A Logic Data Model for the
Machine Representation of
Knowledge
Department of Computer Science

University of Waterioo
Waterloo, Ontario
Randy Goebel
Technical Report CS-86-07

A logic data model for the machine representation of knowledge
by
Randy Goebel

June 1985

® Randolph George Goebel, 1985

Abstract

DLOG is a logic-based data model developed to show how logic-programming can combine con-
tributions of Data Base Management (DBM) and Artificial Intelligence (AI). The DLOG data model
is based on a logical formulation that is a superset of the relation data model [Reiter83], and uses
Bowen and Kowalski’s notion of an amalgamated meta and object language [Bowen82] to describe the
relationship between data model objects. The DLOG specification includes a language syntax, a
proof {or query evaluation) procedure, a description of the language’s semantics, and a specification of
the relationships between assertions, queries, and application databases.

DLOG’s basic data description language is the Horn clause subset of first order logic [Kowal-
ski79, Kowalski81], together with embedded descriptive terms and non-Horn integrity constraints.
The embedded terms are motivated by Artificial Intelligence representation language ideas, specifi-
cally, the descriptive terms of the KRL language [Bobrow77]. A similar facility based on logical
descriptions is provided in DLOG. The DLOG language permits the use of definite and indefinite
descriptions of individuals and sets in both queries and assertions.

The meaning of DLOG’s extended language is specified by writing Horn clauses that describe
the relation between the basic language and the extensions. The experimental implementation is the
appropriate Prolog program derived from that specification.

The DLOG implementation relies on an extension to the standard Prolog proof procedure. This
includes a “unification” procedure that matches embedded terms by recursively invoking the DLOG
proof procedure (cf. LOGLISP [Robinson82]). The experimental system includes logic-based imple-
mentations of traditional database facilities (e.g., transactions, integrity constraints, data dictionaries,
data manipulation language facilities), and an idea for using logic as the basis for heuristic interpreta-
tion of queries. This heuristic uses a notion of partial match or sub-proof to produce assumptions
under which plausible query answers can be derived.

The experimental DLOG database (or “knowledge base’”) management system is exercised by
describing an undergraduate degree program. The example application database is a description of
the Bachelor of Computer Science degree requirements at The University of British Columbia. This
application demonstrates how DLOG’s embedded terms provide a concise description of degree pro-
gram knowledge, and how that knowledge is used to specify student programs, and select program
optlons.

il

YES, WELL, ,
JUR ROMAMS CANT
BE FAR AWAY.
LET'S TRY TO
oo FIND THEM-

WE ONLY HAVE
To FoLLOW THE
ARROW (N THE
OPPosITE DIRECTION
FROM THE WAY ITS
POINTING . TRAT'S
. (2= < (T<F- TR

— Goscinny and Uderzoo, Asterix and the Great Crossing

1ii

Preface

This report is a slightly revised version of doctoral dissertation accepted at The University of
British Columbia in October of 1985.

I believe that the research reported here is about knowledge representation for Artificial Intelli-
gence. The basic premise is that viewing a representation language as a logic provides a methodology
for investigating an important aspect of representation: the relation between symbols of a formal
language and the real or artificial world that such symbols represent. The support given this premise
1s the design, implementation, and application of a representation language called DLOG.

Many have strongly criticized the role of logic in Al. In response, others have strongly defended
it. These extreme critics and defendants have often made claims that border on the extra-galactic.
The whole point of using logic as a tool is the expedience offered by being precise about the relation-
ship between symbols and the worlds that they describe. Having committed myself to a desire for
precision, it’s important to admit that the work reported here offers no new theorems about represen-
tation, nor does it go so far as to prove that the implementation retains the fidelity of the DLOG
representation language.

The semantics of DLOG are described in two different ways. The first uses first order Tarksian
semantics, which provides an account for most of the DLOG language but falls short of capturing the
intended semantics of certain complex terms. However, the intended semantics of these terms can be
described at the meta level in a straightforward way, so that an implementation of a DLOG proof
system can be defined in terms of a Prolog meta program. While the implementation described is
relatively simple, it remains true that the complete DLOG semantics depends on an amalgamation of
meta and object language such as proposed by Bowen and Kowalski.

A second approach to the description of DLOG’s semantics uses a more powerful system of
logic: Montague’s second order intensional logic. The terms which were problematic for the first
order semantics are easily seen to correspond to Montague’s notion of “obligation,” and their manipu-
lation by a proof system can still be described, informally, by a Prolog meta program. However, as a
general second order intensional theorem prover has not been constructed, the use of a second order
intensional semantics leaves another formal gap between the language’s semantics and the prototype
implementation.

Despite this lack of a correctness proof for the prototype DLOG interpreter, the instances in
which meta programming techniques substitute for a more general proof procedure are few and are
clearly specified. In fact, the style in which the non-first order extensions are manipulated is claimed
to be as important as the terms themselves.

As this dissertation makes several claims about different aspects about the problem of designing,
building and using a knowledge representation system, the reader may want to first read [Goebel85b,
Goebel85a) which are rather more brief and to the point. These two papers provide a summary of
two different aspects of this research, and will provide the reader with many of the points made in
this document.

Finally, a word of warning to those who might attempt to recover the basic ideas from reading
the implementation code in the appendices. The program given was written during the formative
years of my logic programming experience; it is, in most cases, not exemplary Prolog programming.
The prototype was sufficiently robust to manage the correct interpretation of the complete undergra-
duate program, and to produce the examples used in chapter two. However, if you don’t understand
the basic ideas from the descriptions given in the text, you probably won’t get them by skipping to
the implementation either.

v

Preface references

[Goebel85a] R. Goebel (1985), Interpreting descriptions in a Prolog-based knowledge representation
system, Proceedings of the Ninth International Joint Con ference on Artifictal Intelli-
gence, August 16-18, UCLA, Los Angeles, California, 711-7186.

[Goebel85b] R.G. Goebel (1985), The design and implementation of DLOG, a Prolog-based knowledge
representation system, New Generation Computing 3(4), 385-401.

Contents

ADSETACT ..ottt ettt ettt s ettt e st e e et oo e et et e e e i
PrefaCe ..ottt ettt v
List Of tADIES......oeiiiiiiii ettt et viii
List OF FIGUTES ...ovominiiiie ettt ettt x
AcCkNOWIEAGEIMENTSttt ettt X
L INEPOAUCEION. ...ttt ettt et e e e e e e e e e 1
1.1 Databases and knowledge Dases.........ccovuiuiuiuiiuiieiiieiieccceceteeeee et 1
1.1.1 Distinguishing knowledge bases and databases.............cooveeeereeeeeieeoreereeeos oo 1
1.1.1.1 Kinds of iNfOTMatiOncciveieeiiriieeicierieeieee e et e e en e e 2
1.1.1.2 Volume of infOrmation........cc.eeeiiieuiierieiieceieceececee ettt ee e ee e ee e 2
1.1.1.3 Inferencing and information dynamicsc..ueieeiiviiriereeieeee et e e e esees oo e e, 3
1.1.1.4 Administrative cApabIliIesc.ec.evuiesieeiieeeiieeei ettt eee oo 3
1.2 DLOG: a logic-based data MOdel.............c.ccooveviuiimimieeeeeeeeeeeee e e 4
1.3 Logic and databasesc.ccccceoiririeeniiiieiee ettt s e 5
1.3.1 Theorem-proving and 1ogic PrOGIaIMINEccvvverveeeeeeeeeeeereereee oo oo 6
1.3.2 Knowledge TepreSentationccoeeereuiietesiieterieeeceteteeeeeeeeeeeee e ee e s s e e sesees oo e 6
1.3.3 Database Managementcccovvieuiririerioiouiieeiiee ettt et e e ee e res s e s e eee s 7
1.3.4 Artificial Intelligence and databases.........c.ooviiiviiieeieiee oo e 8
1.3.5 LOGic databases......ccceviririeiiniiieiirieeeeteee ettt ettt e s s 8
14 OVETVIEW c1viiiitti ettt ettt ettt s oot e et et e et en e e st e e ees e st es e 9
2 LioZIC dabABASES ..c.eiueiieiiiiiieiteee et ettt et e et 11
2.1 Logic and Database Management PerSpectiveso.eeveueeeeereeeereereeeeeeese oo 11
2.1.1 Theories, interpretations and MOdelsocvieiveereeeieeeeeeee et e e e, 11
2.1.2 Models VErsus theories.coviiiiieiieiiiieicrie ettt e et e e e e oo 12
2.2 Logic as 8 data MOAelooooiiiiiiiiiieicrecceee et ettt et e et oot 13
2.2.1 What Kind Of LIOZICT....c..euiiiiiiiereee ettt ettt et e e e e s s et et esesees oo, 17
2.2.2 Syntax, semantics and proof theoryc.coiiiiiiieiiiiiiieioeeeee e e 17
2.2.3 Assumptions in logic-based data mMOdelsccoeiiviireeeieeeeeeee e, 18
2.3 An example: a departmental database in DLOGc.ccooovvoivineeeeeeeeeeeeeeeeeeeeee oo, 20
2.3.1 The example dOmMAINccoviiieiieietiiee ettt e e e eae s s eens e eee e 21
2.3.2 Department database OVEIVIEWoiooiviiiiuierieciice et ee e e e e et e e 22
3 The DLOG data MOdel......ccooiiiiiirieiieieiiceecee ettt eee st e sae e eeeae e esereses s s 37
B SYMEAK cuiviitiiiiit ettt ettt ettt ettt e e ete et et et e eeeea e et et e e et eeeer e et este et eeeere e 38
311 Term SYDBAK cvevuiiteeiirieieetieiertseetete st ete ettt eseeea e et easeeeseeeeseeeestes et eeeesaeeeesereessessesss e mesensereenne s 39
3.1.2 FOTINUIA SYITAX ...viitimiieiriiicirteie ettt ettt r et ettt eae e e ae et et e seeeeeeeeeenss 42
3.2 SEIMANTICS ...viiiiiiiiceieieee ettt et e ettt ettt ettt et ettt e e et et e eae e e et et ee et e e teess et anne s 43
3.2.1 Contextual definitions of DLOG descriptions........ceevevviiiirreeeieriee s eeeeeee e eeeeeeee e se s, 43
3.2.2 Interpretation of fOTTULAS.....ccccociieiitieteiceei et esee e e eeesans 44
3.3 An implementable subset of DLOGc..cooiooiiiiiiiie et eee e e e e s e e e e e et eeneeiae o 45
3.3.1 SYNtAX FeSEIICTIONS c.eoiviiirririiitei e eser ettt et st eae et eaees e e s e et e aesms st e e eeeesenesaeesaeeeeeaaeereas 46
3.4 DLOG derivability ...cccooveiiiiiiiiierieiee ettt ettt et ae s s eeeneeeeeeeas 48
3.4.1 Equality theories fOr Prolog.....ccccvieviiieiiiieiiiicceeceecee et eee et eee e eee e 49
3.4.2 DLOG’s eqUality theory «..cccociiiiiiiiciicee ettt ettt e e e eeae e 51
3.4.3 Extending Prolog derivability for DLOG......c.cc.ccuooviirieeieeieeeeeece et 53

vi

3.5 Interpretation of lambda constants as TeGUIALIONSoovoueeeeeeereeeeeee oo 56
3.6 DLOG database MaINteNanceooueveriuiuiiieeeieeceeieeeee et e e 57
4 Descriptive terms in DLOGcoooiiiiiiiieeece e et 64
4.1 DLOG terms: motivation and intended USe...........c.ooveveerieemeeeeeeeseeeeeeeee oo 65
4.1.1 Individual CONSLANTScoeieiririietieieietice ettt et e ettt 65
4.1.2 Set COMSEANTSvviieieiiiitece ettt e e e e e e e e s e e s et 66
4.1.3 Lambda CONSLAILScceeueuiriiirieieieteiete ettt e e e e es e e e 67
4.2 Problems with interpreting deseriPtionscovueueeereeeeeee oo oo 68
4.3 Interpreting DLOG deSCIIPHONSouvuvveveeiicecececeeeeeeeeee et 72
4.3.1 Definite individUalsccocoirieiiiriiiiiee et 72
4.3.2 Indefinite INdIVIAUALSoccouviriiieiiietetce e e 73
4.3.3 DefINIte SEUS.....coouiiiiiiicctet ettt 74
4.3.4 INdefinite SEtS.......couiiiiiiiiieiciiiecee e ee e 74
4.4 Mapping a domain into DLOG SeNteNCesc.ouooveeeeeereeeeeeeeeeeee oo 77
5 An implementation of the DLOG data modelc.ocooveioieeeireeeeeereeeeeeeeeeee oo 82
5.1 PTOlOg OVETVIEW ..ottt ettt ettt et e e ee e ee e e es e ee e e e oo 82
5.1.1 Prolog as a foundation for DLOGococooueioieiiuiiieiieieeeeeeeee et e 84
5.1.2 Standard extensions t0 Prologc.ciiiiiiiriiiiiieeeeeeeeeeeeeeeeee e e et 86
5.2 A DLOG implementationccovieieieioieuioieteteeie e eeeeee e eseee e e e s es e s oo oo 87
5.2.1 Implementation SYMEAXcccoviirirrietereieeetceee ettt te e s e e e ees e e es e e ee e e e oo 88
5.2.2 SYSLEIN SEITCHUTE 1..eereuiiiiiiceeieet ettt ettt e e e e e e e e e e s e e e s e e e e s e e s e eeeeeoee e 90
5.2.3 DLOG derivabilitycooeeieriiiiiiierieie et e e 91
5.2.3.1 DLOG UDIfICATION ...covetiiieieiienietet ettt ee et et e et s e e e e e st 93
5.2.4 DLOG PIOCESSOTSccveueiiiriererintesintetietesesseseseesetesstemeeseseseseseeseeeseese s ssseesese s e e e s e eee e 100
5.2.4.1 CoOmMIMANA PrOCESSOT...c.ooieirieeieiietietieriteetest ittt eeeeee et et eeeeee et eesees et e e ee e e e e eee e 100
5.2.4.2 Assertion and CONSEIaING PrOCESSOTS ...covviovieiieieeeeeeeeeeeres e s eereeee oo 103
5.2.4.3 QUETY PIOCESSOT . ..cueviieienierietitetettereerereetesteeeeseeseeseetseeeeseeetaneeseessasesserses s e e e e e e e 105
5.2.4.4 TransactiOn PIOCESSOTccotvtireiieeeriitiieirietistiteeeeeseeeeteeeseeeeeeeeeeeesraseesseseesees e e e eeses e oes e 105
5.2.4.5 BIOWSET ...ccuiiiiiitiiii ettt ettt ettt ettt ettt e et e e e e e s s et et e e e e 106
5.3 Traditional Database Management facilities.............c.oeiueeeuiereueeeeeeeeeeeeeeeeeeee e eeee oo 107
5.3.1 Embedding data sublanguages in DLOGcocoovevimiieeeeieeeeeeee e eee oo 108
5.3.2 INtegrity MAINTENATICE. ... c.eoueuirieierierinieietieeeetete s e etes ettt ee et eeaee e ee e e e es e e e e sesseseenes e eees s, 110
5.3.3 TTanSaCtION PIOCESSIIE ...eeereieiiietiitietirite ettt et et et e e e s s et eeseesesseeseems e s e s ees e 112
5.3.4 Data dictIONATries . ..c..ccouiriiiiiieee ettt et ettt et e e e e e et 112
5.4 Heuristic interpretation of QUETIES........ccoiviuiiriiviiiteeeeieeee oo ee e ee e ee e e e e e s eesesees e 114
5.4.1 Partial matching and partial PrOofScoovieiieeeeeeeeeee e eeee oo e e e 115
5.4.2 The eXtends PrediCAtE .oocuevuiiieieeeiciieieceeeeee e e e et e e e e et e e e e e e e e e eeee e ee s oee e 117
5.4.3 Implementation of heuristic evaluationcocviiimiimieeeee oo ee e s e s e oo 119
6 An approaches to DLOG’s formal SEManticsc..cvveeveeeeciereeeeeeeeeeeeeeeeeseeseeresseeeseese e oseses e 121
6.1 Montague’s concept of OBGALIONvcvvivviieieriieiieieeeeeeee et ee e e e oo 121
6.2 Contextual description based on a second order intensional 10gicccccooveereeveoeeeeeeeerraa. 121
6.2.1 DLOG’s semantics in MONtague’s SYStIMc..c.evvivriiiiiiiiieeeeeeeeee et eee e e eeeee e e ereeseesenennn 122
6.2.2 Interpretation of DLOG based on intensional I0GICc.cvevveieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e 126
6.3 Higher order intensional proof theoTy?cooooiioiioiiiceeeeee e e eeer e 128
T COMCIUSIONS ...ttt ettt ettt te et ettt e e et et e s e e e e e e reeeeseet e s eeeee e eeereasaeseseeseersee e 130
7.1 Contributions as traditional Database Managementcccooeveeereeeeeeereneee oo eeseesese oo 130
7.2 Contributions as Artifical IntellIZeNCe.c.oovivviireieieeiiee et ee e eer e e e e e e eessenns 132
7.3 Prolog as an implementation IANGUAGE.......c.ccocveiivivvierreitititeeete et ete oo eeeeer et eeeeeeeereeeeeeeesenas 134

74 FUBUTE TESEATCR ...ooceeiiiiiieiiectee et et e s et e e e et e e s et e e eeseeaes e e e eesae s eeaneaeeeeensaasos 135

vii

RETETEIICES. ...oveiite et er et 138
Appendix 1 DLOG implementation in Waterloo Prologo.o.eeeeooieeeeeeeeeeeeeeeeeeeoeoeeeooo 147
Appendix 2 DDB predicate descriPtions............c.ove.ivieieieeeeeuereeseeeeeeeeeeee e oo eses e 205
Appendix 3 KRL descriptors i LOIC.eeiriuiuiiieriietiaiiteeeeeeeeeeeeee et ee e e 208

Tables

5.1 Specification and Implementation SYNEAX...........c.evveeeveeeeeeeeeseeees oo 89

viil

Figures

22
22
23
24
25
78
90

Acknowledgements

I acknowledge my supervisor, Ray Reiter, for demonstrating that I am not as clever as I
thought; for his integrity in holding to his views; for pushing me to research horizons that I didn’t
know existed; and for making me psychologically tough enough to endure anyone’s criticism.

