Constrained Nonlinear Least Squares: An Exact Penalty
Approach with Structured Quasi-Newton Updates

Nezam Mahdavi-Amirs

York University
Computer Science Department
Downsview, Ontario
Canada M3J 1P3

Richard H. Bartels

University of Waterloo
Department of Computer Science
Waterloo, Ontario
Canada N2L 3G1

ABSTRACT

This paper is concerned with the development, numerical implementation, and
testing of an algorithm for solving finite-dimensional, generally-constrained, nonlinear,
least-squares (CNLLS) problems. The algorithm is an adaptation to the CNLLS prob-
lem of an exact penalty method for solving nonlinearly constrained optimization prob-
lems due to Coleman and Conn. The adaptation draws heavily on the methods of
Dennis, Gay, and Welsch for handling the unconstrained, nonlinear, least-squares prob-
lem and upon the work of Murray and Overton for performing line searches. This
method has been tested on a selection of CNLLS problems listed in the collection of
Schittkowski and Hock [32].

This research was supported under grants number A4076 and A2472 by the Natural Sciences and Engineering Research
Council of Canada.

Mahdavi-Amiri, Bartels

1. Introduction

This paper surveys an adaptation of the exact penalty method due to Coleman and Conn [6,7,9] to
the solving of finite-dimensional, generally-constrained, nonlinear, least-squares (CNLLS) problems. The
adaptation draws upon the work of Dennis, Gay, and Welsch for solving unconstrained, nonlinear, least-
squares problems [14] and upon the work of Murray and Overton for performing line searches [27]. The
adaptation has been tested on a selection of CNLLS problems listed in the collection of Schittkowski and
Hock [32].

We were primarily interested in two issues while doing this work: in the implementational details
concerned with making the Coleman-Conn method somewhat more robust and somewhat more structured
and in the behavior that would result in adapting the approach of Dennis, Gay, and Welsch in combina-
tion with that of Coleman and Conn. Robustness was expected to result from the incorporation of the
careful line search due to Murray and Overton, by following the practical guidelines laid down in chapter
8 of [21], and by taking account in the code for places at which the assumptions in the Coleman-Conn
theory might fail to hold.

Section 2 introduces the necessary notation and background, reviews some methods for solving
unconstrained nonlinear least squares (UNLLS) problems, and lists updating strategies for the Hessian of
the objective function. Section 3 reviews the exact-penalty approach due to Coleman and Conn for solv-
ing nonlinear programming problems. Section 4 is concerned with the CNLLS problems, and the adapta-
tion of the Colemann-Conn algorithm is presented. Section 5 lists some practical issues relating to com-
puter implementations of the algorithm. Computational results in section 6 suggest that the algorithm
has the general behavior reported for the methods [6,7,9,14].

2. Unconstrained Nonlinear Least Squares

In this section we will review the unconstrained, nonlinear least-squares problem (UNLLS). In 2.1
the problem and the special structure of its Hessian and gradient will be given. In section 2.2 the com-
mon methods of solution will be outlined. In section 2.3 we will list some quasi-Newton methods that take
account of the special structure of the problem.

2.1. Preliminaries
The UNLLS problem is

minimize ¢(z) = F(z) F(z) = ggm(z)}? =5 IF) P, (2.1.1)

where
z eR", F(z)eR*, k>n

(Throughout this paper |- | will denote the Euclidean vector norm and, when applied to a matrix, the
corresponding subordinate matrix norm.) This problem arises in curve fitting where we are given values
of a dependent variable, y = y;, corresponding to values of an independent variable, § = 05, for
§=1,...,k, and a model n(z, 05) with unknown parameters z, ...,z,. Often these parameters are
chosen to minimize

k
1
2 (n(2,05) — ys)?
§=1
which is written in the form (2.1.1) with

fs(z) =n(z,05) — ys
For a discussion, as well as numerous examples of how such fitting problems might arise, see [31].

The gradient and the Hessian of ¢ are
Vé(z) = J(z)TF(x) (2.1.2)

and

Constrained Nonlinear Least Squares

Vi(z) = J(rc)TJ(x)+$lf5(:c)V2f5(m) = J(=)TJ(z) + S(z) (2.1.3)

respectively, where V2f;(z) is the Hessian matrix of fs(z), and J(z) denotes the Jacobian of F(z) (the
kXn matrix whose 6-th row is V f5(z)7). We are using the notation S(z) for the second order term:

S(z) = ;Z;lfs(x)vzfs(x) .

The UNLLS problem is a special case of nonlinear minimization, and general nonlinear minimization
techniques can be used, but they are most successfully applied in a modified format that takes the struc-
ture of the gradient and the Hessian into account.

2.2. The UNLLS Techniques
For the UNLLS problenl, Newton’s method (N), ignoring line searches for s*implicity, begins with an
approximate minimizer 2 = ¢ and produces from it a new approximation ¥ &~ z in the form
T «— z+pN,
where pp satisfies the equation
(J(2)"J(z) + S(=))py = —I(2)TF(z) .

If |F] tends to zero as z approaches a minimizer z°, the second derivative term § (z) also tends to zero,
and py can be approximated by the solution of the equations

(J(2)J(@)pon = ~J(z)F(z) .

This produces the Gauss-Newton method (GN), and pgy can be interpreted as the solution of the
linear least-squares problem,

minimize |J(z)p + F(z)] .
3

The Gauss-Newton method works quite well if S(z") is “sufficiently small;” e.g. see Wedin [34,35,36],
Boggs and Dennis [1], and Dennis [11]. Dennis’ condition in this last-cited reference for being able to
neglect S(x) is that for all in some neighborhood of = it is true that

[(J(2) = ") FE) I <ple -2

for a scalar p >0 less than the smallest eigenvalue of J(z*)7J(z"). It is not hard to see that
p > |S(z*)]. A problem for which S(z) is negligible is a small residual problem.

