AP: An Assertional Programming
System

Mantis H.M. Cheng
Keitaro Yukawa

Department of Computer Science
University of Waterloo
Waterloo, Ontario
N2L 3Gl

Research Report CS-86-11
April 1986

AP: An Assertional Programming System

Mantis H.M. Cheng
Keitaro Yukawa

Logic Programming and Artificial Intelligence Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada. N2L 3G1
Net address: {mhmcheng,kyukawa}@waterloo.csnet

Abstract

We describe AP, a logic programming system based on Horn clauses with equality.
AP subsumes relational programming systems based on Horn clauses or (conditional)
equations; it allows relations and functions to be defined mutually recursively in a
single program. AP supports most programming paradigms found in functional pro-
gramming systems, e.g., higher order functions, lazy evaluation and stream processing.
Inference involving equality is done not by special inference rules for equality but by
SLD-resolution of equality axioms, thereby allowing the exploitation of Prolog imple-
mentation techniques. The equality axioms are chosen to result in small search spaces.
Higher order functions are introduced in a way preserving the logical semantics of pro-
grams and avoiding computational intractability incurred by the use of higher order
logic. By adopting the Schonfinkel-Curry function application operator, functions in
AP are defined by first order equations. A prototype of AP has been implemented
in Prolog; it is a realisation of Logic Programming with Equations as proposed by van
Emden and Yukawa [27].

1 Introduction

We describe AP, an assertional programming system based on Horn clauses with equality.
A working prototype of AP has been implemented in Waterloo Unix Prolog [3]. A “pure”
AP program is a set of definite clauses in which equations are admitted as atomic formulae.
Inference involving equality is done not by special inference rules for equality but by SLD-
resolution of equality axioms. AP subsumes relational programming systems based on Horn
clauses like Prolog and systems based on (conditional) equations [5,7,9,11,20,21,24,29].
AP supports most programming paradigms found in functional programming systems,
e.g., higher order functions, lazy evaluation and stream processing. It allows relations
and functions to be defined mutually recursively in a single program. Since AP has an
equational subsystem, it can also be used for term rewriting, e.g., abstract data type
specification and symbolic computation.

Recently there has been much work on the amalgamation of functional and logic pro-
gramming [2,6,7,8,9,10,21,22,25,26]. The design of AP has been influenced by Eqlog [12];
we agree with Goguen and Meseguer that Horn clauses with equality is the right for-
malism for combining functional and logic programming. This approach retains logical
semantics—computed answers, including results of function evaluations, can be justified
in terms of logical consequence.

What does AP contribute to the amalgamation as compared with all the proposals
cited above? Our answer is:

1. equations are computed by SLD-resolution of equality axioms,

2. higher order functions are introduced in such a way as to preserve the logical se-
mantics of programs and to avoid computational intractability incurred by the use
of higher order logic.

We regard (1) as especially important; it allows the exploitation of Prolog implementation
techniques. All other proposals known to us attempting to incorporate equations into
Horn clauses depend on certain special inference rules for equality, most notably narrowing
[16]. As far as we know, such inference rules are no more efficient than SLD-resolution
of equality axioms, and the implementation techniques for such inference rules are not as
well developed as those for SLD-resolution.

This paper is organised as follows: Section 2 explains the background on equality,
Section 3 provides an overview of programming in AP, Section 4 explains how higher
order functions are introduced, Section 5 demonstrates the expressiveness of AP programs,
Section 6 provides a logical basis of AP, Section 7 describes the implementation, and
Section 8 discusses some possible future developments and extensions.

2 Background on Equality

The standard set Eq of equality axioms (reflexivity, symmetry, transitivity and substitu-
tivity for function symbols and predicate symbols) is a set of definite clauses:

Eq = {
T =1 +«; (reflexivity)
T=y+—y=uz, (symmetry)
T=2z+T=y,y=2z (transitivity)
F(z15- o 3Zn) = (Y15 5Yn) — T1 = Y15+« y T = Ynj (function substitutivity)
P(Ytse s Un) &« ZL = Y1y e s Tn = Yn, D(Z1,-- -, Zn); (predicate substitutivity)

}.