To the various members of my committee for their support over the years, especially Bary Pol-
lack for his encouraging compliments; Alan Mackworth, for periodically reminding me that this thing
is a human endeavour; to Richard Robinson, for his technical skill with mathematics and his personal
skill at helping me verify the accuracy of my intuition; and to Harvey Abramson and Richard Rosen-
berg, for painfully wading through drafts much less clear than this one.

To the various others who provided objectivity when I could find none: to Paul Gilmore, for
enduring my illogical fancies and pointing me to Hilbert; to John Mylopoulos, who pointed out that
actually implementing something was important too; to Len Schubert, for his unfailing support of
confindence; to Nick Cercone and Gord McCalla, who prevented me from taking myself too seriously;
to some of my fellow computer science students John Demco, Roger Browse, Jay Glicksman, Jan
Mulder, Jim Little, and Iggy Mercer, who collectively shared both my enthusiasm and distress.

To my colleagues at the University of Waterloo: to David Poole, for labouring through previous
drafts and finding clarity amidst the symbols; to Maarten van Emden, for his confidence in my
motivation; to Romas Aleliunas, for repeatedly placing mathematics in an appropriate context; to
John Brzozowski, for his confidence against all odds; and to John Beatty, Ian Munro, and Kelly Booth
for turning the phrase “Is it done yet?” into a normal everyday salutation.

Finally, to Lanie, Kari, and Jodi, for enduring.

Chapter 1

Introduction

1.1. Databases and knowledge bases

Any research that addresses the use of information by machine will encounter the terms
database and knowledge base. One of the terms must be consistently used, even though the choice is
rarely discussed or justified. For example, “knowledge” is more pretentious than *‘data,” and may be

selected for no other reason.

The assumptions evoked by the two terms serve as the basis from which a consolidated view can
be synthesized. The motivation and accomplishments of this research are best understood by review-

ing some of these assumptions.

1.1.1. Distinguishing knowledge bases and databases

To begin, consider a comparison between a database system and knowledge base system. Ini-
tially these are simply two programs that implement various facilities for capturing and manipulating

some form of machine-storable information.

The first tangible distinction is in the motivation for constructing the systems. For example,
Artificial Intelligence (AI) knowledge bases are viewed as repositories for an intelligent program’s
domain knowledge. In a sense, the system is anthropomorphized: the program is an individual whose
knowledge base forms its foundation for understanding and behaving in its environment. In contrast,
the traditional Database Management (DBM) conceives a database as a collection of information to
which uniform access is provided, usually by enforcing a uniform storage format, and by providing a

uniform retrieval mechanism. Depending on the perceiver, this often vague distinction can evaporate

or grow (e.g., [Wong77]).!

1See also the comments of E.F. Codd and I.P. Goldstein [Brodie81, pp. 88-89).

However, admitting these distinct motivations suggests more tangible distinguishing criteria: (i)
kinds of information, (ii) volume of information, (iii) inference capabilities, and (iv) administrative

capabilities.

1.1.1.1. Kinds of information

Some have argued that the information stored in databases and knowledge bases is quite dif-
ferent (e.g., [Abrial74, Wong77]). One contention is that knowledge bases are intended to capture
abstract information, e.g., “‘all cats are animals,” in addition to the concrete information typical of a
database, e.g., ““Joe is a cat.” When limited to this notion, recent debates have substituted “struc-

tured versus unstructured” for the more vague “concrete versus abstract” distinction.2

Here the reluctant consensus is that databases hold large quantities of highly structured data,
while knowledge bases contain less regularly structured information. Additional comments on struc-
ture argue that databases distinguish conceptual schema information from the database proper, but
that knowledge bases incorporate both in a uniform way. (In chapter 2, we discuss a concept that can

be used to verify these intuitions in a more precise way.)

1.1.1.2. Volume of information

The relative volumes of information stored in databases and knowledge bases differ dramati-
cally. This is accounted for, in part, by noting that databases exist as real world applications,
whereas knowledge bases embrace restricted and often contrived domains. But volume remains a
weak distinguishing criterion since it so intimately depends on how information is encoded: sophisti-

cated inference can buy economy of volume.

2Eg., see remarks in [Brodie81] especially pp. 17-18, and pp. 40-42.

3Eg., see SN. Zilles comments in [Brodie81, p. 88].

1.1.1.3. Inferencing and Information dynamies

Debates about kinds and volume of information often evolve to issues about how information is
used. The knowledge base’s emphasis on lower volumes of flexibly structured information implies the
use of inferencing to recover implicit information. This contrasts with traditional databases, which
store large volumes of rigidly structured information and use retrieval mechanisms based on that
structure. Ultimately, the inferencing capabilities of a system depend on the structure of information
retained, so the imprecise distinctions based on kind or volume of information can usually be absorbed

by distinguishing inference methods.

The need for inference is partly determined by information dynamics: volatile collections of data
require “soft structuring,” i.e., relationships are left implicit and are recovered by an inference
mechanism. In contrast, the relatively static conceptual schemas of traditional DBM can support
“hard structuring:” implicit relationships can be computed and stored, rather than derived at retrieval
time. For example, Bernstein [Berstein76] offers an algorithm for structuring a relational database
according to a prespecified set of dependencies. These dependencies are static—any change would
require database reorganization. Similar structuring ideas (e-g., [ArmstrongSO]) *acrease the efficiency
of manipulation at the expense of flexibility in accommodating changes to general knowledge (i.e., the
conceptual schema). In knowledge bases, improvements in elficiency gained by sophisticated structur-
ing of specific facts is dependent on the corpus of general facts, but the general facts may change as

quickly as the specific ones.

1.1.1.4. Administrative capabllities

One final distinguishing feature arises from the original assumption about alternative motiva-
tions. The focus is on how well administrative functions of a system are automated (e.g., determining
the credibility of new information). For example, a database administrator is responsible for the
integrity and accuracy of a database, but the anthropomorphic conception of a “knowledge-based“
system evokes a view of a complete agent, responsible for its knowledge and beliefs within technologi-

cal constraints. Specifically, a human data administrator might establish the credibility of potential

updates by interrogating their originators; a knowledge based system might undertake to establish this

credibility on its own — belief systems lie solely within Al

There is some intersection in the area of integrity constraints, where inferencing capabilities
determine the ease of enforcing such constraints. The issues revolve around the basic paradigm for
maintaining consistency. In Al, the consistency issue is usually addressed in the logical paradigm,

while DBM has concentrated on normal form theory.

1.2, DLOG: a loglc-based data model

DLOG is a logic-based data model developed to show how logic-programming can combine con-
tributions of DBM and Al. The DLOG data model is based on a logical formulation that is a superset
of the relational data model(cf. [Reiter83]), and uses Bowen and Kowalski's idea for an amalgamated
meta and object language {Bowen82] to describe relationships among data model objects. The DLOG
specification includes a language syntax, a description of the language’s semantics, a description of
DLOG query evaluation as DLOG derivability, and a description of the relationship between asser-

tions, queries, and application databases.

DLOG’s basic data description language is the Horn clause subset of first order logic [Kowal-
ski79, Kowalski81], together with embedded descriptive terms and non-Horn integrity constraints.
The embedded terms are motivated by Al representation language ideas. In particular, the descriptive
terms of the KRL language [Bobrow77b] have motivated a similar facility based on logical descrip-
tions. The DLOG language permits the use of definite and indefinite descriptions of individuals and
sets in both queries and assertions.

The meaning of DLOG's extended language is specified by logical assertions that relate the basic
language and the extensions. The experimental implementation is the appropriate Prolog program
derived from that specification.

The DLOG proof procedure relies on an extension of SLD resolution, the foundation of Prolog’s

proof procedure [Lloyd82]. Extensions include a ‘‘unification” procedure that matches embedded

terms by recursively invoking the DLOG proof procedure (cf. LOGLISP [Robinson82b]). The extended
unification can be viewed as a general SLD proof procedure with a new theory of equality [Emden84].
The experimental system includes logic-based implementations of traditional database facilities (eg.,
transactions, integrity constraints, data dictionaries, data manipulation language facilities), and an
idea for using logic as the basis for heuristic interpretation of queries. This heuristic uses the notion of
partial-match of sub-proof to produce assumptions under which plausible query answers can be
derived.

The experimental DLOG database (or ‘knowledge base”’) management system is exercised by
describing an undergraduate degree program. The example application database is a description of
the Bachelor of Science with a major in Computer Science degree requirements at The University of
British Columbia. This application demonstrates how DLOG's embedded terms provide a concise
description of degree program knowledge, and how that knowledge is used to specify student pro-

grams, and select program options.

1.3. Loglc and databases

This section provides the historical background and major sources from which this research
derives. The topic ‘logic databases™ spans considerable breadth in the literature — mathematical
logic, DBM, Al—and presents an intimidating horizon for the reviewer. The approach will be to
divide the contributions into five divisions and acknowledge the important ideas in each of these.

Each acknowledgement is further classified by

(1) recognition of historical results and ideas fundamental to the division,

(2) recent ideas central to the motivation and background for this research, and
(3) recent work similar enough to be acknowledged as supportive.

The reader is reminded that the phrase “logic databases” has been adopted as the name of a
field that studies logic as a tool for DBM [Gallaire78, Gallaire81], even though the term is generally

more inclusive. For example, logic programming is a major tool of the logic database community, but

not necessarily synonymous with Prolog programming (cf. [Minker78, Weyrauch80, Robinson82a)).

1.3.1. Theorem-proving and logic programming

After the feasibility of first-order proof procedures had been demonstrated |Gilmore60, Davis60,
Prawitz60], major interest in mechanized theorem-proving awaited the resolution inference method of
Robinson [Robinson65]. Since Robinson's paper on the resolution inference rule, most efforts at
mechanizing proof theory have focused on improving the efficiency of resolution (e.g., [Kowalski71,
Reiter71]), although some work has been done with natural deduction systems (e.g., |Bledsoe77b,
Weyrauch80, Haridi83]). The contribution of Green [Green69] is central to the use of theorem-proving

in Al, as it demonstrated how resolution theorem-proving could be used for question-answering.

The development of logic programming as the top-down, depth-first interpretation of Horn
clauses (e.g., [Kowalski79]), provides the basic implementation tool for this research. Subsequent work
in combining meta and object level language in Prolog systems [Bowen82] provides a basis for specify-

ing the relationship between DLOG assertions, queries, and application databases.

After constructing the first DLOG prototype, the work of Robinson [Robinson79] and Robinson
and Sibert [Robinson82a, Robinson82b] provided both technical and moral support. Robinson's expo-
sition of ezemplifications and the semantics of Hilbert terms helped clarify both the construction and

interpretation of DLOG's embedded descriptions.

1.3.2. Knowledge representation

The idea that a formal language is an appropriate tool for investigating machine representations
of knowledge is usually attributed to McCarthy [McCarthy68], and the work by him and others of the
same persuasion (e.g., [McCarthy69, Hayes74, Hayes77, McCarthy77, Reiter80]) provide important
contributions. The work of Bobrow and Winograd [Bobrow77b}, Brachman [Brachman?9] and seman-
tic network developers [Findler79], and Moore and Newell [Moore74] have helped show how formal
logic is but a tool, and that intuition about plausible reasoning and informal knowledge is a necessary

ingredient in the development of representation theories. McDermott's ideas [McDermott78a,

McDermott78b] seem to mediate the two basic positions, not denying the importance of intuition, but

demanding denotational interpretations of representation languages.

The most direct influence on this research comes from Bobrow and Winograd's KRL system
[Bobrow77b), since the proof mechanism of DLOG is an attempt to achieve, in a logic-based system, a
portion of their “‘mapping” style of reasoning.

Some other research (e.g., [Moore76, Schubert76, AttardiSl]) use descriptions in various ways
related to DLOG. Of these, Schubert's brief discussion,* is the most relevant since it proposes a
method for interpreting descriptions whose presuppositions are not met. Moore [Moore76] proposes
the use of descriptive terms to distinguish opaque and transparent contexts in natural language; he
suggests a referential interpretation of descriptive terms, but no implementation is provided. The
OMEGA system of Attardi and Simi [Attardi81] views all descriptive terms as indefinite descriptions
of sets; while their int.erpretation of descriptions is different, the motivation seems related: to provide

a logical interpretation of embedded terms.

1.3.3. Database Management

The concept of a data model is central to the idea behind this work, and owes a debt to many
researchers in DBM (e.g., see [Fry76]). The relational model of Codd [Codd70, Codd82] has exhibited
the virtues of data independence with great clarity, and has provided the basis for some impressive
implementations [Stonebraker76, Stonebraker80, Astrahan76, Chamberlin81).

Wong and Mylopoulos [Wong77] were among the first to consider the relationship between Al
and DBM, and the first to suggest dimensions for comparing them. Their later work has used the
data model concept to formalize semantic network ideas in the TAXIS system [Mylopoulos80, Bor-

gidasi).

4 [Schubert7s, pp. 185-188]

1.3.4. Artificlal Intelligence and databases

Al rarely considers ‘“‘databases,” but most often investigates the application and development of
“knowledge bases.” This viewpoint has focused attention on the performance of particular instances
of knowledge-based systems, with less consideration for data independence. Davis’ [Davis76] consider-
able effort in addressing the issues involved with building expert systems has spawned one of the few
systems that emphasizes the data independence of knowledge base management tools [Melle81]. This
work is evidence of the growing concern for data independence in Al, and demonstrates the need for

further understanding of data independence in knowledge bases.

Another important facet of knowledge base research has concentrated on user interfaces, and the
kind of knowledge needed for intelligent interaction (e.g., [Kaplan79, Mays81, Davidson82]). This
aspect of knowledge base use is within the comprehensive proposal of Codd [Codd74], and the ambi-
tious REL project of Thompson et al. [Thompson69]. The goal is to develop techniques for enriching
the standard ‘‘query-response” kind of user interaction. All efforts directed at the user interface
emphasize that the apparent intelligence of any knowledge-based system critically depends on the flex-
ibility and richness of user-system interaction, and that the subtleties of descriptive responses and

anticipatory replies are most important.

1.3.5. Logic databases

Here the predominant influence on DLOG comes from logic database research (e.g., [Gallaire78,
Gallaire81]). The current logic database research relies on theorem-proving and logic programming
developments of the seventies (e.g., [Kowalski79]), but owes a debt to earlier work whose foresight is
often ignored, or taken for granted (e.g., [Levien67, Thompson69]). Much of the motivation for a logi-
cal treatment of databases can be credited to the efforts in applying theorem-proving techniques to
relational data bases (e.g., [Minker75, Reiter78a}).

The most direct influences on DLOG come from Reiter [Reiter83] and Kowalski [Kowalski81].

These papers provided the theoretical background for the specification and implementation of a logic-

based data model, and for dealing with the logic of data dictionaries and integrity constraints.

Although the motivation for using embedded descriptive terms comes from Bobrow and Winograd
[Bobrow77b], similar motivation is evident in some logic database work (e.g., [Dilger78, Janas81]). In
particular, the use of definite descriptions within queries [Dilger78] has motivated the investigation of

DLOG's more elaborate descriptions.

1.4. Overview

Chapter 2 discusses the relationship between theories, interpretations, and models, and attempts
to providel the groundwork for combining the concepts of a logic-based representation scheme and a
data model. The distinction between databases viewed as interpretations or as models is discussed,
and various conceptions of data models are ex'amined before choosing one that correlates well with the

notion of a logic-based representation scheme.

The use of logic as the foundation of a logic-based data model is discussed, and some results

about the equivalence of logic databases and relational databases are reviewed.

The chapter concludes with an overview of the DLOG data model and a description of an exam-
ple application. An implementation is sketched, and its use in developing a department database
(DDB) is described. The DDB describes The University of British Columbia’s undergraduate degree
program in Computer Science. An example DDB terminal session demonstrates many of the DLOG
system’s facilities.

Chapters 3 and 4 provide a detailed description of the DLOG data model. Chapter 3 reiterates
the data model concept adapted from various DBM data model definitions, and describes the four
major components of DLOG: (1) the representation (data description) language, (2) the language
semantics, (3) the proof procedure extensions for the language, and (4) the relationship between DLOG
assertions, queries, and application databases.

Chapter 4 provides further details on the interpretation of DLOG terms. These include exam-

ples of various kinds of descriptive terms like lambda expressions, and definite and indefinite descrip-

tions of individuals and sets. Some problems associated with descriptions are discussed (e.g., attribu-

10

tive versus referential use), and the DLOG interpretation for each kind of descriptive term is specified.
This chapter ends with examples of how excerpts from the UBC Undergraduate Calendar can be

represented by DLOG sentences.

Chapter 5 presents a brief overview of Prolog, and describes how the DLOG data model's specifi-
cation can be converted into an implementation. Prolog's suitability as an implementation language is
discussed, and the structure of a DLOG prototype is describcd. This description gives the details of
each implementation component, and explains the interpretation of embedded terms via extended
unification. The extended matching procedure includes a partial proof heuristic as a mechanism for
evaluating queries whose deductive interpretation fails.

Chapter 6 explains how a Prolog-independent semantics of DLOG might be based on Montague's
second order intensional logic. It is shown how DLOG can be expressed in terms of a second order
language, and how Montague’s second order intensional semantics must be extended to deal with indi-
vidual descriptions.

The final chapter, chapter 7, concludes with an evaluation of DLOG’s contributions to Al and

DBM.

Chapter 2
Logic databases

2.1. Loglc and Database Management perspectives

The introduction of §1.1.1 presented some recent views on the distinction between databases and
knowledge bases. Those noted were admittedly weak, since they might evaporate when interpreted
under suitable biases. If_ we equate the concepts of knowledge base and logic database, a much more
incisive distinction is available: all knowledge bases can be viewed as logic databases because nearly all
knowledge bases use some form of denotational semantics. Under this assumption, we can distinguish
between databases as interpretation (i.e., traditional databases)® and databases as theories (i.e.,

knowledge databases or logic databases) [Nicolas78a, Reiter83, Kowalski81].

Briefly, the distinction is based on how information in a data base is perceived: a database con-
sists of a conceptual schema and a collection of facts; a logic database is a uniform collection of
asserted axioms with no explicit distinction between conceptual schema information and particular
facts. The facts of a traditional database form an interpretation of the conceptual schema, while a

logic database is a logical theory for which multiple interpretations may exist.

