCII character exists. To permit peripheral
independence, select a suitable unique ASCII character sequence to represent the invented character. It
is important to chose substitute character sequences that can be automatically translated to their preferred
representation. By this technique the language can be used on existing peripherals, but should the new
language become popular, special peripherals for use by this language that support its special characters
would become available as they have for APL. Remember that the APL character set was designed at a
time when designing new characters also required the design of new hardware, but now, with laser
printers and bit-mapped displays, new character sets can be designed in firmware or software.

A good illustration of the above technique is given by the use of braces “{ ... }” in Pascal to del-
imit comments. Braces do carry the connotation of a parenthetical remark, and therefore their form
represents their function. Braces, however, are not available in the EBCDIC character set and so they
are replaced by the less convenient sequence “(* ... *)” on peripherals using that character set.

There are other examples of the benefits of peripheral dependence in a programming language.
LOGO,* for example depends on the existence of a turtle-graphics device. This dependence yields a
simpler graphics language than if one tried to handle all possible graphics devices. As another example,
if an associative-storage device were invented, its full benefits could probably not be realized if it were
treated like any other storage device.

The principle conclusions of this section are that a truly device-independent language would treat all
devices as memory, and that a language designer should feel free to invent new characters for his
language if they clarify the concepts.



1.d. Operating-System Independence

Machines can be categorized according to what operating system they use. The operating system in use
can be treated as a machine characteristic because, to a programming language, the operating system
appears to be an extension of the hardware. It supplies the device drivers that make the peripherals look
alike, and in many cases, parts of the operating system are coded in firmware (especially on virtual-
memory machines).

Interaction between a program and the operating system is usually carried out via procedure calls.
In order to allow this interaction, the language designer or implementor must provide for the invocation
of operating-system procedures. This means that he must adopt the standard procedure-invocation con-
ventions for his language’s procedures, or provide a special interface to the standard conventions. If he
fails to do this, his language may meet the first condition of independence—uniform computational ability
across operating systems—but would fail on the second—meeting the special needs of an operating sys-
tem. A user of such a language would be handicapped in his control over the file system and over other
tasks, and his use of system information, such as user identification and execution times. This handicap
would relegate the language to second-class status.

Once a programmer uses system-specific procedures, however, his code will be non-portable. Thus
a portable language should include the definition of a set of standard procedures for the common opera-
tions that require operating system intervention. It is impossible to foresee all the facilities that operating
systems could provide, but the more that the language has built in, the less likely it is that a programmer
will have to use system-specific procedures. If a language, however, has all possible operating system
calls built in, then the effect would be the same as the technique of writing an entire portable operating
system.

2. Dimension 2: Problems

Programming languages are used to solve problems. The greater the problem independence of a program-
ming language, the larger the number of different types of problems it can be used to solve. To help in
the analysis of independence in this dimension, problems are categorized here according to four different
properties:

a) discipline or application

b) problem context

¢) system mode

d) problem-solving methods required

2.a. Discipline or Application Independence

There is a long tradition of application-specific programming languages. For example, COBOL is
intended for business applications, FORTRAN for scientific applications, C for systems programming,
and LISP is considered to be an AI language. Because of this tradition, there is a common belief that
certain applications have peculiar needs that cannot be met by a common language. If, however, one
examines the capabilities of these various languages one will see that there is a great deal of similarity in
the data types and control structures offered*. Furthermore, if one examines a language designed for a
particular application, one will find that any unique feature that it has would sometimes be useful to pro-
grammers in other applications, and any feature it is missing would sometimes be useful in the language’s
intended application. Indeed, since many programmers work in more than one discipline, and a single
program itself might span more than one discipline, it seems foolish to design a language intended only
for a single discipline.

* Even in LISP, which is a functional language, it is common to use functions that mimic the control structures of algo-
rithmic languages.



~8_

Why then are there application-specific languages? The reason seems to be that it is easier to
design a language that handles only the most common needs of a particular discipline, and handles those
only in their most common form, than it is to design a programming language that meets the needs of all
disciplines in all forms.

Two approaches have been taken in the past toward designing an application-independent language.
The first is the PL/T approach. This approach is to include, nearly unchanged, most of the features of two
or more application-specific programming languages. In the case of PL/I it was the merging of COBOL
and FORTRAN, and the inclusion of features from other languages such as ALGOL 60. This approach
leads to a very complex language with considerable redundancy, and a large expensive compiler. A pro-
grammer working exclusively in a particular discipline will commonly use only those features that he
needs for his particular application, but has the option of using other features should the need arise. The
problem with such a language is in designing it so that the features taken from different languages do not
collide, and in the enormous cost of implementing, maintaining and using such a compiler.

The second approach is the one taken by the designers of ALGOL-68,51 Ada! and other languages.
That approach is to try to generalize control structures and data types so that they meet the needs of all
disciplines, but are assembled in a uniform and orthogonal way. The approach generally produces a
simpler language with a smaller faster compiler than the previous approach. One problem with this
approach is the extra effort needed to discover the most general form of a concept so that it can provide
the functionality of several simple features. Another problem is that a programmer will not always easily
see how a generalized concept can be applied to his particular problem.

Looking specifically at Ada one can see the current state of the art in the second approach. To
meet the needs of the many different applications, it uses the following strategies.

e All control is handled by a small set of well recognized control structures.

o The set of predefined data types is small, but a well recognized set of type constructors permits the
creation of new types as needed.

e It permits the overloading of existing operators to handle the new data types in a natural way.

e Procedures intended for a particular application alone are grouped in packages which can be
included or excluded at will. This grouping avoids burdening other applications with any added
complexity.

