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ABSTRACT

The Buggy system (Brown and Burton) for diagnosing student errors in subtrac-
tion is reviewed. It is argued that more direct, precise and comprehensive diagnosis
could be performed by an interactive automated tutor which is capable of monitoring
detailed solutions input by the student on the screen. A design for such a tutor, includ-
ing other tutorial functions, is proposed. The educational issues involved in the design
are discussed, in particular the role of a system-maintained student model. The design
issues are extended to a consideration of more complicated arithmetic skills and some
non-mathematical domains.



1. Introduction

In this essay, methods of diagnosing children’s errors in subtraction are con-
sidered. First the Buggy Model of Brown and Burton is reviewed. It is argued
that (1) it is overly complicated and that (2) it is not able to diagnose factual or
careless errors. This motivates a design proposal for a Subtraction Tutor which
can diagnose errors interactively in the same way a human tutor would. Four
modes of operation of this system are discussed, along with the purpose and use
of é system-maintained student model. Related design issues such as locus of
control and automatic bug generation are discussed. More complicated arith-
metic domains such as integer division and operations with common fractions
are analyzed to show the benefits of the tutorial approach as well as the special

difficulties they present. The conclusions are:
[1] Tutoring is a better method for detailed diagnosis.

[2] Subtraction is an appropriately simple domain in which to develop many of

the issues in tutorial strategy.

2. The Buggy Model

In this section, a description and evaluation of the Buggy Model of Burton and
Brown [Brown and Burton 78] is presented. This model has been influential in

CAI research and is worth examining in some detail.

2.1. Motivation

Brown and Burton originally proposed the "Buggy" model to account for
student’s errors in simple procedural skills. In this model, observed student
errors are explained as symptoms of bugs, that is, deviant versions of the correct
skills. Integer subtraction was chosen as the test domain because it is simple
enough to model but complex enough to demonstrate the problems associated
with diagnosis. Most errors, it is claimed, arise from bugged algorithms as
opposed to carelessness, inattention, etc. To represent a skill such as subtrac-
tion, the goal of the skill is broken into subskills. When implemented, goals
become calls to other subgoals. Bugs are then represented as variants to nodes

in the network. Thus, a student’s behaviour can be predicted by a network



which is a combination of correct and incorrect subskills.

The belief is that if a student’s incorrect knowledge can be diagnosed, it is much
easier to prescribe precise remediation. It is also much easier to make the stu-
dent understand what he is doing wrong if the faulty procedure is pointed out
to him. As a simple example, some students when confronted with a problem in
which a zero occurs in the minuend will use the buggy rule "0 - n = n" as an

alternative to borrowing:

500 312
- 65 -243
565 149

In this example [Burton and Brown 1982], the student borrows correctly when
the minuend is non-zero, but uses the buggy rule when the minuend is zero or

has become zero due to borrowing. Other common bugs include:
e 0O0-n=0

e adding instead of subtracting

e smaller from larger

e when borrowing from a column with a zero as the top digit, decrement the

bottom digit of the column instead

e when borrowing from a column with a zero on top, forget about the decre-

ment operation

2.2. The Buggy Diagnostic System

A naive version of the eventual system compares the answers predicted by all
bugs with the answers produced‘by the student. The buggy algorithms which
produce the same answers as the student are then selected as likely hypotheses.
This set can be reduced by subsequent testing which discriminates between
competing hypotheses. Originally the initial set of bugs was small, so an
exhaustive search could be done. However, as the bugs of more and more stu-
dents were added, the numbers swelled to 110 "simple" bugs and 20 common

compound bugs. Testing for combinations of this basic repertoire became very



expensive. Moreover, the system had to handle "noisy" data resulting from care-

less errors and inconsistent use of a bug. Other sources of noise are:

[1] Performance Lapses. Students can make mistakes from fatigue, boredom,

etc. when following a correct as well as a buggy algorithm.

[2] Errors in primitive subskills. Math facts (eg. 13 - 7 = 6) are taken as
primitive {(undecomposed) skills. Burton [Burton 82] does not break these
into 100 subskills corresponding to the 100 basic subtraction facts because
they are not testable on the average diagnostic test, which includes around
60 distinct facts. More important, such a breakdown would swamp the sys-
tem, and every error could be explained as a combination of factual errors

and/or performance lapses.

<

[3] Hiding. One bug may "hide" another and prevent it from manifesting itself.

[4] Compound bugs. Bugs may occur in pairs. Some students have been
observed with up to 4 bugs in a single skill. Even to search for pairs of
bugs in 130 bugs is prohibitive. Also, pairs of bugs can hide simple bugs.
(Burton does not mention the problem that two bugs may interact in such
a way as to produce a correct answer, because if the bugs were already
included in the hypothesis set, they would (correctly) predict the student’s

getting the correct answer.

The foregoing concerns motivated DEGUGGY, the first implementation of the

system.

2.3. DEBUGGY

For this operational offline system, 130 buggy algorithms, each consisting of the
correct algorithm with buggy variants selected from a fixed set of 110 primitive
bugs and 20 common compound bugs, are each given the diagnostic test, and
the results are compared with those of the student. An initial hypothesis set is
constructed in which each bug explains at least one wrong answer. Heuristics
are then used to determine which combinations of the initial bugs will be con-

sidered as additional candidates for the hypothesis set.



Burton does not include what he calls "single column evidence"” when forming
the hypothesis set. Using this scheme would involve adding a bug to the set if it
explained a single incorrect column of the student’s answer. For example [Bur-

ton 82], the bug "0 - n = 0" would explain the 10’s column error in:

303
-218

105

In the first place, this would greatly expand the number of bugs to be con-
sidered. In the second we need to be sure that this "local" theory is consistent
with the whole solution. For example, in the example shown, the student might
not have had the bug "0 - n = 0": he might have borrowed in such a way
(perhaps even the correct way) that he did not think that the 10’s column
involved a (0 - 1) subtraction. Using "0 - n = 0" we cannot explain the whole
answer 105, since if no other bug were present the 10’s column would have been
(9 - 1) after borrowing. Thus, Brown uses global evidence to constrain the

growth of the hypothesis set.

Before considering combinations of initial hypotheses, bugs are removed under

the following circumstances:

[1] A bug produces the same error as another bug for which there happens to
be other evidence. For example (700 - 5 = 705) can be explained by both
“smaller from larger”" and "adding instead of subtracting”. If there were
evidence for the first rule already, we would keep the first rule but remove

the second.

[2] A bug which is a specialization of another is removed. For example,

“smaller from larger" is more general than "0 - n = n".

[3] Some combinations of bugs must be rejected. For example, if the student
has the bug "smaller from larger", no borrowing procedure will ever be
used, so we would not compound one with, for example, "smaller from

larger”.



[4] Sometimes one member of a pair of bugs possessed by a student will not
have independent evidence for its existence. For example, suppose the stu-
dent has "0 - n = 0" compounded with "when borrowing from a column
with O as the top digit, decrement the bottom digit of the column instead".

We will never see evidence of the second since the result will always be 0.

The limit of compounding is 4 bug combinations. Now all the bugs in the
hypothesis set are used on the test and compared with the student’s results.
Where they differ from the student test due to noise, "coercion” is used to see if
the bug can be made to fit better. This involves making small extra bug
assumptions such as allowing subtraction errors where the amount of error is 1
or 2. Finally the bugs are compared with one another according to how many
right and wrong answers were predicted and how many results were predicted
incorrectly. The highest scoring theories are compared and the best is chosen
using simplicity as a criterion.

DEBUGGY was tested extensively on data for approximately 1200 children in
Nicaragua [Brown and Burton 78]. It was observed that nearly 40% of the chil-
dren tested exhibited consistently buggy behaviour.

2.4. IDEBUGGY
IDEBUGGY is an interactive online version of DEBUGGY. Since it is interac-

tive, it is not limited to interpreting the results of a single, fixed diagnostic test.
A small number of initial problems is analyzed first, and bug hypotheses are
formed. New problems are generated for the student to solve. This new evi-
dence then provides support for one subset of the hypothesis set over its com-
plement. New hypotheses based on errors in current questions are added, and
the process is repeated until a satisfactory diagnosis is obtained. In this interac-
tive version, the questions produced by the question generator can be checked to
see whether they will in fact distinguish bugs which are in the set of current

hypotheses.



2.5. Subskill Lattice

The Debuggy model is used by Burton to provide an elegant definition of sub-
skill which is not limited to components of the correct skill. The primitive bugs
are applied to the set of all possible test problems, resulting in a partition of the
set for each bug. This procedure sorts bugs into equivalence classes based on
the partitions they produce. With each equivalence class is associated a subskill
which can be defined as "any isolatable part of a skill that it is possible to
mislearn”. [Burton 82, p. 127] The subskills form a lattice partially ordered by
the relationship "gets correct answer on all the same problems and more”. The
lattice so produced contains 58 subskills, a large number for such an elementary
skill.t Many of the subskills are ones we would take for granted, for example,
#25, "Borrow from columns that have a top digit one less than the bottom
digit." We take these subskills for granted, according to Burton, because we do

not normally think of them as decision points in the algorithm.

The definition of subskills is independent of the representation of the bugs
because subskills are defined by a unique partition of the test questions,
independently of how the partition is produced. (It is almost better to regard
the subskill lattice as a behavioural classification than as a cognitive one.) The
subskill lattice not only displays a fine-grained analysis of subskills, but also
shows their relations, in particular, how one bug can hide another. That is, a
subskill at a higher level which is not mastered will produce symptoms of all the

lower level bugs to which it is connected in the lattice.