When S(z) cannot be neglected, a well-known alternative is the Levenberg-Marquardt method
(LM), [24,25], which computes T as 4 pyys, where pyys is the solution of

(J() J(2) + ¥Dpry = —J () F(z), (2.2.4)

with 4 a non-negative scalar. This is solved for trial values of v until ¢(z)<¢(x). Fletcher [18] gives
heuristic rules for increasing or decreasing -+ in an implementation of the Levenberg-Marquardt method.
Moré [26] expands Fletcher’s ideas and introduces his own tips on creating a “robust” and “efficient”
implementation. Instead of I, Moré has yDTD where D is a diagonal matrix whose diagonal entries are
appropriately updated at each iteration to scale the variables. Moré’s algorithm is probably the best
practical one for the Levenberg-Marquardt procedure.

Gill and Murray [20] account for the difference between py, the Newton direction, and pgp, the
Gauss-Newton direction by using the singular-values decomposition of J(z)
J(z) = Uz VT
0

’

where U,V are orthogonal and ¥ is the diagonal matrix of the ordered singular values of J(z). This
decomposition is partitioned according to a separation between the larger and smaller singular values

Mahdavi-Amiri, Bartels

[U1U2U3] £, 0 [vr
0 %;||vr
0 0
The Gill-Murray method (GM) produces a direction pgjs that satisfies
pau = —ViE['UTF(=)

and constitutes the component of the Gauss-Newton direction, pgp, lying in the space spanned by the
columns of V). (pgp will, in fact, be equal to pgy if all singular values of J(z) are large, which makes V,
and X, vacuous.) If sufficient decrease of ¢ is not achieved using this direction, pgp, is augmented to
solve the system

(J(z)J(z)+Bpar = —J(2)'F(z) ,

where B is an approximation to S(z). Gill and Murray tested three possibilities for B. The first used
S(z) itself. The other two used (1) finite differences taken along the directions defined by the columns of
V,, and (2) a quasi-Newton approximation. Of these latter two, the finite difference approach proved to
be better in their tests. Their paper is quite negative in their assessment of (2), but their work precedes
that of Dennis, Gay, and Welsch, which reports rather more success in using quasi-Newton updates in
order to approximate S(x).

2.3. Quasi-Newton Approach

A Taylor expansion of ¢ around z is
$(Z) ~ Q(F) = F()"F(z) + () J(z)F(=) (2.3.5)
+ 5 (@-2) (=) () + S())(F—2).
This means that, if
s =T —1z ,

then S will satisfy

S(z)s = ;::)lf.s(f)VQfa(i)(E ~2) (2.3.6)

k
~ SE Js(@)V15(%) — V]s(z))
=1
=J'F - JTF .
Let
y = JFJF - JTF .

In order to approximate S(z), the standard quasi-Newton approach would start with a matrix B ~ S(x)
and impose the relation

Bs =y (2.3.7)
to define an approximation B = S(Z).

The choice of y above is that given by Dennis, et. al. in [14], and so we will denote it by yp. There
are other reasonable choices for y. Dennis’ summary in [13] is as follows:

(1) yBD=jTF—JTF-—jT.TS
(2) yg=JTF—-JF-J"Js

Constrained Nonlinear Least Squares

(3 w=({-JTF

4 w=(-JIF.
Taking convex combinations of pairs of the above has been proposed, too:

(65) yg=JF—JF —[aJ°T + (1-0)JTJ]s

6) wwp = [T — J[TaF + (1-a)F].
The value of oz=-;— has been tested for these choices by Dennis, et. al. [14]. None of the above y has
proved to be superior in all situations, but yp seems to be slightly better than the other versions of y, as
is claimed by Dennis [13,14].

The two most generally used update strategies are, respectively, the Davidon-Fletcher-Powell (DFP)
update, [10,16], and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update, [2,17,23,33]. Each would
start with some symmetric matrix B~S(z) (for example, B=0 or B=+I) and produce B~S5(z), also
symmetric, satisfying (2.3.7) above.

The update consistent with the DFP formula would be:
(8) B—p, W=Bely” +y(y=Bs)T (y—Bs)Toyy”
(¥"s) (y"s)
The update consistent with the BFGS formula would be:
Bs(Bs)T wy”
sTBs yTs
Dennis and Moré give a theoretical discussion of these two updating formulas in [12}. The practical com-

parisons that Powell makes between these two methods in [30] indicates that the BFGS can have much
better properties in practice.

b)) g_p_

All of this points to the possibilities of using any one of (1)-(6) with either one of (a} or (b). We
have been testing the use of yp, with a version of the BFGS update.

3. Constrained Nonlinear Optimization

Here we will give a quick review of the exact penalty method for the nonlinear programming prob-
lem due to Coleman and Conn [6,7,9]. Our discussion will include equality constraints, which were omit-
ted from these three cited works for the sake of clarity in presentation, as well as from the paper by
Pietrzykowski [29], cited below, that provided the motivation for their work. Since we are merely survey-
ing results at a low level of detail, we can afford the added complication.

In the first parts of this section we will outline the basic results and the “pure” algorithm, by which
we mean one which demands that any ¢,(z) be exactly zero before it is considered to be an active con-
straint. We will conclude by outlining the modifications that are derived from the introduction of
activity tolerances.

3.1. The Exact Penalty Method

If we ignore the least-squares structure and add constraints, the problems becomes

minimize ¢(z) (3.1.1)

such that ¢;(z) =0, i=1,...,!
c(x) >0, g=l+1,...,14+m

Both ¢ and the c¢’s are functions from R" to R!, and they are usually assumed to be twice continuously
differentiable.