The last point in this strategy is the most demanding. If procedures are to supply the special needs
of all disciplines, then the form of procedure invocation must be very flexible and powerful. One should
be able to pass procedural parameters, a variable number of parameters, arrays of variable size, and
parameters of variable type. One should also be able to test the characteristics of the actual parameters
passed. Ada meets most of these requirements, and the requirements that Ada does not meet are the
subject of on-going study, including such things as parameter-type polymorphism,2’ and execution-time
manipulation of data types.14

Ada has been attacked for being too large a language,32 but this size is not directly the result of its
attempts to be application-independent. Has the Ada approach lead to a language that is smaller than
PL/I? 1t is actually not easy to compare the size of two languages accurately. One cannot compare the
sizes of the language manuals, since manual size varies considerably with writing style, accuracy, and
completeness. Nor can one compare the sizes of the compilers, as these vary with programming style,
efficiency and quality of generated code. Not even the size of the grammars can be compared, since
grammars are often written in a redundant fashion to simplify compilation. Furthermore, none of these
measures of size consider the extra functionality that one language may provide over another. As a result
this question remains open to debate, but it seems that the Ada approach should lead to programs that
require fewer language constructs than equivalent PL/I programs.
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2.b. Problem-Context Independence (Orthogonality)

When one writes a program to solve a problem one must usually break that problem down into subprob-
lems or steps. Sometimes the subproblems have a great deal in common, but appear in different contexts.
One may, for instance, wish to evaluate an arithmetic expression in an assignment statement, a loop con-
trol statement, or an output statement. The classification of the problem domain treated in this section
divides subproblems according to the context in which they appear. If a programming language has
independence of problem context then it provides the same facilities for solving subproblems regardless of
their context, and it meets the needs of the various contexts. In the literature this language property is
commonly called orthogonality—the ability to apply language constructs independent of each other.

Examples of lack of orthogonality are easy to find. ANS Pascal,35 for instance, has a rich set of
expression operators, but in constant expressions only the negation operator is allowed. FORTRAN, for
another example, has different looping constructs for program flow (DO loops) and I/O statements
(implied DO loops). On the other hand, orthogonality was one of the principle design goals of ALGOL-
68, and that language has a high degree of orthogonality.

The merits and disadvantages of orthogonality are covered extensively in texts on programming
languages (see for instance Ghezzi and Jazayeri?! ). The principle advantages are that it simplifies the
description of the language syntax, makes learning the language easier, and provides great power in all
contexts. The disadvantages are that the meaning of particular language constructs applied in some con-
texts can be hard to establish, and that the implementor must handle many strange combinations of con-
structs.

2.c. System-Mode Independence

Another way that one can classify problems is according to the system mode that they run in. Most
operating systems have more than one of the following modes.

1) operating-system command mode

2) text-editing mode

3) application mode (user-written programs)

4) data-entry mode

5) preprocessor mode*

6) text-formatting mode

7) any other system utility that accepts a command language.

The trend in operating systems has been to give each of these modes more and more algorithmic
control. Thus command languages, editor macro languages, preprocessor languages, text formatters, and
the other modes have been gradually endowed with more and more data types and control structures.
The data types, operators, and control structures usually come from a standard set including:

a) character strings and operators
b) numeric types and operators
¢) conditional execution

d) case selection

e) looping

f) procedure invocationt

g) parallel execution

h) backtracking.

Although the algorithmic control structures of the various system modes have a great deal in com-
mon, they often vary in particulars of syntax and semantics. If a programmer is to make full use of his
operating system he will be forced to learn five or six programming languages, one for each mode, and to

* Preprocessor mode is included in this list for completeness, but is dealt with in more detail in the section on time in-
dependence under the time scale program processing.

+ Many of the features in this list as well as esoteric features like string pattern matching, associative arrays, and
dynamic memory allocation, can be implemented via procedure invocation.
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switch repeatedly from one language to another in the same session.

Can a single mode-independent programming language be designed that will give all these modes
the same computational power, and meet the special needs of the different modes? Some existing
languages have been reasonably successful in unifying some of the different modes. These include
BASIC, SMALLTALK,23 INTERLISP,%-39 and work in progress by Heering and Klint.2%

2.c.1. The Properties of a Mode-Independent Language

What properties should a system-mode-independent language have? No matter what mode a program is
intended for, the arguments in favour of structuredness, safety, readability, etc., apply for all programs
that are stored in permanent files. The language should be interpretable, since most system modes inter-
pret their code and give immediate results. The language should also be compilable to provide efficiency
in the application mode. A compilable language would also benefit other modes, since popular editor
macros and command-language procedures could then be compiled into efficient operations without hav-
ing to be rewritten in another language.

The syntax and semantics of a mode-independent language should be identical in all the modes,
since a language that changes subtly in meaning in various modes may be worse than totally different
languages. One way to achieve this uniformity would be to use a single system-resident, re-entrant
parser-interpreter, and have all of the modes invoke that parser for command input. Each active mode
(modes may be nested) would then have its own separate symbol and value tables, but would use the
same parser.

The standard control structures presented above should be adequate for all modes; the main differ-
ences between modes appear in the commands available. Commands can be thought of as procedure calls
in a standard programming language and can be implemented as such. To meet the needs of procedure
calls in the various modes the language should have a very flexible procedure call statement. Some of the
properties needed in a procedure call are:

a) positional parameters (with a variable parameter count)
b) keyword parameters (with default values if omitted)
¢) option parameters (their presence selects an option).

If a system were designed in this way—a central parser with a special set of procedures for each
mode—there would be more benefits than just a uniform programming language. The whole operating
system would be smaller, since each mode would not need to contain its own parser. Although the sys-
tem would be harder to design, it would require less time and effort to code. A language-specific editor
would become a fruitful project since it would be useful for many different types of files. Such an editor
could do syntax checking during program entry, provide indentation to match program structure, and do
semantic pattern matching, rather than just string pattern matching. (See for instance Teitelbaum and
Reps.48 ) Finally, improvements in efficiency of the central parser-translator, or in the efficiency of the
code it produced, would benefit all modes.

There is at least one serious incompatibility between the desired properties of languages for the dif-
ferent modes. It is ease of entry. Some modes, such as command mode and editor mode require very
short command names (procedure names) and a very concise syntax so that a user can easily enter those
commands interactively. Most algorithmic languages, on the other hand, use verbose constructs and strict
type-declaration rules to provide a measure of error resistance. The modes that require a concise
language would benefit from the error resistance of a verbose language once an algorithm was entered
into a permanent file, but the problem of quick entry of interactive commands remains.