2.1.1. Theories, Interpretations and models

A logical theory is a collection of sentences of a logical language, implicitly including all those
facts deducible from it by the logic’s proof procedure. Correspondences between sentences derivable in
the theory and facts in a particular domain depend on the logic's properties of soundness and com-

pleteness.

% By “traditional database” we mean relational database. Because of the predominance of the relational data mode! in Data-
base Management (DBM) theory, we adopt that model as representative. Subsequent uses of “DBM?® refer to this representa-
tive data model. ‘

11

12

By interpreting a database as a logical theory, we can use the logic’s proof procedure to derive
inferences independent from any style of observation or method of evaluation particular to the domain
being represented. More simply, a proof procedure can answer questions that would otherwise require

appeal to facts in the domain — logical consequence substitutes for truth.

Logical theories are related to real domains by using denotational semantics. This semantic
theory specifies how to put the syntactic objects of a theory (i.e., the variables, constants, and predi-
cates) in correspondence with the real objects of the domain (i.e., individuals and sets of individuals).

Each set of correspondences is called an interpretation of that theory.

Interpretations are the mechanism by which we understand theories: we form an interpretation
when conceiving axioms to include in a logical theory, and we use an interpretation to understand
inferences drawn by a proof procedure. Each consistent (i.e., non-contradictory) theory has a subset of
interpretations called models. A model is an interpretation that makes every sentence of the theory

true,

To understand the difference between traditional and logic database approaches, consider two
databases for a single domain, one viewed as a logical theory, the other as a model (i.e., an interpreta-
tion that makes each sentence of the theory true). A query to this pair can be answered in two ways:
as an alleged theorem of the theory —successful derivation and recovery of variable bindings provides
an answer; or, we can interrogate the model to see if the query is true — we evaluate the query in the
model. The difference is the same as that exploited by Gerlenter in his geometry theorem proving
program [Gerlenter63), and further elaborated by Reiter [Reiter76). When answering a query, we can
appeal to our knowledge (i.e., axioms) and inferencing mechanisms, or we can search for an answer

directly, in the model.

2.1.2. Models versus theories
In contrast to viewing a database as a logical theory, the DBM view most often considers the
tuple base as a model of the conceptual schema. In a sense, the DBM view captures the domain

inside the machine, while the logical view maintains a more or less accurate representation or theory

13

about the domain.

One important consequence of the DBM view is that the representation of incomplete informa-
tion becomes difficult [Reiter83, Kowalski81]. With the model (i.e., tuple base) at its disposal, a DBM
system can hardly represent a fact like “John or Joe loves Mary, but I don’t know which,” because
one or the other must be the case. Similar difficulties exist with the treatment of existing but unk-
nown individuals. As Reiter observes [Reiter83], handling of incomplete information from this view
necessitates often complex model-theoretic manoeuvres, like the splitting of interpretations (e.g.,
[Lipski79]), or inclusion of special constants denoting various kinds of incompletely specified individu-

als (e.g., [Codd79, Vassiliou79}).

As will become clear, viewing a database as a logical theory offers several advantages, including
uniformity of representation (i.e., no distinction between conceptual schema and tuple base) and uni-
formity of processing (proof procedure provides the mechanism for answering queries, enforcing con-

straints, and various other database operations).

2.2. Logic as a data model

The concept of a data model has been developed as a means of meeting the primary objective of
DBM: data independence [Fry76]. The growing field of logic databases is founded on the analysis and
reconstruction of DBM techniques, originally to augment DBM systems with inferential capabilities
(e.g., [Minker75, Minker78, Reiter78a]), but more recently to replace them both as theoretical and
practical models of managing information in a data independent fashion (e.g., [Kowalski78, Reiter83,
Kowalski81]).

Logic database researchers have been astute in observing the advantages of using logic for data
description, but the data model concept has not been generally acknowledged as significant. One
exception is Colombetti et al., who are careful to point out that a data model is more than a
language, and more than a data structure [Colombetti78]. Their minimal definition of a data model

includes:

14

(1) a formal specification of all operations on objects belonging to the data model, and
(2) a formal specification of the semantics of the operations.

Though Colombetti et al. focus their attention on methods for algebraic specification of data model
operations, their general concerns complement those of some Artificial Intelligence (AI) researchers
who .argue in favour of logical representation languages. For example, Hayes [Hayes74] proposes the
concept of a representation scheme, which includes the language, semantics, and reasoning strategy of
a knowledge representation system. Hayes' proposal is an attempt to provide a concept whereby

disparate representation languages can be compared and evaluated. In fact a representation scheme is
a kind of data model; its definition reflects the spirit of Codd’s definition:®

(1) a collection of data structure types,

(2) a collection of operators or inferencing rules, and

(3) a collection of integrity rules.

The logical approach to databases combines Codd’s first and third components into one: general

axioms (a superset of integrity constraints) and ground axioms are sentences of the same language

[Kowalski7g].
The advantages of specifying the language and data 6perations are clear:

(1) there is no debate whether a data object is part of the model, and

(2) operations on data model objects are fully prescribed, precluding arbitrary operations that may
render objects uninterpretable (cf. LISP-based representations like MICRO-PLANNER [Suss-
man71}).

The only discrepancy in consolidating the logic database, DBM and Al approaches is the question of

including a semantics within the data model concept. The question of semantics is not addressed in

Codd's formulation because of the DBM view of a database as an interpretation. The meaning of any

8 [Codds1, p. 112).

15

particular collection of tuples is specified with general rules of the conceptual schema, not by any
inherent semantics of the data model. The difficulty of incorporating more meaning into DBM data
models has been attributed to the implicit piiysical record or tuple-oriented semantics (e.g., [Abrial74,
Kent79)).

A logic-based data model requires a semantics because of the database as theory view. The
semantics is a guide to the conception of axioms that describe a domain (e.g., what individuals
correspond. to constants?), and to the subsequent interpretation of inferences drawn by the data

model’s reasoning mechanism.
Yet another characterization of the data model concept is given by McLeod:?
(1) a data space: a collection of elements and relationships among the elements,
(2) a collection of type definition constraints to be imposed on the data space,
(3) manipulation operators supporting the creation, deletion and modification of elements, and
(4) a predicate language used to identify and select elements from the database.

Again, the logic database approach consolidates McLeod's first and second components by providing a
language for asserting both specific and general axioms. McLeod’s fourth component captures the
notion of query language, and begs the issue of whether a query language should be included in a data
model. The logical view works in either case, since a query can be viewed as an alleged theorem
whose successful derivation results in an answer [Reiter78a, Minker78). Alternatively, more sophisti-

cated query facilities can be based on logic [Pirotte78, Emden78, Williams83].

Though inclusion of the query language within the data model might be debated,® the role of
McLeod’s third component is not clear. If “‘creation, deletion and modification’ means manipulation
of data model objects as directed by the inferencing mechanism (cf. Codd’s second requirement), then

the logic approach suffices.

7 [McLeods1, p. 27).

$E.g., see [Coddsl, p. 112].

16

The organization of logic databases and their maintenance has been investigated by several
researchers [Colombetti78, Bowen82, Kowalski81]. Bowen and Kowalski's approach is the most
interesting since it demonstrates that many aspects of logic database maintenance can be specified
with logic. Logic can be used to describe the application domain, and the relationship between new
assertions, queries, and the database can also be specified. The same logic can be used for both pur-
poses, by combining the object level language used to formulate axioms of the domain, and the meta
level- language used to formulate the relationships between the axioms database, queries, and new

axioms [Bowen82].

The reasoning component of the DLOG data model is specified in a way similar to that proposed
by Bowen and Kowalski. The specification of the model’s reasoning component will include the proof
procedure of the object language and a specification of the relationship between application databases,

queries, and assertions.
To summarize, a logic-based data model should include the following components:

(1) a specification of the syntax of the language used to define logic databases (and, possibly,
queries), :

(2) a specification of the way that sentences of the language are given meaning.

(3) a specification of the proof procedure or reasoning mechanism that is used to derive implicit
relationships among database axioms,

(4) a specification of the relationship between application databases, queries, and assertions, i.e., a
specification of the maintenance of application databases, independent of physical data con-
siderations.

The abstract specification of such a data model can provide the basis for the analysis of the many
competing data models [Reiter83]. In addition, while the systematic analysis of DBM capabilities in
logical terms argues well for the use of logic for data description, the specification of a logic-based

data model is a prerequisite for exploiting those advantages in an implementation.

17

2.2.1. What kind of loglc?

Many researchers in logic databases use variants of first order logic tailored for their particular
purpose (e.g., Horn clauses [Kowalski78], first order logic with equality [Reiter83], many-sorted first
order logic [Minker78]). The strength of their conviction ranges from claims that it is the only reason-

able choice [Kowalski79], to its justification on grounds of generalizability and uniformity [Reiter83].

As a mechanism for the analysis of data modelling techniques, first order logic has no equal — it
“is a de facto standard, much in the same way as the relational algebra is a standard for analyzing

DBM data manipulation languages [Codd72].

2.2.2. Syntax, semantlcs and proof theory

In general, a reference to “logic” includes the components of a logical calculus (i.e., an alphabet,
a syntax for formulas, logical axioms and a set of inference rules) and an appropriate semantic theory
(e.g., Tarskian semantics).

The first order restriction is a syntactic constraint on the well-formedness of formulas. As
noted above, the semantic théory prescr'ibes how syntactic objects can be aligned with domain objects

to determine the truth of formulas.

Though the notion of a ‘“proof theory” has a clear definition in the logic literature (e-g.,
[Rogers71]), in logic database research the concept sometimes includes a particular strategy for its
application. This accounts for the observation that, while first order proof theory is complete (i.e., all
possible true formulas are derivable), the strategy for searching for proofs may be incomplete. For
example, Reiter’s use of “proof theory” [Reiter83] refers to first order proof theory exclusive of appli-
cation strategy, while Kowalski’s deduction mechanism [Kowalski78, Kowalski81] employs an efficient
but incomplete depth-first strategy.

In Al, the appropriateness of logical syntax as a representation language has been hotly debated
(e.8., see [Brachman80]). First order syntax is generally the least pleasing aspect of a user interface,

but it can be appropriately *‘sugared.” Indeed many purportedly non-logical languages can be re-

18

expressed in a first order formulation [Hayes77, Hayes80].

Tarskian semantics is an appropriate semantic theory ‘‘off the shelf.” In contrast to Al, where
representation semantics are often specified by implementation, and DBM, where “semantic” data
models are just becoming a concern, Tarskian semantics is a well understood method of ascribing
meaning. A major advantage of a logic-based data model is the ability to analyze the equivalence of
disparate representations by first rendering them in first order syntax, and then interpreting their

meaning via Tarskian semantics |[Hayes80).

Similarly, logical proof theory provides a standard of comparison for deductive reasoning
mechanisms. Reasoning procedures based on first order proof theory originated with theorem-proving
programs (e.g., [Gilmore60]), and have provided the foundation for extending existing DBM systems

with deductive capabilities [Minker75, Kellogg78, Reiter78a).

2.2.3. Assumptions In logic-based data models

Though inferencing algorithms are an integral part of logic databases, adapting them for inclu-
sion in a data model requires some special care. To illustrate, consider what is necessary to axioma-
tize the relational data model in first order logic. Recall from §2.1 that much of the difficulty in
extending the DBM view of a database arises from the database as interpretation view. Query
mechanisms often exploit several basic assumptions about a relational database to provide answers

(e.g., [Reiter78b, Clark78, Reiter83}).

The kinds of assumptions made can be classified into two categories:
(1) assumptions about individuals, and
(2) assumptions about sets of individuals (i.e., predicate extensions).

In both cases the assumptions are used to interpret incomplete information. For example, under the
DBM interpretation the query “Is there an Air Canada flight to Eagle's Crotch?” might be answered
“No’ on the assumption that the database is the unique model of the Air Canada flight information.

Since no such flight is recorded, it must not exist. The negative answer is produced by failure to find

19

an affirmative one.

In logic databases, the possibly many interpretations can be restricted by casting these assump-

tions as axioms of the theory. For the relation database interpretation, the following are necessary:

Let a;,ay, * - @, be a list of all individual constants in a database DB. Then

Viz=ao,vz=aqa,v--- vz=a, (domain closure)
is an axiom of DB. Notice that this is only possible under the assumption that the domains in ques-
tion are all finite. Similarly, all assertions of the form

a,#a, fori#j 1=<i,j<n (name uniqueness)

are axioms of DB. For all n place predicates &, of DB, let

Vz,.9,(z,)

be an abbreviation for

Vizz, - z2,.8,(2,,25 - - - z,)

and let

®,(c,)

be an abbreviation for

'pn(cl»cz: o C,,)
where ¢, are individual constants of DB. The expression ¢, denotes a tuple of n constants; let
T(#,)={c, | #,(,)€DB} be the set of all tuples such that ¢, is in the extension of the relation &, in
DB. Now if T($,) is empty, then

Vz,.-4(z,) (predicate completion)

is an axiom of DB. Otherwise, for all ¢,, €T(®,), and m the cardinality of T(2,),

Vz,.9, (5,)35,,=3,,lv.§,, =6,V -t VZ, =¢,,, (predicate completion)

is an axiom of DB. The notation z, =E,,‘ is an abbreviation for z,= elAza=eg A sz =0,

The first two axioms state that the known individual constants are all and only those that exist, and
furthermore, that they are unique. The predicate completion axioms assert that the known facts are

all that exist —if some fact is not included, its negation may be inferred. Reiter [Reiter83] provides

20

details, including modifications for various kinds of incomplete information, and theorems that demon-

strate the equivalence of particular classes of relational models with their logic counterparts.

In general, these assumptions are cast as axioms to give a first order interpretation of their
meaning. An implementation of a reasoning mechanism may forego the repeated application of these
axioms in favour of a more efficient mechanism. For example, Clark [Clark78] shows how the
negation-as-failure proof mechanism of Prolog can be interpreted as an efficient application of the if-
and-only-if form of the predicate completion axioms. Because the axiomatic specification of these
underlying assumptions is possible, a logic-based data model can include a clear indication of its

assumptions regardless of implementation.

2.3. An example: a departmental database In DLOG

The motivation for DLOG’s development is twofold: it is a knowledge representation Aianguage
and a logic-based data model. The design of the language is motivated by an Al representation con-
cern: the ease of mapping an application domain to a knowledge base. The design of the DLOG data
model and inter;;reter has been influenced by a traditional DBM goal: to provide for the domain

independent storage and manipulation of data.

The implemented DLOG system provides facilities for the storage and manipulation of informa-
tion stored in accord with the DLOG data model. Its design has been guided by the DBM objective of

data independence [Fry76].

The issue of data independence has not had great impact on Al representation systems, just as
researchers in DBM have been reluctant to face the issue of making inferences from stored informa-
tion. The predominant DBM view of information has been as physical data to which sophisticated
manipulation mechanisms can be applied [Abrial74, Kent79]. In contrast, the DLOG data model
views an application database as a logical theory: the information content of the data base includes
not only the asserted information, but all those inferences that can be drawn by the data model’s

inferencing mechanism.

21

2.3.1. The example domaln

The prototype DLOG implementation has been exercised in the domain of undergraduate degree
programs at The University of British Columbia. This is not merely a domain from which examples
were drawn to illustrate DLOG capabilities. The exercise includes a complete specification of the
requirements of a Bachelor of Science with a Major in Computer Science. The knowledge represented
is the factual information that is expected of a program advisor who counsels students in course selec-
tion and d.egree requirements. Note that this does not include the wealth of pragmatic and common-
sense knowledge that a typical advisor may have acquired through experience. The Departmental
Database (DDB) includes a simple facility for creating and maintaining student transcripts, together
with descriptions of the degree program options for which students are eligible. The transcript
maintenance component is included to exercise the DLOG DDB. It does not comprise a general solu-
tion to the difficult problem of maintaining a general description of both degree program and student
evolution. The DDB is intended to be a description of one state of the degree program requirements,
and no attempt has been mad;a to develop a representation that will correctly represent and efficiently
maintain such concepts as “changes to the degree program will not affect students whose registration
date precedes those changes.”

The prototype DLOG implementation described in chapter 5 does, however, support certain
“STRIPS-like” database update operations to be embedded in DLOG applications. For example, in

the DDB domain a STRIPS-like add/delete pair is used to change the course status of a student from

“enrolled” to “‘completed.”Further details about possible alternatives to this approach are briefly dis-
cussed in §§3.6, 5.3.2, 7.4.

From the AI viewpoint, the DLOG system and DDB is a kind of student advisor: with suitable

modifications, this system might have been presented as an expert “advisor.”

2.3.2. Departmental database overview

The basic structure of the DDB system is illustrated in fig. 2.1. The host operating system pro-

vides standard facilities like file management, and the DLOG system provides the facilities for the

22

DDB

DLOG system

host operating system

Figure 2.1 DDB system structure.

management of DLOG application databases. DLOG prototypes exist for both the Michigan Terminal

System (MTS) and IBM’s Conversational Monitor System (CMS).

The finer structure of the DLOG system reveals a Prolog interpreter within which DLOG is

defined (fig. 2.2).

DLOG

Prolog

Figure 2.2 DLOG system structure

This style of construction is similar to the way MICRO-PLANNER |[Sussman71] or KL-ONE [Brach-
man79] are constructed on top of LISP interpreters. An important difference is that all DLOG asser-

tions are defined in the DLOG data model: its specification does not allow arbitrary use of the defin-

23

ing interpreter.? This means that all assertions within the data model specification are interprgtable
via the semantics of the DLOG data model — no appeal to the implemented system or its implementa-
tion language is necessary.

The complete DLOG implementation currently consists of 478 Prolog assertions, 355 of which
are pon-trivial implications. This total includes the DLOG proof procedure, parser, extended meta
prediéates, menu interfaces, and input/output predicates.

The DDB can be viewed as a monolithic collection of DLOG assertions, but it too has a finer
structure that reveals the construction and use of its various components. One view separates the

DDB into degree program knowledge and student transcripts, as in fig. 2.3.