As an approach to solving (3.1.1), Coleman and Conn considered the penalty function

Mahdavi-Amiri, Bartels

i m
V(z,u) = pé(z)+ 3 lei(2)] — X min(0,ci(z)) , (3.1.2)
i=1 Fm=l41

where the penalty parameter p is a positive number. Early mentions of this penalty function are to be
found in Zangwill [37], Fiacco and McCormack [15], and Pietrzykowski [29]. The result to be found in
Pietrzykowski guarantees that ¥ is an exact penalty function. That is, under proper conditions and if p
is small enough, every isolated local minimum of ¥ is also an isolated local minimum of (3.1.1). More pre-
cisely:

Result 3.1.1

Let =" denote an isolated minimum to (3.1.1) and assume that ¢, ¢;, ¢=1,...,/+m are con-
tinuously differentiable in a neighborhood of z*. Assume that the gradients of the active con-
straints at =" are linearly independent. Then there exists a real number " >0 such that for
each £, 0 < u < ", there is an isolated local minimum x(u) of ¥(x,pu) for which z(p) = z".

Other exact-penalty approaches exist; e.g. see [19] for a broader discussion.

Coleman and Conn [6,7,9] take the result of Pietrzykowski as a starting point and propose an algo-
rithm for minimizing ¥ for a fixed value of . Under certain conditions (most notably: (1) two continuous
derivatives are required, (2) the points produced by the algorithm lie in a compact set, (3) the gradients of
all active constraints at z are linearly independent for all =, (4) and line search conditions, conditions of
positive-definiteness, and second-order sufficiency conditions hold), their method will converge globally to
an isolated minimizer of ¥, and the ultimate rate of convergence will be two-step superlinear.

The solution approach given by Coleman and Conn for (3.1.1), which uses their minimization algo-
rithm for ¥ as the basic tool, is:

{choose u>0};
feasible := false;
failure ;= false;
while ({ is large enough} and not feasible and not failure) do
{reduce pu};
{minimize ¥(z,p) with respect to z};
if (not failure) then
{test feasibility}
endif
endwhile;

It is expected that the “minimize” step of the above will set the “failure” flag if it is unable to succeed.
The “test feasibility” step of the algorithm is expected to set the logical variable “feasible’” appropriately.
The proof of success, of course, comes from ending the while loop with z large enough, “feasible’” equal
to true, and “failure’ equal to false.

The case in which problem (3.1.1) is an infeasible one is assessed by detecting infeasibility for a
sequence of values of u tending to zero. On a computer, using finite-precision arithmetic, an infinite
sequence is not required to arrive at a conclusion. It is enough to reduce g as indicated and consider it as
having “converged” to zero when the term p¢(z) becomes negligible in the computer’s arithmetic relative
to the summation terms in (3.1.2). Situations do exist in which this approach would not correctly resolve
infeasibility, even for exact arithmetic and for an infinite sequence of values of p. They constitute diffi-
cult situations, in general, for nonlinear programming algorithms; see Coleman and Conn [5].

Situations of unboundedness in the general nonlinear programming problem can often be detected,
in practical terms, by the same approach as just described for infeasibility. However, Coleman and Conn
rule out unbounded problems in their assumptions, and, since we are restricting ourselves to a least-
squares objective function, unboundedness is not an issue.

The minimization of V¥ is carried out using several alternative step directions:

Constrained Nonlinear Least Squares

(i) the global horizontal direction;
(ii) the dropping direction;
(i) the Newton direction;
and the Newton direction is composed of two components:
(iii") the asymptotic horizontal direction;
(iii") the vertical direction.
These directions are described in terms of the following index sets:

the set of active-constraint indices
AC(z) = {ric,(z)=0and 1<r<l+m} ,

the set of violated equality-constraint indices
VE(z) = {¢:]c;(z)|>0and 1<i <1} ,

and the set of violated inequality-constraint indices
VI(z) = {jici{z)<0and l+1<i<l4+m} .

We will use t to denote the number of elements in AC(z), and our own assumption of simplicity for ease
in presentation will be that 0<t <n. The cases t=0 and {=n require some separate attention in imple-
menting the Coleman-Conn algorithm, but the details are not interesting. The case of degeneracy, t >n,

is obviously ruled out of the presentation. For a discussion of some techniques useful in handling this
case, see Busovaca [3].

Note that ¥(z,u) can be written in the form
Y(z,p) = pé(z) + X senlc(z))als) — 3 efz) -
ieVE(s) JeVI(z)

The following vectors and matrices, defined in terms of these index sets, play a role in the algorithm: the
active constraint matriz

Az) = [Vc,l(x),...,Vc,t(a:)] ,
where ry,...,r, are the members of AC(x), the effective gradient of ¥
V¥(z,n) = uVe(z)+ Y, sgn(c;(z))Vei(z) — 3 Veiz)
{EVE(z) jevi(z)
and the effective Hesstan of ¥
VAU(e,p) = 4V%()+ L san(ei(@)Vele) — X Veilz) .
ieVE(z) 7€VI(e)

A necessary condition for z to be an isolated local minimizer for ¥ is the following:

Mahdavi-Amiri, Bartels

Result 3.1.2

Assume that ¢, ¢;, =1, . .. ,l4+m are continuously differentiable and that {Ve,(z):r eAC(z)}
is a linearly independent set, then necessary conditions for z to be a local minimizer of ¥(z,u)
are that there exist multipliers, \, for reAC(z),

(a) such that

V¥(z,u) = eé()X,.Vc,.(:z:) = A(z)\ , (3.1.3)

(b) and such that
—1 <\, <1, reAC(z)N{L,...1} (3.1.4)
0<); <1, reAC(z)Nn{l+1,...1+m} . (3.1.5)

A point, «, for which (a) above is satisfied is a stationary point of ¥. An optimal point, then, is a sta-
tionary point that satisfies (b).