The problem could be handled by an input filter that translates a concise input form into an error-
resistant permanent form. The conversions it performs could include: keyword-abbreviation expansion,
automatic default declaration of variables (with interactive user approval), and automatic quoting of
string constants.
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2.d. Independence of Problem-Solving Methods

Many standard methods for the solution of specific types of problems have gained widespread acceptance.
They are popular either for their simplicity, efficiency, reliability or clarity. In order for a programming
language to be problem-independent, it should permit the use of those methods. The following is a cur-
sory list of the method-specific features generally expected in a high-level language:

arithmetic operations

real arithmetic

complex arithmetic
trigonometric and mathematical functions
plotting and graphics
recursion

linear arrays
multidimensional arrays
conformant arrays

records

pointers

dynamic memory allocation
linked lists

stacks

queues

trees

graphs

hash tables

elapsed run-time measurement
real-time control

parallel processing.

A methods-independent language should provide for the convenient use of these methods. Some
languages have some of these methods built into their definition. LISP, for instance, has built in list
structures, and SNOBOL has built in hash tables. The more common approach, however, is to provide
abstract language features that can be used to implement these methods. To use this approach a language
requires flexible type constructors and flexible procedure invocation. By providing the language features
at a more abstract level, a language will not be tied to supporting an obsolete problem-solving method and
can adapt to new ones.

2.d.1. Traditional Mathematical Problem-Solving Methods

The problem-solving methods listed above are the ones that are commonly used in programming projects.
There are, however, traditional problem-solving methods that are commonly used in mathematics, but
less commonly by programs. These methods are the ones of algebra and calculus in which expressions
are manipulated rather than numeric quantities. When a programming language supports these methods
they are called symbolic computation.

There are languages such as MACSYMAZ? and Maple? that are designed specifically for symbolic
computation. These languages are oriented toward a specific problem-solving method, and although they
can be used as general purpose languages they are not the optimal choice for most applications. It is pos-
sible to provide symbolic manipulation in a general-purpose language by the use of a package of
symbolic-manipulation procedures, but a language preprocessor such as ALTRAN?S for FORTRAN or
FORMACS8 for PL/I is usually needed to make such a package convenient to use. In a language that
supports abstract data types and operator overloading, such as Ada, symbolic expressions and their mani-
pulations could be described in a notation that closely resembles that of MACSYMA or Maple, but of
course an amount of work, equivalent to that expended in developing the expression-manipulation
libraries of those languages, would still be required.



_12 _

In the physical sciences it is a common practice to associate units of measure with variables and
constants, and to carry these units along in computations. Without units of measure the values in a calcu-
lation are meaningless, since a distance of “5” could mean five microns or five light years. In addition,
the carrying of units during calculations helps to verify the correctness of the manipulations being per-
formed. In most programs, the units of the quantities being manipulated are implied, not explicit, and
errors in units are a significant source of programming errors. Some work has been done by House,3*
Gehani,?® and Minner®® to analyze the possibility of including units of measure in programming
languages. Such a feature is called dimensional analysis. Dimensional analysis can be supported at run
time by the definition of a suitable data structure, and of a package of procedures for performing calcula-
tions with values and their units. The ability to overload operators assists in implementing dimensional
analysis so that it can be used in a natural way. Indications are, however, that compile time checking of
units of measure is not feasible without extensions to a language specifically for this purpose.40

2.d.2. Other Method-Dependent Languages

There is a problem-solving method called functional programming that can significantly affect the design
of a programming language. LISP and FP® are the languages best known for this property. A purely
functional programming language is most easily recognized by what it does not have, rather than by what
it has. It has no variables nor side effects. Despite the considerable attention the functional program-
ming languages have attracted, it is not necessary to have a language designed specifically for functional
programming. A programmer can easily use a functional style of programming in any language that pro-
vides for the definition and recursive use of functional procedures, and he can easily be provided with an
automatic program checker that locates violations of the rules of functional programming.

Another problem-solving method that has attracted a lot of attention is declarative programming.
Examples of languages designed with this method in mind are PROLOG!0 and Lucid.52,53 Tt is the goal
of some current general-purpose language design projects to be able to implement this problem-solving
method too, using a suitable data structure, and a package of procedures, but no well-known examples of
such packages exist as yet. Extensible distfix operators3¢ may be needed to provide constructs equivalent
to those of Prolog and LUCID in a natural way.

The conclusion of this section is that method-specific programming languages may eventually be
replaced by general-purpose languages. With suitably flexible data-type constructors, operator overload-
ing, and the preparation of an appropriate package of procedures, a general-purpose programming
language should be able to handle a broad range of problem-solving methods in a natural way.

3. Dimension 3: Humans
In studying the human dimension, four ways of classifying human computer users are presented:

a) user qualifications

b) natural language used
¢) users and implementors
d) implementors alone.

In all these classifications a common problem exists: our incomplete knowledge of human psychology and
human behavior. It is almost impossible to make a general statement about human preferences or
behavior, and therefore most statements must be highly qualified. It is important, however, not to
neglect humans when designing programming languages, since the principal function of a programming
language is to permit communication between humans and computers.
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3.a. User Qualifications
Computer users can be classified according to their qualifications or competency.

Four classifications of user competency are discussed here:

1) students (and educators)

2) casual or occasional programmers
3) professionals

4) experts.

One interesting property of this classification scheme is that the membership of each group changes
continually. At one time all programmers begin as students, and then gradually progress to the other
groups. Even an expert programmer may become a student again should he decide to learn a new
language that is radically different from those he knows. Furthermore, the group members are different
for different languages, since an expert in one language may be a casual programmer in another, and just
a student of yet another language.

If a programming language is designed solely for one of these groups, then it assumes the existence
of a more advanced language to which a programmer can graduate as his expertise improves, or of a
more primitive language with which he can be introduced to computing. In the case where a language
excludes the needs of students, the designers should name which language or languages are suitable step-
ping stones to his language. Nevertheless, de Remer and Kron!3 have given arguments for targeting a
language at a specific group, and there are many examples of languages targetted specifically at students
(LOGO,24 BASIC, etc.) and of languages targetted at experts (C, ALGOL-68, etc.)

3.a.1. Achieving User-Qualification Independence

Let us assume that a language independent of user qualifications is desirable and explore how it could be
attained.

The first criterion for independence—providing the same level of computational power—is easily
achieved by giving all of the above groups access to the same translators, compilers, and program prepara-
tion tools. So let us turn our attention to enumerating the special needs of each group.