One of the main benefits of the lattice is that it can be used to analyze diagnos-
tic tests. The set of bugs which generates the lattice can be used to partition
the test. There is a homomorphism from the maximal lattice (where the test
would include all possible questions) onto the test lattice. Subskills in the maxi-
mal lattice which map onto the same node into the test subskill lattice are
therefore ones which are not distinguished by the test. Thus the test can be

analyzed precisely to determine which skills it actually tests.

t See Appendices 1 and 2 for the lattice and definitions of subskills.



2.6. An Evaluation of the Buggy Model

Buggy is undeniably a very elegant model, and has a detailed implementation.

Its complexity is disturbing, however, for at least two reasons.

2.6.1. How Complicated is Subtraction?

If as simple a skill as integer subtraction is as complex as its subskill lattice
indicates, then more complicated skills must be overwhelmingly difficult to deal
with in this manner. One might even be inclined to argue that there really
can’t be 58 subskills in subtraction. If they are not part of the repertoire of
professional teachers of the subject, we may well wonder whether they might
simply be cooked up. An examination of the origin of the list of bugs (which is
what generates the subskills) [Brown and Burton 78] shows that bugs were
added to the list every time it was necessary to explain the systematic errors of
some individual student. Even the most common bugs (ones which teachers are
likely to recognize), such as "0 - n = n", were only present in approximately 5%
of the students tested. Some of the more exotic ones were present in only one

student out of the 1300 or so who were tested.

It seems unreasonable to regard such unique behaviours as indicating a sub-skill.
Perhaps these individual variations are better classified as variations in the data
context in which a subskill is applied. For example, the subskill associated with
borrowing involves knowing that you can borrow only if the top number is non-
zero. If it is zero, you need to borrow from the next column etc. Indirectly, it
involves knowing that the bottom number is irrelevant. A student may be
thrown off by this extraneous information. That is, generally he knows what to
ignore, but in some cases, the actual digits cause him to err. As an example,
consider rule # 25: "borrow from columns that have a top digit one less than the
bottom digit". A student who has this bug presumably borrows correctly except
when this particular pattern is present. But rather than view borrowing
correctly when the top is one less that the bottom as a separate skill, it seems
more reasonable to say that the skill involved is knowing that when you borrow
from a column, the bottom number is always irrelevant, regardless of what the

number happens to be or what its relationship is to the top number. So in some



contexts (i.e., combinations of top and bottom numbers), a student may be
thrown off the correct application of a rule, but that is not a good reason for
raising this definable situation to the status of a subskill. This practice reduces
to absurdity if we include a rule for every combination of digits, for example,
borrowing when the top is 3 and the bottom is 4, borrowing when the top is 3
and the bottom is 5, etc. This is not what Brown and Burton do, of course.
Their bugs (and therefore potential subskills) are restricted to systematic errors
which are actually observed to occur in students. But perhaps the statement of
skills should not include reference to constants which are not explicitly part of
the algorithm. Note that in the decomposition algorithm for subtraction, zero is
a special case: it cannot be borrowed from. Consequently, we expect that the
subskills for this algorithm will make reference to zero, but there is no need to
make reference to other digits since they are all treated the same by the algo-
rithm.t

To summarize, in Debuggy, complete diagnosis was strived for at the price of a

very complicated system.

2.6.2. Can errors be handled more directly?

Even in the interactive version, IDEBUGGQGY, there is no direct way of handling
errors due to carelessness or incorrect math facts.tt The approach is completely

statistical and is based on the complete answer to a question.

We might compare this approach to that of a classroom teacher. The offline
version, DEBUGQGY, is analogous to a teacher’s activity of marking tests out of
class. If several errors are noticed, the teacher may look for a pattern. (Notice
that the teacher usually has the benefit of seeing the student’s scratch work, in
particular, the indications of borrowing. DEBUGGY does not.) If a bug is obvi-
ous, the teacher may note it on the student’s test. If it is not, he would not sit

for hours doing a statistical analysis with 130 possible bugs. He would probably

+ This is also the opinion expressed in [Young and O’Shea 82].

t+ This problem is especially difficult to deal with on diagnostic tests used to determine what needs to be covered
in a review of a skill. Often a student will "remember™ a skill as he proceeds through the test. Consequently, the prob-
lem of handling inconsistent responses is compounded with the need to decide whether the student knows the material
or not.



wait until the following day and tutor the student interactively. In such a ses-
sion, the teacher can watch the student do problems and query him as to what
he is doing at any given time. There are two main benefits to interactive tutor-

ing as a means of obtaining a diagnosis:

[1] Since the process is "real time", every step the student takes can be
observed in the order in which it occurs. Many operations which are not
observed in the the final answer are made explicit, eg, the borrowing steps,

the amount of time taken for each step, and so on.

[2] Since the process is interactive and the student is a person, the teacher can
simply ask the student to describe the rules he is using or why he decided
to do something. The teacher is not limited to doing scientific experiments

with incomplete observations.

Usually this diagnostic function will be combined with various forms of remedia-
tion, for example, providing examples, working through examples, and assigning
further questions. The point to note is that diagnosis in the tutoring context is
not especially difficult, and that the reason it is not is that the details of the

student’s solution are available for inspection.

The interactive system IDEBUGGY, does not use tutorial diagnosis as a model,
but instead continues the scientific experiment model, adding to it the tailoring

of test questions to the data at hand.

In light of the above analysis, a design is presented for a tutoring system which
could do more accurate and comprehensive diagnosis than Debuggy and do it in
a more straightforward way. Such a system could also perform many of the

other functions of a human tutor.

3. The Subtraction Tutor

In this section the design of a system called the Subtraction Tutor is presented.
Its main features and modes of operation are described. This basic description

and implications for student modelling are elaborated in the next section.
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3.1. Screen I/O

The key feature of the Tutor is that the screen should simulate the scratch area
of the student and that the Tutor should monitor the student’s work. The prob-
lem can be set up on the screen as a conventional vertical subtraction, with the

following features available.

[1] The student should be able to choose the location of his entries by moving
the cursor, perhaps with a mouse. In this way, errors in location can be

detected.

[2] Borrowings can be indicated by locating the cursor over the number to be
decremented and using some form of command, for example, typing 'b’ for

borrow. Thus, borrowing from the wrong number can be detected.

[3] The resulting digit can be shown by moving the cursor above and entering
the decremented value. This will show whether the decrement operation is

erroneous or omitted.

[4] The new minuend (with carry added) can be entered above the old

minuend, indicating correct location and addition.

[5] The cursor can be moved to the correct answer location and the answer

digit entered. Thus location and factual errors can be detected.

This process can be repeated until the student signifies in some way that he is
finished. As long as the system can keep track of all the screen 1/0, it should
be able to detect precisely what errors have been made. Consequently, it ought
to be able to diagnose any error in an answer or in an intermediate step by con-
sidering a very small number of bugs, namely the set of bugs which explains
errors in a particular step. Thus much of the complexity and sophistication of
the full-blown Debuggy model can be eliminated, and replaced with what is

essentially a programming problem, albeit a potentially tricky one.

3.2. Tutorial Modes

With this basic screen management capability, four useful modes of operation
can be identified. Hopefully, these modes are a natural parallel to human tutor

functions.
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[1] DEMONSTRATION: In this mode the system calls upon its expert com-
ponent to demonstrate how column subtraction is done. The expert can
use a set of production rules such as those presented in [Young and O’Shea
82].t Questions can be from the system or from the student. The system
can display the entire algorithm on the screen and highlight the current
step or simply display the rule for the current step. The student can con-

trol the speed by indicating when he is ready for the next step.

[2] GUIDED PROBLEM SOLVING: In this mode, the student solves the prob-
lem guided by the expert. The expert can prompt at the most detailed
level, for example, requiring the student to explicitly choose whether a bor-
row is necessary. The system is in control, and the student can be stopped
as soon as a mistake is made. The system can even supply the algorithm
step for the student if he needs help. If steps are provided, the student is
in effect trying to interpret (in the computer science sense of the word)
the correct algorithm. Errors can be corrected in a variety of ways, and
hypotheses can be generated to account for errors in the same manner as
Debuggy, except that errors would relate to individual steps, not whole
answers. This mode is more complicated than DEMONSTRATION because

of the increased I/O activity and the extra functions it makes possible.

[3] UNGUIDED PROBLEM SOLVING: The student works a problem of his
own choice or a system-supplied one. The system does no prompting, but
it may intervene if an error is detected. In computer science parlance, this
is almostt?t like putting a trace on the student’s algorithm, possibly with
breakpoints set corresponding to the entry of answer digits. This mode is
necessary for initial diagnosis and for practice without prompts which

prepares the student for independent problem solving..

t See Appendix 3 for a listing of these production rules. Young and O’Shea model incorrect student algorithms by
combinations of deleting correct rules and adding incorrect rules. In this way they are able to account for all the com-
mon buggy variants of Brown and Burton with approximately 20 production rules, a considerable simplification.

+t The reservation is due to the problem that each unit of student output may not be the result of a single in-
struction. (Since we have no direct access to the student’s "code”, we cannot tell.} For this reason, it seems questionable
to suppose that the tutor is debugging the student’s algorithm, since this implies a comparison of the code with the
output (or what would be worse for the analogy, change in internal registers.)
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[4] EXPLANATION: Often, the most difficult part of tutoring (or teaching for
that matter) is motivating an algorithm, that is, explaining to the student
why the algorithm is the way it is and not the way the student may think
it ought to be. In elementary school, subtraction is usually explained with
physical objects. For example, poker chips of different colours can be used
to represent place value notation. Borrowing can then be understood as
"cashing in" chips of higher value in order to get chips of lower value so
that subtraction (taking away) can be done. Simulating thist would
require the graphics capability of representing suitable objects on the
screen and performing the cashing operation. The nice feature of a system
that could do this is that indefinitely many examples could be given, a par-
ticular example relating to the exact digits being used at the time. (Ordi-
narily, a student sees a few examples at most, and usually not when he is

working on his own.)