3.1.1. The Multiplier Estimates

The estimates of the numbers X\, decide the steps that are to be used. One of the major premises of
the algorithm is that the multipliers are only worth determining in the neighborhoods of stationary points.
In such neighborhoods the numbers A\, are taken to be the least-squares solution to

A(z)N = VY(z,p) . (3.1.1.6)
In practice the QR decomposition of A(z) is used to solve the least-squares problem:

A(z) = Q[f(‘)?] = [WZ]

R
0

Since ¢ is the number of columns in A(z), Z is an n X (n—t) matrix satis{ying
A)TZ =0

and
VAV I(n-—t))((n—t)'

Nearness to a stationary point is governed by a stationarity tolerance r >0. The \’s are computed
only if the projected effective gradient

Z ZTVV(z,p)

is deemed “small enough” according to this tolerance. This will be discussed further in section 5 below.

3.1.2. The Global Horizontal Direction
The global horizontal step direction, hg, is the solution to the problem

minimize V¥(z,4)"h + ShTV2¥(z,u)h (3.1.2.7)

such that Ve, (z)Th =0 for reAC(z) .

Using the QR decomposition of A(z), if we set hg=Zw for some weR", then (3.1.2.7) implies that w is
to be found by solving

(Z7[V(z,u)] 2)w = —ZTV¥(z,pu) . (3.1.2.8)

The direction hg is a descent direction for ¥ at ¢ provided that (Z7[V2¥(z,u)] Z) is positive definite and
ZTV%(z,p) # 0.

Constrained Nonlinear Least Squares

Exact second derivatives are replaced by approximations in the algorithm. Thus, (3.1.2.8) is actu-
ally solved as

Hw = (ZTHZ)w = —ZTV¥(z,pu) .

In the material presented in [6,7,9] it is stressed that H = ZTH Z should be a single matrix, a positive-
definite approximation to ZT[V2\I/(:c,u)]Z that is updated according to a quasi-Newton formula. This
avoids some difficulties with the algorithm in the event that ZT[V2¥(x,u)]Z is positive definite in a
neighborhood of a stationary point whereas V2¥(z,u) is indefinite there. The alternative, updating H
alone as a quasi-Newton approximation to V?¥(z,) and then explicitly forming Z7 H Z whenever needed,
is simpler to implement but theoretically less robust.

In this particular matter we opted for simplicity in the implementation we used for testing. We
update H rather than H. Various suggestions have been made regarding projected Hessian updates, see
[4,9,28], the choice of which is the best to use is not yet clear, and we have left an investigation of such
matters to the next phase of our studies.

3.1.3. The Asymptotic Horizontal Direction

The asymptotic horizontal step direction h, is the component of the Newton step, h,+v, that lies
in the null space of A(:c)T. Newton steps are only attempted in the neighborhood of stationary points
that are expected to be optimal points. The step direction h, is the solution to the problem

minimize V¥(zu)Th + ThT[VA(zu) = 3 X, Vi, (2)]h (3.1.3.9)
h r€AC(z)
such that Ve, (z)Th =0 for reAC(z) .

The solution is computed as in the global case above, except that H should now be a positive-definite
approximation to

ZT[V2\I’(5C7”)_ E)‘rvzcr(w)]zr
r€AC(z)

or alternatively, H should be a positive-definite approximation to
Vi(zp) - 3 \ Vi (z) .
reAC(z)
3.1.4. The Vertical Step Direction

At z +hy, the constraints of AC(z) may no longer be active. By means of a vertical step, v, the
constraints of AC(z) are brought more closely to a value of zero. The vertical step is based upon a New-
ton step toward the solution of the nonlinear system c¢(, (z+hy) = 0, where ¢ AC(z) Is the vector of con-
straint functions, ordered in accord with the columns of Az:c). The vertical step is the solution to the sys-
tem

Ale)v = ~cac(z)(@+ha) -
The computation of v uses the QR decomposition of A(x) as follows:
solve RTu = —Cac(z)(T+ha) foru

set v = Wu

3.1.5. The Dropping Direction

The direction that releases the constraint from activity, locally and to first order, whose gradient
appears as the r-th column in the matrix A(z) is the direction d that satisfies the system of equations

A(z)d = o, , (3.1.5.10)

where e, is the r-th unit vector, and

Mahdavi-Amiri, Bartels

—1 if X\, >+1
Ir = {)\,,<0 and corresponds to an inequality constraint
+1 if

A, <~-1 and corresponds to an equality constraint .

3.1.6. Direction Choice Strategy
The steps described above are used, broadly speaking, as follows:
(1) When ZZTVV(z,p) is not “small enough” as indicated by the stationarity tolerance 7, then

T +— =+ ahg ,

where a line search is used to determine o>0.

(2) When ZZTV¥(z,u) is “small enough” as indicated by the stationarity tolerance 7, the multi-
pliers \,, r €AC(z), are estimated.

(a) If (3.1.4) and (3.1.5) are not satisfied, an index r€AC(z) is chosen for which one of
(3.1.4) or (3.1.5) is violated, and

T +— z 4+ ad ,
where a line search is used to determine a>0.

