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ABSTRACT

We present a simple model theoretic semantics for both defaults and
diagnosis. The semantics is based on normal first order model theory;
instead of changing the logic, we propose to change the way in which
the logic is used. Rather than deriving the consequences of our
knowledge (finding what logically follows), we build falsifiable ‘‘scien-
tific’’ theories which explain some set of observations. By using a prede-
fined set of possible hypotheses which can be defaults or possible mal-
functions or diseases, this idea subsumes the intuition behind Reiter’s
default logic and characterises model-based diagnosis. A prototype
implementation, called Theorist, executes all of the examples given.

1. Introduction

There has been a perceived problem with using traditional logic for commonsense rea-
soning, as it is monotonic. There have been many proposals for augmenting classical
logic to allow it to do non-monotonic reasoning (Reiter[80], McDermott and Doyle[80],
MecCarthy[80,84], Moore[83]). We argue that, rather than being a problem with logic,
it is a problem of how we use logic.

Essentially we propose that, instead of viewing reasoning as deduction from our
knowledge, it is better to view it as “scientific”’ theory formation (Popper[59], Quine
and Ullian[78]), based on a set of user-given possible hypotheses. We show that
Reiter’s defaults and the notion of diagnosis from first principles can be explained in
this framework. By allowing defaults and diagnosis within the same framework, we
can build diagnostic systems which are based on a simple semantics, and can handle
generalised and possibly erroneous or noisy knowledge.

We first give a syntax and a semantics for our logic, then some examples, and argue
that the logic fits with our intuition behind defaults and diagnosis. Finally we describe
an implementation and compare it to other diagnostic systems.
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2. Syntax

Here we define the syntax of our default logic as an extension of the syntax of the first
order predicate calculus.

The symbols in the language are the variables (in upper case), constants, function
symbols, predicate symbols (lower case), standard logical connectives — (negation), a
(conjunction), v (disjunction), D (implication), «— (if), (, ) (parentheses).

We first give standard definitions of predicate calculus syntax. A term is either a
variable, constant symbol or a function symbol followed by a parenthesised list of
terms. An atomic symbol (atom) is a predicate symbol followed by a list of terms. A
well formed formula (wff) is an atomic symbol or —w;, (wirwy), (wivw,), (wiDw,),
(wye—=wy), (Vv wy), (v w;) where w; and w, are well formed formulae, and v is a
variable. Parentheses may be omitted when no ambiguity occurs.

Facts are defined by an expression of the form:
fact w;

where w is a wff. Free variables in w are assumed to be universally quantified. (If w is
of the form of a clause “Lgy«=La * * - AL,” then we use the key word ‘“‘rule’ instead of
“fact’’; in the implementation this provides heuristic information.)

A possible hypothesis is an expression of the form
assume n: w;

where n is a term (the ‘“name” of the possible hypothesis) and w is a wff. A default is
said to be closed if there are no free variables in n.

For example the defaults ‘“birds fly’’ is written as the open default
assume birdsfly(X): flies(X )« bird(X);

An instance of default assume n: w is the wff formed by substituting in w ground
terms for the free variables in n. The corresponding instance of n is the name of the
instance. All other variables (in w) are assumed to be universally quantified.

2.1. Semantics

The intuitive idea is, given a set of observations to be explained, a set of facts known
to be true, and a pool of possible hypotheses, to find a theory (a set of instances of
possible hypotheses) which can be used to explain the observations (i.e., together with
the fact implies the observations) and is consistent with the facts (i.e., does not predict
anything known to be false). This should be viewed as a ‘‘scientific theory’ based on a
restricted set of possible hypotheses (see figure 1).

The model theoretic definition of the first order predicate logic says that for a set of
closed wffs A and a closed wff w, AFw means that w is true in every model of A.
That is, there is no interpretation in which every element of A is true and w is false,
given the normal definition of the logical connectives.

Definition: given a set of wffs, F, (called the facts), and a set of defaults A, we say
closed wff w is explainable if there is a finite set D of ground instances of elements of
A such that
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D is said to be the theory that explains w. D is a ‘‘scientific’’ theory, which is part
of the “logical” theory which is the deductive closure of FUD.