DDB

T T, Ts Tn

Degree Program Knowledge

Figure 2.3 DDB knowledge: database designer view

The degree program knowledge includes assertions about program requirements, prerequisites and pro-

motion, while student transcripts record facts pertinent to particular students.’® This distinction

between degree program knowledge and student transcripts is not part of DLOG. It is a result of the

9 However, a restricted use is possible, in order to define application dependent software (see §5.3.1). The application program-
ming is not provided with unrestricted access to the system's proof procedure.

0 A preliminary understanding of the relationship between transcripts and degree program knowledge can be had by viewing a
student transcript as an individual frame (Al readers), or as an external schema (DBM readers). These conceptualizations
will aid understanding until details are provided.

24

structure inherent in the domain, and is the kind of classification conceived by the database designer
or “knowledge engineer.” In the real world, transcripts change more quickly than the degree pro-
grams that guide their construction. The distinction is local to the DDB database, independent of

DLOG.

Another view of the DDB distinguishes three classes of assertions: question answering knowledge,

integrity constraints and meta or data dictionary knowledge (see fig. 2.4).

DDB

IC QA DD

Figure 2.4 DDB Knowledge: DLOG view

The DLOG interpreter does recognize this classification, and uses each class appropriately.

The DDB application database currently consists of 667 DLOG assertions, only 74 of which are
implications. The domain definitions (i.e., unary predications) and question-answering assertions
number 524, and the rest are integrity constraints, data dictionary assertions, and topic dictionary

assertions. (See Appendix 4 for a complete listing of the DDB.)

The DDB was designed to be helpful in constructing a consistent description of degree program
requirements and constraints, and to be helpful in creating and maintaining transcripts of students
pursuing various programs of study. During specification, inconsistencies in the actual calendar

description were discovered as a result of attempting to describe it in DLOG.

The example terminal session (fig. 2.5) demonstrates some of the capabilities of the existing sys-

tem. The terminal session below used about 28 seconds of CPU time on a lightly loaded IBM 4341

25

processor, running IBM's Conversational Monitor System (CMS) under the Virtual Machine (VM)
resource manager. Waterloo IBM Prolog uses 25K bytes of mainstore. The DLOG implementation
uses another 50K bytes, and the DDB 118K bytes more. The loaded DDB system occupies 193K bytes
of mainstore. The space utilization of DLOG is difficult to estimate because the Waterloo IBM Prolog
interpreter does not do any compaction after assertions have been deleted. The session of fig. 2.5
required one reloading in order to provide the space necessary for the DLOG implementation to per-

form the required computation of set extensions.

This session transcript is intended to arouse the reader’s curiosity so he will continue reading to
uncover the details of how some function or feature is provided. The Prolog source code for the

DLOG implementation used here is in Appendix 1.

A detailed descriptions of each DDB predicate is given in Appendix 2. In the session below, a
brief summary of each such description appears immediately after the first use of DDB predicate. In
addition, the session is sprinkled with comments that are intended to help the reader interpret the

output syntax of the Waterloo Prolog interpréter.

R;

ddb This CMS command file loads Waterloo PROLOG, bullds DLOG,
WELCOME TO WATERLOO PROLOG 1.1 and loads the DDB application database...
LOAD(OPS1)<-

LOAD{ALL1)<-

LOAD(ASSERT1)<-

LOAD(BROWSE])<

LOAD(CTX1)<-

LOAD{DERIVE])<-

LOADEXT1)<-

38588S

LOAD(ICl)<-

LOAD(INPUT1)<-

LOADXMETA1)<-

LOAD(PARSE1)<-

LOAD(PREDS1)<-

LOAD(QUERY1)<-

LOAIXSETFNS1)<-

$35383¢3

LOAI(SORT1)<-

LOAD(START1)<-

LOAD(SYNTAX1)<-

LOAD(TRANS1)<<-

LOAD(UNIFY1)<-

$3358838

LOAIUTILS1)<- This ends the definition of DLOG, now the varions DDB
LOAIXDDBQAL)<<- components are loaded...

$3383888

LOAD(DDBQA2)<-

26

$3588858
LOAD(DDBQAS) <-
LOAD(DDBDOM) <-
LOAD(DDBIC) <
LOAD{DDBDD) <-
$5838888
LOAIXDDBTOP)<-
LOAD(DDBCOM) <-
LOAD(DDBTDIR) <-
DLOG 1.0

browse. The browse command prompts with & menu of alternatives...
1: Toplcs

2: Constraints

3: User predicates

4: System predicates

8: Enter predicate

6: Foter skeleton

Selection? 1 This selection prompts for a tople, and uses the tople dictionary
Toplc? admission to find relevant predicate names.
Predicates relevant to admission

dept_program_prereq
faculty_program_prereq
program_prereq

dept_program_prereq(u,v,w,z,y,z). This predicate asserts that course z is a requirement in year y, for
any degree program offered in department u, at level v (e.g., Bachelor, Master, etc.), in stream
w (e.g., majors, honours, etc.), with field z (e.g., Computer Science, Physics-Mathematics, etc.).
Requirements stated in this way provide the details of courses specified at the department level,
and can be inherited by program course requirements.
Jaculty_program_prereq{v,w,z,y,z). This predicate is used to specify faculty level requirements z that
" are prerequisite to enrolling in year y of a degree program with stream z, at level w in faculty
v. As for dept_program_prereq, these prerequisites are a subset of those specified by
program_prereq for the appropriate degree programs.

program_prereq(z,y,z). This predicate asserts that requirement z is a prerequisite for enrolment in
year y of program z.

Another topic? Many of the menus prompt for continue or exit...
Acknowledge(yln): n

Continue browsing?

Acknowledge(yln): y

1: Topics

2: Constraints

3: User predicates

4: System predicates
&: Enter predicate
8: Enter skeleton

Selection? 8 Having identlfied & predicate name of interest, the user requests
Predicate! program the retrieval of a few appropriate assertions...
program({BScMajorsCS)

program{BScHonoursCS)

program{ BScHonoursCSPHYS)

program{ BScHonoursCSMATH)

program(z). This predicate specifies the domain of known degree programs (e.g., BScMajorsCS,

BScHonoursCS, etc.).

27

Continue browsing?
Acknowledge(y]n): y

1: Toples

2: Constraints

3: User predicates

4: System predicates
8: Enter predicate

8: Enter skeleton

Selection? §
Predicate? program_prereq
program_prereq(*1,first, lambda(*2,age_of(*2,*3)&GI(*3,16)))
program_prereq(*1,*2,*3) <-

faculty_of(*1,*4)

&level_of(*1,*5)

&stream_of(*1,*68)

&faculty_program_prereq(*4,%5,%8,%2,*3)
program_prereq(*1,%2,*3)<-

dept_of(*1,%4)

&level_of(*1,%5)

&stream_of(*1,*6)

&field_of{*1,*7)

&dept_program_prereq(*4,%5,%0,%7,2,*3)
Contlinue browsing?
Acknowledge(yin): y

1: Toples

2: Constraints

8: User predicates

4: System predicates
8: Enter predicate
0: Enter skeleton

Selection? 8
Skeleton (end with .)? program_prereq(BScMajorsCS, first,®).

program_prereq(BScMajorsCS, first, lambda(*1,age_of(*1,%2) 2GE(*2,16)))

Browse implications?
Acknowledge{y{n): y
program_prereq(BScMajorsCS, first, *1) <-
faculty_of(BScMajorsCS,*1)
&level_of{ BScMajorsCS,*2
Sxtream_of{ BScMajorsCS,*3)
&faculty_program_prereq(*1,%2,*3,first,*4)
program_prereq(BScMajorsCS, first, *1) <-
dept_of(BScMajorsCS,*1)
&level _of(BScMsjorsCS,*2
&stream_of{ BSecMajorsCS,*3)
&fleld_of(BScMajorsCS,*4)
&dept_program_prereq(*1,%2,%3,%4,first,*5)
More?
Acknowledge(yin): n
Continue browsing?
Acknowledge(y{n): n

<-set(*x:program_prereq(BScMajorsCS first,x)).
Query: set(*1:program_prereq(BScMajorsCS, first,*1))
Result: set(lambda(*1,completed(*1,an(*2,toplc_of{*2,Sclence)
&{courve_no{*2,11)] course_no(*2,12))))
| permission(*1,*3,Sclence) dean(*3,Sclence))
&lambda(*4,completed(*4,PHYS11))
&lambda(*5,completed(*5, ALGEERA12))
&lambda(*8,completed(*s, ALGEBRA11))
&lambda(*7,completed(*7, CHEM11))
&lambda(*8,age_of(*8,*9) 2GE(*9,16)))

The first few axloms for the program_prereq predicate
are listed...notlice that this 1s retrieval or metalevel
inference: each assertion retrieved is the result of &
demonstrating that there exists an axiom of the current
database that has ‘program_prereq’ as the predicate of
the consequent.

The output form *C <- Al 2 A2 ... & An' Is the
Waterloo Prolog syntax for the Implication

‘Al ZA2&..2AR->C.

The notation **n’, where n==1,2,3..., denotes

a variable.

This selection will read a term, and use it as a pattern to
retrieve the relevant predicates...

This atomic clause asserts that you must

be at least 16 to register in the BScMajors program.

It Is represented a4 a program prerequisite for first year.
The lambda expression form permits the assertion

of a relation on predicates.

These two implications assert that the faculty
and department requirements for the BScMajors
program are merely specializations of

program prerequlsites.

This Is the first DLOG query...It requests the set of
prerequisites for year one of the BScMajorsCS program...
-..each prerequisite is s lambda term representing

a predicate that must be satlsfled.

This says that you must have completed a Sclence
course numbered 11 or 12 (or have the dean's
permission), have completed the other matriculation
courses listed, and be at least

28

transcript.

1: load

2: save

8: list

4: edit

5: create
6: browse

Selection? &

New name identifier® Smith

Program name? BScMajrosCS

Unknown program...retry?
Acknowledge(vin): y

Program name? BScMajorsCS

Enter admissions data (Type end to stop):
Begin transaction

completed(Smith, ALGEBRA11).

Assert atom: completed(Smith, ALGEBRAI1)
completed(Smith ALGEBRA12).

Assert atom: completed(Smith,ALGEBRA12)
completed(Smith, CHEMI11).

Assert atom: completed(Smith,CHEMI1)
completed(Smith, CHEM12).

Assert atom: completed(Smith, CHEM12)
completed(Smith,PHYS11).
Assert atom: completed(Smith,PHYS11)

list.

1: completed(Smith, ALGEBRA11)

2: completed(Smith, ALGEBRA12)

3: completed(Smith, CHEM11)

4: completed(Smith,CHEM12)

5: completed(Smith,PHYS11)
end.

Update DB with transaction?
Acknowledge(y{n): y

Transaction completed

Falled to satisfy: age_of(Smith,*1)©GE(*1,16)
Smith not eligible for first year BScMsjonsCS
Augment admissions data?
Acknowledge(yin): y

Continue transcript creation...

Enter admissions data (Type end to stop):
Begin transaction

age_of(Smith,17).

Asvert atom: age_of{Smith,17)
end.

Update DB with transaction?
Acknowledge(yin): y
Transaction completed

Assert atom: name_id(Smith)
Smith transcript created
Continue?

Acknowledge(yin): y

1: load

2: save

3: list

4: edit

&: create
6: browse

Selection® 3

Student identifier? Smith
Transcript of Smith
age_of(Smith,17).

sixten years old.

This is the first Invocation of the application-dependent
command that helpe the user maintain student transcripts.

This option knows something about the {nformation
needed to construct a new transcript...

After {dentifying the prospective student, and program,
the trapscript feature uses the DLOG transaction
processor to accumulate enrolment data...

Each assertion is acknowledged, and a DLOG transaction
command produces a lst of active assertions...

-..the *“end" command stops transaction Input and
Invokes the Integrity processor...

The DLOG transaction processor reports completlon,
then the transcript processor takes over...

«.satlsfaction of the prerequisites will sanction
transcript creation...

DLOG's transaction processor Is used agaln...

The transeript command acknowledges
creation of the transcript...

«..and will produce a lsting of the transcript.

29

completed(Smlith, ALGEBRA11).
completed(Smith, ALGEBRA12).
completed(Smith,CHEMI11).
completed(Smith, CHEM12).
completed(Smith,PHYS11).
Continue?

Acknowledge(yln): n

<-eligible_for_admission(Smith,BScMajorsCS). The user queries to verify Smith’s eligibility for
Query: eligible_for_admission(Smith, BScMajorsCS) admission into the BScMajorsCS program...
$3838838

Succeeds: eligible_for_admisslon(Smith, BScMajorsCS)

browse. «.and begins to Investigate the courses required.

1: Topics

2: Constraints

8: User predicates

4: System predicates
&: Enter predicate
6: Enter skeleton

Selection? 1

Toplc? courses

Predicates relevant to courses
faculty_elective

elective

unit_value

course_equivalent
course_prereq
eligible_for_course
student_program_contribution
program_contribution
dept_program_req
faculty_program_req
program_req

Jaculty_elective(z,y,z). This predicate asserts that course z can be considered to be a course from
faculty y, when considered as an elective for programs offered in the faculty z.

elective(z,y). This predicate asserts that course y is a legal elective for program y. It is a weaker
assertion than faculty_elective(z,y,z), since it does not specify which faculty the course is an
elective for, nor what faculty the course is presumed to be from (see below).

unit_value(z,y). This predicate asserts that course z has unit value y.

course_equivalent (z,y). This predicate asserts that course z is viewed as equivalent to course y. This
is used for cross listed courses, or for those which are similar enough so that credit cannot be
had for both.

course_prereq(z,y). This predicate is used to assert that course z requires the satisfaction of require-
ments y. In this axiomatization of the application domain, these requirements are specified as
lambda expressions to be satisfied (see §4.1.2).

eligible_for_course(z,y). This predicate is true when student z has satisfied the prerequisites for
course y.

student_program_contribution(z,y,z). The course z will fulfill some requirement toward the comple-
tion of program y for student z. This predicate is derivable when the course z has not yet been
taken by student z, but if completed, would make a contribution to the completion of program
y.

program_contribution(z,y,z). This predicate is true when course 2z will make a contribution toward

30

the requirements of completing year y of the degree program in which student z is enrolled.
The derivation of this predicate requires the use of the DLOG predicate eztends (see §5.4).

program_req(z,y,z). This predicate asserts that z is a requirement of year y for degree program z.

Jaculty_program_req(v,w,z,y,z). This predicate is used to specily general program requirements set
at the faculty level (e.g., a certain number of Science units). It asserts that requirement z must
be satisfied for year y of all programs with stream z, level w, and faculty v.

program_req(z,y,z). This predicate asserts that z is a requirement of year y for degree program z.

Another topic?
Acknowledge(yln): n

Continue browsing?
Acknowledge(yln): n

<-set(*x:course_req(BScMajorsCS, first,"x)).

Query: set(*1:course_req(BScMajorsCS, first,*1))

Result: get(lambda(*1,completed(*1,ENGL100))
&lambda(*2,completed(*2,CHEM1 10)lcompleted(*2,CHEM120))
&lambda(*3,completed(*3,PHYS110)!icompleted(*s,PHYS115)

feompleted(*3,PHYS120))
&lambda(*4,completed(*4,MATH100)&completed(*4,MATH101)
leompleted(*4,MATHI120)&completed(*4, MATH121))
&lambda(*5,completed(*5,CS116)icompleted(*5,CS118)
&completed(*5,an(*6, clective(BScMajorsCS,*6)
&upit_value(*s,156)))))

<-eligible_for_course(Smith,CS1185).

Query: eligible_for_course(Smith,CS115)

Falled to satisfy: (completed(Smith,*1)| course_enrolled(Smith,*1))
&course_equivalent(*1, MATH100)& completed(Smith,CS118)

Not deducible .

<-course_prereq(CS118,%x).

Query: course_prereq(CS115,%1)

Succeeds: course_prereq(CS1185,lambds(*1,(completed(*1,*2)
|course_enrolled(*1,%2))
&course_equivalent(*2, MATH100)
& completed(*1,CS118)))

stop.

EX3T DLOG
start <
heuristic_mode.
<-restart.
DLOG 1.0

<-course_req(BScMajorsCS first lambda(*x,completed(*x,CS1 18))).

Query: course_req(BScMajorsCS, first,lambda(*1,completed(*1,CS116)))
Heuristic assumption:

completed(*1,CS116)

extends

completed(*1,CS116)!completed(*1,CS118)
&completed(*1,an(*2,elective(BScMajorsCS,*2) Zunit_value(*2,15)))
Succeeds: course_req(BScMaJorsCS, first,Iambda(*1,completed(*1,CS115)))

course_enrolled(Smith, MATH100).
Assert atom: course_enrolled(Smith, MATH100)

Many predicates are relevant to *‘courses,” so the course
requirements are sought In a more direct way...the
query asks for ““the set of all requirements for the

first year of the BScMajorsCS program..."”

Smith is not eligible for CS115 because he has not
satisfied the necessary prerequisites...

«.therefore the prerequisites are sought.

The DLOG command processor is stopped, to enable
beuristic mode (see §5.4). Heuristic mode Is not always
in effect In this experimental interpreter because it causes
extensive backtracking and Is therefore expensive...

«.however it does permit some queries (which would
normally fall) to complete, subject to

certaln assumptions.

An FEnglish reading might be *Must one satisfy the
requirement of completing CS115 for the course
requirements of the first year of the

BScMajorsCS program?"*

The eztends(z,y) predicate determines if a proof

of the sentence x 1s a subproof of the sentence ¥

Now the user begins enrolling Smith In the required
course...

31

course_enrolled(Smith, MATH101).
Assert atom: course_enrolled(Smith,MATH101)

course_enrolled(Smith, PHYS120).

$3353838
Assert atom: course_enrolled(Smith, PHYS120)

course_enrolled(Smith, CHEM120).
Assert atom: course_enrolled(Smith,CHEM120)

course_enrolled(Smith, ENGL100).
Assert atom: course_enrolled(Smith,EINGL100)

transcript.