All of the groups need good documentation but on different levels. Students need introductory texts
and the other groups need reference manuals. The professional and expert programmers may also need
in-depth reference manuals that cover every possible aspect of the language and of the implementation of
the language that they are using. Introductory texts and reference manuals can be written for any pro-
gramming language, but certain properties of the language can make the job easier. To facilitate the writ-
ing of introductory texts the language should have a small subset that is adequate for short introductory
programs. The text should not have to excuse itself with such phrases as, “Never mind the such-and-such
statement; it will be explained later.” When a tremendously powerful construct leads to confusing pro-
grams for simple problems, then a redundant simple construct should also be provided. In FORTRAN
for instance, free-format I/O greatly simplifies the job of writing simple programs.

For a programmer to develop a good coding standard on his own takes years of experience. As a
result, for the benefit of novice and occasional programmers, a coding standard should be part of the
language description. This would not only reduce errors, but also make it easier to read code from dif-
ferent shops.

The reference manuals as well as introductory texts would be simpler and shorter if the language is
uniform and orthogonal. It also helps if the language is small, but it takes a great deal of effort to design
a language that is both small and meets all the needs of expert programmers.

Many of the needs of these four groups are actually requirements placed on the compiler implemen-
tor, rather than on the language designer. These requirements include such things as good run-time error
checking, clear error messages, fast compilation, and efficient generated code.

Efficient generated code is of greatest importance to professional programmers. It can determine
whether or not a project is feasible (in time or cost) and can determine the market share of his product.
It is easy to write a slow, poor compiler for any language, but sometimes the design of a language can
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prevent the writing of efficient, good compilers.

Beginners and occasional programmers who often write run-once programs are more concerned
with the time taken to write and debug a program than they are with the efficiency of the final code pro-
duced. Because of this, a language designer must be careful to balance his design and reach some
optimal program-preparation-time versus run-time tradeoff. Often the nature of the tradeoff is hard to
determine. A strongly typed language, for instance, will usually require more coding time, since the pro-
grammer will spend extra time preparing declarations, but occasionally will save long debugging periods
that greatly exceed the coding time. No precise way exists of predicting the exact benefit of such features
and thus the language designer must often make his decision based on incomplete information.

3.b. Independence of Natural Language

The elements of the human domain can also be classified according to the natural language that they
speak. So far, the natural language of the programmer has largely been ignored by language designers,
and almost all existing programming languages use the Roman alphabet (without the accents used by the
romance languages) and English keywords. This oversight is largely due to the fact that most early
research in computer science took place in English in Great Britain and the United States. However, it is
inevitable that as computer power reaches a larger and larger proportion of the earths population, pro-
gramming languages will have to become more accessible to non-English speakers. Also, there are many
multinational companies, such as IBM, ITT, and Honeywell-Bull, that have programming shops in dif-
ferent countries. Sharing programs and documentation can be a problem for them.

Applying the definition of independence to this classification of the human domain, one can con-
clude that a language does not provide the same power to different natural language groups unless it
allows the members of each group to use their own language for comments and for mnemonic symbols,
such as keywords and variables. They also require introductory texts and reference manuals in their own
language. By allowing the members of the different groups to use their own language for programming,
one would also be satisfying the second condition for independence, meeting the special needs of each
group. Currently, the problem of providing computing facilities to members of other linguistic groups is
achieved by forcing them to learn English, which is in effect moving all computer users into the same
linguistic group.

Many contend that the keywords, syntax and semantics of a programming language take on a mean-
ing of their own that is distinct from the natural language of their origin, and hence the keywords chosen
are irrelevant. As a result, they justify the invention of new keywords such as esac and pragma, (see
Eastman!5 for a discussion of this topic.) Few, however, would argue that the use of mnemonic key-
words is very helpful, at least in the learning stages. Furthermore, for some language groups, such as the
Japanese, the Russians and the Arabs, the difficulty of learning keywords in a foreign language can be
compounded by the problem of learning them in a foreign alphabet. Conversely some non-English pro-
grammers say that by using keywords in English and variables in their own language, they have a con-
venient mechanism for distinguishing the two that is almost as effective as using boldface keywords. The
distinction would be even more apparent if the keywords were in a different alphabet.

Is it possible to design a programming language that is independent of natural languages? The pro-
gramming language that comes closest to this goal is APL. It has no keywords and its operators are
invented symbols independent of any natural language or alphabet. APL does depend on the Arabic
numerals, but these are now almost universal.

It would not be difficult to adapt APL so that any alphabet could be used for variables. With the
knowledge that all alphabetic strings are variable names, any APL programmer could read and under-
stand any such program regardless of his linguistic group. The meaning of comments and the mnemonic
worth of variable names would of course be lost, but the algorithm expressed would not be ambiguous.

The same level of independence of natural language achieved by APL could be achieved for any
programming language by the use of automatic translators. The alphabet and keywords of a Japanese
compiler, for instance, could be automatically translated into a form acceptable by an English compiler.
Programs could be translated so that the algorithms were 100% identical, but of course, as with APL, the
mnemonic worth of identifiers and the meaning of comments would be changed or lost without the
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intervention of a knowledgeable human translator. As a result, the programming language would be
independent of natural language for communicating algorithms between a human and a computer, but not
for communicating algorithms between two humans.

3.c. Users and Implementors

Humans can be divided into two important classes: programming-language users and programming-
language implementors (these groups are not necessarily disjoint). The users want a language that is
easily usable, and the implementors want a language that is easily implementable. When a language
designer gives his language a feature or property, he should determine whether the purpose of that feature
is to make the language easier to use or easier to implement. In every case he should determine if the
cost or benefit to the user balances the benefit or cost to the implementor.

There are many examples of clearly implementor-oriented features in existing languages.

e Many versions of BASIC require that identifiers be no longer than two characters and FORTRAN
66 has a limit of six characters.

e Pascal requires that the sizes of all array types be compile-time constants, and does not provide a
convenient method of initializing arrays.

e The postfix notation of FORTH simplifies the interpreter but is widely recognized as difficult to
use.

o The single character operators of TECO provide substantial computational power, but result in
unreadable code.

e LISP, from the very start, was designed to be implementor-oriented.4? The obvious examples of this
are the choice of the function names CAR and CDR, and the full parenthesization of expressions
required by prefix notation. There are many more good examples, but they are also more contr-
oversial.