3. Default Reasoning

In this section we show that if the possible hypotheses are defaults, the semantics
above gives an account for default reasoning.

3.1. Example 1 - “birds fly”’
Consider the statement ‘“‘birds fly”’. This can be expressed as the default:

assume birdsfly(X): flies(X )+ bird(X);

This means that, for a particular value b of X, if bird(b) can be proven then so can
flies(b), as long as the default has not been contradicted for that particular b. If
bird(b) and — flies(b) are provable then the default is contradicted for that particular
b.
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Suppose that, together with the above assumption, we have the facts that emus are
birds which do not fly, Polly is an emu and Tweety is a bird. This can be expressed
as:

fact emu(X)Dbird(X);
fact emu(X)D— flies(X);
fact emu(polly);

fact bird(tweety);

flies(tweety) is explainable by the theory {birdsfly(tweety)}, which is consistent with
the facts. flies(polly) is potentially explainable by the theory {birdsfly(polly)}, but
this is not consistent with the facts, as its negation can be proved. So flies(polly) is
not explainable.

3.2. A comparison with Reiter’s logic

This section will make two comparisons with Reiter’s default logic (Reiter[80]). One
shows that the above logic is a restricted case of his normal defaults, and the second
shows that the extra part of his defaults are not needed.

3.2.1. A restricted form of Reiter’s normal defaults
The default schema

assume n: w;

(where the free variables in w are the same as those in n) is a syntactic variant of
Reiter’s normal default

Mw
w

Reiter’s logic for closed defaults is defined in terms of ‘“‘extensions’. In this section we
explain extensions in terms of our logic.

First of all we define a partial order on theories; suppose D; and D, are theories, D is
less than D, (written D{CD,) if D, is a subset of Dy. The following lemma trivially
holds.

Lemma 1: (monotonicity) If D;CD, and FUDFa then FUDF«

Define a maximal theory as a maximal element of {D:D s a set of ground instances
of A and FUD is consistent}. Suppose Th(A) is the set of all logical consequences of
the set of axioms A. Define an extension to be Th(DUF) where D is a maximal
theory.

Note that a maximal theory is not necessarily a theory (as it may not be finite). It is
countable (as the Herbrand universe is countable), but not necessarily finite. For exam-
ple, assume a system with functions and the following rules about p:

assume pn(X): p(X)
fact = VX p(X)

Its maximal theory includes the set of all conjunctions of elements of p such that not
every value is in the conjunction.
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Theorem 2: o is explainable = « is in some extension.

Proof: If o is explainable then there exists D a set of instances of A such that FUD is
consistent, and FUDFa. By the definition of maximal, there exists a maximal theory
E such that DCFE. By the lemma 1, FUEFq, so ocTh(FUE).

Conversely, suppose that o is in some extension. Then o€Th(FUE) for some E. Let

D be the (finite) subset of E used in a proof of o. Then « is explainable by the theory
D

Q..E.D.

The following theorem parallels the definition of a closed extension given in Reiter[80].
This shows that our definition of an extension in terms of maximal theories
corresponds to his definition.

Theorem 3: Suppose E is an extension of <F,A>. Then

(1) FCE

(2) Th(E)=E

(3) If assume n: « is a ground instance of a possible hypothesis, and —agE then
ocE

Furthermore E is minimal with respect to the above three properties.

Proof (1) follows since FCTh(FUD) for any D. (2) follows from the definition of Th,
since Th(Th(S))=Th(S) for any S. (3) if “‘assume n: o/’ is a ground instance of a pos-
sible hypothesis, and = o E, then suppose o£E. Then EU{a} is larger than E and
EU{c} is consistent, as = o Th(E), which contradicts the maximality of F.

To show E is minimal with respect to the above three properties, suppose E'CFE};
E'#E; and E' is an extension with the above three properties. As E is an extension,
there is some D such that E=Th(FUD). There must be some a€D such that ogE,
otherwise as FCE' and FUDCE' so E=Th(FUD)CE’. Now, ‘“assume n:o’€l,
—oE' as E'CE and - ofE (as ocF and E is consistent). But o E’, contradicting 3.
Q.E.D.