3.3. Tutoring Strategy

The Tutor could be set to operate in one mode only, but if normal tutoring is to
be simulated, it should be able to switch modes, either by student request or by
its own tutorial strategy. If a student signs on and merely wants a demonstra-
tion of how to do a problem, then DEMONSTRATION mode alone is what is
required, but if he needs major help, switching will probably be necessary. For
example, the system may start off in UNGUIDED PROBLEM SOLVING mode
in order to see what the student is doing wrong. If there is some difficulty in
determining the student’s bugs, it may switch to GUIDED PROBLEM SOLV-
ING mode in order to "footprint"tt the student’s ability to follow the algo-
rithm. If he needs to see an example - if for instance he is not sure what the
algorithm does in a certain case - a switch to DEMONSTRATION is called for.
Perhaps he doesn’t see why you need to perform some step. Then the system
can switch to EXPLANATION. These kinds of switches can repeat under the

+ This idea is also suggested in [Brown and Burton 78].

++ In this current educational metaphor, the "steps” a student goes through in the solution of a problem are com-
pared to the footprints a person leaves as he goes towards his destination. Thus, to “footprint™ a student is to see
where he has been in the course of his solution. Compare this analogy to the literal stepping through of an algorithm in
Papert's Logo when a student is advised to "play turtle” [Papert 80].
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control of the system and possibly under student control as well, by offering a

menu of over-riding choices to the student.

Clearly, what would be needed is a control structure with access to at least two
main components, a Student Model and a Tutorial Strategy. The term "student
model"” refers to the system’s representation of the student’s knowledge, as well
as other characteristics to be suggested later. (See the Introduction in [Sleeman
and Brown 83] for a discussion of student models.) The term "tutorial strategy"
refers to the system'’s strategy for dealing with a student’s request for a particu-

lar service in light of the details of the student’s responses to problems.

The above suggests that subtraction is a suitable domain for developing models
of the tutoring process. Most current research into tutoring systems involves

very complicated domains, for example:

e algebra: [Sleeman 82|, [Bregar and Farley 83]

e clectronic troubleshooting: [Brown, Burton and deKleer 82]
e programming: [Reiser, Anderson and Farrell 85]

e geometry theorem proving: [Anderson, Boyle and Yost 85]

Whereas subtraction can be dealt with by Young and O’Shea using only 20 pro-
duction rules, the geometry theorem proving tutor of Anderson [Anderson, Boyle
and Yost 85] requires approximately 700 rules. To be sure, subtraction does not
involve strategy, but later in this essay it will be argued that strategy is intro-
duced in integer division and reduction of common fractions, both of which are
simpler than, for example, theorem proving. Subtraction is sufficient for intro-

ducing mode switching, problem choice and so on.

3.4. Extra Features

In addition to the tutorial strategy discussed, it would be useful to have an
introductory session to explain the use of the system. The student should be
made aware of cursor control, commands, and so on, as well as the modes of
operation so that he can use the system effectively. Possibly some user informa-
tion could be present on the screen throughout the whole session in a special

reserved location. This is an important feature in that it helps to reduce error
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introduced by a student’s lack of knowledge of how to use the system as

opposed to his lack of knowledge of subtraction.t

4. The Use of Student Models in the Subtraction Tutor

In this section the features of the Subtraction Tutor which require the mainte-
nance of a student model are identified. It is observed that useful systems could
be built with no student model at all, although such models are necessary for
advanced tutoring skills. The system described so far could be implemented in
various combinations of modes. The following are some reasonable combina-

tions.

4.1. DEMONSTRATION Mode Alone

This would be the most straightforward mode to implement. In DEMONS-
TRATION mode, the student could see examples of his own choosing worked
out. He could use this to see how a particular problem is done or even to com-
pare his answer to that of the expert, either to see what he did wrong or to see
why what he did was right. On the other hand, he could use the system as a

source of worked examples if he were just learning a particular skill.

An academically mature and motivated student could use the DEMONSTRA-
TION mode as a programmed learning system. For example,we could imagine
him stepping through the expert’s proof but guessing ahead what the correct
response would be. He could even try guessing what the correct algorithm step
was going to be. (eg "the expert will have to see if it can borrow from the 100’s
column"). Using the system in this way is analogous to using a text book by

answering questions and then checking the answers, but not "cheating" and

{ This potential source of error was pointed out by Robin Cohen. The way to minimize this error is to ensure that
the student has simple ways to undo incorrect input, for example by a "zap" command which can be used to cancel the
latest input. By the same token, an "unzap” command can correct unwanted "zap” commands. Notice that by virtue
of the fact that the screen represents the student’s solution exactly as he would do it with pencil and paper, the system
can be assured that if the student is happy with what he sees on the screen, then any errors must be in his understand-
ing of the algorithm and not be due to a lack of understanding of the system. Compare this situation to one in which
the subtraction details could not be represented graphically. Suppose, for example, that the student was forced to en-
code his steps in appropriate arrays. He might have to enter: "NewMinuend[3] <-- 2" in order to indicate that the
value of the 100’s column was now 2 as a result of a borrow. In such a case, errors such as reversing the digits might be
common, and they would reflect errors in the student’s input of information rather than of his understanding of sub-
traction. But with the graphical representation, these errors could not occur.
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looking up the answer ahead of time. The upshot is that a system such as this
would be useful in the classroom even though it "knows” nothing about the stu-
dent, much less how to teach, and would exist purely as a tool to be used by a
student. It would be particularly useful for students who need to see many
examples, but who are too shy or intimidated to ask the teacher for extensive
help. This is not to say that a more sophisticated tutor could not perform more
sophisticated functions, but that lack of a managed student model does not

make a CAIl system ineffective.

4.2. GUIDED PROBLEM SOLVING Mode Alone

This mode would be useful for drilling the student in the use of the algorithm.
If the algorithm is displayed, it gives the student practice at interpreting it. If
it is not displayed, the student is forced to remember it and to execute it
correctly. In this mode, the system is taking more control of the tutoring pro-
cess, and preventing the student from merely looking at examples in a passive
way: the system forces some kind of response from the student. The system
would prompt for input from the student and compare this with its own answer.
If the student is correct, it prompts for the next response (with the algorithm
step shown possibly). If wrong there are two main alternatives discussed in the

next two sections.

4.2.1. Drill-and-Practice Paradigm

If the system is designed to operate at a level analogous to typical drill-and-
practice programs, it would indicate that an error had been made, allow the stu-
dent a few more chances, then provide the answer if necessary, and continue.
Note that even in this non-intelligent approach, the system ought to out-
perform conventional drill and practice programs because it at least shows which
steps are incorrect (not just that the answer is incorrrect). It could even display
the justification for the step. This ability to work through a problem in a

human-like way is one of the prerequisites of a good tutor.
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4.2.2. Intelligent Diagnosis

The system would display more intelligence if in addition it could diagnose stu-
dent errors as well. This is a much simpler task than that facing DEBUGGY
because the operation of subtraction has been broken into steps which are
made explicit on the screen and therefore can be represented by the system. As
an example, suppose the student believes he doesn’t need to borrow in a given

column. There are a limited number of possible bugs the student could have:
[1] He doesn’t know the rule, "borrow if top less than bottom".

[2] He doesn’t know which numbers are less than others. (inequality facts)

[3] He doesn’t know that he is supposed to test to see if a borrow is necessary.
[4] He was careless, inattentive, etc.

In particular, the system does not need to worry that the current error concern-
ing the need to borrow might be the result of a previous error because the sys-
tem would already have detected this fact and presumably would have corrected

it. For example, consider the erroneous solution:

426
-127

309

In this case the student apparently carried into the units column but forgot to
decrement the 10’s column. Consequently, the system, since it had already
observed this, would have corrected the problem, and the student would be
working with the correct digits in the 10’s column, (1 - 2 = ?) Thus any errors,
including careless ones, would be independent of previous ones. This allows us to
use what Burton calls "single column evidence" without the danger of a previous

error interfering.

Notice that the bugs can all be associated with the place in the algorithm where
they apply, so if an error is noticed, some of them can be tested as possible
hypotheses. For example, suppose a buggy rule is "borrow if top less than or
equal to bottom". In this case, if top and bottom were the same, a student with

this bug would decide to borrow instead of deciding not to borrow. If firing this
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buggy rule produces the same test decision as that of the student, then it could
be added to the list of hypotheses. Unlike Debuggy, we could then simply ask
the student which of the possible bugs, if any, he thought he had. In the con-
text of Buggy, this is like bringing in the student as a consultant in his own
diagnosis! But surely this is reasonable. After all, what is being diagnosed are
the ideas in the student’s mind, not, for example, the presence of bacteria in his
tissues. Whereas a person is unlikely to know whether he has gonnococci in his
bloodstream, he may well be aware of what his motivations are. Of course, he
may not be aware as to why he didn’t borrow when he should have, or he could
even be mistaken. He may simply be confused about the whole process of sub-
traction. In any case, however, we need not take his introspective reports at
face value, but merely add them to our evidence for given hypotheses. As a
general educational point, it is valuable for students to be exposed to the detail
of the diagnosis of their errors because it is important for them to ultimately be
able to diagnose their own mistakes if they are to become fully independent
learners. (Notice that medical patients are not supposed to become qualified
practicioners as a result of their trips to the doctor.) If the system is unsure, it

makes sense to ask the student.