By the completeness of SLD-resolution, any complete SLD-refutation procedure will find
a refutation of
PUEqU {« G}, (1)

whenever it is unsatisfiable, where P and «— G are a logic program and a goal clause
possibly with equations. However, the search space of (1) is large and has many infinite
branches and useless answers [27]. It is not amenable to efficient search by naive SLD-
refutation procedures, e.g., typical Prolog interpreters which use the left-to-right depth-first
search strategy.

For this reason, we abandon Egq and use instead two other sets of equality axioms (cf.
Section 7). The equality axioms are chosen so that the Prolog interpreter finds efficiently
the desired SLD-refutations for a restricted but useful class of Horn clauses with equality.
They are the extensions of the equality axioms presented in [27].

3 Programming in AP

AP accepts the following types of inputs: programs, terms to be evaluated, queries, system
directives and macro definitions.

A “pure” AP program is a set of definite clauses in which equations are admitted as
atomic formulae. An AP program may contain any nonlogical features inherited from the
underlying Prolog system.

Functions are defined by a set of definite clauses of the form (which we call conditional
equations):

F=F« C,C,,...,Cp; (n>0).

When n = 0, the implication symbol “~” is omitted. An equation on the left of “~” is
used directionally, from left to right.
For example, the following two clauses define the factorial function fac:

| fac(0)
| fac(N)

1 ;
N % fac(N-1) <- N > O ;

The infix operators “*” and “-” denote the arithmetic multiplication and subtraction
functions, and “>” denotes the greater than relation. “|” is the AP system prompt. Any
identifier which begins with an upper case letter is a logical variable, otherwise it is a
constant, function or predicate symbol. To compute the factorial of 5, we enter:

| fac(B) ; % a function application
120

| a =5 ; % say that a is equal to 5
| fac(a) ;

120

Evaluable functors may occur as arguments of predicates, both in conclusions and in
conditions.

| jekyl = hyde ;

| father(john) = hyde ;

| member(father(john), birthday_club) <- ; % a fact
| ?member(jekyl, birthday_club) ; % a query
yes

Macros are defined by the relation ts. A macro definition of the form “E is F” is used
to replace every occurrence of E in subsequent input terms by the term F. All such textual
replacements are done at compile time—before execution.

4 Higher Order Functions

Higher order functions are introduced into AP without using higher order logic. This is
done by adopting the Schonfinkel-Curry function application operator [4,23] and defining
functions by first order equations.

The admissible terms in AP programs are defined as follows:

1. a variable is a term,
2. a constant symbol is a term,
3. if t and u are terms, sois ¢ : u.

“» js an infix left-associative binary function symbol representing the function application
operator; the term ¢ : u is the result of applying ¢ to u. Parentheses may be used for
grouping. Such terms are known as curried terms. All terms in an AP program are

curried. As curried notation may be unfamiliar to the user, AP accepts an alternative
notation “f(t1,...,tn)” for “f : ¢y :---:1,” when f is a constant symbol or a variable.

For example, AP translates the second clause for the factorial function shown in Sec-
tion 3 into:

| fac:N = *:N:(fac:(-:N:1)) <- N> 0 ;

The twice function, commonly expressed in A-calculus as twice = Af.Az.f(f(z)), is defined
in AP using the equation:

| twice:F:X = F:(F:X) ;

| succ(X) = X+1 ; % the successor function
| twice:twice:twice:succ:1 ; % a sample application
17

The compose function, compose = Ag.Af.Az.g(f(z)), is defined in AP as:

| compose:G:F:X = G:(F:X) ;
| compose:(twice:succ):fac:3 ; % a sample application
8

Semantics of Higher Order Functions

Let P be a set of definite clauses. Let = be the congruence relation over the Herbrand
universe Hp defined by:

Vi,u€ Hp, t=u &L PUEqEt=u,

where Egq is the standard equality axioms. The standard model, due to Goguen and
Meseguer [12], has as domain the quotient domain Hp/=. Let [t] be the congruence class
of t. An n-place relation p holds of ([t1], ..., [ts]) in this model iff PU Eq = p(t1,--.,tn)- A
functor f is assigned the function f* such that f*([t1],..., [tn])=[f(t1,--es tn)]-

In the standard model of an AP program, the function application operator “:” denotes
the function such that [t] : [u] = [¢ : u], and a ground term ¢ denotes [t]. A congruence
class [t] can be thought of as representing a function

fiy: Hp/=— Hp/=
such that
fu(u]) =[t:u], Vu]€ Hp/=.