3.3. Expressing Reiter’s logic in our logic

Reiter’s normal defaults of the form:

of X):Mw(X)
w(X)
(where X is the set of free variables), can be approximated by the default
assume name(X): of X )Dw(X)

Both of these can be used to explain w(¢), (for some ground terms ¢) given ofc), as
long as w(c) is consistent. The second also allows us to explain —of¢) from —w(c) as
long as it is consistent, as well as being able to explain of¢)Dw(c). Notice that giving
up the latter means giving up proof by cases. For example, from the following
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we cannot derive <y in Reiter’s system. If we allow proof by cases (with the law of the
excluded middle) in Reiter’s normal default logic we get exactly the logic above with a
model theoretic semantics. All of the examples of Reiter[80] are still sensible when
mapped to the form above.

It has been claimed that normal defaults are not adequate to handle most naturally
occurring defaults (Reiter and Criscuolo[81], Etherington and Reiter[83]). Our logic
provides another mechanism to handle these problems, namely the ability to prefer one
theory over another. Poole[85] gives a mechanism to handle inheritance problems
(Touretzky[84]) by preferring the most specific theory.

4. Diagnosis

Our definition of explainability also provides a natural characterisation of diagnosis. A
diagnosis is a theory that implies some set of observations. Here we mean systems
which do diagnosis from first principles, (e.g., Genesereth[84], Reiter[85]), rather than
systems which encode the methodology of an expert, like rule-based expert systems
such as Mycin (Buchanan and Shortliffe[84)).

With the same language and semantics, we let A be a set of possible malfunctions or
diseases, as well as defaults describing how these problems normally manifest them-
selves and how the system normally operate. The theory is a detailed description of
what is happening to produce the symptoms.

Theory D, is simpler than D, if FUD,DD;. A diagnosis is a simplest theory (in the
partial ordering of simplicity of theories) that explains the observations and is con-
sistent. Notice that we have defined a semantic notion of simplicity. In particular, one
theory is simpler than another if it is a subset of it. If a theory is a super set of
another, then it implies the other, and is of no use, as it is only including hypotheses
which were not needed to explain the observations. Thus by excluding larger theories
from being diagnoses, we are just excluding theories which contain extraneous
hypotheses. We are only using the hypotheses that we need to account for the observa-
tions.

We are also not adding heuristic notions of simplicity, for example, preferring theories
which assume that fewer parts are faulty, or which maximise normality. Nor are we
excluding diagnoses where someone may have some rare but unlikely disease. Which
diagnosis is more likely, and which is more serious is a question of theory preference,
and is not discussed here.

The idea of a diagnosis is that we are trying to determine reality (what is really the
case) from our observations. The correctness and completeness of our semantics can be
shown by how accurately our diagnoses corresponds to reality. The next theorem show
that one of the diagnoses must correspond with reality if we have adequate knowledge,
and adequate possible hypotheses to characterise the world we are modelling.



Default Reasoning and Diagnosis 7

We say that our system is adequate to describe a situation (the relevant parts of the
world we are describing) if there is some set of instances of hypotheses which are true
in the world (correspond to ‘reality’’) and, together with the facts imply the observa-
tions.

Theorem 4: (diagnosis): If we have some symptoms and facts about a world, and our
system is adequate to describe that world, and if Dy, - - - ,D,, are the diagnoses then
one of the D; is correct (is true in the world).

Proof: Suppose W is the world, and F is true in W and there is some set § of
instances of possible hypotheses which are true in W and adequate to prove the obser-
vations. In this case § is a theory, as FUSFO and FUOJ is consistent (as W is a
model). We need to show that some D; is true in W. If no D; is true in W, then a
minimal subset of § which predicts O, is a diagnosis (it is consistent at FUJ is con-
sistent, and is finite as we only need the elements needed to prove O), and there are

only a finite number of these. So one D; must correspond with reality.
Q.E.D.

Whenever we are presenting a set of diagnoses, there will be the implicit assumption
that we have enough knowledge to describe the world.

4.1. Testability

The main feature of a scientific theory or a diagnosis is its testability. If there are two
possible diagnoses then we should be able to design tests which can discriminate
amongst them.