The hope would be that by observations of common mistakes, the system
develops a model of the studentt which it can use at any time to make good
guesses as to what the problem is, and to decide what area to teach next. The

advantages of this capability are twofold:

[1] It may be easier for the student to correct an error if it is pointed out to
him. It is not desirable to exagerate the usefulness of this. The main goal
is to produce students who can subtract. If it turned out that straight drill

in GUIDED PROBLEM SOLVING mode eliminated bugs automatically,

there would be little use for a student model as a teaching aid.

/(dg Diagnosis could be done with the Theorist system [Poole 84} [Jones and Poole 85| [Poole, Aleliunas and Goebel
85]. The only reservation regarding its use is that it may be a more powerful tool than is needed. Theorist reasons by
finding hypotheses (possibly defaults) which "explain” observations, in the sense that the observations are logical conse-
quences of the hypotheses. It also checks that the hypotheses are mutually consistent and also consistent with the ob-
servations. We may not want to check for consistency, however, if we want to allow for inconsistent student behaviour.
The choice of an hypotheses choosing mechanism depends therefore, on the details of the implementation.
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[2] In the case where errors persist, a model which identified these errors
would be extremely useful, either as forming the basis of a report to the
teacher or for use by the system in determining tutorial strategy. Consider

the following types of problems:

(a) If the student makes factual errors in subtraction, the system could switch
to a program which provides drill-and-practice in math facts. Note that
the program need not be computerized, but could consist of problems in a
text book, math lab, or other paper based system. Moreover, statistics
could be kept on the types of errors so that the drill and practice could be
done efficiently. For example, the student may have difficulties with some
numbers more than others, or only when the minuend is in the teens, and
so on. Notice that this fine-grained analysis of factual bugs is beyond the
capability of DEBUGGY because it only dealt with a single test and

because the added computation was too great.

(b) The student may simply be careless. This can be detected by offering a
student the chance to correct the results of a step. If the step is a yes/no
one, then we cannot tell much, but if it is a subtraction step where there
are 10 choices, a pattern of incorrect first answers and correct second
answers would be evidence for carelessness. It is difficult for a computer to
deal with carelessness, but it is extremely useful for a teacher to know that

a student is not having a more fundamental difficulty.

(¢) A very useful source of error for a system to detect would be learning disa-
bility type of errors such as number transposition. One way to detect this
is by having an explicit transcription step wherein the student must use the
cursor to set up the vertical subtraction problem after being given the
problem in horizontal format. Errors in transcription could be recorded,
indicating which numbers were typically transposed. In addition, buggy
rules could be added to appropriate algorithm steps to account for mistakes

due to transposition.

A report to the teacher concerning persistent errors would be extremely useful,
particularly in the case of a learning disability. Even if the classroom teacher is

unable to deal with such a disability, it could be referred to specialists. This
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approach has the added advantage of saving time by eliminating other

hypotheses, such as carelessness, dullness ete.

4.2.3. Where does detailed diagnosis belong?

The diagnosis being suggested here is at least as detailed as that provided by
DEBUGGY and probably moreso. If a tutoring system is used at all, and if in
the course of its operation it needs an indepth diagnosis, then it seems that
there is less need for diagnosis to be done in detail by the sort of standardized
test and DEBUGGY analysis done by Brown and Burton. In this context, a
standardized test could be analyzed to determine problem areas in enough detail
that the online Tutor could be used efficiently. In a situation where resources
are limited, (i.e., virtually everywhere), it would be inefficient to have the Tutor
find out what sorts of problems a student had. If a diagnostic test (which can
be computer scored) can be used to determine that the student only has trouble
with problems involving zeros on the top, then the Tutor can immediately deal

with that type of question and find out why.t

If the Tutor being described were available, then DEBUGGY would appear to be
not the way to get detailed analysis. DEBUGGY is justified as being a good
way to get detailed diagnosis if there is a restriction on the detail of the data
available. IDEBUGGY, the interactive version of DEBUGGY, does not exploit
the extra data possible in an interactive system but only refines the test ques-
tioning. It is interesting to note that IDEBUGGY was chiefly used with student
teachers to give them practice (and the very idea of) debugging student algo-
rithms. (The system simulated buggy algorithms and the student teachers, by
choosing good test problems for the system to answer, had to find the bug.) This
is analogous to the educational use of MYCIN in the GUIDON system [Clancey

82| wherein the art of diagnosis is taught to medical students.

+ High level diagnosis based on such tests may itself be done be a computer diagnosis system such as the one
described in [Colbourn (Jones) and McLeod 83], [Colbourn (Jones) and McLeod 84] and [Colbourn (Jones) 83].
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4.3. UNGUIDED PROBLEM SOLVING

In this mode, the system does not issue prompts, but merely monitors the
student’s solution. Since the student might not make every step explicit, the
problem of diagnosing errors becomes more difficult. For example, if the student
does not explicitly state that he is going to borrow, then what we interpret as
borrowing errors may well have been errors in the test to determine whether
borrowing was necessary. To alleviate this possible compounding of bug
hypotheses, the system might insist that the borrowing steps be made explicit.
This is not too unreasonable, since a human tutor would probably insist on the
same thing if the student were having difficulties. One thing to notice is that
the problem of determining what the student is up to at any given time is allevi-
ated by the fact that the screen position of an entry indicates whether the stu-
dent is trying to borrow, show the new minuend, enter the answer, etc. So all
the system needs to do is run through its algorithm until it finds an entry in the
same region (eg., answer) and then compare. Also, if there is too much confu-
sion, it has the option of switching to GUIDED PROBLEM SOLVING mode and

stepping through the problem from the point where there is some uncertainty.

The two main concerns in this mode are (1) what to do in case of a detected
error and (2) when to switch to another mode. These two decisions are based on
information in the Student Model, the Tutorial Strategy, and the current state

of the tutorial. Some examples will show this interaction.

Suppose the system believes that a student has mastered a skill but discovers an
error in that skill. In this case it may be best to let the student continue in
hopes that he will discover his own error, possibly by checking his work via a
method such as adding. This would be particularly beneficial in the case of a
student who is known to be careless. It is the sort of strategy we would want to
be following if the student had already been through the more elementary modes
and was in the process of becoming able to solve problems independently. On
the other hand, if the error is due to a bug which the student is thought to
have, or if there is no evidence one way or another, it may be better to inter-
rupt, give him a chance to correct, or even go to GUIDED mode or DEMONS-
TRATION mode. That is, sometimes it is beneficial for the student to struggle,
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but other times it is a waste of time and only contributes to confusion. But
suppose the student had just signed on with the general request to get help with
a range of subtraction problems. The system may use UNGUIDED mode in
order to get a rough estimate of the bugs the student has. If this were the case,
it may note error types but not even bother to correct or tutor the student until
it had enough detail to decide what its tutorial strategy should be, in particular,
what skills and examples it would deal with first. (For example, it would not be
a good idea to try and correct errors with zeros in borrowing if the student does

not even understand borrowing without zeros.)

To summarize, the issues in the UNGUIDED PROBLEM SOLVING mode get
very complicated, primarily because of the number of options the system has at
any point and because of the large amount of knowledge the system needs in
order to choose among them. The problem of implementing a system with these
capabilities is much more formidable than implementing one which functions in
either the DEMONSTRATION mode or the GUIDED PROBLEM SOLVING
mode. What is clearly needed is an analysis of the tutorial strategies required
for teaching subtraction skills as well as a student model formalism which is
adequate for representing these skills and their deviations. But given that diag-
nosis is not computationally demanding in the Subtraction Tutor, the complex-

ity of the higher functions, ie., strategy, is proportionately less of a problem.

4.4. Student Control vs System Control

Another general CAI issue concerns the degree of student control the system is
prepared to allow. Laurillard [Laurillard 83] uses this distinction to classify CAI
systems into four types on a spectrum from complete computer control to stu-

dent control:

[1] Drill-and-Practice : the student’s answers determine the level of difficulty

of the next question.
[2] Tutorial :the computer attempts to correct errors the student may have.

[3] Simulation : the computer simulates some phenomenon not easily observ-

able. &
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[4] Moaodelling : the student is allowed to change the rules which describe the

operation of a system being studied.

Generally, the claim is that student controlled systems are more successful; how-
ever, part of the difference may be explained by the differences between the
goals of the systems mentioned. For example, it may be the case that comput-
ers are simply better at doing simulations (which incidentally involve student
control) than drill-and-practice. Possibly simulations are simply more interest-
ing than tutorials. (Notice that computers used to simulate physical phenomena
are not being used to simulate an activity of a teacher the way CAI tutorial pro-
grams are.) In any case, the importance and desirability of student control is
acknowledged, but its importance within each of the four types of CAI system

should be stressed.

Locus of control is also important because it captures differences in design philo-
sophy. In the computer controlled design we see the computer as emulating a
teaching style in which the student is somewhat of a second class citizen.
Teaching strategies and such are often kept transparent to the student, and his
preferences may not be actively solicited. (This is analogous to some medical
styles, in which the expert does not open up his methods to inspection by the
patient.) Such a CAI system is a tool used by the teacher to help him teach
the student. On the other hand, a machine which is under total student control
is a tool used by the student to help himself learn. The ideal is a compromise
which has its parallel in a tutoring relation in which the tutor is there to help
the student learn, but at the same time has expertise that the student lacks. In

some cases, therefore, we must expect that the tutor does know better.