It is also fairly easy to list user-oriented features.

e The requirement in Pascal and other languages that the type of all variables be declared before use
is designed to reduce user errors. This is an example of a feature that is a restriction on the
language, but is, all the same, user-oriented.

e Automatic garbage collection makes programming considerably easier, but can be difficult to imple-
ment. This is one feature of LISP that is definitely user-oriented, and a feature notably missing
from some versions of Pascal.33

The remaining features in this list are rarely seen in programming languages.

e When writing large numbers, digit separators, such as commas or spaces, help humans read the
number accurately. They would be helpful in source code, input data, and output data, but no com-
mon language permits digit separators in all three cases.

e Programmers use indentation to identify the structure in their programs. Most compilers disregard
this indentation, and recognize only keyword and punctuation delimiters, because indentation is
hard to parse. (A parsing strategy for indentation has been proposed by Leinbaugh. )38

e Statement separators, such as semicolons, simplify the implementor’s job, but users easily forget
them, which can result in hard-to-find bugs. An end-of-line, in conjunction with explicit statement
continuation marks, would be a more user-oriented statement terminator, but harder to parse. To
eliminate all ambiguity, explicit statement continuation marks should be placed both at the end of
the continued line, and at the beginning of its continuation. This method has been proposed for the
next FORTRAN standard.3

e Redundancy is a common error prevention strategy in everyday life, but it seems that language
designers try to find the minimum syntax necessary to describe an algorithm.

Implementor-oriented features are not in themselves bad, nor are user-oriented features always
good. Adding implementor-oriented features to a language or leaving out some user-oriented features,
can make the difference between a reasonably usable language whose compiler is delivered on time at a
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reasonable cost, and a highly usable language that goes over budget or is never delivered.

3.c.1. Users as Implementors

A program is both a data manipulator and data to be manipulated. It is data not only for compilers and
interpreters, but also for text editors, pretty printers, cross-reference generators, and all sorts of other
minor program manipulators. It is also output data from program generators, program formatters and
program translators (such as the language-version translators proposed in this paper). If one considers
anyone who has worked on one of these types of program processors to be an implementor, then the class
implementor is very large.

Few people realize how often they write program-manipulation routines. If, for instance, a user
types editor commands that rename every occurrence of a particular variable in a program, then he has
written a program manipulator. Even in the simpler case where one needs to find all print statements in
a program using editor commands, one has written part of a program recognizer. Such manipulators
need to be composed frequently and quickly, and therefore present an argument for an extremely simple
and redundant syntax in a language. If a grammar for a language were extremely simple then user-
written program manipulators would be even more common.

There are, however, many examples of what can happen when a programming language is made
too simple. Many text-editor macro languages and text-formatting languages use single-letter or double-
letter keywords and variables, in order that they can be interpreted quickly and easily. As a result, they
are easy languages to manipulate. But often, also in order to keep them simple, they are not given
enough computational power to be generally useful, or they are too cryptic to represent an algorithm
clearly.

3.d. Implementor Independence

In this section, instead of considering the entire human domain, an important subset of humans—the
implementors—will be treated alone. Because implementors can have a significant effect on the language
accepted by their compiler*, such a study can be very rewarding.

Rephrasing the definition of independence given in section zero, one could say that a programming
language is implementor-independent (or implementation-independent) if:

1) Any program accepted by any implementation is accepted by all implementations.
2) The language meets the special needs of the customers of any particular implementor.

The customary method of meeting the first condition of implementor independence is by providing
formal specifications for the syntax and semantics of the programming language, and to prepare a valida-
tion set of programs to test the final products of implementors. The formal specification of syntax has
reached quite an advanced state (see for instance Harrison?® or Aho and Ullman’ ). Techniques for for-
mal specification of semantics are discussed by Marcotty et al.,*! Hoare,3! Tennent,0 and Wegner.55

The second condition of independence, meeting the special needs of the implementors customers,
may seem to be at odds with the first condition, but in fact, most of the special needs of a customer can
be met without changing the source language. These needs are such things as:

1) a fast compiler,

2) high quality code,

3) code for a specific machine,
4) extensive error checking, and
5) clear error messages.

There are times, however, when a customer may truly need a slight or major modification to the
language. This is due either to the fact that a language designer cannot foresee every possible use that
will be made of his language, or to the fact that he may have made inappropriate tradeoff decisions in the
design.

* For simplicity, here as elsewhere the word compiler is used to represent compilers, interpreters, and translators.
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There is a long tradition in computer science of implementors making enhancements to, or placing
restrictions on, the languages they are implementing, and one can expect this tradition to continue. In
fact, the existence of implementor modifications to programming languages has had a beneficial effect on
many languages. Most of the improvements of FORTRAN-77 over FORTRAN-66 were inspired by
implementor modifications, and had already been tried and tested. Only a short-sighted language
designer would claim that his language was perfect and complete for all time. Allowing implementor
modification would give a more realistic designer a larger source of ideas for his next release of the
language.

The chaos that could result from allowing implementor modifications to a language can be minim-
ized by placing restrictions on the type of modifications that can be made, and the way that they are
made. Such restrictions could be that:

1) Additions to a language should follow the spirit of the original language, if the language has an easily
recognizable or documented philosophy.

2) Additions to a language should be automatically recognizable as extensions to the language by com-
pilers of the unenhanced language.

3) Deletions from a language should be automatically recognizable by a compiler for the modified
language.

4) If possible, implementors of a modified language should provide automatic translators that can
translate the new language into the standard language and vice-versa.

4. Dimension 4: Time
The time dimension is considered here in three different time scales:

a) program processing,
b) project development, and
¢) language evolution.

Although one would expect the time dimension to be a continuous domain, will be seen that this dimen-
sion also, in all three time scales, is discrete.

4.a. The Program-Processing Time Scale

There are commonly as many as five phases of computation during the processing of a program. They
are:

1) preprocess
2) compile
3) link

4) load

5) execute

As processing proceeds through these five phases new information becomes known and different types of
computation need to be done. Let us examine the kind of information and computation found in each
phase.

In the preprocessor phase the information supplied concerns properties of the program source, and
the algorithms are mainly ones that will modify the parse of the program during the compile phase. In
the compile phase, literal constants and the programmer’s run-time algorithm become known. Tradition-
ally, the only compile time computations that a user can control are expressions involving constants. In
the link phase and load phase new information becomes available about relative and absolute addresses,
and about the external and system procedures to be employed in the execution phase. Traditionally the
user has little or no control over computations in these two phases, all computations being specified by the
compiler, the linker or the loader. In the execution phase, all remaining information about the problem
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to be solved becomes known in the form of the input data.