If D; and D, are diagnoses, then we say that they are distinguishable if there is
some proposition p such that

FUDQD"'Ip

That is D; predicts p and D, predicts —p.

We can discriminate between D, and D, by finding out whether p is true in the
world (e.g., our implementation achieves this by asking the user).

Lemma 5: If D; and D, are diagnoses which can be distinguished by p then finding p
true will remove D, and all theories less specific than D, (That is we are actually
removing diagnoses by making tests).

Proof: By finding p true, we are adding p to the facts. FUDy>—p so FU{p JUD, is
inconsistent and cannot be a diagnosis. Any diagnosis less specific than D, implies D,,
and so is also inconsistent. Q.E.D.

Theorem 6: (testability): If {D, - - ,D,} is the set of diagnoses, and the D; are
pairwise distinguishable, then there is a set of (at most n—1) tests which can determine
which of the D, are true in the actual world.

Proof: Suppose there are two distinguishable diagnoses D; and D;, then there is some
test which will distinguish them. Carrying out this test will eliminate one of these. If
there is not a pair of diagnoses left, then there is only one left. By the diagnosis
theorem one of the D; is consistent with reality. So it must be the one left. Q.E.D.
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5. Examples

In this section we will give two different examples of diagnosis. One of these is in a
rather contrived, pseudo-medical domain intended to show how we can handle diseases
and symptoms. The second is in the domain of circuit diagnosis, which has been used
by a number of other researchers, and so can be used to compare our system with
theirs.

5.1. Example 2: A Pseudo-medical domain

Figure 2 shows an example session with Theorist.

facts and possible hypotheses

:fact aching(elbow) «— tennis-elbow;

fact aching(hands) «— dishpan-hands;

fact aching(X) «— arthritis joint(X);

fact joint(elbow);

fact joint(hands);

fact joint(knee);

fact plays-tennis +— tennis-elbow;

:assume patient-has-tennis-elbow: tennis-elbow;
:assume patient-has-dishpan-hands: dishpan-hands;
:assume patient-has-arthritis: arthritis;

:assume patient-has-meningitis: meningitis;
:explain aching(elbow) aching(hands); %to be explained

diagnoses

Theory: [patient-has-dishpan-hands,patient-has-tennis-elbow]
Theory: [patient-has-arthritis]

Make aching testable, and reask

:askable aching(X);

:explain aching(elbow) aching(hands);

Is aching(knee) true? %system asks

no; %user replies

Theory: [patient-has-dishpan-hands,patient-has-tennis-elbow] %resulting theory

Figure 2 Diagnosis in Theorist 0.1
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The facts state the effects of diseases. For example, the first fact states that if a per-
son has tennis elbow, then they have an aching elbow. We describe the diseases as
possible hypotheses. A diagnosis is then a minimal set of diseases which is consistent,
and predicts the observations.

The system comes up with two diagnoses; namely that the patient has both dishpan
hands and tennis elbow, and the diagnosis that the patient has arthritis. If we subse-
quently assert that the system can ask if some part is aching (i.e., it can be used as

part of a test), then answering that the person does not also have an aching knee rules
out the second diagnosis.

Here we have described the effects of diseases as absolute. For example, the third fact
says that all joints ache if one has arthritis. If this is not a fact, but a default, then it
can be described as:

assume aching_by_arthritis(X): aching(X )« arthritisajoint(X);

Thus we can use arthritis to explain any aching joint, but we are not forced to con-
clude that all joints ache just because someone has arthritis. This allows us to have
defaults and diagnosis in the same system, with a uniform and simple semantics.

5.2. Circuit Diagnosis

The second example we will use is the diagnosis of faults in digital circuits. Consider
the full adder circuit of figure 3.

1 - 1
2——¢ X x2 — 1
3 >

a2 Zj\l/ >

_____
B

Figure 3 A Circuit
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The representation of this, is similar to that given in Genesereth[84]. We have rules
about how faulty gates act, as well as how non-faulty gates work and how the gates are
connected. The possible hypotheses are that some gates are working properly and some
gates are faulty. Here we describe two different diagnostic systems based on Theorist.
The first is a static system which can diagnose a circuit fault when provided with
input and output values. The second is based on a theory of how circuits actually fail
(Chang et.al.[70]), and accepts a set of input/output pairs to perform the diagnosis.