Clearly, fiy([v]) = [t] : [u],V[t],[u] € Hp/=. For this reason, every object in the universe
of an AP program, i.e., a congruence class [t], can be thought of as representing a unary
function producing a unary function, i.e., fg [19].

4

We can define relations, and solve equations, over whatever functions we define, e.g.,
twice, compose, and whatever partial applications of such functions, e.g., twice:succ,
compose:fac. (Note that such terms do exist in the Herbrand universe of the program.)
We believe that this opens an interesting view of functions in logic programming.

5 Programming Examples

In this section, we show by examples how a declarative mixture of functional and logic
programming is achieved in AP.

Higher Order Functions

The following higher order function accumulate computes:
F(A) Op F(Next(A)) Op --- Op F(B), A<B,

where Op is a binary operation and F' is a unary function, and when A > B, Init is the
value of accumulate (cf. page 56 of [1]).

accumulate(Op,Init,F,A,Next,B) Init <- A > B ;
accumulate(Op,Init,F,A,Next,B)

Op(F(A) ,accumulate(Op,Init,F,Next (A) ,Next,B)) <- A =< B ;
square(X) = X * X ;

I
I
!
|
| suce(X) =X + 1 ;
|
b

accumulate(+,0,square,1,succ,b5) ; % a sample application
b

Equation Solving

AP can solve some simple equations. Note that every object in an AP program represents
a function. [] denotes the empty list; [HIT] denotes a nonempty list with H as the head
and T as the tail.

| app((].L) =L ; % the append function

| app([HIT],L) = [Hlapp(T,L)] ;

| ?app(X,[c,d]) = [a,b,c,d] ; % sample queries

X = [a,b]

| 7app([alX].[c.,d]) = app([a,b,c].[d]) ;

X = [b]

| map(F,[]1) = [] ; % the higher order map function
I

map(F, [XIL]) = [F(X)|map(F,L)] ;

| succ(X) =X + 1 ;
| square(X) = X * X ;

| map(succ,[1,2,3]) ; % sample applications and queries
[2,3,4]

| ? map(F,[1,2,3]) = [2,3,4] ;

F = succ

| 2 [1,4,9] = map(F,[1,2,3]) ;

F = square

| ? M(suce,[1,2,3]) = [2,3,4] ;

M = map

Stream Processing

The following set of equations and macros defines the infinite stream of Fibonacci numbers.
The functions delay and force are those described in [13] (cf. pages 214-239), which are
primitives incorporated into the equality axioms which give the effect of applicative order
reduction (cf. Section 7).

| cons_stream(X,Y) is [X|delay(Y)] ; % a macro

| head([XI|Y]) = X ;

| tail([X|Y]) = force(Y) ;

% we assume that the streams S1 and S2 are infinite

| sum(S1,82) = cons_stream(head(S1)+head(S2),sum(tail(S1),tail(S2))) ;
| £fibs = cons_stream(l,cons_stream(l,sum(fibs,tail(fibs)))) ;

% compute the 6th Fibonacci number

| head(tail(tail(tail(tail(tail(fibs)))))) ;

8

If we use the equality axioms which give the effect of normal order reduction (cf. Section 7),
we can dispense with delay and force.

| head([X[Y]) = X ;

| tail([XIY]) = Y ;

| sum(S1,82) = [head(S1)+head(S2)|sum(tail(S1),tail(82))] ;
| fibs = [1,1|sum(fibs,tail(fibs))] ;

| head(tail(tail(tail(tail(tail(fibs)))))) ;