In order for a programming language to be independent of these five phases, it would have to sup-
ply the same computational power to all five phases and also meet their special needs. Let us explore
what has been done and what could be done for each of these five phases to achieve independence.

In most programming systems, when a preprocessor pass is available it is in a language significantly
different from the other phases. The preprocessor language is most commonly a purely string handling
language, and usually this suffices. Nevertheless, instances arise when a full-featured preprocessor
language, that includes numeric calculation and I/O, would be valuable. PL/I provides such a system.
Actually PL/T’s preprocessor language is not identical to its execution-phase language, there being a few
additions and a few omissions, but the languages are very similar.

A programmer is seldom given very much control over compile-time computation. A few
languages provide compile-time variables (symbolic constants), but the use of these variables is usually
restricted to a single assignment from a compile-time expression comprised only of constants and other
compile-time variables.

If a language provides full algorithmic control at compile time, then a preprocessor phase becomes
largely unnecessary. Compile-time conditional control structures can be used to replace preprocessor con-
ditionals. That is to say, if the conditional expression of an if-then-else construct can be evaluated at
compile time, and the inaccessible code eliminated, the effect would be the same as conditional compila-
tion provided by a preprocessor phase. Similarly, a loop whose index is a compile-time variable can be
used to unravel a loop at compile time. Compile-time input and output should also be provided so that a
user can interactively control the compilation options or be informed of the progress of the compilation.

Any execution-phase procedure provided by the programmer can be executed at compile time pro-
vided that that procedure uses only local symbols or compile-time global symbols, and does no execution-
phase I/O. In this fundamental way the compile phase differs from the preprocessor phase, since the
execution-phase algorithm is not fully specified until the end of the preprocessor phase.

The benefits of doing calculations at compile time rather than at execution time can be substantial.
All calculations not involving execution-phase I/O can be performed once at compilation time, thereby
reducing the space and time required by the execution phase. This reduction would chiefly benefit pro-
duction programs that are to be run repeatedly. Compile time I/O can be used to customize a program
on each compilation, or report version information during compilation.

The link and load phases have been largely ignored by programming language designers, except for
some assemblers, and perhaps rightly so. Although it would be beneficial in some critical system applica-
tions for a programmer to have control over computations done in the link or load phases, in most situa-
tion this would add needless complexity and operating-system dependence to a language. It would there-
fore be preferable to allow the compiler to determine what calculations will be done at link time and at
load time.

The trend has been toward greater independence in the program-processing time scale. Features
that once were available only on one phase are being spread to other phases. An example of such a
feature is memory allocation, which in early languages such as FORTRAN was done exclusively at com-
pile time, but is now commonly available at execution time also. Another example is type checking,
which is being investigated for the possibility of performing it in any phase (flexible type checking is dis-
cussed by Heering and Klint.2° ) No type of computation should be considered inherently specific to a
particular processing phase.

The conclusion of this section is that if a programming language provides independence of the com-
pile phase and execution phase, then the needs of the elements of this classification will be reasonably
well met.
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4.b. The Project-Development Time Scale
A programming project advances through several stages of development:

1) design

2) coding

3) prove correctness

4) program entry

5) testing and debugging

6) production use

7) maintenance and enhancement

Supplying all of these phases with the same computational power is easy. All one need do is ensure
that the same programming language is used for all the phases. This is almost always the case since very
few programming projects change languages in mid-course. Meeting the special needs of all of these
phases is more difficult. Let us look at each phase individually.

The special needs of the design phase depend on the design methodology used, and in some design
methodologies the target language is not considered. It seems, however, that a hierarchical language—
one in which low-level processes can be grouped into a higher-level construct—is universally valuable.
This property is usually provided by procedures.

During the coding phase, one wishes to minimize programming effort. Halstead?® and later
workers?0 have developed metrics for measuring the complexity of programs and have used these metrics
to compare the language level of various programming languages. Language level is a measure of the
complexity of code needed to express an algorithm using particular language, and is inversely proportional
to programming effort in that language.

There are certain language constructs that inhibit proof of correctness, and others that aid it.
(Methods for proving correctness are summarized by Elspas et al.16 ) But, since proving correctness is
still not a popular activity, one could simply say that if one wishes to prove correctness, one should make
use of only the subset of the language that is amenable to such proofs.

It should be mentioned at this point that a proof-of-correctness phase will not always eliminate the
debugging phase. Many bugs arise from human error in the use of a programming language, such as
incorrect application of operator precedence rules, mistaken use of operators (e.g. using an assignment
instead of an equality test in C), or missing statement terminators (semicolons in Pascal). These miscon-
ceptions will persist through the proof of correctness, hence the programmer will prove his concept
correct, not his program. There are also theoretical limits on proofs of correctness.

The program entry phase benefits, as does the coding phase, from a concise language. Neverthe-
less, a language that is so concise that it is cryptic can impede program entry. If the language makes
extensive use of characters that are distinguishable only by subtle differences in typography such as “1”,
“17, 17, “]”, and “!”, then it can be difficult for anyone except the original coder to type the program
correctly.

In the testing and debugging phase it is desirable to have a great deal of feedback from the program
during execution. This feedback can be obtained by using an interactive interpreter. When an interactive
interpreter is not available, a programmer must resort to a symbolic debugger or hand coded debugging
statements. An interpreter that incorporates a source editor, like those common in BASIC and APL
interpreters, has the advantage that it can provide a shorter revision cycle (test, diagnose, correct, retest)
than a symbolic debugger.

Many interpreters require that if any part of a program is being interpreted, then all parts must be
interpreted. It would sometimes be advantageous, however, to invoke compiled and tested procedures
from libraries during the interpretive debugging of the calling module. Similarly, it is sometimes desir-
able to debug a procedure interpretively, which was invoked by a compiled module. As a result, an inter-
preter should be able to dynamically load and execute compiled procedures, and a compiler should be
able to invoke the interpreter to run source code.
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The debugging phase, the production-use phase, and the maintenance phase are the ones that benefit
from error resistance in a programming language. Gannon and Horning,!8 and Ripley and Druseikis4®
have analyzed the error resistance of some language constructs, and present a survey of papers on error
resistance. One of the goals of structured programming techniques!2-39 is to increase the error resistance
of programs.