5.2.1. Static Circuit Diagnostic System

fact gate(x1 xor);
fact gate(x2 xor);
fact gate(al and);
fact gate(a2 and);
fact gate(ol or);

fact conn(in(1,f1),in(1,x1));
fact conn(in(1,f1),in(1,a1));
fact conn(in(2,f1),in(2,x1));
fact conn(in(2,f1),in(2,al));
fact conn(in(3,f1),in(2,x2));
fact conn(in(3,f1),in(1,a2));
fact conn(out(1,x1),in(1,x2));
fact conn(out(1,x1),in(2,a2));
fact conn(out(1,a1),in(2,01));
fact conn{out(1,a2),in(1,01));
fact conn(out(1,x2),out(1,f1));
fact conn(out(1,01),0ut(2,f1));

Figure 4 A Definition of the Circuit of Figure 3

Figure 4 describes the circuit in figure 3. gate(D,T) says that device D is a gate which
is supposed to be of type T. in(N,D) where N is a number, and D device is the Nth
input to device D. conn(W1,W2) means that input (or output) W1 is connected by a
wire to device W2. The total circuit is known as device f1.

Figure 5 gives a description of how gates are intended to work. The assertion
ttable(T,I1,12,0)

means that a gate of type T, with inputs I1 and I2 produces output O. The value
“anything’ means that the value of that input is irrelevant.
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fact ttable(and on on on);

fact ttable(and off anything off);
fact ttable(and anything off off);
fact ttable(or off off off);

fact ttable{or on anything on);
fact ttable(or anything on on);
fact ttable(xor off on on);

fact ttable(xor off off off);

fact ttable(xor on on off);

fact ttable(xor on off on);

Figure 5 A description of how gates are intended to work

The first diagnosis program is given in figure 6. The first rule says that any input can
have the value of “anything’. The second says that a gate which is not faulty has the
output which corresponds to the type of the gate according to the truth table. The
third rule says that gates which are faulty produce the wrong output. The last rule for
val says that the value of a connection is equal to the value of the connection it is con-
nected to.

Note that the intended interpretation for faulty(D) is that device D is faulty for the
input that it is given at this time. There is no assumption that faulty gates always
produce the wrong output. The facts say nothing about how the gate works for other
inputs.

There are two possible hypotheses, namely that a gate is faulty, and that a gate is not
faulty.

assume atFault(Device): faulty (Device );
assume ok(Device): —faulty(Device);

5.2.2. Example 3

If we provide a set of inputs, for example, if we tell the system that all of the inputs
are off, and ask to explain the outputs being on, then the system must explain:

val(in(1,f1),0ff )aval(in(2,f1),0ff )rval (in(3,f2),0ff)>
val(out (1,f1),0n)rval(out(2,f1),0n)

Note that this is posed by specifying wval(out(1,f1),0n)rval(out(2,f2),0n) as a goal,
and making val(in(NV,f1),V) askable.
The following table shows the 6 diagnoses found. Each row corresponds to a diagnosis.

Each column says whether the corresponding gate is assumed to be atFault, or OK, or
whether nothing need be assumed about that gate.
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rule val (in(N Device) anything);

rule val(out(1 Device) Outl) «—
gate (Device Type) A
— faulty (Device) A
ttable(Type Inl In2 Outl) A
val (in(1 Device) Inl) A
val (in(2 Device) In2);

rule val(out(1 Device) Outl) «
gate (Device Type) a
faulty (Device) A
ttable(Type Inl In2 Eout) A
opp(Eout Outl) A
val (in(1 Device) In1) A
val (in(2 Device) In2);

rule val (Y Z) «
different(Z anything) a
conn (X Y) A
val (X Z);

fact opp(on off);
fact opp(off on);

Figure 68 Simple Circuit Diagnosis in Theorist

al a2 ol x1 x2
1 atFault ok atFault ok
2 atFault ok ok atFault
3 | atFault ok atFault ok
4 | atFault ok ok atIault
5 ok ok atFault atFault ok
6 ok ok atFault ok atFault