1: load
2: save

8: list

4: edit

5: create
6: browse

Selection? 3

Student Identifier? Smith
Trapseript of Smith
age_of{Smith,17).
completed(Smith, ALGEBRA11).
completed(Smith, ALGEBRA12).
completed(Smith, CHEM11).
completed(Smith, CHEM12).
completed(Smith,PHYS11).
course_enrolled(Smith, MATH100).
course_enrolled(Smith, MATH101).
course_enrolled{Smith, PHYS120).
cowrse_enrolled(Smith, CHEM120).
course_enrolled(Smith, ENGL100).
Contlnue?

Acknowledge(y{n): n

course_enrolled(Smith,CS115).
Assert atom: course_enrolled(Smith,CS115)

registered(Smith,BScMajorsCS, first).
$$5348S
Assert atom: registered(Smith, BSeMajorsCS, first)

transcript.

1: load
2: save

8: list

4: edit

5: create
0: browse

Selection? 8

Student identifier? Smith
Transeript of Smith
age_of(Smith,17).
registered(Smith,BScMajorsCS, first).
completed(Smith, ALGEBRA11).
completed(Smith, ALGEBRA12).

A quick check of the transeript will review Smith's
status...

Having enrolled in MATH100 and MATHI101, he
should be able to enroll in CS118...

«..and complete registration with the appropriate
assertion.

Integrity constraints on the *‘registered™ predicate
ensure that the student Is eligible...

«..the updated transcript conflrms the registration.

completed(Smith, CHEM11).
completed(Smith, CHEM12).
completed(Smith, PHYS11).
eourse_enrolied(Smith, MATH100).
course_enrolled(Smith, MATH101).
course_enrolled(Smith, PHYS120).
courve_enrolled(Smith, CHEM120).
course_enrolled(Smith, ENGL100).
course_enrolled(Smith,CS116).
Continue?

Acknowledge(yln): y

1: load
2: save
3: list

4: edit

5: create
8: browse

Selection? 2

Student identifier? Smith
Smith transcript saved
Continue?
Acknowledge(yin): n

» head(PCGilmore,CS).
Falled constralnt: faculty_member(PCGllmore)
Constralnts failed for head(PCGilmore,CS)

transaction.
Begin transaction

head(PCGilmore, CS).

Assert atom: head(PCGilmore,CS)
faculty_member{PCGilmore).
Assert atom: faculty_member(POGilmore)
list,

1: head(PCGilmore,CS)

2: faculty_member(PCGlimore)
end.

Update DB with transaction?
Acknowledge(yin): y

Transaction completed

<-set("x:head("x,%y)).
Query: set(*1:bead(*1,*2))
Result: set{ PCGlilmore)

<-completed(Smith,CS118).
Query: completed(Smith,CS115)
Not deducible

completed(Smith,CS118).
Falled constraint: matriculation_course(CS118)
| course_enrolled(Smith,CS115)
Sgrade_of(Smith,CS115,%1)
&passing_grade_of{CS115,*2)
&GE(*1,*2)

&DELAX(course_enrolled(Smith,CS115))

Constraints failed for completed(Smith,CS115)

Another function of the transcript command Is to
save the transcript of the specified student...

A new assertion demonstrates the need of
the DLOG transaction processor...

the assertion failed because of an Integrity
constraint that requires heads to be faculty
members. Constralnts are not used for deductlon,
90 the assertion falls (see §3.2.3).

«..the order of assertions withln a transaction Is
{rrelevant,

«..the set of all heads is a singleton.

Now the user will attempt to update Smith’s grades...

«first notice that Smith hasn’t completed CS115...

«..and that simply asserting so will not succeed.

33

grade_of(Smith,CS1135,88).
Assert atom: grade_of{Smith,CS115,88)

<-course_enrolled(Smith,CS113).
Query: course_enrolled(Smith,CS115)
Succeeds: course_enrolled(Smith,CS118)

completed(Smith,CS118).
Assert atom: completed(Smith,CS115)

<-course_enrolled(Smith,CS118).
Query: course_enrolled(Smith,CS115)
Not deduclble .

<-completed(Smith,CS1185).
Query: completed(Smith,CS1156)
Succeeds: completed(Smith,CS115)

grade_of(Smith, CHEM120,77).
Assert atom: grade_of(Smith, CHEM120,77)

grade_of(Smith,PHYS120,98).
Assert atom: grade_of{Smith,PHYS120,08)

grade_of(Smith MATH100,87).
$3395888
Assert atom: grade_of{Smith,MATH100,87)

completed(Smith, CHEM120).
Assert atom: completed(Smith, CHEM120)

transeript,

1: load
2: save

38: list

4: edit

&: create
8: browse

Selection? 3

Student identifier? Smith
Transcript of Smith
age_of(Smith,17).
registered(Smith, BScMaJorsCS, first).
completed(Smith, ALGEBRAL11).
completed(Smith, ALGEBRA12).
completed(Smith, CHEM11).
completed(Smith, CHEM12).
completed(Smith,PHYS11).
completed(Smith,CS115).
completed(Smith, CHEM120).
grade_of(Smith,CS115,88).
grade_of{Smith, CHEM120,77).
grade_of(Smith,PHYS120,98).
grade_of(Smith, MATH100,87).
course_enrolled(Smith, MATH100).
course_enrolled(Smith,MATH101).
course_enrolled(Smith, PHYS120).

A passing grade will help...

(still enrolled...)

«..and furthermore, a successful assertion of completion
will invoke a transition constraint that retracts

the old asvertion that states

that states Smith s enrolled...

«.28 verified by fallure of this query.

Now Smith's grades for the rest of his courses
are entered...

Assertions of both grade and

completion are required, as no knowledge
of completion requirements are encoded,
e.g., attending Iabe, lectures, ete.

34

course_enrolled(Smith, ENGL100),
Continue?
Ackpowledge(yjn): n

completed(Smith, MATH100).
Assert stom: completed(Smith, MATH100)

completed(Smith,PHYS120).
Assert atom: completed(Smith, PHYS120)

transcript.

1: load
2: save

S: lst

4: edlt

5: create
8: browse

Selection? 8

Student identifier? Smith
Transcript of Smith
age_of(Smith,17).
registered(Smith, BScMajorsCS, first).
completed(Smith, ALGEBRA11).
completed(Smith, ALGEBRA12).
completed(Smith,CHEM11).
completed(Smith,CHEM12).
completed(Smith, PHYSI11).
completed(Smith,CS118).
completed(Smith, CHEM1 20).
completed(Smith, MATH100).
completed(Smith, PHYS120).
grade_of{Smith,CS115,88).
grade_of{Smith, CHEM120,77).
grade_of{Smith, PHYS120,08).
grade_of(Smith, MATH100,87).
course_enrolled(Smith, MATH101).
course_enrolled(Smith, ENGL100).
Continue?

Acknowledge(yln): n

grade_of(Smith MATH 101 ,86).
Assert atom: grade_of{Smith, MATH101,88)

completed(Smith, MATH101).
Assert atom: completed(Smith, MATH101)

grade_of(Smith,ENGL100,99).
Asvert atom: grade_of{Smith,ENGL100,99)

completed(Smith,ENGL100).
Assert atom: completed(Smith,ENGL100)

transcript.

1: load
2: save
8: list

4: edit
6: create

«..a0d the assertions about their completion

6: browse

Selection? 3

Student identifier?® Smith
Transcript of Smith
age_of(Smith,17).

registered(Smith, BScMa jorsCS, first).

completed(Smith, ALGEBRAI11).
completed(Smith, ALGEBRA12).
completed(Smith,CHEMI11).
completed(Smith, CHEM12).
completed(Smith,PHYS11).
completed(Smith,CS1185).
completed(Smith, CHEM120),
completed(Smith, MATH100).
completed(Smith, PHYS120).
completed(Smith, MATH101).
completed(Smith, ENGL100).
grade_of(Smith,CS115,88).
grade_of{Smith,CHEM120,77).
grade_of(Smith, PHYS120,98).
grade_of{Smith,MATH100,87).
grade_of{Smith,MATH101,88).
grade_of(Smith,E2NGL100,99).
Continue?

Acknowledge(y|n): n

browse.

1: Toples

2: Constraints

8: User predicates

4: System predicates
&5: Enter predicate
8: Exter skeleton

Selection? 1

Tople? year

Unknow tople: year
Retry?
Acknowledge(via): y
Tople! eligible
Uskoow topic: eligible
Retry?
Acknowledge(yln): y
Toplc? promotion
Predicates relevant to promotion
eligible_for_degree
eligible_for_year
registered
faculty_grad_req
grad_req

Now the user wants information about the next year
of this program...

«..this topic is not in the topic dictionary...

«.but this one will help.

eligible_for_degree(z y). This predicate is true when student z has satisfied all the graduation require-
ments for degree program y. Derivation of this relation as a query initiates the most complex
and time consuming computation possible in the version of DLOG in which this application data
base was developed.

eligible_for_year(z,y). This predicate is true when student z has completed the prerequisites for

admission to year y of the program they are currently enrolled in.

registered(z,y,z). This asserts that student z is registered in year z of degree program y. This asser-
tion cannot be made unless the student in question has satisfied the prerequisites for year z of

program y.

36

Jaculty_grad_req(w,z,y,z). This predicate asserts that z is a graduation requirement for all degree
programs from faculty w at level z (e.g., bachelor, master, etc.), in stream y (e.g., majors,
honours, etc.). The set of faculty graduation requirements are a subset of the extension of the
more general predicate graduation_req{z,y) for appropriate programs z.

grad_reg(z,y). This predicate asserts that requirement y is one requirement to be satisfied in order to
graduate with degree z.

Another topic?
Acknowledge{yln): n
Contlnue browsing?
Acknowledge(y{n): y

1: Toples

2: Constnaints

3: User predicates

4: System predicates
§: Enter predicate
©: Enter skeleton

Selection? §

Predicate? eligible_for_year

eligible_for_year(*1,*2)<- Notlce that testlng for eligibility for a year involves
program_enrolled(*1,*3) retrieving and testing all the previous year’s requirements,
&previous_year(*2,%4) a8 well ag retrieving and satisfying all prerequlisites
&satisfled (*1,5et(*5:program_req(*3,*4,*5))) of the next year.
&satisfied(*1,set{*6:program_prereq(*3,*2,*8)))

Continue browsing?®

Acknowledge(y]n): n

«<-eligible_for_year{Smith,second). The student has satisfied the appropriate requirements...
Query: eligible_for_year(Smith,second)

$$8888s8

$5538858

$3853888

$$39888$

Succeeds: eligible_for_year(Smith,second) «..and DLOG verifies this in approximately 8 cpu seconds.

stop. ‘This stops the DLOG proof loop...
EXIT DLOG

START <

<-STOP. ...and this stops PROLOG.

R;
Figure 2.5 An example DDB terminal session

Chapter 3
The DLOG data model

The DLOG data model is the foundation of the DLOG database management system. It con-
sists of a representation language and corresponding semantics, a proof procedure, and a specification

of the relationship between assertions, queries, and DLOG databases.

The description of DLOG is based on a 3-sorted first order syntax, standard Tarskian semantics,
and a first order resolution proof thecory augmented with various procedures for manipulating descrip-
tions, lambda terms, and constraints. A later chapter (Ch. 6) proposes a non-standard approach to

the formal semantics of the DLOG language.

The 3-sorted syntax is intended to reflect the intuitive semantics of three kinds of basic objects:
individuals, sets, and lambda expressions. Informally, the DLOG user writes assertions about these

three kinds of objects.

Formally, much of the semantics of the DLOG language can be specified in a straightforward
way by using contextual description. However, certain components of the Janguage have an intended

semantics whose specification requires a meta language description.

The sentence level syntax of DLOG is nearly identical to the definite clause language of Prolog.
This restriction permits the use of Prolog’s proof procedure as the foundation of DLOG's proof pro-
cedure. DLOG's term syntax, however, is unlike any existing language, and requires special attention
from both the semantic and proof-theoretic view. For example, DLOG's proof procedure uses an ela-
borate matching procedure that extends standard unification with a procedure for directly manipulat-
ing the DLOG descriptive terms. Briefly, the DLOG system is realized by compressing the 3-sorted
language to a Horn clause syntax. DLOG descriptions are restricted to a term syntax by employing

description operators (cf. [Hilbert39, Leisenring69, Robinson79]). The general Prolog proof strategy

37

38

for Horn clauses can then be used, together with special procedures that extend unification to behave

in accordance with an elaborated equality theory.

This chapter specifies the logic of DLOG, and explains how a subset of the language can be
mapped to Prolog’s definite clause language. Chapter 4 extends the discussion with further details on
the motivation for and use of descriptive terms, and chapter 5 discusses an experimental implementa-

tion, and chapter 6 speculates on a Prolog-independent foundation for the semantics of DLOG.

3.1. Syntax

The language underlying the DLOG data model is a 3-sorted predicate language, where the sorts
are individuals, sets, and lambdas. The syntax is 3-sorted for user convenience, but one could
translate an n-sorted language to a single-sorted language [Wang52] to explain its semantics in terms
of a single-sorted theory.
The DLOG alphabet consists of the following symbols.

(1) strings: a finite number of characters selected from 0-9, a-z, A-Z, - (hyphen);

(2) logical constants: V (universal quantification), 3 (existential quantification), L (Russel’s symbol),
€ (Hilbert’s symbol), X (lambda), = (equality symbol), € (element-of symbol), A (and symbol), v
(inclusive or symbol), v (exclusive or symbol), D (implies symbol), ~ (not symbol), { } (braces), ()
(parentheses), [] (square brackets), < > (angle brackets), . (period), : (colon), , (comma),

(3) individual varigbles: z,,z5,zy, - * -
(4) set variables: X,,X,,X,, « - -

(5) lambda variables: 1,114, - -+

(8) individual constants: any string is an individual constant;

Individual constants are ;lsed to name individuals of a domain. Examples of strings are ‘CS422’,
‘Asterix’, ‘C-3P0’, and ‘R2D2".

(7) predicate constants: if « is any string and 71,7y * * * Ty are sorts, then <a,ry,75, -+« ,7, > is an
n-ary predicate constant. ‘

In a single-sorted language, we can associate a number of arguments with a string (an “arity”’) to

39

create a predicate constant, and then use that predicate constant to name a relation in the application
domain. For example, we might choose the string ‘topic-of’ to name the binary relation on courses
and their topics, e.g., ‘topic-of(CS422,Al)’.

In DLOG’s 3-sorted language we attribute an arity Lo a string and a sort to each argument posi-
tion. For example, if the string ‘topic-of’ is intended to name a relation on sndividuals X individuals
then we name that relation with the DLOG predicate constant ‘<topic-of, individual, individual>’.
The tuple -del‘ining a predicate constant carries with it information about the sorts on which the predi-
cate is defined. In terms of programming language concepts, a predicate constant is like a procedure

declaration whose arguments are all drawn from pre-specified data types.

The DLOG language defined here includes terms that are defined in terms of formulas, so the
definition is mutually inductive on terms and formulas. We first define the terms of DLOG, and then

the formulas.

3.1.1. Term syntax

The terms of DLOG are of three distinct sorts: individual terms, set terms, and lambda terms.
The individual terms are

(T1) individual variables,

(T2) individual constants,

(T3) definite individuals: if @, is an individual variable and $(a,) is a formula in which o, appears
free, then La,.9(a,) is an individual term called a definite individual;

DLOG's definite individual provides a shorthand syntax for referring to a unique individual whose
name is unknown. Intuitively, the variable binding symbol ‘¢’ can be read as the English definite arti-
cle “the.” For example, we might refer to “the head of Computer Science” as

Lz,.head—=of (z,,ComputerScience)
We normally expect that the variable bound with the symbol ‘¢’ appears somewhere in the formula

that constitutes the body of the description.

40

(T4) indefinite individuals: if a, is an individual variable and #{a;) is a formula in which a, appears
free, then €a,.$(qa,) is an individual term called an indefinite individual.

When we need to refer to “any old a,” with some property specified by a formula ‘®(a;)’, we can use
an indefinite individual. The variable binding symbol ‘€’ can be read as the English indefinite article
“a” or “an.” For example, “‘a course with course number greater than 300" might be referred to by
the indefinite individual

€z).course(z,)A[Izy.course—no(z,,z,)Az,2300)
As for definite individuals, we normally expect that the variable bound with the symbol ‘€’ appears

somewhere in the formula that constitutes the body of the description.

The set terms are
(T5) set variables,

(T6) set constants: if a),a,, * * - ,a, are individual constants, then {a;AaAaqn - - - Aq,}is a set
term called a set constant;

A DLOG set constant provides a syntax for naming a finite collection of DLOG individuals.!! For
example, ‘{CS305 A CS307 A CS309} names the set consisting of the three domain individuals
denoted by the individual constants ‘CS305’, ‘05307’, and ‘CS309’. When we want to attribute a pro-
perty to a set of individuals rather than each of its members, we can use a set constant, eg.,

‘cardinality-of({CS305 A CS307 A CS309}, 3).

(T7) definite sets: if e, is an individual variable and #(a,) is a formula in which @, appears free, then
{ay:$(a,)} is a set term called a definite set;

A definite set is used to refer to a set consisting of all individuals that satisfy some property. The
name ‘‘definite’’ was chosen to mirror its use in ‘‘definite individual.” As the semantics will later indi-
cate, a definite set is “definite”” because it refers to all individuals in the current database who satisfy
the specified property. For example, “the set of all numerical analysis courses” might be designated

as

1! The A symbol is an abuse of notation, of course, and could be replaced with a more conventional notation. However, the
dual use of the the A is retained, to conform with a similar dual use of the ¥ and V symbols in the definition of indefinite

sets.

41

{z,:course(z,)Atopic—of (z,,NA)}

(T8) indefinite sets:

(T8.1) if «, is an individual variable, a, is a set variable, and #(a,) and ¥{a,) are formulas in
which @, and o, occur free, then {a;,a;:8(a;)A¥{a,)} is a set term called an indefinite set;

(T8.2) if o),ay, - - - ,a@, are individual constants, and ¢;,¢,, - - - €, -1 are symbols such that ¢, €
{A, v, 9}, for 1<isn—1 and at least one ¢, is v or ¥, then {aje;0pc005¢5 < - cp_y,}
is a set term called an indefinite set.

Indefinite sets are “indefinite” in the sense that they refer to one of a set of sets. Like indefinite indi-
viduals, they are intended to be used to refer to ‘“‘any old set” that is an element of the set of sets
that satisfy the specified properties. For example, the indefinite set

{z,,X :course(z,)Acardinality—of (X,,3)}
is the DLOG term that represents an arbitrary set that is a member of the set of “all 3 element sets

of courses.”