8

Abstract Data Type Specification

The following set of clauses defines an operation insert and a relation member on the
abstract data type binary search tree:

| insert(Item,nil) = node(nil,Item,nil) ;

| insert(Item,node(L,Item,R)) = node(L,Item,R) ;

| insert(Item,node(L,Key,R)) = node(insert(Item,L),Key,R) <-
I Item < Key ;

| insert(Item,node(L,Key,R)) = node(L,Key,insert(Item,R)) <-
| Item > Key ;

| member(Item,node(L,Item,R)) <- ;

| member(Item,node(L,Key,R)) <- Item < Key, member(Item,L) ;
| member(Item,node(L,Key,R)) <- Item > Key, member(Item,R) ;
| 7member(4,insert(2,insert(4,insert(3,nil)))) ; % a query
yes

Term Rewriting

The following set of equations, which is confluent and terminating, specifies the theory of
Groups [18]:

 X+0=X;

l 0o+ X=X

| X+ (-X) =0 ;

| (-X) + X =0 ;

I (X + Y) +2=X+ (Y +2);
| -(0) =

| -(-X) =

|-(X+Y) (X)+(Y):
| X+ (-X +Y) =
(X)) + (X +Y) =
I(d+(c+ (-¢))) +((0+(a))): % a sample rewriting
d +

Sorting

The following program sorts a list of numbers with respect to a function F evaluated at
these numbers, i.e., the sorted list [zq,z2,...,Z,]| has the property that F(z;) < F(z;3) <
- < F(zn).

| isort(F,[],[]1) <- ;

| isort(F, [Head|Tail],Sorted) <-

| isort(F,Tail,NewTail),

| insert (F,Head,NewTail,Sorted) ;
| insert(F,H,[],[H]) <- ;

| insert(F,.H,[XIY],[H,XIY]) <- F(H) =< F(X) ;

| insert(F,H,[XIY],[X|Y’]) <- F(H) > F(X), insert(F.H,Y,Y’) ;
| £(X) = 4 + 2#X - X*X ;

| ? isort(f,[1,5,-1],L) ; % a sample query

L = [5,-1,1]

6 Logical Basis of AP

We present the correctness, and the completeness under ground confluence (see below), of
a set of equality axioms from which the two sets of equality axioms used for the implemen-
tation are derived. Throughout this section, P denotes a set of definite clauses in which
equations are admitted as atomic formulae.

Let Eq' be the following set of equality axioms:

Eqd = { eq(z,y) « eg:(z,2),eq(y,2); (2)
egz(z,z) +; (3)
eqz(z, 2) « egs(z,y), eqz(y, 2); (4)
egs(z,y) — = = y; (5)
egs(f(z1,. s Tiser ey Zn), F(Ttye e s Yise oo s Tn)) — €qs(Ti, %i); (6)
(V 1<:< n)

}.

(6) is included for all non-constant function symbols. The relation eqs is the one-step
reduction over ground terms (to be defined below), eq; is the transitive-reflexive closure of
the one-step reduction and eq; is the relation z and y reduce to some common term.

We define the homogeneous form of a clause:

p(tla -",tn) < B1,..,Bn; m,n >0,

to be:
P(Z1y .00y Tn) — Ty = t1y .00y Tn = tn, Biy eeey B

where z,, ..., z, are n different variables not occurring in the original clause. To use E¢' to
compute with P, we transform P into Pr by performing the following two steps:

1. replace each clause in P, except for conditional equations (i.e., clauses whose con-
clusion is an equation), by the homogeneous form,

2. replace, in the set resulting from Step 1, every equation M = N in the condition of
a clause by eq;(M, N).

A transformed goal clause Gr is obtained from G by replacing every equation M = N in
G by eq: (M, N).

The reduction relation —p associated with P is defined on the set of all ground terms,
i.e., the Herbrand universe of P, as follows.

Definition For all ground terms M and N,

M—pN &4 PLUEJ Eegs(M,N). O
When P is a set of equations which can be used as a term rewriting system [14,15], the
reduction —p coincides with the usual definition of reduction restricted to ground terms.
When P is a set of clauses which can be used as a set of conditional rewrite rules in the
sense of Kaplan [17], the reduction —p coincides with the reduction defined by Kaplan for
conditional rewrite rules, restricted to ground terms. Let —p be the transitive-reflexive
closure of —p .