(b) If (3.1.4) and (3.1.5) are satisfied, then
T +— z+hy+v

3.1.7. The Activity Tolerance

The stationarity tolerance has already been mentioned. It serves the purpose of preventing the esti-
mation of values of the multipliers according to (3.1.1.6) until there is a reasonable chance that the
estimated values will indicate whether the inequalities of (3.1.4) and (3.1.5) are satisfied. If this tolerance
is not used, or if it is set too large, the dropping step can be chosen inappropriately, causing indices to be
shifted in and out of AC(xz) repeatedly. This zig-zagging phenomenon will also arise if the directions hg,
ha, d, and v are determined using the true penalty function ¥; that is, using the index sets AC(z),
VE(z), and VI(z). In this case, the zig-zagging will be a result of the fact that c,.(z) must be precisely
zero before r can be included in the index set AC(z) and that any subsequent step will usually cause
¢,(x) to depart from zero again. The algorithm should consider as active any constraints that are within
a tolerance of being zero; that is, it should determine hg, h,, d, and v based upon an e-approzimate ver-
sion of the penalty function

Vdz,u) = pé(z) + 3 senlei(z))e(z) — 3 cife)

iEVE(z) jeVid=)
in which VE(z) and VI(z) are replaced by
VE(z) = {it|c;(z)[is “large enough” as indicated by epsilon and 1<i <[}
and
Vi(z) = {jic;(z)is “negative enough” as indicated by epsilon and [+1<i<l+m}
respectively, and AC(z) is replaced by
AC(z) = {r:|c,(z)|is “small enough” as indicated by epsilon and 1<r<l+m} ,

and all of the discussion of sections 3.1 through 3.1.6 is changed so that AC(z), VE{z), and VI(z) play
the roles of AC(z), VE(z), and VI(z) respectively. The quantity € is the activity tolerance, and it is to
be positive. We will be more specific about its use in section 5.

The theoretical properties of the algorithm will remain intact, under reasonable conditions, so long
as the line search mentioned in section 3.1.6 is designed to reduce the value of the true penalty function,
¥(z ,p) rather than ¥ (z,u), and so long as the the tolerances 7 and € are chosen reasonably. Since there
is no a prior: way in which the values of 7 and € can be known, some positive values are chosen initially,
and the algorithm is adjusted to reduce the values of 7 and e whenever the value of the true penalty

-10 -

Constrained Nonlinear Least Squares

function at & does not show sufficient decrease over its value at & for any of the steps (1), (2,a), or (2,b)
given in section 3.1.6. Such cases indicate that ¥ (z,u) is not an adequate predictor of the behavior of
the true penalty function ¥(z,u), or that the proximity to the nearest stationary point is being misjudged
using the stationarity tolerance 7, or both.

Indications that ¥ (z,u) may not be an adequate predictor of the behavior of ¥(z,u) are provided
at each of the steps described in section 3.1.6 whenever an appropriate measure of sufficient decrease in
the true penalty function is not achieved. Lack of sufficient decrease in steps (2,a) and (2,b) were covered
by Coleman and Conn, but their assumptions on the objective and constraint functions removed the case
of insufficient decrease in step (1). Through the use of a careful line search algorithm, however, sufficient
decrease in step (1) can also be monitored, and revisions of tolerances can be made if it is not attained.

The revision of € and 7 are undertaken together in the Coleman and Conn algorithm. It might be
hoped that they could be adjusted separately, but the roles that they play are intertwined. The tolerance
7 is used to determine nearness to stationarity so that the trustworthiness and advisability of computing
the X’s can be judged. The tolerance € is used to determine the set AC2), and this set, in turn, specifies
what \’s can be computed and what model, ¥ (z,u), of the penalty function will be used to predict a des-
cent direction. Insufficient decrease can occur if the choice about whether to compute the \’s is wrongly
made, because z is too far from the nearest stationary point for the values of the \’s to be accurate
guides, or if the wrong \’s are computed even though z is close enough, because € is too large and
AC(z)#AC(z), or if ¥ (z,u) does not reliably predict the decrease of ¥(z,u), also because € is too
large. It is not known how to assign the blame for insufficient decrease to 7 or to € alone. It is known,
however, that the insufficiency can be overcome, under reasonable assumptions, by reducing both
together.

3.1.8. Algorithm Outline
The above considerations lead to a minimization algorithm for ¥(z ,#) as follows:

{choose ¢>0 and 7 >0};
{choose H};
optimal = false;
while (not optimal and {e is large enough} and {7 is large enough}) do
adequate = true;
{determine AC(z), VE(z), and VI(z)};
{determine A(z), @ =[W Z], and R correspondingly};
if ({Z ZTVV (x,u), tested against 7, is not small enough}) then
{determine hq};
{determine o from a line search on ¥(z,u)};
if ({sufficient decrease is indicated}) then
z =z + ahg;
{update H ~ V2 (z u)}
else
adequate := false
endif
else
{determine the \’s};
{check whether X\, exists violating (3.1.4) or (3.1.5)};
if ({\, exists}) then
{determine d};
{determine a from line search on ¥(z ,u)};
if ({sufficient decrease is indicated}) then
x =2z + ahg;
{update H ~ V¥ (z,u)}
else
adequate := false
endif

- 11 -

Mahdavi-Amiri, Bartels

else
{determine h,};
{determine v to solve A(z)Tv=—c ac o)z +ha)t;
pi=hy + v;
{check sufficient decrease on ¥(z,u)};
if ({sufficient decrease is indicated}) then
z =g + p;
{update H = VW (z.p) — Y X\, Vi, (z)};
r€eAC[z)
{test optimality}
else
adequate := false
endif
endif
endif’;
if (not adequate) then
repeat
{reduce €};
{reduce 7}

until ({AC(z) changes}

or {ZZTVV¥, becomes large tested against 7}
or {¢ becomes too small}
or {7 becomes too small})

endif;

failure := not optimal

endwhile;
Of course, the “test optimality” step is expected to set the flag “optimal” to true when appropriate.

This differs from the flowchart in [6] in certain details, notably having to do with the tests on
whether ¢ or 7 become too small and on whether sufficient decrease is attained using the directions hg
and d. Such evidences of failure must be detected if the algorithm is to “die gracefully” when applied to
a problem not meeting the assumptions made in [6,7].