The second form of an indefinite set is for further convenience: in the situation where it is known
which individual constants are potential members of the set, the form given by syntax description
(T8.2) is appropriate. For example, the indefinite set {CS115 ® CS118} refers to one of the elements
of the set {{CS115}, {CS118}}. When the symbols ‘A’, ‘v’, and ‘®’ are used together, parentheses can
be used to indicate grouping, e.g., ‘{{CS115 ¢ CS118) A ENGLIOO } refers to either {Cs115,
ENGL100} or {CS118, ENGL100}. Without parentheses, ‘A’ binds most tightly; ‘v’ and ‘¢’ have
equal priority, associating left to right; the fully parenthesized form of ‘{a A b ¢ ¢ v d} is ‘{((a A b)
¢ c)vd}.

The lambda terms are

(T9) lambda variables,

(T'10) lambda constants: if a is an individual variable and #(a) is a formula in which « is free, then
Aa.$(a) is a lambda term called a lambda constant.

Lambda constants were introduced to capture a kind of individual occurring naturally in the DDB
domain: regulations. For example, to describe a typical degree program we must classify requirements

of that program, e.g., ““nobody can register if they're under 16 years old” refers to a regulation that

42

uses the lambda constant

Az).[3z.a9e—0f (z,,25)Az,216)

In this way regulations can be placed in relation to other individuals and sets, e.g.,
program —prerequisite(BScMajors, first Az ,.[3z,.0a9e = of (z,,2,)Az,= 16])
says ‘‘one of the regulations for the first year of a BScMajors program is that an individual be at least

16 years old.”

3.1.2. Formula syntax
The formulas of DLOG are defined inductively as follows:

(F1) atomic formulas: if t,,t,, - - - ita are terms of sort r,7,, - - - 7, respectively, and
<a,1,73, * * - ,T, > is an n-ary predicate constant, then <e,r,,75, - -« 1, >(tyts, - - -ty) is an
atomic formula;

A DLOG atomic formula is an n-ary predicate constant followed by a parenthesized list of DLOG
terms of the appropriate sort. As explained above, the predicate constants in a multi-sorted languageA
are slightly more complex, as they must encode their arity and the sort of each argument. In most of
- our examples, we write only the string of the predicate constant instead of the complete tuple; the

sort of each argument should be obvious from the context. For example, the atomic formula
program — prerequisite(BScMa jors,
{third A fourth},
Az .completed(z,,CS315))
would be more formally written as
<program = prerequisite,individual,set ,lambda >(BScMajors,
{third A fourth},
Az,.completed(z,,CS315))

Intuitively, this atomic formula names an instance of a relation that says ‘it is a program requirement

for a BScMajors that a student have completed CS315 sometime during years three and four.”
(F2) formulas:
(F2.1) if a is an atomic formula, then both a and {"a) are formulas;

(F2.2) if) and a; are formulas, then so are (a;Aa,), (2, Vay), (o, 9 a,), and (ay2ay),

43

(F2.3) if a, is a formula, then (Vz,.0,), (VX,.q,), (Vi,.0)), (3z,.9)), (3X,.a,), and (3l,.a,)
are all formulas.

For formulas constructed with the operator symbols *~, ‘A’, ‘v', and ‘®’, the parentheses may be
omitted, in which case operator precedence is as for their use in the indefinite sets of syntax descrip-
tion (T8.2); the only difference is the addition of **’, which is unary, and will bind more tightly than all

other operators.

3.2. Semantics

The method of contextual definition will provide a specification of the intended meaning of most
of the complex terms, however, lambda terms require special treatment. We first provide the contex-
tual definition for individual and set descriptions. Then follows a brief description of an interpretation
for the DLOG language. A later section (§3.5) describes the manipulation of A constants at the meta

level.

3.2.1. Contextual definitions of DLOG descriptions

The semantics of DLOG descriptions can be defined by the method of contextual definition.
This style of defining the meaning of descriptive terms was employed by Russell (e.g., see [Kaplan75)),
and is essentially what one might explain as a “macro definition.” The most familiar contextual defin-
ition is that, proposed by Russell, for definite individuals. He proposed that sentences of thé form

#(Lz1.¥z,))

be viewed as an abbreviation for

3z, [#(z1)A V2o [z)mz,=2))| '
and argued that if the latter sentence was not true in the situation being considered, then the descrip-

tion ‘Lz,.¥(z,)’ used in the former sentence had no denotation. Philosophical debate on the meaning

of descriptive terms continues to this day; further relevant discussion is postponed to chapter 4.

The contextual definition of DLOG’s individual and set descriptions are as follows:

44

P(Lz). Wz,))= 3z, [B(z))A V2, [Wz)mzy=2z]] (3.1)
P(€z,.Wz)))=3z,.$(z,)A ¥ z,) (3:2)
$({z,:9(z,)= X [$(X) A Vz, [Hz))=z,6X]| (33)
‘p({zl»xli‘p(zx)"n(xl)})"axl-[[‘p(xl)" Vz,[z,€X,0¥(z))|| A2(X))] (3.4)
P({ayAah)m X [H(X))A e €X A€ X AV z [2,€X,02,=0, vz, =ay]] (3:5)
#({e, Vaz})-axl-[¢(X1)A[X1={°‘1"az}"Xx""{ax}"Xx:{az}” (3.6)
P({a) v ao})= 3X L [S(X))AX = {ar} o X ={a,}]] (3.7)

These contextual definitions provide a way of interpreting the meaning of descriptive terms by inter-

preting their definitions in a standard language. Intuitively, this style of definition reveals the descrip-

tive objects to be artifacts of the language syntax — there meaning is determined solely in terms of

their definition.

3.2.2. Interpretation of formulas

(11)

(12)

(13)

(14)

(1)

An interpretation I of a DLOG theory DB consists of

a non-empiy domain D={D;UDsUDg}, where D, is a non-empty domain of individuals over
which the individual variables range, Dg={S:SCD,} over which the set variables range, and Dg
is a set of regulations over which the lambda variables range;

for each individual constant i of DB, an assignment V(i)€D;; for each set constant s of DB, an
assignment V(s)€Ds; and for each lambda constant ! of DB, an assignment V(I)€Dg;

for each n-ary predicate constant, except ‘=", <a,r,,7,, * * - ,7, > an assignment
V(<a,1,7y -+ + 7, >)=R, where R is a relation on T(r;)X T(7;)X - - - XT(r,), such that
T(individual)is D;, T(set)is Ds,and T())is Dg;

an assignment to the predicate constant ‘=" of the identity relation in D; in particular, of
<=,individual,individual > to identity in D;, mutis mutandis for Ds and Dg; and

an assignment to the predicate constant ‘€’ of the set membership relation in D; in particular, of
<€,individual,set > to set membership 1o D.

We now define satisfiability for DLOG i’ormulas.

Let F be any atom of the form <a,r;,r,, « - ,7, >(t},t5 « * - ,t,) where each ¢; is of sort 7, for

1=i=n; then F is satisfied by an interpretation I if and only if the tuple <V(t,),V{ty), - - - ,V(ta)>

is in the relation V(<a,r,1p, - - ,7, >)in L

The logical constants ‘V’, ‘T’, ‘™, ‘A", *v’, and ‘9’ have the usual interpretation:

45

(V) if F is any formula and z is any variable, then (Vz.F) is true in I if and only if F is true in I for
all assignments V(z)€D;

(3) ifF is any formula and z is any variable, then (3z.F) is true in I if and only if F is true in I for
at least one assignment V(z)€D;

(") if Fis any atom, then (F) is true n I if and only if F is not true in I;
(#) if F; and F; are any two formulas, then (F,AF,) is true in I if and only if F, and F, are true in I;
(v) ifF,.and F; are any two formulas, then (F;VF,) is true in L if and only if F, or F, are true in I;

(v) if Fy and F; are any two formulas, then (F;9F,) is true in I if and only if either i) F, and (Fy)
are true in I, or ii) (F,) and (F,) are true in I

3.3. An implementable subset of DLOG

To demonstrate that the expressive power of DLOG is actually useful requires an implementa-
tion that supports the development of a real DLOG database. This requires a proof procedure that
will manipulate the language defined in §3.1 in a way that is consistent with the semantics described
in §3.2.

The strategy will be to restrict the language defined in §3.1 so that a proof procedure based on
Prolog’s SLD resolution can be used as the foundation of an implementation. This foundation will be
embellished with special procedures to manipulate DLOG’s complex terms. The objective is an imple-
mentation that combines the expressiveness of DLOG with the relative efficiency of Prolog. This can
be done by placing syntactic restrictions on the DLOG syntax of §3.1, thus compressing it to a Horn
clause syntax augmented with DLOG's complex terms.

The following section describes the restriction to a Horn clause syntax, and the subsequent sec-
tion describes the extension of Prolog’s SLD resolution to manip'ulate DLOG's complex terms. The
extension uses Prolog’s negation-as-failure [Clark78] to manipulate negative information, together with
an extended definition of equality that is used to define DLOG unification. The DLOG unification

procedure can recursively invoke the proof mechanism to determine the equality of complex terms.

Subsequent sections will include further modifications of the Prolog proof procedure to manipu-

46
late lambda terms, and apply constraints as assertability rules.

3.3.1. Syntax restrictions

The major syntax restrictions include the standard Prolog restriction to Horn clauses (e.g., see
[Kowalski79]), and a further restriction that will allow description bodies to be interpreted as DLOG

queries.

The Horn clause restriction requires that every formula, when in clausal form, have at most one
positive literal. This gives us three general syntactic forms for formulas. Let a,, 1<Si=n, be atomic
formulas, as defined in §3.1, syntax description F1. Let z,, z,, ..., z,, be the free variables in the ¢,.
Then a formula of the general form

Vz, 2y zpaviayv -+ vq,

can be written as

Vz,z,° zpa,Cagh -+ - Aq, (3-8)

and is called a rule. A formula consisting of only one positive literal, viz.

Vz,2,- - z,0, (3.9)

is called a fact. Finally, a sentence of the form

Vz,2,: 2z, yVoayv -+ V',

can be rewritten as

"Fryzgc - zhoAapA - A, (3.10)
and is called a query. Notice that the symbol ‘" does not appear in the formulas (3.8) and (3.9).
Furthermore, since all free variables are treated uniformly, the quantifier prefix can be dropped from
all forms; free variables in facts and rules are then assumed to be uriversally quantified, and those in
queries are assumed to be existentially quantified. In fact, in Prolog query syntax, it is customary to

drop both the negation sign ‘”’ and the existential quantifier prefix; all free variables in queries are

assumed to be existentially quantified.

To these formula schemas we add the logical constants ‘v’, ‘¢’ and ‘~’ to complete our res-

tricted language. Notice that the newly added symbol ‘~’ is different from the symbol ‘”’; the former

47

will be used below to denote “negation-as-failure,” while the latter is the standard logical constant, as
used in §3.1, and above to define the Horn clause restriction. Notice also that the symbols ‘v’ and ‘9’
are identical to those appearing in the more general syntax (§3.1), however they have restricted
interpret;ations in the subset being defined here. In particular, the exclusive or symbol ‘¢’ will be
defined in terms of negation-as-failure. Similarly, the predicate constants ‘€’ and ‘="' will be given

restricted interpretations.
Before redefining the syntax description F2 (§3.1) to conform to the structure of the Horn clause
schemas, one intermediate syntactic item is necessary. A body is defined as follows:
(B1) bodies:
(B1.1) if o is an atomic formula (cf. syntax description F1, §3.1), then a is a body;
(B1.2) if o, and «, are bodies, then so are (~a;) (a;A,), (@) Vay), (a;?ay).
The definition of the syntactic component “body” allows the completion of the restricted DLOG

language definition. First, the syntax descriptions of complex terms (T3, T4, T7, T8.1, and T10 of

§3.1) are replaced with the following:

(T3) definite individuals: if @, is an individual variable and #(«,) is a body in which a, appears free,
then La,.9¥(a,) is an individual term called a definite individual;

(T4) indefinite individuals: if @, is an individual variable and ¥(e,) is a body in which a, appears
free, then €a,.$(a,) is an individual term called an indefinite individual.

(T7)if e, is an individual variable and &(a;) is a body in which a; appears free, then {a,:(c,)} is a
set term called a definite set;

(T8.1) if o, is an individual variable, a, is a set variable, and ¢(c,) and ¥(a,) are bodys in which a,
and o, occur free, then {a;,a:(a;)A¥{a,)} is a set term called an indefinite set;

Consistent with the Prolog convention explained above, all free variables within descriptions will be

assumed to be existentially quantified.
Finally, we redefine the syntax description F2 for formulas.

(F2) formulas:

(F2.1) if « is an atomic formula, then a is 2 formula called a fact;

48

(F2.2) if a, is an atomic formula and o, is 2 body, then (@1Cay) is a formula called a rule;

(F2.3) if o, is an atomic formula and a;, is a body, then (a;Day) is a formula called a con-
straint;

(F2.4) if @ is a body, then ?a is a formula call a query.
The meaning of constraints, as sentences of a DLOG database, is given by the standard interpretation

of DLOG (§3.2.2). Their meaning as integrity constraints is described in £3.6.

3.4. DLOG derlvabllity

To complete the specification of the logic component of the DLOG data model we need to
specifly what it means for a DLOG query @ to be derivable from a set of DLOG assertions DB (i.e., 2
collection of assertions). We need a specification for the relation usually called ‘+’, so that the expres-
sion DBFQ is meaningful. Henceforth we will rename the symbol ‘+’ as ‘derivable’, and write

derivable(DB,Q)
to mean that query @ follows, by some number of inferences, from database DB. Ultimately we

desire an implementation for the derivable relation that will allow us to determine, given DB and Q,
if derivable(DB,Q).

In describing the relation derivable, we are anticipating a particular style of implementation
based on Prolog’s SLD resolution [Lloyd82]. Our strategy for interpreting DLOG's complex terms is
similar to others (e.g., [Pietrzykowski73, Huet73]) in that the focus is on providing the necessary
extensions to unification. However, in contrast to Pietrzykowski and Huet, we take a more ad hoc
approach. Because the intended interpretation of DLOG theories is restricted to finite domains, the
necessary t;nil’ication extensions can be made by specifying equality axioms for the DLOG complex

terms, and then interpreting these axioms as a Prolog program that implements DLOG unification.

We might have attempted a more traditional specification of derivability in terms of axioms and
rules of inference (e.g., [Rogers71, Mendelson64]), or simply adopted a general resolution proof pro-
cedure (e.g., [Loveland78, Robinson79]). but either approach would still require further attention to

the manipulation of DLOG's complex terms. The Prolog foundation was selected because it is a prac-

49

tical implementation of a proof procedure. The extended behaviour of the Prolog proof procedure is
achieved by using Prolog to execute an appropriate meta level description of how to manipulate

DLOG terms.

3.4.1. Equality theorles for Prolog

The SLD proof procedure implemented in Prolog uses a depth-first left-to-right selection strategy that

attempts to derive queries by matching them against facts and rules in the database. For example, an
atomic query

¢(tlrti.’v et tn)

can be reduced to another query

W(-’n-’z» Ct 8y)0
by backchaining through the rule

45(“1-“2: Tt un)cw("lr"zv e 3n)
This reduction is legal only when ‘@(t,,t,, - - - t,)' matches ‘B(u,,uy, - - - u,) with most general unifier
0, as determined by the unification algorithm [Robinson65). When a query of the form P(t)t, - -)

unifies with a fact of the form &(s,,s,, - - - &,), a proof is complete (i.e., the query is successful).

The unification operation shows how two terms can be made equal. To understand how Prolog
implements equality, we can use Clark’s [Clark78] “general form’: assertions of the form
&(t),ty, - - - t,) where t,, 1Si<n are terms, can be rewritten as

(21,29 * * * 2,)C2 =t AZ,= UM - - - Az, =t

and implications &(¢;,t,, - - - £,)CWAW,A - - - AW, can be rewritten as

H(z1,Z2 * ** 12,)CT = AT = EpA - - AZ =t AVLAYLA - - - AP,

where the z,, 15S{=n are new variables not occuring in the original formulas.

Clark’s general form shows how the unification algorithm is simply an efficient way to derive the
necessary equalities z,=t,, 1<{=<n. He combines this general form with equality axioms to specify
how a definite clause database can be *‘completed” to explain the logical basis for Prolog’s negation-

as-failure: Prolog will answer “yes” to a query ‘~®’, just in case it finds that all derivation search

50

paths for a proof of ‘P’ end with failure. Clark’s results show how negation-as-failure in the original

definite clause database corresponds to deduction in the completed database.

Clark’s results also contirubte to the specification of DLOG. First, the DLOG negation symbol
‘=’ is implemented as Prolog's negation-as-failure. Second, Clark's general form provides a way to
explain how the DLOG derivable relation manipulates descriptive terms. Normally, the equalities that
sanction query reduction involve only simple individual terms. However, the equalities arising in the
general form of DLOG assertions are drawn from a much richer collection of objects. One can there-
fore view DLOG's derivable relation as an extension of Prolog, but with a different theory of equality.
This is what van Emden and Lloyd claim about Colmeraurer’s Prolog II |[Emdeng4), which employs a
““homogeneous form™ to isolate equations, just as Clark does with his general form. In fact, van
Emden and Lloyd show that Prolog without mnegation-as-failure uses only the equality axiom
‘Vz.z=z'. This isolation of the equality theory from the general proof procedure is also used by

Kornfeld [Kornfeld83], who extends a LISP-based Prolog system with equality axioms.

It should be noted here that it is appealing to extend unification by enriching Prolog’s theory of
equality, but that it is easy to destroy the unification algorithm’s termination property. In general,
this is because one can extend the definition of the predicate ‘="' until it has the power of a general
functional model of computation. For example, Goguen and Meseguer [Goguen84] provide such a
definition of Horn clause logic with equality and explain many of the problems of computing within
such a theory. Note also that the equality theory of Colmeraurer's Prolog II is not relevant to DLOG,
as DLOG's language does not admit infinite terms.