Definition @ —p is said to be ground confluent iff for all ground terms M, N, and S,
SS5pM and SSpN imply that there is a ground term T such that M5pT and N-5pT.
A logic program P is said to be ground confluent iff —p is ground confluent. [J

Definition A ground term M is a P-canonical (or P-normal) term iff there is no term
N such that M —p N. For all ground terms M and N, N is a P-canonical form of M iff
N is P-canonical and M5pN. O

The following two theorems state the correctness, and the completeness under ground
confluence, of PrU Eg¢' with respect to PU Eq, where Eq is the standard equality axioms.

Theorem (Correctness of transformed programs and Eq') Let P be a logic program and
G a goal clause «+ By,..., B,,. Let 8 be any computed answer substitution for Pr U Eq' U
{Gr}. Then

PUEqEVY(BLA--+ A By)l.

Theorem (Completeness under ground confluence of transformed programs and E¢')
Let P be a ground confluent logic program and G a goal clause «— B, ..., B,. Let 0 be
any substitution for the variables of G such that

PUEqEVY(ByA--- A By)l.

Then there is an SLD-refutation of PrUEq'U{Gr} with the computed answer substitution
o such that § = o<y for some substitution ~.

7 Implementation

The Equality Axioms

Eq' presented in the previous section is amenable to execution by a Prolog interpreter.
But it has the disadvantage that, given a goal clause of the form « egq; (¢, z) or «— eq(z,1),
z is instantiated to t, if the clauses are selected in the order shown. To prevent this, it
is necessary to switch the order of the clauses (3) and (4) so that the Prolog interpreter
performs reduction until a term has been reduced to a canonical form. It is also necessary
to add a clause (i.e., the second clause in Eg, below) to prevent reduction of variables.

Thus we use the following set Fg, of equality axioms, to be adjoined to a transformed
AP program.

Eqn = {
eql(X,Y) « eq2(X,Z), eq2(Y,2Z) ;
eq2(X,Y) « isvar(X), eq(X,Y) ; % “eq” is unification
eq2(X,Z) « eq3(X,Y), eq2(Y,Z) ; % transitivity
ea2(X,X) « ; % reflexivity
eq3(X,Y) « X =Y; % using equations
eq3(X1:X2,Y1:X2) « eq3(X1,Y1) ; % substitutivity

eq3(X1:X2,X1:Y2) « eq3(X2,Y2) ;
}.

When executed by a Prolog interpreter, Eg, gives the effect of normal order (leftmost-
outermost) reduction. For any set P of definite clauses, the first SLD-refutation by the
Prolog interpreter of Pr U Eg, U {«— eq(¢,z)} or of Pr U Eg, U {« eq:(z,t)}, where t is
ground, instantiates z to a canonical form of ¢.

If there is no need to use infinite data structures, it is preferable to use equality axioms
which give the effect of applicative order (innermost) reduction, because it is generally
more efficient. For this reason, we have:

10

Eqa = {
eql(X,Y) « eq2(X,Z,F1), eq2(Y,Z,F2) ;

eq2(X,Y,.) « isvar(X), eq(X,Y) ; % “eq” is unification
eq2(X,Z,yes) — eq3(X,Y,yes), eq2(Y,Z,F) ; % transitivity
eq2(X,X,no) « ; % reflexivity
eq3(X:Y,Z,F) « % substitutivity
eq2(X,X1,F1), eq2(Y,Y1,F2),
eq4(X1:Y1,Z,F3), % function application
or(F1,F2,F3,F) ; % F is “no” if F1,F2 and F3 are “no”
eq3(X,Y,yes) — X =Y ;
eq4(X,Y,yes) — X =Y ; % using equations
eq4(X,X,no) + ; % rewrite to itself

}

In this case to avoid infinite derivations, we need an extra argument indicating whether
the term has been rewritten by any reduction steps. As before, for any set P of definite
clauses, the first SLD-refutation by the Prolog interpreter of PrU Eq,U {«— eq:(t,z)} or of
PruU Eq, U {< eq(z,t)}, where t is ground, instantiates z to a canonical form of . Note
that Egq, is still usable for simple equation solving.