4. Accommodating the Least-Squares Structure

For CNLLS, the minimization problem becomes

minimize ¢(z) = SF(«)'F(z) = ésf)l[f () (4.1)

1
=5 1F() I?
such that ci(z)=0 i=1,...,0
c;(z) >0 J=I1+1,...,l4+m

The structure of the objective function is to be reflected in the “choose H” and ‘“update H” steps
of the algorithm. In all phases of the algorithm

H =~ pJ(z)TJ(z) + S(z) .

In the global phase; i. e., for the steps determined by a line search using the directions hg or d,

S(a) = uéfs(x)vzfs(x)Jr Y sen(e(a) Ve(z) — % Vo)

{EVE(2) jevi{z)

and in the asymptotic phase; i. e., for the steps determined by hy + v,

-12 -

Constrained Nonlinear Least Squares

S(x)=/zzk3f5(m)V2f5(z)+ Yo sen(ei(z))Viei(z) — X Vi z)— 3 X\ Vi(z) .

=1 ieVE (z) eV) reAC(z)
This means that H can be assumed to have the structure

pJ(z)'J(z) + B
where

B = S(z) ,

and we only need to choose B and update it according to a quasi-Newton formula, varying the vectors s
and y of (2.3.7) appropriately depending upon the phase and step taken by the algorithm. In particular,
the formula for yp as given in section 2 may be extended in the obvious way. Under the simplifying
assumption that the values of the multipliers A\, may be regarded as constant over the interval between T
and z, the BFGS updating formula that uses this y;, results in the following version of the “update H”
steps:

v = WIEICITFE) + 5 sen(e(@)|Ved®)—Veule)] = % [Ve[E)=Vey(a)]

iEVE{z) JeVi{z)
if ({Newton step}) then
y=y- 2 A Ve (Z) - Ve, (2));
reAC[z)

8 = — x;

{use y and s in the BFGS update of B};

H = pJ(Z)7J(z)+B;

5. Software Issues

Much of what is described in this section is a simple application of the suggestions laid down by
Gill, Murray, and Wright in chapter 8 of [21]. Specific choices that we have made in implementing the
algorithm are listed here to aid the reader in interpreting the computational results outlined in the next
section. The following quantities were involved:

(1) ZZTV¥(z,n)

(2) e fz), forr =1,.01+m

(3) A, for reAC(z)

(4) W(E,p) — W(z,p) .

The projected effective gradient, Z ZTV‘I’C(:L‘ ,#), must be tested to determine nearness to stationar-
ity, and it must also be sufficiently small in order for the minimization to be terminated. Since the
columns of Z are orthonormal, it is sufficient to test |ZTVVW (z,u)] for smallness. Nearness to sta-
tionarity is to be determined relative to the tolerance, 7, and acceptability for termination is determined

relative to a much smaller tolerance, 6, which must be defined by the user. The test for stationarity
takes the form of a relative-magnitude test

12799 (z,4) | < 7 reference{ IV (z 1) I} , (5.1)

where a reference value for |V¥ (2 ,u)] is used on the right-hand side of the inequality. Coleman and
Conn describe their algorithm throughout using the straightforward relative test in which

reference{ [V¥(e,1) I} = [V¥z.p)]

There are many alternatives to this reference value, depending upon the extent to which the implementor
wishes to account for orders of magnitude of difference in the values of the norm encountered during the
course of the minimization. We are using

reference{ [V¥(z,¢) I} = max(1, Ve)) -

This avoids underflow, or a too stringent test, when the value of the norm becomes close to zero. The
tolerance 6, of course, replaces 7 in (5.1) when the tests for convergence are being made.

- 13-

Mahdavi-Amiri, Bartels

By the same token, activity is determined by
le,(2)| < e reference{c, ()}
and the violation of an equality constraint is determined by the reverse of this inequality. If ¢, defines an
inequality constraint, it is regarded as violated if
¢.(z) < —ereference{c,(z)} .
We are using

1FE)]+ 3 keo(=)]

r=1)
l+m+1 ’
which served us as a general-purpose, average function value. At more cost in space, a separate reference

value for each of the constraint functions would have been more robust for problems in which the con-
straints have significantly different scales.

reference{c,(z)} = max(l,

Tests for feasibility are carried out exactly as for activity, except that a much smaller, user-defined
tolerance, 7, is used in place of e.

The values of 1, 107}, and 1072 chosen initially for g, €, and 7, respectively, have served well. They
are reduced, respectively, by dividing by 8, 2, and 2. We have been using 107 for v and 107 for ¢ for
all of the problems reported on below.

The value of A\, must be tested to determine whether it is inside or outside of the interval [—1,+1]
or of the interval {0,+1], depending upon whether 1<r <! or I4+1<r<!+m, respectively. It is advisable
to recognize three cases, in fact, whether X\, is strictly within its interval, strictly outside, or probably on
the boundary. The last case represents a critical situation in which it is impossible to be certain about
stationarity vs. optimality without gathering higher-order information about the objective function and
the constraints. To distinguish the cases we have asked, for example, whether

A< -1-0
or
AN > 1496,
or
—1—-0 <\ < ~-1496
and similarly for the other critical values, 0 and +1.