Student control (at least partial) of a tutorial session is helpful in that it often
makes up for tutoring errors. For example, the system may think that a stu-
dent has mastered some skill based on correct responses, but the student may
not feel comfortable (maybe he was just lucky on some answers). In this case,
the system should be amenable to requests for additional examples. It can even
solicit requests with messages like: "Would you like a simpler example?”, "Would
you like me to finish the example for you?", "Would you like me to explain why

this is done?", etc. In the opposite case, sometimes a student will try to progress
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too fast. In this case, it may be necessary to hold him back until he has
achieved a certain level of performance. Messages can be used such as, "You
seem to be having difficulty with this kind of problem - let’s go back to a
simpler example." On the other hand, some students find too much external con-

trol to be frustrating and even demeaning.t

Similarly, the system may allow the student to ask for hints in either the
GUIDED or UNGUIDED modes. There will be a range of hints available from
none at all up to the answer. It would be appropriate for a hint to be under-
standable within the student’s current knowledge. For example, if the student
is thought to know the test which determines whether he can borrow from a
column, then a hint as to whether he can borrow might be "is the top zero?"
(The value as a hint assumes that if he knows the rule, the answer to the hint
will tell him the answer to his question. If he doesn’t know the rule, the answer
to the question tells him nothing and only encourages guessing, which is the last
thing we want him to do.) If he does not know the rule, it would be better to
provide the rule itself: “"you can borrow only if the top is not zero." At some
point in the tutoring process, it is expected that the student should not require
hints. If a pattern of hint requests occurs past this point, then there may be

some more serious problem.

5. Student Model Formalisms

Given that a student model is necessary for some functions of the Subtraction
Tutor, we can raise the issue as to what form it should take. Clearly, some
notion of a bug is necessary if the system is to form hypotheses as to the sources
of a student’s errors. In this section alternatives proposed in the recent CAI
literature are examined. The main suggestion is that the choice of a formalism
should be guided by what the system needs to know about the student in order

to perform the functions for which it is designed.

+ I recall using a CAI package which insisted on moving me back to square one every time I made an error. I
would have liked the option to carry on if I thought I understood the problem.
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5.1. Debuggy

The Buggy model in full-blown version is just too complicated for an interactive
system. Recall that the full list of bugs includes ones which are extremely rare.

Consequently, a set of only the most common bugs would be adequate.

5.2. Overlays and Genetic Graphs:

Goldstein [Goldstein 82| experimented with student models in the course of
developing a computerized coach which helped students learn to play a simple
maze exploration game called "Wumpus" [Yob 75]. Wumpus required logical and
probabilistic reasoning. Once the rules of the game have been learned (i.e., the
legal moves), students can increase their skill in the game and eventually learn
how to win (slay the Wumpus). Various WUSOR systems were developed to
coach the student, enabling him to learn the strategy of the game faster than he
would have on his own. WUSOR-I [Stanfield, Carr and Goldstein 76] was based
on a set of rules used by an expert playing the game. The student model here

consists of an "overlay", or subset of the expert’s repertoire of rules.

In WUSOR-II [Carr 77|, the rules were divided into 5 levels of difficulty which
reflected the general order in which students should learn them. This avoided
attempting to teach students the subtle aspects of the game before they had
mastered the basics. WUSOR-III was intended to be the final version, and was
to incorporate a "genetic graph", the nodes of which correspond to rules. The
arcs, or edges, of the graph represent evolutionary relationships between the
rules, that is, the learning relation they have to one another. For example, rules
can be analogous to one another. They can also be refinements, corrections
(specializations), or generalizations of one another. The motivating idea is that
students do not (should not) learn rules in a random, haphazard way but as
natural extensions of the rules they have already mastered. The genetic graph
therefore, can represent these relations. The student model, which is an overlay
(that is, a subgraph) of this graph can contain not only the rules the student has
mastered but also a representation of the order in which he learned them. This
allows the coach to determine a type of learning preference of the student and

thereby coach more effectively. For example, if the student exhibits a pattern
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of learning by analogy then the coach should pick the next rule to be taught
from those nodes which are linked by an analogy relationship to a rule already
mastered. This structure allows for a teaching strategy which is not based on

scripts (in which material is presented in an invariant order).

The complete student model is an overlay of the genetic graph with buggy vari-
ants attached to the appropriate nodes. The order of aquisition of the rules is
encoded into the student’s graph. The genetic graph developed for WUSOR-III

contained approximately 100 nodes (rules) and 300 links.

5.3. Genetic Graph of Subtraction Skills

Wasson [Wasson 85] combines the genetic graph formalism of Goldstein with the
subskill analysis of Brown and Burton, and produces a genetic graph of subtrac-
tion skills. The student model consists of an overlay of the genetic graph with
buggy variants to be added to the nodes of this graph. Thus, it is claimed, the
advantages of the genetic graph formalism are made available. I believe that
the genetic graph formalism is unnecessary in the case of subtraction and that
the complexity of it is not warranted.t The reason it is unnecessary is that sub-
traction is a much simpler domain than the game of Wumpus (even though

Wumpus is much simpler than most other adventure games).

In Wumpus, a set of game rules must be learned before the game can even be
played. The game itself is non-deterministic (as all real games are), that is, the
player is free to choose any legal move at any time. The "rules” in the genetic
graph represent strategies a player may or may not employ. But whether a
player is a novice or an expert, he plays the same game according to the same
regulations. In the case of subtraction, however, a deterministic algorithm is
applied to a given problem. There really isn’t any strategy involved. (This is
not true of all procedural skills, however, as will be seen in a later section.) In a
reasonable educational system, the rules of subtraction (steps in the algorithm)

are presented and learned in a generally fixed order as in WUSOR-II. In

t Note that the claim in [Wasson 85 is not that the a genetic graph is the most appropriate way to mode! student’s
knowledge of subtraction, but that it can be done in this way. The idea is to test the genetic graph formalism in a sim-
ple domain and then extend it to more complicated domains.
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particular, students are not exposed to types of problems which require rules
they have not been exposed to. For example, if borrowing has not been taught,

a student does not get questions like:

33

Similarly, if borrowing from zero has not been taught, there will be no problems
presented which require this skill. If indeed subtraction were learned like
Wumpus, a beginning student would be exposed to all types of subtraction right
from the beginning, and would experience large amounts of failure and frustra-
tion as he was gradually filled in on the rules needed to cope with more compli-
cated examples. Thus, although it is possible to teach some subtraction skills in
various orders, there is no necessity to do so, and probably no advantage any-
way. The conventional approach, which is essentially script-based seems ade-
quate. (Conversely, one could probably teach the game of Wumpus in a way
analogous to subtraction, that is, by devising cave designs which are simple
enough to allow the student to win at first by using only the most rudimentary
strategies, and then gradually increasing the complexity while introducing new
rules. Notice that this is possible with maze-type games because the terrain is

not constant, as it is in chess, for example.)

Consequently, the simplest way to model student knowledge for subtraction is
probably an overlay of an ordered set of subskills along with buggy variants. In
fact, a genetic graph representation using just component and pre/post links

would constitute such an odered set of subskills.

Given that the genetic graph formalism is powerful enough to represent
knowledge in domains more complicated than subtraction, there is some reason
to advocate its general use on the grounds of uniformity of representation. If,
however, a practical system is being built, and especiallly if the system must
give real-time response, it may not be possible to live with the overhead that a
complex structure requires. Moreover, in terms of obtaining a clear theoretical

understanding of the tutoring and diagnostic processes over various domains, it
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would seem that trying to achieve the minimal representation of student
knowledge which is required in any case would display the similarities and

differences in domains more clearly than systematically using the maximal one.

This is not to say that research into the application of generalized student
model formalisms is not useful. The researcher concerned with building practi-
cal systems needs a variety of formalisms to choose from, particularly when
attempting to design greater capabilities into a system. Also, there is an advan-
tage to finding a single student model formalism because it would simplify the
development of CAI systems in different domains. In some sense, it is what we
would like to find feasible.

5.4. Automatic Generation of Bugs

A further issue raised by Wasson is the automatic generation of the buggy vari-
ants of skills. [Wasson 85] The idea is to have a procedure which, given a correct
algorithm?f, will automatically generate buggy variants according to generic

errors:
[1] Omit or add steps to the algorithm.

[2] Permute the order of the steps.

[3] Permute the order of the arguments in a step.
[4] Test conditions incorrectly.

[5] Substitute one argument for another.

These general bugs do in fact account for many of the bugs discovered by Bur-
ton and Brown. (There is some doubt as to whether all actual bugs can be gen-
erated this way. In [Burton 82, p. 177] the claim is made that some observed

bugs "have no vestiges in the correct skill”. In this case, a bug catalogue would

t+ [Jones, Poole, Wasson 85] contains a recursive algorithm for subtraction written in Prolog which is offerred as a
candidate for buggy modification. However, it does not simulate the conventional algorithm in that it assumes that it
will be able to borrow and then adds the carry of 10 without actually testing or borrowing from the next column. In
the recursive call to the next column, the top digit is decremented if a previous borrow did occur. If further borrowing
is needed, the process repeats recursively. In the special case of zero, in which an extra borrow is always required, the
value is reduced to -1 when decrementation occurs, and then increased to 9 (correctly) when the carry is added. Thus,
there is no special treatment of zero in the algorithm. This is in fact more efficient than the conventional algorithm,
but an algorithm for a buggy-style diagnostic application should reflect the actual practice, including (1) a test for the
special case of zero and (2) explicit borrow before the subtraction is done, otherwise buggy variants will not be the ones
possessed by students.
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be needed in order to identify all errors. On the other hand, such bugs do not
occur with sufficient frequency to warrant their prediction.) In any case, it is
not clear what the advantages would be to doing this. After all, for CAI type
domains, there are professionals with a wealth of experience which needs only to
be tapped, so why not extract this expertise and code it directly into a given
system.} (Although work in expert systems has shown that extraction of exper-
tise is not easy and often is inaccurate, in the arithmetic domains such as sub-
traction, expert knowledge is relatively accessible. The ease of direct coding of
buggy variants will depend on the domain and experts involved.) Moreover, the
above strategy is potentially a computational nightmare. In addition, it compli-
cates the procedure whereby the set of bug hypotheses is tested, for there will
be many fictitious bugs generated which must be distinguished from real,
though possibly not guilty, bugs. If experience is appealed to in order to limit
the set of bugs automatically produced to real ones, then experience might as

well be used to generate them in the first place.