The Interpreter

The inference engine is the Prolog interpreter. Given an AP program P, the parser gen-
erates the transformed program Pr (cf. Section 6). Queries are then interpreted by this
Prolog program:

solve((Goal,Goals)) « try_solve(Goal), solve(Goals) ;

solve(Goal) « try_solve(Goal) ;

try_solve((M = N)) «— eq1(M, N) ; % solve equations

trysolve(G) « G # (M = N), prove(G) ; % solve non-equational goals

8 Discussion

We have described a working prototype of AP and demonstrated its expressiveness with
examples chosen from different applications. We have yet to gain experience on using both
functional and logic programming in one system; we believe that AP will become a useful
tool. This section discusses some possible extensions and future developments of AP.

11

Parallelism

Since our equality axioms are definite clauses, AND- and OR- parallelism in logic pro-
gramming remain a feature in AP. Examining Fgq, and Fq,, we note that

1. in Eq, and Eq,, AND-parallelism can be used to find a common reduced form (the
clause for eq;), and OR-parallelism can be used to process multiple conditional equa-
tions defining the same function,

2. in Egqy,, OR-parallelism can be used to find a unifying subterm (the clauses for egs),

3. in Eqs, AND-parallelism can be used to reduce subterms (the first clause for egs).

We take these possibilities as a vindication for our claim made earlier: exploitation of
Prolog implementation techniques.

Incorporating Equality Axioms

Our equality axioms have the status of a user program. This made the correctness of the
implementation obvious and the construction of the prototype easy. Although the system
is efficient enough for teaching purposes, the equality axioms have to be incorporated into
the interpreter for applications demanding more efficiency.

Introducing Lambda Expressions

Lambda expressions allow the use of functions without definition and locality of expres-
sions within terms. Their utility has been demonstrated by a functional language like
Scheme [1]. Also, we may want the system to return a lambda expression whenever it is
more informative (e.g., Ax.succ(succ(x)) instead of twice:succ). Work is in progress on
introducing lambda expressions into AP.

Compiling AP

Compiling logic programs or functional programs into conventional machine instructions
is well-understood [13,28]. What are suitable machine models onto which AP programs
can be compiled?

Acknowledgements

Professor van Emden provided us with an incentive to build AP. We thank the following
people for commenting on an earlier draft of this paper: Romas Aleliunas, Randy Goebel,
David Poole and Maarten van Emden. This research is partially supported by the Natural
Sciences and Engineering Research Council.

12

References

[1]

2]

4]

(5]

6]

7]

[10]

[11]

H. Abelson and G.J. Sussman. Structure and Interpretation of Computer Programs.
The MIT Press, Cambridge, Massachusetts, 1985.

D. Bert and R. Echahed. Design and implementation of a generic, logic and func-
tional programming language. In B. Robinet and R. Wilhelm, editors, European
Symposium on Programming, pages 119-132, Lecture Notes in Computer Science, vol.
213, Springer-Verlag, 1986.

M.H.M. Cheng. Design and Implementation of the Waterloo Uniz Prolog Environ-
ment. Master’s thesis, Department of Computer Science, University of Waterloo,
Waterloo, Ontario, 1984.

H.B. Curry and R. Feys. Combinatory Logie. Volume 1, North-Holland, Amsterdam,
1958,

J. Darlington, A.J. Field, and H. Pull. The unification of functional and logic lan-
guages. In D. DeGroot and G. Lindstrom, editors, Logic Programming: Functions,
Relations, and Equations, pages 37-70, Prentice-Hall, Englewood Cliffs, New Jersey,
1986.

D. DeGroot and G. Lindstrom, editors. Logic Programming: Functions, Relations,
and Equations. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

N. Dershowitz and D.A. Plaisted. Logic programming cum applicative programming.
In Proceedings of the 1985 Symposium on Logic Programming, pages 54-66, IEEE,
July 1985. Boston, Massachusetts.