The value of p is regarded as too small when

IF@)]+ 35 k(=)

e |F(z)] < macheps max(l, l+mr:i),
where macheps is the “machine epsilon”. We regard ¢ to be too small when
e <7,

and 7 is regarded to be too small when
T <4

Item (4) in the list of quantities above is to be tested to determine whether sufficient decrease has
been obtained. Ideally, a separate test should be applied for each of the step directions hg, d, and hy+v.
From the theory developed by Coleman and Conn we choose the condition for sufficient decrease on the
Newton step to be

- 14 -

Constrained Nonlinear Least Squares

U(Z,u) — U(z,p) < —k reference{ |27V (z) 12 + » @
reAC (z

where the reference value used is the maximum of 1 and the value of the formula within braces above.
The tolerance & was taken to be 1078,

Sufficient decrease for the other two steps is demanded by setting the parameter # to 0.9 in the line
search of [27], which represents a stringent requirement for function decrease. If the line search reports
failure to achieve this requirement, this is taken as insufficient decrease. Relying on the line search to
report problems proved to be a significant departure from the algorithm charted in [6,7], since that algo-
rithm assumes that sufficient decrease will be obtained when the step hq is used, and it assumes that suf-
ficient decrease is predictable when the step d is used.

In the event that degeneracy is detected, we simply add a random perturbation, of the order of
magnitude of € lc,(z)| to ¢,(z) in order to resolve degeneracy, and we remove this perturbation as soon as
[z —z | becomes larger than Vmacheps |z |. This was easy to implement for the tests, but the more
sophisticated techniques given in [3] should be kept in mind.

For the purpose of simplicity we chose to carry out quasi-Newton updates on a full, n)Xn matrix
and then to use Z to explicitly project. This means that the occurrence of indefinite Hessians, in certain
circumstances, could prove fatal to the implementation we use for our testing, whereas a more carefully
crafted code, designed to update approximated projected Hessians, might succeed. We monitored all of
the failures reported in the next section, and we point out which of them are associated with the
occurrence of an indefinite or singular Hessian.

There has been recent discussion in the literature about the continuity of the QR factors of the
matrix of active constraint functions in algorithms such as the one being considered here; e. g., see
[4,8,22]. The general result has been that the matrices W(z) and Z(z) derived from

Ale) = [W@)2)] [R(x)]
0

are not necessarily continuous in z unless special care is taken in the process that computes the factoriza-
tion. We have taken no special care. The algorithm appears not to suffer as a result of this neglect, even
though the convergence theory for the algorithm assumes the continuity of Z(z). This is consistent with
the evidence others, e. g. Coleman, have gathered to the effect that the continuity of Z(z) is more of a
theoretical concern than a practical one.

When any of the denominators in the BFGS formula becomes exactly zero, we avoid division by
zero by ignoring the corresponding term in the update. This action is derived from consideration of the
case of linear constraints.

The numerical positive definiteness of the matrix
Z%J(z)TJ(z) + B)Z
is enforced by using the modified Cholesky factorization described on page 111 of [21] during the process
of solving (3.1.2.8).
The requirements for optimality are that, for reasonable choices of reference values,
|Z2TV¥ (z,p)| < 0 reference{ [V¥(z,n)]} ,
=140 <\, < +1-0 for all reAC(z) and 1<r<{ ,
0 <X, <+1—0 for all reAC(z) and I+1<r<Il+m |,
W (7 8) — Wz)| < 0 reference{ [¥Z,u) [} ,
Iz — 2] < 7 reference{ |z]} ,

In this regard, 7 is being used in the spirit of 7 and # is being used in the spirit of \/7 ¢ in the notation
of chapter 8 of [21], and we are avoiding, to a certain extent, the assumptions made in that reference that
the problem might be well scaled. One might also be prepared to accept as a case of optimal termination
the event that one or more of the above fails to be satisfied, but notice should be given to the user

- 15 -

Mahdavi-Amiri, Bartels

whenever this happens.

8. Computational Results
Thirty CNLLS problems were taken from Hock and Schittkowski [32]:
1,2,6,13, 14, 15, 16, 17, 18, 20,
22, 23, 26, 27, 28, 30, 31, 32, 42,
46, 48, 49, 50, 51, 52, 53, 60, 65,
77,79.

The number of variables in these problems varies from 1 to 5, and the number of constraints varies from
1 to 13.

The algorithm was coded in a portable subset of FORTRAN IV and run in double-precision arith-
metic on the {77 compiler of the 4.2BSD version of UNIX on a VAX 11/750 at York University. Linear
algebra services were provided by the LINPACK version of the Basic Linear Algebra Subroutines (BLAS)
augmented with a small number of matrix factorization routines provided by Gill, Murray, Wright, and
Saunders. The line searches were carried out by the algorithm due to Murry and Overton [27] using a
code provided by Michael Overton.

Problems
6, 23, 26, 27, 46, 60, and 79
have all failed to converge because they encountered a rank-deficient approximate Hessian.

Problems
13, 15, and 16

have all converged, at an ultimately two-step superlinear rate, to an optimizer at which one or more mul-
tipliers were at a critical value (0 or +1 for an inequality constraint, —1 or +1 for an equality constraint).

All other problems have been solved successfully with an ultimate rate of convergence that was
two-step superlinear.

7. Acknowledgements

We are grateful for the help of P. E. Gill, W. Murray, and M. L. Overton in providing us with the
code for the line search and the Cholesky factorization. S. Busovaca, R. H. Byrd, T. F. Coleman, and A.
R. Conn have all contributed suggestions.

8. References

1. P. T. Boggs and J. E. Dennis, Jr., A Stability Analysis for Perturbed Nonlinear Iterative Methods,
Math. Comp. 30 pp. 1-17 (1976).

2. C. G. Broyden, The Convergence of a Class of Double-Rank Minimization Algorithms, J. Inst.
Maths. Applications 8 pp. 76-90 (1970).

3. S. Busovaca, Handling Degeneracy in a Nonlinear L-1 Algorithm, PhD Thesis, Computer Science
Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada (1985).

4. R. H. Byrd and R. B. Schnabel, Continuity of the Null Space Basis and Constrained Optimization,
CU-C8-272-84, The University of Colorado, Boulder, Colorado, USA 80309 (1984).