For the production-use phase one would desire a language that produces compact and efficient
machine code. The cost of hardware goes up significantly with its speed and memory size, so a small fast
program means reduced costs. Furthermore, in the commercial-programming world, the size and speed
of a program product can directly affect its market share. Speed during production use is where a com-
piler is superior to an interpreter.

Not all of these phases have the same importance, and in different programming shops the relative
importances vary. In research environments, the production-use phase is often non-existent and emphasis
is placed on the design, coding and debugging phases, which may be mingled rather than distinct. Thus,
a research shop would prefer a language with a good interactive development environment such as LISP*?
or APL. In a commercial programming shop, the performance of their end product in the production-use
and maintenance phases are the most critical. Hence, such shops would tend to use a language such as
FORTRAN, COBOL, or C, that produces efficient, maintainable programs. When the production use
phase outways all the others, a shop may choose to program in assembler. (Sometimes, of course, the
choice of languages is based on other factors, or has no rational explanation.)

The conclusion of this section is that the characteristic of a language that contributes most to
independence in this time scale is that the language be both interpretable and compilable, that the inter-
preter be interactive, and that interpreted code should be able to invoke compiled code and vice versa.

4.c. The Language-Evolution Time Scale

Computer science has changed radically in its brief history, and programming languages have changed
with it. Since it is a young science, one can expect it to keep changing. If a programming language is to
remain applicable in the future then one must allow it to change, but should provide guidelines for
change. Two general approaches have been taken in providing guidelines for change: the FORTRAN
approach and the ALGOL approach.

The FORTRAN approach has been that when the language is changed all previous programs
should still run correctly without modification. This guideline has been fairly well followed right up to
and including FORTRAN 77, except for two small changes to the semantics of FORMAT statements and
DO loops.*

The ALGOL approach has been that when an ALGOL-like language is changed it is given a new
name, and all programs in the old language are discarded or manually translated to the new language.

Clearly, neither of these two approaches is satisfactory. The FORTRAN approach is too restrictive
and leads to a patched up language from which obsolete features are never removed. The ALGOL
approach can also be rejected as too costly. A massive investment in software cannot be easily discarded.

The most common manifestation of the problems caused by time-dependent programming
languages is when a programming shop receives a new, enhanced compiler from a manufacturer only to
find that it will not compile programs written for the old compiler. The problem is so aggravating that
Grace Murray Hopper33 has proposed the death penalty for language implementors who fail to supply
program updaters with new compilers. Perhaps this penalty is too extreme.

The time independence of FORTRAN and some of the design freedom of ALGOL-like languages
could be achieved by allowing extensive modifications to the language but requiring that all existing pro-
grams can be machine translated into the new language version. If the old programs cannot be fully
machine translated, then obsolete language features should be at least machine recognizable as such. If
neither of these conditions can be met then the language should be given a new name. Basically, no
language enhancement project would be complete until an automatic program updater was also written.

* This approach is expected to be abandoned in the next FORTRAN standard.?
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By using translators, backward time independence could also be achieved. It could be made a
requirement that all language enhancements be accompanied by an automatic translator for converting
programs in the enhanced language back into the older dialect. It should be possible to write such transla-
tors, provided that the old language was a suitable target language for automatic translation, although effi-
ciency and size of the program may suffer. With such translators available, programs developed in the
enhanced language could go into wide circulation even before compilers for it had been developed on all
machines. Furthermore, obsolete machines for which system software development had ceased could still
benefit from new software.

The subsection on implementor independence (3.d.) above, contained a discussion of the benefits of
allowing implementors to change a language. It should be noted, however, that the translators proposed
in that section to maintain compatibility between implementors are different from the ones proposed here
to maintain compatibility between language versions. The relationship of these two types of translators
would resemble the branches of a fir tree. The implementor-compensating translators would translate dif-
ferent implementor versions to or from a central trunk version, and the language-evolution-compensating
translators would translate programs up and down the trunk of the tree. The importance of controlling
both the width and height of the translator tree is discussed later, in the section “Managing the proposed
language-version translators.”

5. Planes of Independence

Very few language features affect independence in only one dimension; most have implications in two or
more dimensions at the same time. An analysis of independence that considers two dimensions at once
would be treating independence in a two dimensional plane. From the four dimensions of independence
presented here one can obtain six such planes of independence. If, however, the classifications presented
earlier are applied to each dimension before forming the planes, then the dimensions can be combined in
84 different ways. Since there are so many of them, and since their interactions are often very subtle, it
would not be reasonable to discuss all 84 classified planes here.

There is however one plane of independence that is treated extensively in existing literature, though
not called by that name. That plane is the man-machine plane.

5.1. The Man-Machine Plane

In the literature, the man-machine plane is usually reduced more or less to a single line. This is done by
reducing the human dimension to a single point representing an average human and the machine dimen-
sion to a single point representing the average digital computer, and then considering independence in the
line joining these two points. (If standard deviations for the group of humans are also presented, then in
a sense a triangular region of the plane is being treated rather than just a straight line.) For a survey of
the psychology of human-computer interaction see ACM Computing Surveys,* Vol. 13, No. 1.

5.1.1. or l.e. Digital and Human Computers

In a sense humans should have been included in the discussion of machines (the first dimension) because
programs are run, not only by digital computers, but also by human beings. Often a programmer will run
parts of a program in his head, or with a pencil and paper, many times before a machine ever runs it.
Therefore, when one designs a programming language, one should design it not only for execution by
machines, but also for execution by humans.

There are some significant differences between the ways that a human executes an algorithm, and
the way a machine does. Humans often apply induction to predict how a calculation will proceed,
whereas computers simply carry out the entire calculation just as it is described. As a result,
programming-language constructs that help a programmer visualize the inductive step in a program, such
as FOR loops, assist a programmer in his simulation of its execution. They also assist inductive proofs of
correctness.
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Another difference between human and digital computers is that humans executing a program
would rather apply a high-level operator conceptually than apply the series of low-level operators that
comprise it. Computers would “prefer” a long sequence of low-level operators (one can at least say that
computers that apply low-level operators are easier to build than ones that can apply high-level operators.)
It is the preference for high-level operators by humans that lead to the development of high-level program-
ming languages.