M. Dincbas and P. Vanhentenryck. Fztended Unification Algorithms for the Integra-
tion of Functional and Logic Languages. manuscript, European Computer-Industry
Research Centre, Munich, West Germany, 1986.

L. Fribourg. Oriented equational clauses as a programming language. The Journal of
Logic Programming, 1(2):165-177, 1984.

U. Furbach and S. Holldobler. Modelling the combination of functional and logic
programming languages. Journal of Symbolic Computation, 2(2):123-138, 1986.

K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2.
In Conference Record of the Twelfth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 52-66, ACM, January 1985. New Orleans, Louisiana.

13

[12]

[13]

[14]

[15]

[16]

27]

[18]

[19]

[20]

[21]

[22]

[23]

J.A. Goguen and J. Meseguer. EQLOG: equality, types, and generic modules for
logic programming. In D. DeGroot and G. Lindstrom, editors, Logic Programming:
Functions, Relations, and Equations, pages 295-363, Prentice-Hall, Englewood Cliffs,
New Jersey, 1986.

P. Henderson. Functional Programming, Application and Implementation. Prentice-
Hall International, London, 1980.

G. Huet. Confluent reductions: abstract properties and applications to term rewriting
systems. Journal of the ACM, 27(4):797-821, 1980.

G. Huet and D.C. Oppen. Equations and rewrite rules, a survey. In R.V. Book, editor,
Formal Language Theory, Perspectives and Open Problems, pages 349-405, Academic
Press, New York, 1980.

J.-M. Hullot. Canonical forms and unification. In W. Bibel and R.A. Kowalski,
editors, 5th Conference on Automated Deduction, pages 318-334, Lecture Notes in
Computer Science, vol. 87, Springer-Verlag, 1980.

S. Kaplan. Conditional rewrite rules. Theoretical Computer Science, 33(2,3):175-193,
1984.

D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263-297, Pergamon Press,
Oxford, 1970.

A.R. Meyer. What is a model of the lambda calculus? Information and Control,
52(1):87-122, 1982.

M.J. O’Donnell. Eguational Logic as a Programming Language. The MIT Press,
Cambridge, Massachusetts, 1985.

U.S. Reddy. Narrowing as the operational semantics of functional languages. In
Proceedings of the 1985 Symposium on Logic Programming, pages 138-151, IEEE,
July 1985. Boston, Massachusetts.

J.A. Robinson and E.E. Sibert. LOGLISP: motivation, design and implementation. In
K.L. Clark and S.-A. Tarnlund, editors, Logic Programming, pages 299-313, Academic
Press, London, 1982.

M. Schénfinkel. On the building blocks of mathematical logic. In J. van Hei-
jenoort, editor, From Frege to Gédel, A Source Book tn Mathematical Logic, 1879-
1931, pages 355-366, Harvard University Press, Cambridge, Massachusetts, 1967.

14

[24]

[25]

[26]

[27]

[28]

[29]

G. Smolka. FRESH: a higher-order language with unification and multiple results.
In D. DeGroot and G. Lindstrom, editors, Logic Programming: Functions, Relations,
and Equations, pages 469-524, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

A. Srivastava, D. Oxley, and A. Srivastava. An(other) integration of logic and func-

tional programming. In Proceedings of the 1985 Symposium on Logic Programming,
pages 254—-260, IEEE, July 1985. Boston, Massachusetts.

H. Tamaki. Semantics of a logic programming language with a reducibility predi-
cate. In Proceedings of the 1984 International Symposium on Logic Programming,
pages 259-264, IEEE, February 1984. Atlantic City, New Jersey.

M.H. van Emden and K. Yukawa. Logic Programming with FEquations. Technical
Report CS-86-05, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, October 1986. revised version.

D.H.D. Warren. Implementing PROLOG — Compiling Predicate Logic Programs.
D.A.I Research Report No. 39, Department of Artificial Intelligence, University of
Edinburgh, 1977.

J.-H. You and P.A. Subrahmanyam. Equational logic programming: an extension
to equational programming. In Conference Record of the Thirteenth Annual ACM
Symposium on Principles of Programming Languages, pages 209-218, ACM, January
1986. St. Petersburg Beach, Florida.

15

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