The DLOG extensions to unification described below are more conservative than those of
Goguen and Meseguer in that only those equality axioms for DLOG’s complex terms are added.
These axioms are not used as general rewrite rules, but as Prolog axioms that define a restricted ver-

sion of the ‘="' relation.

51

3.4.2. DLOG's equality theory

The new equalities to be handled by DLOG unification are those that could be possibly intro-
duced by rewriting DLOG assertions and implications in Clark’s general form. We first require the
equality axioms implicit in Prolog (with negation-as-failure): if {a;,a,, - - - ,a,} are the individual con-
stants in a DLOG database, then we have

"a,¥Fa, fori#j 1<i,j<n (name uniqueness)
This is the same set of name uniqueness axioms used by Reiter [Reiter83] in his reconstruction of rela-
tional databases (see §2.2.3). In DLOG unification, these axioms are manifest in the way an imple-
mentation determines how two individual constants are different: by comparing machine representa-

tions of strings.

The remaining axiom schemas required by Clark are substitution, and those that define ‘=" as

an equivalence relation:

Vz.|z=1z] (reflexive)
Vzy.|z=yDy=z] (symmetric)
Vzyz.|z=yay=zDz=2| (transitive)
Vuy,vs, - v, 0wy, - 0, B(vy,0,, - - - ,0,) (substitution)

AVIZ=w AV=woA - - - Ay, =w, DP(wy,wy, - - - ,w,)

where v,,w, are individual variables, as appropriate for any n-ary predicate constant &.
We now require axiom schema that specify the equality of DLOG’s descriptive terms. Part of

the task is simplified because the sorts of DLOG are distinct.!? Therefore we need only consider the

possible combinations of equality expressions within each sort.

In addition to the equality axioms given above, we need the following:

z=€y.P(y)=[d(z)] (3.15)
This axiom schema says that to demonstrate the equality z=€y.#(y), prove that z satisfies #(z). As

an instruction to DLOG unification, it says that when matching atoms of the form

2 The implementation of chapter § actually relaxes this distinction to streamline the user interface, and to increase the
implementation’s efficiency. See chapter 5, §5.2.3.

52

¢(tlrt2v T TYR »tn)

and

Pty te, - - €2 Wz)ti ey, t L)
check that V{t,) is derivable.

The remaining axiom schemas for individual descriptions provide similar instructions for DLOG

unification:
z=Lly. d(y)=|Vz.|P(z:)m:=z] (3.16)
€z.9(z)=Lly. Vy)=[3u.[Vz¥(z)mu=z]Ad(u)| (3.17)
€z.P(z)=€y.Yy)=|3:z.[$(z)=¥:)]) (3.18)
lz.P(z)=ly. Wy)=|IuV:|S(z)my(:)|m:=u]) (3.19)

The next sort to consider is sets. DLOG set theory is simple, since it is constructed from the fin-
ite set of DLOG individuals. The equality axioms for individuals together with the ‘€’ (element of)
relation allow us to specify the following axiom for set equality:

VX XX =X m|[Vz.z€X ,mz€X,) (3.20)
This specifies the conditions under which sets are equal. Since the closed world assumption is in force,
the universal quantifier ‘Vz’ is interpreted over a finite domain of individuals, and set equivalence can
be determined extensionally. In fact the equality of all sets, including set descriptions, could be deter-
mined by using this axiom, as long as the ‘€’ relation was defined on set descriptions. But determin-
ing the equality of set descriptions by comparing their extensions, though possible in this finite case,
would be very inefficient. However, the existence of set descriptions provides a more computationally
efficient way of determining set equality. For DLOG, the closed world assumption makes intensional
and extensional equivalence the same; so alternative computational strategies for determining set

equivalence are available for set descriptions:

{z:0(z)}={y:Ay)}=|Vz.8(:)=¥z)] (3.21)
{z.X:(z)AUX)} ={y,Y:-2Ay)r 1Y)} mAZ.[V 2.2 €ZDP(z) A W2)| AN Z)ATT(Z) (3.22)
{z:8(z)}={y,Y:Hy) A [I(Y)}=[3Z.[Vz.2€Zm ()| AIT(Z) A V 2. $(2)D¥{2)] (3.23)

Axiom schema (3.21), (3.22), and (3.23) explain how a theorem prover would attempt to demon-

strate the equality of set descriptions “intensionally,” by proving that their definitions are logically

53

equivalent. For DLOG, the difference will be computational efficiency; when the closed world assump-

tion is not in force, there are many well known situations where the methods are not equivalent.!®

Finally, the equality of lambda constants is specified by
Az P(z1)=rz,.W(z,)=|Vz.(z)mYz)] (3.24)
Notice that new logical constants ‘€’ (element-of) and ‘=’ (equivalence) have been introduced to
describe how the equality of various complex terms can be established. Definitions of these constants
suitable for the restricted DLOG language (§3.2.1) are defined as Prolog programs, and are explained

in more detail in chapter 5 (§5.2.3.1).

3.4.3. Extending Prolog derivabllity for DLOG

The equality terms in Clark’s general form never actually appear in any derivation of a query, in
fact the equality symbol ‘="' isn't normally included in the Prolog language (cf. [Emden84]). Instead,
the required derivations of the equalities z,=t,, 1<i<n are performed implicitly by the unification
algorithm. Because unification will establish the necessary equalities, and bind constants to variables
where appropriate, the algorithm for Prolog derivations can be specified very succinctly (e.g., see

[Bowen82]). For example, the following is a brief description of Prolog derivability in Prolog:

P1) deriveble/{ DB, Q) C
eziom(DB, §) A unify(Q, S).

P2) dersvable(DB, Q) C
aziom(DB, SCR) A unify(Q, S) A derivable(DB, R).

P3) derivable{ DB, Q A R) C
' derivable(DB, @) A derivable(DB, R).

The variable DB is a Prolog “program,” or set of assertions. Briefly, the three sentences can be read
as follows:

Pl1) an atomic query Q is derivable from a database DB if S is an assertion in database DB
(as determined by aziom), and Q@ and S unify;

B Por the logical background see [Quine80, chapter VIII, Reference and Modality]; for examples of practical considerations see
[Schubert76, §8] or [MooreT6, §§1, 3).

54

P2) an atomic query Q is derivable from a database DB if S is a rule in database DB (as
determined by aziom), Q and S unify, and the new query R is derivable in DB; and

p3) a conjunction of atomic queries is derivable from DB, if both the first conjunct and the
remainder of the query is derivable.

Here the unify operation does most of the work for Prolog, but this is not the case for DLOG.
Unification will not establish the equality of DLOG's complex terms. Rather than augment the res-
tricted DLOG language with ‘=" and other symbols introduced in the definition of complex terms
(e.g., ‘€, ‘=), we can retain the simplicity of the Prolog proof strategy by providing an augmented

“unification”'* algorithm that will establish the necessary equalities,

The behaviour of DLOG unification can be described in a way similar to the way descriptive
terms were explained by contextual definition: the above equality axiom schema that express the con-
ditions under which two DLOG terms are equal. These schema introduce rather elaborate specifica-
tions of how the equality of descriptive terms can be proved, and their manipulation would, in general,
require a language in which symbols like ‘€” and ‘=’ were defined. However, instead of explicitly pro-
viding DLOG with a more powerful theorem-prover, the equali.ty specifications are implemented as
Prolog programs and embedded in DLOG uniflication. By substituting DLOG unification for the Pro-
log version, the above description of Prolog derivability provides the basis for DLOG derivability. In a
similar way, DLOG derivability can be specified as follows. As above, we will write

derivable(DB,Q)
to mean that DLOG query @ follows, by some number of inferences, from DLOG database DB. The

simple specification above then becomes:

D1) derivable(DB, Q) C
atom(Q) A
aziom(DB, F) A
Jact(F) A
unify(Q, F).

M Henceforth the phrase “DLOG unification” will be used to refer to DLOG's procedure for matching the atoms of queries
with assertions or the cobsequents of implications. In introducing the idea here, the quotes acknowledge that DLOG uaifica-
tion is not the same as the well-known unification algorithm, but is nonetheless very closely related in it's intended use and

operation.

55

D2) derivable(DB, Q) C

atom(Q) A
aziom{ DB, R) A
rule(R, H,T) A
unify(Q, H) A
derivable(DB, T).

D3) derivable(DB, (Q1 v Q2)) C
derivable(DB, Q1).

D4) derivable(DB, (Q1 v Q2))C
derivable(DB, Q2).

D5) derivable(DB, (Q1 © Q2))C
dersvable(DB, Q1) A
derivable(DB, (-Q2)).

D6) derivable{ DB, (Q1 » Q2))C
derivable(DB, (~Q1)) A
derivable(DB, Q2).

D7) derivable{ DB, (~Q)) C
= derivable(DB, Q).

D8) derivable{ DB, (Q1 A Q2)) C

derivable(DB, Q1) A
derivable(DB, Q2).

The first two axioms (D1, D2) define the top level of DLOG derivability for an atomic query Q (see
§3.2.1, syntax definition F2.3). The relation ‘atom(Q)’ holds whenever its argument Q is a DLOG
atomic query. The relation ‘aziom (DB,F)' holds whenever F is an axiom of the DLOG database DB.
In both D1 and D2, the axiom relation serves as a generator of DB axioms potentially relevant to the
query @. The relations ‘fact(F)' and ‘rule(R,H,T) are used to distinguish DLOG facts and rules.
The latter not only verifies that R is a rule, but that H and T are the rule’s head (consequent) and
tail (antecedent), respectively. For example, the following instance of the rule relation holds:
rule(p(z) C q(z), p(z), 9(z))

Both D1 and D2 rely on the DLOG unify relation to sanction the continuation of the derivation. The
relation ‘unify(@,F) bolds whenever the atom Q unifies with the atom F. Of course, this DLOG
unify relation is not nearly so straightforward as standard unification — it is the key to DLOG deriva-

bility.

56

The remaining axioms (D3-D8) specify the treatment of the DLOG logical constants ALV e,
and ‘~". Although the derivation of ‘~derivable(DB,Q) is generally undecidable, axiom D7 is neces-
sary in that it defines negation-as-failure, as previously mentioned (§3.2.1); the implementation will
rely on the standard implc;nentation of negation-as-failure (chapter 5, §5.1.1). The implementation of
the DLOG derivable relation in chapter 5 (§5.2.3.1) is a Prolog program that conforms to these specifi-

cations.

3.5. Interpretation of lambda constants as regulations

The interpretation of DLOG formulas specified in §3.2.2 interpreted lambda constants as regula-
tions. That is, even though lambda constants have the appearance of predicate abstractions, their

first order interpretation is that they are names for regulations.

Used in this way, DLOG lambda constants provide the user with a method of asserting axioms
about unary predicate abstractions, intuitively interpreted as regulations. These terms are useful in a
variety of ways: viewed as a constant, the assertion

P(\z,.¥(z,))
can be interpreted simply as asserting that the property & is true of the regulation named by

Az,.¥(z,). These terms are useful because they allow a user to assert relations about properties.

As a unary predicate abstraction, another of their uses can be explained with the aid of a meta
relation called satisfies. Syntactically, satisfies is a two place DLOG predicate constant whose first

argument is of the sort individual and whose second argument is of the sort X (as in §3.1.1).

In DLOG, we use an axiom that relates satisfies to the DLOG meta predicate derivable (§3.4)
to provide a method for testing whether an individual satisfies the regulation denoted by a DLOG
lambda constant. The definition of satisfies is

Vz,.satisfies(z,,\z,.W)mderivable(DB,|z,/z,]¥)
where the notation [c,/z,]¥ denotes the result of substituting term z, for each occurrence of the vari-
able z, in the body of the lambda term ¥ (e.g., see [Stoy77, ch. 5]). Then, for any individual constant

a of a DLOG database DB, satisfies(a,\z,.¥) is true under a DLOG interpretation I if and only if

57

[a/z,¥] is true under I. An assertion of the form

satisfies(a\z,.9) (4.1)

is interpreted to mean that, in the current database,

&(a) (4.2)
is derivable. Indeed (4.1) is a clumsy alternative to (4.2), but by providing lambda constants as terms,
we not only provide a way of asserting axioms about regulations, but also a way of using those regula-
tions in question answering. The satisfies predicate provides the mechanism for applying lambda

constants as unary predicates of the current database.

The intended use of lambda constants is further discussed in §4.1.3.

3.6. DLOG database malntenance

The DLOG language is designed for describing domains that are perceived as individuals, sets of
individuals, regulations, and relationships among objects of those sorts. Intuitively, DLOG axioms,
queries and assertions are objects too, so we should be able to specify some theory that captures the

relationships among those objects. This requires a language for writing axioms —a logic —to pre-
cisely define DLOG database maintenance.!®

The major role of this section is to complete the specification of the DLOG data model by speci-
fying the meaning of assertability in a DLOG database. As a final elaboration of the DLOG data
model, we define assertability and specify a syntax by which users can assert integrity constraints for
DLOG databases. DLOG constraints provide a way of making invariant assertions about DLOG data-
base relations, and the definition of DLOG assertability provides a method for automatically enforcing
constraints to determine the assertability of a database update.

Again, as discussed in §2.3.1, the specification of DLOG database maintenance here does not

treat updates that change the data, but rather only those that consistently augment it. As desirable

as such a specification is, its development here would be a digression. A major part of such a

¥ See [Borgida8i, Mylopoulos80] for an approach based on a procedural representation.

58

specification can be viewed as a classical database design problem in the sense that one could promote
moments of time to the status of individuals, and use a state representation (e.g., see [Kowalski79]) to
form the logical foundation of DLOG database maintenance. However, the computational problems

associated with such a foundation are significant.
The syntax of DLOG constraints was given in §3.3.1, syntax definition F2.3:
if @, is an atomic formula and a;, is a body, then (@,Da,) is a formula called a constraint;

All free variables are assumed to be universally quantified. The following example illustrates a typical
constraint of the DDB domain (see §2.3.2).
course—enrolled(z,,z,) O

student(z,)

Acourse(z,)

Aregistered(z,,z)

Aprogram = contribution(z4,z,)

Aprerequisites(z,,X,)

Asatisfied(z,,X,)

This constraint says “if z, is enrolled in z,, then z, must be a student, z, a course, and furthermore,
there must be a program z; in which z, is registered, the course z, must contribute to that program
zy, and the student z, must have satisfied the set of appropriate prerequisites.” Informally, we say
that the constraint would be applied whenever an update of the database was attempted. For exam-
ple, a new assertion ‘course—enrolled(Kari,CS442) would be rejected if any of the conditions of the

above constraint were violated.

To bé more formal, we could use the idea of Bowen and Kowalski [Bowen82], and endeavour to
axiomatize the relationship between DLOG application databases, assertions, queries, and constraints
within DLOG. By carefully naming DLOG sentences, we can specify a portion of the DLOG data
model within the DLOG language. This means that each DLOG specification would include 2 DLOG
theory that axiomatizes DLOG database maintenance. In the following informal description we
assume at least a partial amalgamation of the kind prescribed by Bowen and Kowalski. The specifica-

tion here is written in terms of a sorted first order language. Chapter five describes how these

59

specifications are used as the basis of a implementation.

The specification of DLOG database maintenance assumes representability [Bowen82) of the fol-

lowing predicates:

derivable(X ,z)
DLOG formula z is derivable from DLOG database X;

assertable(z,X,Y)

DLOG formula z is asserted as an axiom in the current database X, giving the new database Y;

constraint(z)
DLOG formula z is a DLOG constraint, as specified above;

assertion(z)
DLOG formula z is a DLOG fact or rule, as specified in §3.3.1;

query(z)
DLOG formula z is a DLOG query, as specified in §3.3.1, and

relevant(z,y)
DLOG constraint z is relevant to DLOG assertion y.

Representability means that we expect every true positive instance of a relation to be derivable, but

not each negative instance. For example, when Q is a DLOG query, we expect that

derivadble{DB,Q)

is derivable whenever Q is derivable from DB, but we do not require that

~derivable(DB,Q)

be derivable whenever Q is not derivable from DB. Bowen and Kowalski demonstrate how the latter

requirement would contradict Goedel’s incompleteness theorem; representability is thus a way of
avoiding an overstatement of the logical power of this approach to metalanguage axiomatization.!®

DLOG queries are alleged theorems of a DLOG database. The query predicate is true of all

derivable theorems:

1 See the discussion of provability in Bowen and Kowalski |Bowens2).

60

Vz.derivable(DB,z) O query(z) (3.25)

In other words, a successful evaluation of z as a query will result from demonstrating that z follows
from database DB. Sentence (3.25) is a specification of the intended relationship between queries and
databases in the DLOG data model. Standard implementations of resolution theorem provers provide
one kind of implementation of ‘‘derivable” (e.g., [Chang73, Loveland78, Robinson79]). DLOG's deriv-

able, as constructed in Prolog, is an incomplete but efficient implementation.

The distinction between constraints and implications is inherent in the relationship between
DLOG databases and new assertions. This relationship is given by the following axiom:
Vz VX.assertion(z) (3.26)
AVyly €X Aconstraint (y)Arelevant (z,y) O derivable(X U{z},y)]

D assertable(z, X, X U{z}))

Intuitively, an assertion z can be added to a database X resulting in a new database X U{z}, if the
relevant constraints of X (i.e., a subset of X) remain derivable when z is assumed as an axiom.
“Relevant” is intended to mean “‘any constraint that might potentially be violated by the new asser-
tion.” Note that all constraints may be considered relevant; this would relieve all responsibility for
specifying the meaning of “relevance,” without affecting the DLOG specification. In this case, the

definition of “relevant” is an efficiency issue; §5.2.4.2 provides an example specification.

The role and interpretation of integrity constraints has been discussed in the logic database
literature from at least two viewpoints, one in which a database is viewed as a model of a set of con-
straints [Nicolas78b], and another in which integrity constraints are a distinguished subset of axioms
of a first order theory which remain consistent over theory (i.e., database) updates [Reiter81, Kowal-
ski81, Reiter83]. The former view, that of a database as a2 model of a set of constraints, is an accu-
rate portrayal of traditional relational database systems. However the latter view is adopted here,
where a database is viewed as a logical theory. The advantage is that integrity maintenance can be
expressed in proof-theoretic terms: integrity constraints are those axioms that should remain derivable

after a database update.