The motivation for automatic bug generation can be seen as in part a validation
of the psychological view that errors are due to generic variations in algorithms,
but more importantly as a desire to dispense with what is normally thought of
as domain specific information. If automatic bug generation were possible, we
would be able to design diagnostic components which only require an expert for
the correct algorithm. Thus a large part of the process of encoding domain

knowlede would be automated.

5.5. Repair Theory

The work of Brown and Van Lehn [Brown and Van Lehn 80] provides a useful
approach to this problem. They provide a "generative" theory of bug formation
based on the idea that a student with a bug is typically following an incomplete
algorithm. He uses it until he encounters a case in which the incompleteness
prevents further progress. The student then tries to "repair” the algorithm with

a buggy variant which enables him to solve the problem. The test for the

t In case the catalogue of bugs were very large, a genetic variant approach would save space but at the expense of
an increase in time complexity, which is not appropriate in a tutorial context, though it may be in say a Debuggy type
of context. In addition, the genetic variant approach may save time in initial system development.
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adequacy of a repair theory is that it be able to generate those and only those
bugs which students are observed to have. Thus there is a control on the
hypotheses which are generated. This set will correspond to the actual bugs
observed if the theory reflects the psychological processes of the typical student.
(Even if the theory does not correspond to student processes, it might pick out
the same bugs by luck.) Automatic generation, by contrast, has no hope of pro-
ducing a controlled output, since it is not guided by any theory which might
implicitly do the controlling. The size of the hypothesis set at a given time
could be controlled by dynamically generating bugs relevant to the current step
in the algorithm. Thus in the context of stepping through a solution (as in the
Subtraction Tutor but not Debuggy), the explosive growth of bugs which must
be considered could be controlled. However, within the set of current possible
bugs, there would be no guarantee that any bug is a "real” one, that is, one

which students are actually found to possess.

Repair Theory has an intuitive appeal in that it captures the behaviour of those
students whose strategy is to blunder through a problem at all costs, but in at
least a reasonable looking way. It is not a theory to incorporate in a practical
system, since all a practical system needs to know are the actual bugs. But a
tutoring system may well address the issue of trying to identify students who
have a tendency to freestyle their way through a procedure. It is certainly a
worthwhile educational goal to produce students who are aware of their own
mental struggles to the extent that they can distinguish knowing an algorithm

from inadvertently faking it.

5.6. Summary of Student Model Formalisms

A simple way to model student knowledge would be to use the production rule
analysis in [Young and O’Shea 82]. The advantage is that there are a small
number of these rules which can be added, deleted, and refined independently of
one another. For purposes of teaching or tutoring, the production rules can be
ordered into levels, as the strategies for Wumpus are in Wusor-II. A student
model then consists of a subset of the correct production rules and the incorrect
ones, that is, an overlay. The goal of a tutorial session, then, is to produce a

model (corresponding to a student) which consists of exactly the set of correct
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rules.

6. Other Domains

In this section other domains involving simple procedural skills are considered in
order to assess which areas can make use of the principles of the Subtraction

Tutor.

6.1. Integer Arithmetic

6.1.1. Addition, Multiplication, Division

An Addition Tutor would be much simpler that an Subtraction Tutor because
carrying is a much simpler operation than borrowing. (There is no special case
analogous to borrowing from zero.) On the other hand, if more than two
addends are allowed, the difficulty of "footprinting"” the partial sums would have
to be dealt with. Possibly, a separate routine could debug these errors by having
the student enter the partial sums as he calculates them. (Requiring the stu-
dent to make explicit steps which are not normally made explicit is an extremely
important issue in the design of tutors such as the Subtraction Tutor. I will

return to this shortly.)

Multicolumn multiplication involves both multiplication and addition, and so it
would be more complicated due to the increased number of errors which are pos-
sible. However, as long as operations can be represented in a grain size equal to
the grain size of students’ normal solutions, all typical errors should be easily
identified. In particular, we want to have access to the partial products and
their screen locations. We also would want to save the carry information in
situations where errors are not corrected as they are made. The screen
representation of multiplication is required for easy diagnosis of location errors
of partial products, which is a main source of errors especially when there are

zeros in the multiplier.

Division is the most complicated integer operation. In the first place, the physi-
cal layout of the solution is the most demanding in terms of correct column

placement of the successive dividends. Secondly, it involves a degree of
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indeterminism in the selection of the divisors. In simple problems, a student
needs to know his "goes-into’s" for example "6 goes into 52, 8 times with some-
thing left over”. In questions with larger divisors, a strategy is needed to esti-
mate the quotient, for example, rounding the divisor and current dividend and
using a primitive "goes-into" rule. At the base level of operation, a Division
Tutor ought to be able to monitor a student’s trial and error approach to deter-
mining the correct quotient digit. It should allow the student to make unwise
choices which will be found out to be incorrect, but it should be able to correct
mistakes such as trying a quotient digit when a smaller one has already proven
to be too large. At a higher level the Tutor should be able to simulate a round-
off type of strategy. Consequently, the system will need to know which strategy
(trial-and-error or estimation) is appropriate for a given student, and when it is
time to introduce the better strategyt. Hopefully, the estimation strategy is
motivated by the student’s perception that it offers a faster way to accomplish
something he already understands. It may be that the system could focus on
the development of the quotient discovery skill by exempting the student from
the multiplication and subtraction steps that are needed to determine whether

the trial quotient digit is too big or too small.

6.1.2. Making Steps Explicit

It has been suggested several times that a Tutor may find it convenient or
necessary to require the student to make steps explicitly on the screen instead of
“in his head". The advantage is clearly that it potentially eliminates some of the
confusion concerning sources of error. The difficulty is that the process of doing
this may be confusing to the student since he in effect is being taught a new
"written" algorithm which is to replace the conventional one, but only for the
duration of the tutorial. Consequently, we have to balance the student over-
head for facilitating communications with the usefulness of the extra informa-
tion. The process of making steps explicit is itself a new source of error. For
example, what the system sees as an error in a step which has been newly made

explicit may be due to the student’s unfamiliarity with the I/O protocols.

t Also, shortcut methods for dividing (and multiplying) by 10, 100, 1000 etc. should be introduced.
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Therefore, the idea must be conjectured with some care.

The examples mentioned so far have been the decision points in subtraction and
the running totals in addition of more than two numbers. By and large, the
pencil and paper algorithms which are learned in Canadian schools are well
suited for tutoring in the method which has been suggested, because they are
relatively complete. By contrast, some pencil-and-paper algorithms taught in
some European schools would be very difficult to debug with a Tutor. For
example, division is often taught with the suppression of the partial products.
The student estimates the quotient and writes it down. Then the quotient digit
is multiplied by the divisor digits, the result mentally subtracted from the
current dividend, and only the difference actually written down. Students asked
about this method claim that the justification is that it sharpens their skills
because they are forced to remember more. Whatever the reason, it means that
a European Division Tutor would have to use far more buggy rules to explain
mistakes in the partial products, and have a corresponding greater degree of
uncertainty in its diagnoses. The temptation would be to "reteach" the explicit
algorithm to a student having difficulty with the abbreviated one in order to
facilitate diagnosis. However, learning an expanded paper representation in this
case may really confuse the student and, as mentioned previously, introduce a
new source of error. As an option, the partial product could be entered in a
separate screen location as part of a full multiplication procedure with the
current quotient digit and the divisor. Also the subtraction step could be
represented separately. These sorts of options would probably have to be tested
in order to discover which in fact works better with students who have difficulty
with division.

The intricacies of this issue are being stressed because it is believed to be very
important in the design of tutors such as the Subtraction Tutor. Every time a
distinet part of a skill can be represented on the screen instead of only in the
student’s head, the system has a chance for direct confirmation (or rejection) of
its hypotheses concerning the student’s knowledge. And every time this is done
the computational aspects of the diagnostic function become simpler and more
reliable. As a useful byproduct, the system itself becomes easier to understand

because its operations become closer to our intuitive idea of what it means to
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tutor a student, and farther away from the statistically sophisticated control
structure of DEBUGGY.

6.1.3. Vertical Integration of Tutors

Multiplication and division illustrate the need for vertical integration of tutors.
That is, a Division Tutor, for example, in addition to knowing the skills and
bugs associated with the division operation itself, must be able to call upon a
Multiplication Tutor and a Subtraction Tutor to find errors in these component
skills. It may discover that the student should in fact be sent back to these
tutors for remediation before division is learned. This knowledge of the subskill
analysis of a skill into components which are themselves complete operations
which can be learned in isolation characterizes good human tutors. Often, the
most difficult students to tutor are ones who have a bug which is in a com-
ponent skill far removed from the skill being taught. For example, a student
may be learning how to factor trinomials which involve fractions. He may be
confused as to how the factoring rules are to be applied in the case of fractional
coefficients, but he may simply not be able to work accurately with fractions
themselves. This is not at all uncommon, since reliance on electronic calculators
does not allow the development of skills with common fraction operations. If a
fundamental difficulty with fractions is encountered, the best strategy is to stop
work on trinomials of this type until the basic skills with fractions are mastered.
In this way, the skills can be learned independently rather than together, which
may prove to be more confusing for the student. The point is that a computer
system which is going to tutor the factoring of trinomials will be much more
powerful if it can call other tutors which are specialists in the component skills.
This capability in turn requires that the control structure knows how to recog-

nize when this is necessary or even worth checking out.