Diagnosis 1 corresponds to the theory

[atFault(a2),0k(01),atFault(z1),0k(x2)]

This diagnosis says nothing about gate al. The output

output.

of gate al is irrelevant to the
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Because our diagnoses are covering (by the diagnosis theorem), we know that one of
the diagnoses is correct. Thus, in particular we know:

atFault(z1)vatFault(z2)
atFault(al)vatFault(a2)vatFault(o1)

This set of diagnoses also tells us more. It also tells us what other conditions are to
hold. For example, in the case that al is at fault, we also know that ol is producing
the correct output, and that the value of a2 is irrelevant.

With further information we can discriminate between these theories, for example by
probing internal values. Theories 1, 3 and 5 predict that the output of gate x1 is on,
and the theories 2, 4 and 6 predict the output is off. By testing this output, we can
eliminate three of the diagnoses.

Theories 3 and 4 predict the output of gate a1l is on, theories 5 and 6 predict the out-
put of gate al is off, whereas theories 1 and 2 say nothing about the value of this out-
put. The value of output al cannot be used to eliminate theories 1 and 2.

Note that we have not eliminated the possibility that gates a1 and a2 are both faulty.
This indeed may be the problem.

5.3. Multiple Observations

One problem with the above diagnosis program is that it does not work with multiple
input-output observations. This may not be a problem for many diagnostic tasks where
we cannot vary the input, but can only make more observations about the system.

For circuits we can vary the inputs, and use the information of the output in a diag-
nosis. To use multiple observations we need to consider how circuits actually break
down. First, we assume that the gates are consistent. That is, each gate produces the
same output for a particular input.

We could assume that gates break down in arbitrary ways, and that we are trying to
find the truth table for each gate. Our system could be extended to do this by adding
an extra argument to the val predicate (the observation), and having the defaults
ok(D,In1,In2) mean that gate D works ok for the inputs Inl and In2, and having
atFault(D,In1,In2) mean gate D is faulty when the inputs are Inl and In2. We also
cannot use the anything value, as the actual value may be significant. Such a diag-
nosis is combinatorially explosive, as we are not using any knowledge of how gates fail.

An alternative strategy is to make the single fault assumption (Genesereth[84]), or the
minimal fault assumption (for the example above, we would assume only two faults).
Note that this is not generally true, and may remove some diagnoses which may indeed
be correct.

Our favoured alternative is to use a theory on how gates fail in practice (Chang
et.al.[70]). According to this theory gates fail by either

1. outputs being stuck on or off or

2. inputs being stuck on or off.
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To add this assumption to our system, we add an extra argument to the val predicate,
which is the time (input-output observations). We also have a status for each gate.
Instead of having a gate either faulty or ok, we give the gate a status which is one of
the following:

ok - the gate is working properly

stuckon - the output is stuck on

stuckoff - the output is stuck off

stuckl - input 1 is stuck to make the gate act like a wire from input 2 (that is
input 1 is stuck on for and-gates, off for or-gates or off for xor-gates.)

stuck2 - input 2 is stuck

stucklon - input 1 is stuck on for an xor-gate (that is the gate acts as an inverter
for input 2)

stuck2on - input 2 is stuck on for an xor-gate.

fact fault(stuckon X anything anything on);

fact fault(stuckoff X anything anything off);

fact fault(stuckl X anything on on);

fact fault(stuckl X anything off off);

fact fault(stuck2 X on anything on);

fact fault(stuck2 X off anything off);

rule fault(stucklon xor anything V1 V2) «— opp(V1 V2);
rule fault(stuck2on xor V1 anything V2) «— opp(V1 V2);

Figure 8 Faults for stuck gates

Figure 8 shows how faulty gates work.
fault (Prob,Type,In1,In2,0ut)

means a gate of type Type, with problem Prob, produces output Out from inputs Inl
and In2.

Figure 9 gives the modified rules for the new val that allows for multiple observations.
The first two rules correspond to the first two in Figure 6. The third says that gates
have the problems as in the fault table. The last rule says that a gate can only have
one status.