5. T. F. Coleman and A. R. Conn, Second-order Conditions for an Exact Penalty Function,
Mathematical Programming 19 pp. 155-177 North-Holland, (1980).

6. T. F. Coleman and A. R. Conn, Nonlinear Programming via an Exact Penalty Function: Global
Analysis, Mathematical Programming 24 pp. 137-161 North-Holland, (1982).

7. T. F. Coleman and A. R. Conn, Nonlinear Programming via an Exact Penalty Function: Asymptotic
Analysis, Mathematical Programming 24 pp. 123-136 North-Holland, (1982).

- 16 -

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

Constrained Nonlinear Least Squares

T. F. Coleman and D. C. Sorenson, A Note on the Computation of an Orthonormal Basis for the
Null Space of a Matrix, Mathematical Programming 29 pp. 234-242 North-Holland, (1984).

T. F. Coleman and A. R. Conn, On the Local Convergence of a Quasi-Newton Method for the Non-
linear Programming Problem, SIAM Journal on Numerical Analysis 21 pp. 755-769 (1984).

W.C. Davidon, Variable Metric Method for Minimization, ANL-5990 Rev., Argonne National
Laboratory (1959).

J. E. Dennis, Jr., Nonlinear Least Squares and Equations, in the State of the Art of Numerical
Analysis, ed. D. Jacobs, Academic Press, London (1977).

J. E. Dennis, Jr. and J. J. Moré, Quasi-Newton Methods: Motivation and Theory, SIAM Review
19 pp. 46-89 (1977).

J. E. Dennis, Jr., Techniques for Nonlinear Least Squares and Robust Regression, Commun.
Statist.-Simula. Comput. B 7(4) pp. 345-359 (1978).

J. E. Dennis, Jr., D. M. Gay, and R. E. Welsch, An Adaptive Nonlinear Least-Squares Algorithm,
ACM Transactions on Mathematical Software 7 pp. 348-383 (1981).

A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimz-
zation Techniques, John Wiley and Sons, New York (1968).

R. Fletcher and M. J. D. Powell, A Rapidly Convergent Descent Method for Minimization, The
Computer Journal 8 pp. 163-168 (1963).

R. Fletcher, A New Approach to Variable Metric Algorithms, The Computer Journal 13 pp. 317-
322 (1970).

R. Fletcher, A Modified Marquardt Subroutine for Nonlinear Least Squares, TR-6799, Atomic
Energy Research Establishment, Harwell, England (1971).

U. M. Garcia-Palomares, Connections Among Nonlinear Programming, Minimax and Exact Penalty
Functions, TM-20, Argonne National Laboratory, 9700 South Cass Ave. Argonne, IL 60439 (1983).

P. E. Gill and W. Murray, Algorithms for the Solution of the Nonlinear Least-Squares Problem,
SIAM Journal of Numerical Analysis 15(5) pp. 977-992 (1978).

P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, London (1981).

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, On the Representation of a Basis for the
Null Space, SOL 83-19, Stanford University, Stanford, California, USA 94305 (1983).

D. Goldfarb, A Family of Variable Metric Updates Derived by Variational Means, Math. Comput.
24 pp. 23-26 (1970).

K. Levenberg, A Method for the Solution of Certain Problems in Least Squares, Q. Appl. Math.
2 pp. 164-168 (1944).

D. Marquardt, An Algorithm for Least Squares Estimation for Nonlinear Parameters, SIAM J.
Appl. Math. 11 pp. 431-441 (1963).

J. J. Moré, The Levenberg-Marquardt Algorithm: Implementation and Theory Numerical Analysis,
pp- 105-116 in Lecture Notes in Mathematics 630, ed. G.A. Watson, Springler-Verlag, New York
(1977).

W. Murray and M. L. Overton, Steplength Algorithms for Minimizing a Class of Nondifferentiable
Functions, STAN-CS-78-679, Stanford University, Stanford, California (1978).

J. Nocedal and M. Overton, Projected Hessian Updating Algorithms for Nonlinearly Constrained
Optimization, 95, New York University, 256 Mercer Street, New York, NY (1983).

T. Pietrzykowski, An Exact Potential Method for Constrained Maxima, SIAM J. Anal. 8 pp. 299-
304 (1969).

M. J. D. Powell, How Bad Are the BFGS and DFP Methods When the Objective Function Is Qua-
dratic?, Math Programming 27 pp. 34-47 (1986).

- 17 -

31.

32.

33.

34.

35.

36.

37.

Mahdavi-Amiri, Bartels

D. A. Ratkowsky, Nonlinear Regression Modeling: A Uni fied Practical Approach, Marcel Dekker
(1983).

K. Schittkowski and W. Hock, Test Examples for Nonlinear Programming Codes, Springer-Verlag
(1981). Lecture Notes in Economic and Mathematical Systems #187

D. F. Shanno, Conditioning of Quasi-Newton Methods for Function Minimization, Math. Comput.
24 pp. 647-656 (1970).

P-K. Wedin, The Nonlinear Least Squares Problem from a Numerical Point of View, Technical
Memoranda I and II, Lund University, Lund, Sweden (1972).

0
P-A. Wedin, On the Gauss-Newton Method for the Non-linear Least Squares Problem, ITM
Arbetsrapport No. 24, Inst. for Tellampad Matematik, Box 5073, Stockholm 5, Sweden (1974).

°
P-A. Wedin, On Surface Dependent Properties of Methods for Separable Nonlinear Least Squares

Problems, ITM Arbetsrapport No. 23, Inst. for Tellampad Matematik, Box 5073, Stockholm 5,
Sweden (1974).

W. 1. Zangwill, Non-linear Programming via Penalty Functions, Management Science 13(5) pp.
344-358 (1967).

- 18 -

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