6.1.4. Base n Operations

The four basic operations could be extended to base 2 numbers and addition
and subtraction could be extended to base 8 and base 16 numbers. In this con-
text, the EXPLANATION mode would be of most use inasmuch as it graphically

represents the meaning of the place notation. This is particularly important in
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making students see that base 10 is only one of an infinite number of possible
place notation schemes. One difference that we would encounter in tutors for
operations with other bases is the necessity to include a scratch area for working
out some operations by converting to base 10. For good reasons, most students
do not learn a whole new set of math facts when they learn how to, for example,
add in octal. Rather than learning that in base 8, "4 + 5 = 11", a student can
calculate in base 10, "4 + 5 = 9", and then convert the answer to octal: "9 /8 =
1 with 1 remainder, therefore the answer is 11". For hex calculations, the digits
greater than 9 are converted to decimal, the calculation is performed, and the
result is converted back to hex. Consequently, a scratch space should be used

to capture conversion errors as well as errors in decimal operations themselves.

6.2. Real Arithmetic

The four operations with real numbers are very similar to the operations with
integers, with the following exceptions. In addition and subtraction, the tran-
scription problem is more complicated because decimals must be lined up. Also,
padding with zeros must be dealt with. In multiplication; a rule for decimal
location must be learned. In division, the decimals must be manipulated at the
outset, and padding the dividend with zeros may be necessary. In some cases,

the quotient must be rounded off.

6.3. Common Fractions

This is the most complicated topic to tutor in a primary or elementary level
arithmetic course. In the first place there is the problem of representing the
fractions in a clear way on the screen, with horizontal, not diagonal, fraction
lines, and with a clear relationship between whole number and fractional com-
ponents of a mixed number. But this is primarily a technical problem, although
an extremely important one. The educationally interesting problem is dealing

with the extreme amount of indeterminism in basic operations with fractions.

To illustrate this indeterminism, consider the operation of reduction of fractions
to simplest terms. This procedure is used in all four basic operations, since

answers must be expressed in simplest form. Therefore, all fractional operations
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will be at least as difficult as reduction. There are basically two methods for

reducing fractions:

[1] Successive Division : Find a number which divides the top and the bottom
evenly. Divide it into the top and bottom. Repeat the process on the

results.

[2] FEactoring : Factor the top and bottom into prime factors. Cancel out the
factors which are common to top and bottom. Multiply the remaining fac-

tors.

First consider the method of Successive Division. For one, the student is free to
choose which division to do first, top or bottom. But he is also free to choose
any even division. Some people divide with the smallest number, some with the
smallest prime, some with the largest divisor they can think of, and some with
any number. Some people look for lucky cases, eg., the top or the bottom
divides the other evenly. Some people always cancel zeros first (a wise move).
Within these options, some people know the tests for divisibility for 2,3,5,9,and
11, and so they can tell by inspection whether one of these numbers evenly
divides another. Other people actually have to perform the division (possibly
with an electronic calculator) in order to see whether it is even. The point is
that though some of these methods may be better than others, they are all
acceptable, and a Reduction Tutor needs to be able to follow a person’s step by
step operations no matter which method or methods he usest. In light of this,
it may be useful to have the student somehow specify on the screen what his
current strategy is. The difficulty is that even students who can reduce frac-
tions may not be able to articulate (even by menu choice) what it is that they
are doing. But at least we can imagine that a student could indicate the

number he is choosing for a common divisor. Thus, a solution may look like:

t See Bregar and Farley 83|: "to be useful in a problem solving context, a problem solving system must provide an
appropriate level of explicitness, or granularity of its solutions and must be capable of monitoring a range of competen-
cies." (p. 11) This claim is made in the context of an algebra tutor, but it applies to tutors such as the ones which have
been described.
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18 9 3

where the divisors 2 and 3 are shown explicitly. Thus the tutor could detect
errors in tests for divisibility as well as errors in actual divisions. The system
should be able to manage a lot of the screen details like displaying fraction lines
and equality signs. Since it would then know the correct locations for entries, it
could detect errors in placement. On the other hand, every time the system
provides a guide like this, it is not able to test the student’s ability to perform
that sort of operation on his own.. This is not an unimportant point. In many
cases students can solve problems once the basic structure of the solution is
displayed. The formal method of square root extraction is a prime example of a

problem of this type.

The motivation for the Factoring method is that the above method is not capa-
ble of producing answers in cases where there is a common factor which is
bigger that the numbers in the students repertoire of "goes-into’s”. For exam-

ple:

39 3

Since most students do not know what 13 goes into, they are unable to solve the
above problem, without using a brute force approach with an electronic calcula-
tor (that is, try everything up to 26 on the calculator!) If factoring is used, the

same result can be obtained by knowing only what 2 and 3 go into:

26 2 x 13 2

39 3 x 13 3

This method is also useful in that it can convince you that you are in fact done.
That is, if large numbers are left, there may be some uncertainty as to whether
there is, in fact, a common divisor. Factoring into prime factors proves that

there is no such hidden factor.
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The Factoring Method can also be used by factoring into composite numbers,
which themselves may be reduced by the Successive Division Method, for exam-

ple:

48 6 x 8 6 2 3

64 8 x 8 8 4

It is apparent that even a simple operation involving a reduction of fractions can
be done in a very large number of ways if all combinations of strategies are
allowed. If we were restricted to the buggy strategy of considering only whole
answers as evidence, the number of possible hypotheses for an incorrect answer
would be staggering. Another reason for preferring that solutions be examined
in detail is that we would expect a greater frequency of careless division errors
in a situation where much of the student’s attention is focussed on the rules and
strategies of reduction itself. Careless errors are the bane of Buggy: its motiva-
tion is the conviction that most student errors are systematic. In a Reduction
Tutor, the actual division step will be isolatable and division errors will be easily
detectable. Moreover, as with the Subtraction Tutor, it would be possible to
collect statistics on the distribution of factual errors over the domain of primi-

tive facts.

The Reduction Tutor must be able to simulate the two methods of reduction as
well as monitor and correct the student’s solutions. In some cases, the student
may pick a less than optimal method. In these cases, the tutor needs to know
when to suggest a better solution and when not to. For example, if the student

uses Factoring or Succesive Division on:

180

instead of immediately cancelling zeros (dividing by 10), he will require 4 extra
operations. The Tutor should point this out, but can choose between introduc-
ing the idea of cancelling zeros as a new strategy, if the student is not known to
be aware of this strategy, or simply reminding him, if the strategy is thought to

be part of his repertoire. The importance of this distinction is that we do not
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want to confuse the student by assuming he knows something. (The student
wonders, "Am I supposed to know that? Was I told but just forgot? Was I sup-
posed to be able to figure it out myself?") Many of the tricks used even in arith-
metic are not things that the average student could be expected to know intui-
tively or be able to derive automatically. These items can be best integrated by
the student if he has a clear realization such as, "Well, I never would have
thought of this in a million years, but when it is explained to me, I can under-
stand it."” On the other hand, some strategies can be learned by discovery, espe-
cially if hints are provided. For example, "You correctly solved the problem by
completely factoring it, but what would have happened if you had divided by 10
right at the beginning? Try it." Whether the student produces the simpler solu-
tion or whether it is tutor-generated, ideally both solutions should be present on

the screen in order to facilitate comparison.

The Tutor must also choose when and how to introduce a new strategyt. For
example, although Factoring is a more generally applicable strategy in that it
solves more problems given a limited set of division facts), it is normally taught
after the Successive Division method. The Tutor could wait for the first prob-
lem of the type 26/39=1, let the student struggle, and then use this as motiva-
tion for the Factoring method. But some students don’t appreciate this kind of
manipulation, especially if they do not like to struggle. In this case, the Tutor
may introduce an example first and then let the student try one. This is an
example of a student learning preference type that would be useful to represent

in a tutor.

The Reduction Tutor raises an issue which becomes more problematic as the
grade level of the skill increases. In a given curriculum, there is no guarantee
that factoring will have been taught. In this case, the Factoring Method should
not be taught at all. Moreover, questions which can only be solved by factoring,
given the set of division facts included in the curriculum, should not be allowed.

Notice, that this suggests the need for a Curriculum Model if the Tutor is to be

t In light of the previous discussion of computer versus student control, there is no reason why the tutor can’t sim-
ply ask the student, for example, "would you like to learn a simpler way to do this?" It may seem that the obvious
response would be "yes", but many students find alternate methods confusing if they have not mastered the current
one. Even if students would generally answer "yes", it is a matter of politeness, if nothing else, to ask.
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capable of functioning in a variety of educational contexts as opposed to being

custom built for one curriculum.

6.4. More Complicated Mathematical Domains

A natural question to raise is whether the principles of the Subtraction Tutor
can be extended to more complicated mathematical domains such as theorem
proving. The two main ideas behind the Subtraction Tutor are that student
solutions should be monitored in as much detail as possible and that this detail
should be represented on the screen in as natural a way as possible. In theorem
proving, for example, the steps of the proof must be shown because they consti-
tute the solution. A novel use of the screen in [Anderson, Boyle and Yost 85] is
to represent a proof as a tree whose nodes are the definitions and rules which
may be used. In this case, the automated tutor uses a representation technique
which is standard in automated theorem proving, and which ought to be part of
the standard way of teaching the subject to students. The only area that might
benefit from more detail is the process whereby the student determines what his
next step should be. But the difficulty is that the teaching of theorem proving
has not produced a more algorithmic or reasoned out approach to this which can
be simulated by the system. (It seems like a black art to the student.) Perhaps
research into this area will be a source of new teaching methodology rather than

an encapsulation of the existing one as is the case with the subtraction tutor.