5.3.1. Example 3

Suppose that the system is given the following observations to explain
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rule val (in(N Device) anything T);

rule val(out(1 Device) Outl T) «—
gate (Device Type) a
status(Device ok) A
ttable(Type Inl In2 Outl) A
val (in(1 Device) In1 T) A
val (in(2 Device) In2 T);

rule val{out(1 Device) Outl T) «—
gate (Device Type) a
fault(St Type Inl In2 Outl) A
status(Device St) A
val (in(1 Device) Inl T) A
val (in(2 Device) In2 T);

rule —status(Device Status) «—

status(Device St) A
different(Status St);

Figure 9 Diagnosis System based on gates being stuck

Time | #n(1,f1) n(2,f1) in(3,f1) out(1,f1) out(2,f1)
t1 on on on on on
t2 off on off off off
t3 on off off on off
t4 on on off off on

The following four diagnoses are generated:

al a2 ol x1 x2
1] ok stuck?2 ok stucklon ok
2 | ok ok ok stucklon ok
3 | ok stuckoff ok stucklon ok
4 | ok stuckl stucklon ok

From the diagnosis theorem, if the gates are acting in accordance to our assumptions,
then we know:

1. x2is OK

2. x1 is stucklon
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3. alis OK.
6. A Comparison with Other Systems

6.1. Genesereth’s DART

A DART diagnosis is a disjunction of faulty gates (Genesereth[84]). For example, from
the observations in example 3, the diagnoses are:

faulty(z1)v faulty(z2)
faulty(al)v faulty(a2)v faulty(o1)

This can be implemented in Theorist by using

assume ok(D): —faulty(D);
as the only possible hypothesis. We only need rules which state how non-faulty gates
work and try to prove that some gate is faulty. A diagnosis takes the form

= faulty(g1)a— faulty(g2)a - - - A= faulty(gn)

which is consistent and minimal and implies faulty(g0). If this is the case, then we
know

faulty(gO)v faulty(g1)v - - - v faulty(gn)
and this is a minimal faulty disjunction (as the theory is minimal, and consistent).

If we compare DART’s diagnosis with that given in example 2, we find that Theorist’s
diagnosis implies the diagnosis produced by DART. It also provides more information,
namely what other information we are assuming (i.e., in the assumption that al is
faulty).

The advantage is that Theorist can use knowledge about how faults manifest them-
selves. DART can only use knowledge about how properly working systems are
intended to work. This may be appropriate for some domains, but we can use both
sorts of knowledge.

6.2. Reiter’s Theory of Diagnosis

Reiter[85] defines a diagnosis as a minimal set of faulty assumptions which are con-
sistent with the observations. Anything not assumed to be faulty is assumed to be OK.

Example 3 in Reiter’s Theory produces the following diagnosis

al a2 ol x1 x2
1 ok atFault ok atFault ok
2 ok atFault ok ok atFault
3 | atFault ok ok atFault ok
4 | atFault ok ok ok atFault
5 ok ok atFault atFault ok
6 ok ok atFault ok atFault

Note that this is very similar to our diagnosis, but requires assumptions about the
operation of all gates, even if they are irrelevant to the observations.
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We have avoided the problems that arise with existential and universally quantified
variables in defaults (Poole[84]) by requiring that we only use ground instances of
defaults in theories.

8. Conclusion

We have shown how the use of theory formation, using constrained forms of
hypotheses, fits the intuition of default reasoning and can be used as the basis for diag-
nostic systems.

One of the remaining questions concerns the comparison of theories. That is, determin-
ing when one theory is ‘‘better’” than another. Poole[85] argues that the problem of
inheritance in semantic nets can be best done by preferring the most specific theory.
That is, when there is specific knowiedge and more general knowledge available, then
we prefer to use the most specific knowledge. Jones and Poole[85] describes how we can
get a diagnosis at the appropriate level of detail in the domain of educational diagnosis.
For a learning system we may prefer the most general theory, and for a domain with
uncertainty, we may prefer the most probable theory, or the most serious (the one
that, if it were the problem, would require immediate therapy).

This theory provides the basis for the Theorist system, which we are using for a
variety of domains, including circuit diagnosis, and diagnosis of students with learning
disabilities.
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