When a human is the “target machine” of a program it is often not for the purpose of running the
program, but rather to understand the program. Algol 60 was the first language designed with the stated
goal of being suitable for the publication of algorithms for humans.4* The reason for the development of
structured programming techniques,12:59 and of languages that support such techniques, was to increase
human understanding of programs.

The WEB system37 was designed by Donald Knuth with human-understanding of programs as one
of its principal objectives. When a human is to make use of an algorithm, he would like to know not
only how to perform each step of a computation, but also why each step is done. It is the purpose of com-
ments to supply this information. Almost all programming languages permit comments, but since they do
not exercise any control over the contents of the comments, comments themselves cannot be considered
part of the language. In the WEB system, however, the comments are forced to reflect the structure of
the program being described, and hence are formally part of the programming language.

5.1.2. Implementors and Machines

There is a great deal of similarity between the analysis of independence in this plane and the analysis of
independence in the human dimension under the classification users and implementors. This is because
the needs of the implementor are very similar to the needs of the machine. The reader should therefore
consult that section for a longer discussion of the topic. There are, however, some differences, in that
some things that are easy to implement take too long to execute. The original version of LISP is an
example of a language that is implementor oriented, but too slow to be considered machine oriented.

6. Common Requirements of the Dimensions

Although independence in the four dimensions sometimes places competing demands on a language
designer and implementor, there are also properties of a language that would contribute to independence
in more than one dimension at once. One of these properties of a language is that it be both compilable
and interpretable. This property would benefit independence of machine size (1a), and system mode
(2c), and independence in the program processing (4a) and project development (4b) time scales.
Almost any language can be either compiled or interpreted, but the preference is for a language that is
efficiently interpretable in an interactive environment and efficiently compilable. The language should be
efficiently executable from source text, as is a command language, and should not require multiple passes
over the source code. At the same time the language should be compilable into executable code that does
not require extensive run-time variability.

Another property that contributes to independence in more than one dimension is flexibility of pro-
cedure invocation. This property would benefit independence of discipline (2a), system mode (2c),
problem-solving methods (2d), user qualifications (3a) and the program-processing time scale (4a). Pro-
cedure invocation should permit both positional and keyword parameters, and variable length and vari-
able form parameter lists. Operator overloading would be desirable as would the ability to define new
operators (extensible syntax).

To minimize the size of the various translators proposed, the language should have a small and
orthogonal grammar. Procedure invocation should be used as much as possible, rather than distinct con-
structs.
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7. Managing the Proposed Language-Version Translators

We have repeatedly proposed the use of program translators to achieve independence. They have been
proposed for four classifications in three different dimensions: independence of machine size (1b),
language evolution (4d), implementors (3d), and natural languages (3b). If this technique is applied
indiscriminately, it could result in a labyrinth of translators to get from one dialect to another. Therefore,
controls should be placed on the number of language versions generated, and a new version should be
created only with good reason.

One of the translators proposed was for providing implementor independence. The implementor of
a language dialect should be responsible for writing the translators to and from the standard language.
This responsibility would provide him with incentive for making his dialect very similar to the standard
language, or to implement the standard language unchanged. Each of the two translators should be writ-
ten in its destination dialect, that is, the translator from dialect A (the standard language) to dialect B
should be written in dialect B and vice-versa. Then, translators in the starting dialect can be obtained for
free by running the translators in the destination dialects through each other. If one dialect is a proper
subset of the other, then only one translator would be needed.

The language-standards committee should supply the translators that provide machine-size indepen-
dence. English should be chosen as the natural-language base for a programming-language standard, and
separate language standards committees should be established to provide a dialect for other natural
languages. Those committees should supply the translators for converting those dialects to and from the
English standard.

Every program intended for sale or publication should start with a header that identifies the archi-
tecture, implementor, machine size, peripheral devices, operating system, natural-language group, and
language-evolution version that the program is intended for. (Such a header would be valuable even for
existing languages.) Then if a program were submitted to the wrong compiler, the programmer would be
notified, and he could select the appropriate sequence of translators needed to convert it into the correct
version. It seems that it would even be possible to write an automatic version-translation utility which
accepts a program along with its current version designator, accepts a designator of the desired version,
selects the correct sequence of translators needed to perform the transformation, and applies that
sequence.

Since the same program may be valid, unchanged, for many different compilers, a program should
be able to list the version codes of all of the compilers that will accept it. Using such a list would reduce
the number of translators invoked that make no change to a program.

This discussion seems to suggest such a complex maze of translators that a user could easily get lost,
but this is not necessarily the case. Most users do not habitually change environments and hence transla-
tions from one language version to another would be done far less frequently than compilation or execu-
tion.

8. Conclusion

This paper has presented four dimensions of independence that should be considered when designing or
evaluating a programming language. A precise definition of independence has also been presented. In
addition it has shown the way in which many language features and language evaluation criteria affect
independence in these dimensions.

Is it appropriate to treat independence as a functional in a four space? The mathematical definition
of a four space is sufficiently broad to include the one represented by these four dimensions. It allows the
dimensions to be discrete or continuous, and does not demand orthogonality of the dimensions. The
point being made, however, is that the four dimensions presented here are sufficiently orthogonal that it is
reasonable to treat them separately. Since no precise mathematical definition has been given for language
independence or applicability, and probably none can be devised for the general case, the analogy with a
four space is incomplete.
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Is independence in these four dimensions necessary and sufficient for the design of a good
language? Independence is certainly not necessary, since many successful languages have been highly
dependent in one or more of these dimensions, but we believe that a high level of independence in the
four dimensions would be sufficient for the design of a good and useful language.

Are the four dimensions necessary and sufficient for a study of independence? With regard to the
necessity of the four dimensions, this paper has referenced considerable existing literature that treats three
of the four dimensions (machine, problem, and human), and thus shows that they are widely recognized
as important. The fourth dimension—time—is less-well supported by existing literature, but we hope that
we have presented sufficient arguments to prove that failing to consider this dimension in designing or
evaluating language independence would be a deficiency.

With regard to the sufficiency of the four dimensions, this paper has not held that independence in
the four dimensions would be sufficient for a study of independence. It may well be that more dimen-
sions or more classifications of the existing dimensions are needed. We believe, however, that the four
dimensions presented here, and the accompanying classifications of these dimensions, treat the majority
of independence issues.
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