6.5. Non-Mathematical Domains

We first note that the bulk of the current research into tutoring systems has
focussed on mathematical domains. The obvious reason is that answers in this
domain are readily calculable compared to, for example, common sense reason-
ing. A less apparent reason is that most researchers are scientists of some kind
and are therefore more familiar with mathematical domains. At any rate, it is
of interest whether there are any non-mathematical domains which are pro-
cedural in some sense and which would benefit from screen representation of

solutions.t One area which exhibits a procedure of sorts is the parsing of

+ There are many domains which do not involve procedural skills but which benefit from screen representation.
The teaching of graphic design and composition principles could be automated by having students input elements into a
frame and having the resulting composition evaluated by a composition tutor. There are undoubtedly many such ex-
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sentences in English grammar classes. If it weren’t for the natural language
aspect of this task, this would in fact be a mathematical skill and a mechanical
one at that. The normal procedure is unlike a typical parsing algorithm in that
students are taught to divide the sentence into subject and predicate first and
then refine this initial division, introducing direct objects, indirect objects, and
ultimately classifying each word according to its part of speech as used in the
sentence. While there is a semblance of method in this procedure which can be
represented as a sequence of questions such as "What is the action in the sen-
tence?”, "Whom or what is doing the action?" and so on, there is much difficulty
in explaining why an answer is right or wrong. In the first place, the interaction
must take place in natural language, and the system must be able to understand
the implied semantics of the sentence. In fact, the whole idea of a student’s
parsing a sentence is somewhat confusing because we would expect that a stu-
dent must have done some amount of unconscious parsing if he has understood
the sentence at all. At any rate, this would be an interesting area to investi-
gate, but only if the expert component can be developed so that it can not only
produce correct parses (which is not especially difficult) but also justify its
parses in a human like way. (The use of a definite clause grammar for the
expert is suggested, but such a grammar uses a part-of-speech pattern match as
its method. It would need to be modified to use semantic information.) This
does not mean that it must be able to parse in a top down, semantic way, but
only that it can reproduce this sort of parse once it has its own parse (probably
based on tables associating words with their part of speech). A further compli-
cation is that human parsing exhibits a mix of top down and bottom up parsing,
for example, if you know that "of" is a preposition, and you know that preposi-
tional phrases cannot be direct objects, you can rule out the possibility that a
phrase beginning with "of" is a direct object without understanding the semantic
content of the phrase, that is, in this case whether the phrase denotes something
which is receives the action denoted by the bare predicate (verb) of the sen-
tence. Since the whole area of natural language understanding is difficult in

itself, it may be premature to contemplate systems which can tutor its analysis.

amples.
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But if the complexity of the sentences is restricted, and if the vocabulary and
context is restricted so that the system does not have to deal with any ambi-
guity, then such a tutor may be feasible. It may even be useful for natural

language research itself.

7. Conclusions

It has been argued that detailed subtraction error diagnosis is more effectively
done in a tutorial context than by examining whole answers to diagnostic tests
as is done by Debuggy. This has been shown to be even more critical in the
case of more complicated, non-deterministic, procedural skills such as integer
division and common fraction reduction. It seems unlikely that the Buggy
model could be easily or effectively extended to these domains. The tutorial
approach, on the other hand, seems readily extensible because it monitors the
details of the student’s solution and is not especially bothered by the fact that

there is more than one way to solve a problem.

As a side benefit, it appears that subtraction is a suitable domain for developing
an automated tutor in that it is complicated enough to allow for switching
methods by the tutor but is not overly complicated. The only missing element,
namely strategy, can be introduced by choosing a domain such as fraction

reduction, which is still relatively uncomplicated.

8. Directions for Future Research

The production rules of Young and O’Shea appear to be the most promising way
to implement the various modes of operation of the Subtraction Tutor. As the
higher modes are implemented, a tutorial strategy appropriate to subtraction
needs to be designed, along with a student model adequate for the tutor. In the
other arithmetic domains, production rule systems could be developed, in order
that other tutors be implemented. The tutorial strategy would have to be aug-

mented to deal with the coaching of strategy in solving problems.
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skills

No subtraction skills

Subtract
Subtract
Subtract
Subtract
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow

0 from a number whose right-most digit is 0

0 from & number

columns which are n-n or n-0

without borrowing

from some columns with a digit on the botlom

from columns whose answer is the same as their bottom digit
from a column with a 9 or a larger number on top

from a column with a larger top digit

from a column with zero on top when blank on bottom

from a column with zero on both top and bottom

from a column unless one is on top and a nonzero digit is on the bottom
from a column unless digit one is on both top and bottom
in two consecutive columns

from columns with the same digits on top and bottom

from columns that have nine as the bottom digit

from columns with the same nonzero digits on top and bottom
from columns which have an answer of zero

from the leftmost column when it has a non-blank in the bottom
more than once per problem

Can borrow then not borrow

Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Subtract
Subtract
Subtract
Borrow
Borrow
Borrow
Subtract
Subtract
Subtract
Borrow
Subtract
Subtract
Subtract
Subtract
Subtract

from columns with two on the bottom

from leftmost columns or columns that have a non-one on top

from columns with top digits smaller than the bottom digits

from columns that have a top digit one less than the bottom digit

from the leftmost column

once in a problem

from columns that have the top digit larger than the bottom digit

from a column with the top digit greater than or equal to the bottom digit
from a column with a zero on top

from a middle (not leftmost) column with a zero to the left

from lefimost column of a problem whose form one foliowed by one or more zeroes
from a column with a zero on top and a zero to the left

from or into a column with a zero on top and a zero to the left
into 8 column with a zero on top and a zero to the left
from a column with a zero on top and a blank on bottem
into a column with a nonzero digit on top

into a column with a one on top

when difference is 5

columns with a one or a zero in top that require borrowing
columns with a zero in the top number that require borrowing
a column with a zero on top that was not the result of decrementing a one
into a column with a zero on top when next top digit is zero

fron a column with 2 blank on the bottom

from a column with a one on top

numbers of the seme lengths

a single digit from a large number

columns unless the same digit is on top and bottom

all the time :

when one is in top

when neither number has a zero unless the 0 is over a2 0

columns when the bottom is a zero and the top is not zero

when a column has a zero over a blank

numbsers which have a one over a blank that is not borrowed from

Can subtract a number- from itself

Subtract
Subtract
Subtract
Subtract
Subtract

numbers with zeros in them

problems that do not have a zero in the answer

numbers when the answer is no longer than the bottom number
lefimost columns that have top and bottom digits the same
columns that have top and bottom digits the same®the same ones.
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FD. A =m, S =3 ~  FindDi#t, NextColumn

B2A. 5> M =  Borrow '

851 Borrow = *AddTenToM

Bs2: Borrow 2> *Decrement _.

(@00 Me=m S = 2 *Compare

N ProcessColumn 2 *keodMondS .
s FindDiH = *YokeAbsDiHf B ‘
NXT: NextColumn = *Shifiteft, ProcessColumn -
WA: Rosult =x = *Write =x

DONE: NoMore 2> *HALT

82¢C: S=M 2  Resvlt 0, NextColumn

AC. Kesult 1 =x = *Corry, Result =x

Figure 2. Procuction system for subtroction by decomposition.

B828. S < M <
gL Me=m, S =3 -
NIN: M =m, SO ©>
TINNT MO, S = -
NIZ: Mem, S50 <
INI: MDD, 5 = [
SMD: S > M [
B>

NNN. M =g, 5§ =n

Borrow

Borrow

Rewtt «m, NextColumn
Resutt =3, NextColomn
Rasult 0, NextColumn
Result 0, NaxtColomn
Result 0, NextColumn
Resuh =n, NextColumn

Figre 4. Modfied ond additiona! rulzs neaded to mode! errors in Bennett's (1976)
data, (N3 Thess ruler do not form o “Froduction System—aes text for clorification.)

tHE: M =m, S blonk =
TEN: Mren, S =3 =
DEC: Doc ement =
DNI: Decrement, NonZero =
DI Decrement, Zero =
D12: Decrement, Zero =
DI0. Decrement, Zero Ten »
PROP: Propogote =
Pi: Propagote, Lero =
PNZ: Propogate, Nonlero =

Rewtt =m, NextColumn
*TreathcsTen

*LookAtleftM, *MoveEyeleft
*ReduceByOne

Propagate
*ChangeZeroToNine
*ReducelenToNine
*LookAtLeftM

Decrement

Do ement

Figure 5. Additionc] rules needed for Brown ond Burton’s (1978) problems.
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TABLE 4

Production System Analysis of
Brown and Burton’s (1976) Most Frequent Bugs

N ° Bug type Drop rules Add rules
57 Borrow—from -0 D21, D0

54 Smnlkr-from-larger CM

50 Borrow—drom—0 ond kef-10-0K on

34 0 = N = N ond move-over-O-borrow  DZ2 INN

14 0 ~ N = N ond stops-borrow-at-0 DI, DI2 INN

13 Smalier-from-larger ond 0 ~ N = 0 M INI

12 0 - N = 0 ond move—over-0-borrow D12 INZ

n Borrow-from-0ond N — 0 = 0 D11, D10 N22

10 0-N=0odN-0=0 INZ, N2z
10 Bomow-from-0ond O —= N = N D21, D10 INN

10 Morve—over-0-bortow D22

10 N-0=0 NI

10 D~-N=N TEN INN

9 0 — N = N ond Leh-10-OK INN

8 Borrow-from-oll-0 PNZ

© Number of children (out of 1325) who

consistently exhibited the bug
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