The proof-theoretic formalization of integrity constraints by Reiter [Reiter81, Reiter83] distin-

61

guishes a subset of axioms comprising a database ICCDB, and defines the notion of constraint satis-

Jaction:

A set of c'onstraints IC is satisfied by a database DB if and only if,
for all constraints ic €IC, DB + jc.

The definition simply says that the constraints JC are satisfied if and only if they can all be derived

from the current database DB.

The formalization of Kowalski [Kowalski81] uses the same distinction, but does not characterize
the class of constraints in enough detail to express an algorithm for their application — however, in
Reiter [Reiter81], constraints are restricted to be of the form

Vziz2+ - 2, P(zy2p . .. ,2,)27(z,) AP (2)A - - - AT (z,)
where each 7' is a boolean combination of monadic predicates. This restriction to monadic predicates
is significant, as derivability of formulas of the monadic predicate calculus is decidable. In [Reiter83]
this class is generalized to arbitrary formulas, but he acknowledges that their efficient application

requires further research.

Two further observations on the use of integrity constraints .are‘worth noting. First, constraints
may sometimes be used to derive new information as well as to constrain the consistency of updates
[Nicolas78b, Minker83]. For example, consider the formula

Vz Vy.supplies(z,y)dsupplier (z)Apart (¥) (3.27)
which asserts that if supplies(z ,¥) is true, then z must be a supplier, and y a part. As an integrity
constraint, formula (3.27) would cause the rejection of an assertion like “supplies(Acme,Widgets)”
unless both “supplier(Acme)” and “part (Widgets)” were already derivable. However, as a ordinary
rule we can use formula (3.27) to deduce that Acme and Widgets have the required properties. Simi-
larly, in the terminal session in figure 2.5, the assertion

head(PCGilmore,CS)

was initially rejected because of the DDB constraint

62

Vz Vy.head(z,y)Dfaculty—member(z)Adepartment(y)
There seems to be no concensus about how to decide in which way to use formulas such as (3.26).
Second, because constraints are intended to assert invariant properties of databases, potentially
violated constraints must be identified at update time. That is, upon each update, potentially violated
constraints must be identified and re-derived to establish the consistency of the augmented database.
Logic database researchers have usually distinguished integrity constraints from the rest of the data-
base, but have not indicated how such a subset should be identified. This is presumably an issue of

‘“‘database design.”

In DLOG, constraints are intended to be used to specify invariant properties of those relations
that a user may update. DLOG constraints are used only to verify database consistency, and cannot
be used to answer queries. Furthermore, their syntax permits 'the definition of 2 meta predicate
relevant that identifies a subset R of integrity constraints, i.e., RCICCDB, that must be re-derived
whenever a new assertion is made. This subset is determined by the form of the assertion (see

§5.2.4.2).

The application of DLOG integrity constraints is specified in a modified version of Reiter’s

notion of constraint satisfaction [Reiter83):

if DB + ic for all ic€IC,
then A is assertable in DB only if
DB U {A} F ic for all ic€IC

If we assume that the current set of constraints IC is derivable, the consistent update of DB with new
assertion A is possible only if DB U {A} F ic, for all ic€IC; the DLOG specification uses the meta
predicate dssertable(A) as the specification of the DLOG mechanism for applying integrity con-
straints. Recall that the DLOG syntax for constraints has the form ‘A O B’; the DLOG database

maintenance specification reveals it to be an abbreviation for ‘assertable(A)Cderivable(B)'.

The class of constraints treated in [Reiter81] are equivalent to relational schemas, so DLOG's
constraint facility also captures the database notion of relation schemas [Stonebraker75]. Further-

more, it is part of the data model — a constraint is simply another part of a DLOG application data-

base.

63

Chapter 4
Descriptive terms in DLOG

Chapter 3 provided a rather detailed description of the DLOG data model, with little emphasis
on the motivation for and intuition behind DLOG’s complex terms. This chapter presumes to supply

the motivation, with further examples of their intended use.

The motivation for including descriptive terms in DLOG comes from work in Artificial Intellj-
gence, where the ability to refer to objects with descriptions is of considerable conceptual advantage in
specifying symbolic representations of domains {e.g., [Moore76, Schubert76, Norman79, Bobrow77b,

Bobrow77a, Hewitt80, Steels80, Attardi8l]).

Descriptions bave also been used within the logic database literature (e.g., [Dilger78, Dahlgo,
Dahl82]). The descriptive terms of DLOG are believed to be the most extensive currently employed in

any logic-based representation language.

In Al part of the reluctance to adopt a logical interpretation of descriptions must be attributed
to the long-standing confusion and controversy about their meaning — logicians do not generally agree
on the semantics of descriptive terms.!” This reluctance to analyze descriptions in a logical framework
probably results from a traditional misunderstanding of the role of logic (cf. [Hayes77]). DLOG
descriptions were originally developed to help describe concepts in the Department Database (DDB)
domain; they have been somewhat elaborated to help explain the role of logic in analyzing descriptions

and to investigate the computational problems of including them in a representation language.

The next section reviews all DLOG complex terms, and discusses their use and intended meaning
in an informal way. Two subsequent sections, §§4.2, 4.3, discuss the traditional use and meaning of

descriptions by focusing on issues that impact their interpretation in a finite symbolic database. The

Y See [Carroli78] for a good survey of the logical, philosophical and psychological interpretation of descriptions.

65

chapter’s last section, §4.4, gives more examples of how DLOG descriptive terms are used in the DDB

domain.

4.1. DLOG terms: motlvation and intended use

When designing a representation language, it is easy to become detached from the worlds to be
represented; elaborate language features are often presented with little indication of how they are best
used. For example, the KRL language [Bobrow77b, Bobrow77a] has been criticised in this way (e.g.,

see [McDermott78b, Lehnert78}).

The need for embedded descriptions does arise in the DDB domain (e.g., see fig. 4.1 below). In
DLOG's case, indefinite descriptions, lambda terms, and indefinite sets were motivated by domain
considerations. Definite descriptions of both kinds were used rarely in the implemented DDB, but

were included in order to investigate strategies for their implementation.

4.1.1. Individual constants

DLOG individual constants are, by Tarskian semantics, intended to denote individuals in an
interpretation. A constant identifier is usually selected as a name of an individual, but this need not
be the case. The correspondence between constants and real objects is a semantic issue, 50 a constant
like PERSONO00169 might be used to denote the person named John Q. Smith. Conceptually, it is
generally less confusing to choose identifiers mnemonically. An alternative is to specify a name rela-
tion as a predicate of the theory, e.g., establish a correspondence like

name(P000169, “John Q. Smith ")
name(P000072, “Dweisel Zappa)

.

The non-mnemonic constants might then be interpreted as denoting individuals in the domain, with
the predicate name interpreted as a relation on individuals and strings. In this way, a user can build

a database that includes a theory of aliases, e.g.,

66

name(P000185, “Clark Kent)
name(P000185, “Superman ")

4.1.2. Set constants

DLOG set constants are formed from individual constants, so each member of a set is inter-
preted as specified above for individual constants. A set constant is written as a collection of indivi-
dual constants, e.g., {P000119AP10112}, and denotes a collection of individuals. For example, the
axiom ¢({P000119AP10112}) is true in an interpretation where the property named by & is true of

the class object that has the denotations of P000119 and P10112 as members.

Note that a DLOG theory is not a complete axiomatization of classical set theory

(cf. [Brown78]). As Quine says:

...set theory can in part be simulated by purely notational convention, so that the appear-
ance of talking of sets (or classes), and the utility of talking of them, are to some degree

enjoyed without really talking of anything of the kind.!®

Similar observations have been made by Bledsoe [Bledsoe77a], who replaces set variables with their
first order translations, and Kowalski [KowalskiSl], who uses a similar idea to provide an axiomatiza-

tion of sets.

DLOG's set theory is based on a finite domain of individuals, and thus avoids the major issue of
classical set theory: what expressions determine sets, and vice versa. This is done by restricting the
interpretation of sets to range over the power set of a finite number of individuals. A logician would
no doubt claim that, indeed, DLOG has sets “without really talking of anything of the kind.” How-

ever, the intended use of DLOG “sets” is as a conceptual aid — they behave as if they were sets.

Recall that chapter 3 presented the DLOG language as a 3-sorted logic. DLOG’s interpretation
of set constants could be transformed to a single-sorted language. This translation to a single-sorted
logic requires that each application database include axioms that define the unary predicates

individual, set and \. In fact, because the implementation of DLOG is in the single-sorted language

18 See [Quine69, p. 4, pp. 15-21).

67

Prolog, the unary predicates are required for the implementation, and are provided for the user,
DLOG users can assume that the Decessary axioms are “built-in,” however an assertion of the form
#({P000119A P101112}) is manipulated in a single-sorted language internally. By incorporating these

predicates within each DLOG database, the user is provided with the illusion of sets.

4.1.3. Lambda constants

The experimental DDB domain requires the description of degree requirements. Often the
requirements can be formed as lambda constants, e.g., the assertion
enrolment —requirement (BScMajorsCS \z. l[age—of (z,y)ry= 16}) (4.3)
states that “‘an enrolment requirement of the BScMajorsCS degree is that the candidate’s age is
greater than or equal to sixteen.” (Recall that all unbound variables in the body of a lambda term are
assumed to be existentially quantified.}) The lambda constant format allows the requirement to be
asserted and queried, and the satisfies predicate provides the mechanism to pose a query like

Penrolment —requirement (BScMajorsCS,l,)Asatisfies (John 1)) (4.4)

that can be read as “Has John satisfied an enrolment requirement for the BScMajorsCS program?”

Notice that, in the DDB domain, degree requirements are most naturally conceived as conditions
which must be satisfied. Since degree programs are distinguished by their various requirements, it is
most straightforward to describe degree program requirements as relations on degree names and con-

ditions to be satisfied — in DLOG, as lambda constants.

Of course there are alternatives to the use of this special constant. For example, the meaning of
sentence (4.3) might be rephrased in terms of a standard first order language as

Vz.[satisfied —requirements(z ,BScMajorsCS)>3y.age — of (z,¥)ry=16) (4.5)

where we would use BScMajorsCS as the name of a degree program and modify the predicate

satisfies to correspond more closely to our intuition regarding what one must do with degi’ee require-

ments. This alternative has a more straightforward meaning (since there are no “special” forms) and

the requirement for a higher order semantics is gone. But now there is no way of asking what the

requirements of the BScMajorsCS program are, short of providing another meta level order primitive

68

for manipulating sentences. For example, to answer the query equivalent to the query (4.4) in the
alternative notation, we require an operation that retrieves a sentence of the form (4.5) from the

current database, and then returns the literal consequent of that sentence as an answer.
Similarly, if there were n lambda constants, each denoting a degree requirement regulation, .i.e.,

requirement (BScMa jorsCS \z.®,)
requirement (BScMa jorsCS \z.9,)

;equirement (BScMajorsCS \z.9,)

we could rewrite this collection of atomic formulas as
Vzd,adyA - P, Dsatiajied—requirements(z,BScAIajor.sCS)
However, as above, any attempt to ask a questions about degree requirements would again require

meta level manipulation of the second formula.

Lambda terms can be manipulated with a standard (sorted) proof procedure to answer existen-
tial queries about requirements; they are simply retrieved and bound to existential lambda (predicate)
variables as in normal answer extraction. Furthermore, they can be used in conjunction with the

satisfies predicate to determine if an individual has satisfied a particular requirement.

4.2. Problems with Interpreting descriptions

The major conceptual advantage of descriptions is their ability to refer to an object by specify-
ing its properties, rather than by specifying a unique name. Confusion about their intended meaning

arises when they fail to refer, or when multiple referents result in ambiguous reference.

The most common interpretation of descriptive terms is provided by Russell's method of contex-

tual definition (e.g., see [Kaplan75]). Russell proposed that sentences of the form

bald(Lz,.king—of — France(z,)) (4.6)

should be viewed as an abbreviation for

69

3z, [bald(z,)AVz, [king—of —France(z,)mz,=z)| (4.7)
At issue is the meaning of descriptive terms when their proof-theoretic preconditions fail.!® For exam-

ple, Russell held that if there were no such King of France (as apparently referred to in sentence 4.6),

then the sentence was false. His claim rested on the truth value of sentence (4.7) which is the defini-

tion of the abbreviated sentence (4.6). Still another popular theory® holds that the meaning of such
descriptions whose logical preconditions fail should be specified by convention, e.g., a failing descrip-

tion refers to a designated null constant that lies outside the domain of discourse.

Logicians have not been primarily concerned with the conceptual advantage of descriptions (e-g.,
[Hilbert39, Leisenring69, Robinson79)), and have thus been content with rather intuitive interpreta-
tions so long as they remain within proof-theoretic constraints (e.g., see [Rosser78]). However, the use
of descriptions in Al and logic databases is primarily of conceptual advantage, and therefore requires
care in specifying their meaning with respect to the languages in which they appear (e.g., see
[Moore76, Schubert76, Dilger78]). In this regard, the use of descriptive terms impinges on philosophi-
cal problems nssociateq wi.ih names and reference (e.g., [Donnellan66, Kaplan?5, Brinton77, Kaf277]).
Here the distinction between referential and attributive use is an important concept in understanding
the use of descriptions [Donnellan66]. This distinction has received scant attention in Al, except in
one semantic network representation [Schubert76] and in a cognitive theory of description use
[Ortony77]. Briefly, the distinction hinges on the description’s intended use: if a description is formed
with the intention of referring to a particular individual, the use is referential; if a description serves
only to identify the propertics of some referent without intentional concern for its existence, the use is
attributive. Examples from Anderson and Ortony [Ortony77] will illustrate: compare

The inventor of dynamite wore a fine beard. (4.8)
with

Y E.g., see [Carnap47, pp. 32-30].

2 See discussion of the Frege-Carnap theory in [Kaplan75), page 215.

70

The inventor of dynamite had & profound influence (4.9)
on the nature of warfare.

The former sentence seems to be referring to a particular individual (i.e., Alfred Nobel), while the

latter is only coincidentally concerned with the referent of “the inventor of dynamite.”

In any knowledge base, the user’s intention must be communicated to the system, or the system
Y

must impose some decision regarding referential versus attributive usage. As Carroll states:

Analyses that reject this distinction or lack the formal apparatus to describe it, just cannot
treat everyday facts about naming and reference.?!

If we insist that descriptive terms denote, we can retain our logical analysis (i.e., contextual
definition) by arbitrarily forcing every use to have a corresponding referent. When referential use
fails, a new object is created and the description is interpreted as a reference to some existing but

undistinguished individual. This is the approach suggested by Schubert [Schubert?ﬁ].

In logic databases, the unnamed object created as a result of the attributive interpretation is a
new Skolem constant [Reiter83). For example, when interpreting the description (4.8), failure to find
an existing constant that satisfies tﬂe property “the inventor of dynamite” might sanction the crea-
tion of a new object, asserted to be the one in question. Furthermore, it is asserted to have the pro-
perty of ‘““wearing a fine beard.” Each such attributive interpretation will require appropriate changes
to the logic database axioms for equality (see §3.4.2), as the new object must be included in those

known to exist, and the extensions of relevant predicates must be updated.

Note that the inequ.alities that record the unique name assumption are not changed. A newly
created Skolem constant cannot be assumed to be distinct from some existing constant. In our previ-
ous example, a user’s attributive use of ““the inventor of dynamite” may be made in ignorance of some
existing constant denoting the individual Alfred Nobel. The subsequent problem of re-establishing
name uniqueness after each attributive use is computationally volatile — it requires an equality test

with each existing constant..

A See [Carroll78, p. 29).

71

As regards assertions, we know of no logic database system that allows descriptive terms. For
DLOG, t.he suggestion of Schubert’s is applicable, but some decisions remain unclear. For example, an
attributive treatment of definite descriptions might use the description itself as the Skolem constant,
or create a new constant and discard the description, or create the new constant and save the descrip-
tion. For instance, consider the DLOG equivalent of (4.8):

wore—a— fine—beard(Lz.inventor — of —dynamite(z)) (4.10)

If a referent is not found, should (4.10) be asserted? Or, should something like

wore—a = fine—beard(P010174)

be asserted? Should-the equivalence

Lz.inventor —of —dynamite(z)= P010174 (4.11)

be asserted as well, or how about

inventor = of —dynamite(P010174)?
For definite descriptions, asserting anything equivalent to (4.11) means that every subsequently
created individual constant must be tested for identity with the Skolem constant to ensure database
integrity. This might be avoided by throwing away all descriptions, but some recen.t work on intelli-
gent interfaces indicates that descriptions are extremely useful as query responses [Kaplan79,
Kaplan82]. In fact it is more difficult to recreate a description than to retain the description when it

is asserted.

The interpretation of descriptions is further complicated when the embedding language is used to
form queries as well as assertions, as in some languages based on logic [Dilger78, Dahl80]. It seems
intuitively natural to treat descriptions referentially in queries, since we are presumably forming a
query to identify objects and relationships. The lambda descriptions of Dilger and Zifonun [Dilger78)
are used in exactly this fashion. Furthermore, in addition to the conceptual advantage of using
descriptions referentially, Dahl [Dahl80] notes that referential interpretation of set descriptions can
provide a solution to the problems arising in the interpretation of negation in Prolog. Briefly, the
problem is in computing the complement of a predicate extension when deriving a negated literal of

that predicate. For example, in Prolog a derivation of the query 3z. -P(z) from DB={P(a),Q ()}

72

fails, even though z =0 is a legitimate answer. This is because Prolog's negation-as-failure mechanism
[Clark78] attempts to show DB + 3z-P(z) by instead showing DB H 3zP(z); here, since DB +

P(a), the negated query fails.

Dahl's suggests two ways to ensure that a query of the form 3z ~P(z) is never attempted; in its
place she puts one of two mechanisms that can identify the members of the extension of predicate P,
and then test each individually. A different heuristic is used in the MU-Prolog system [Naish83a).
MU-Prolog will delay thg execution of a negated atom as long as possible, hoping that free variables in
the negated atom will become bound; negation-as-failure works properly as long as the z in ‘3z -P(z)

is bound. This solution is possible only because of the finite axiomatizations being considered.

4.3. Interpreting DLOG descriptions

The DLOG data model allows descriptions to appear in both assertions and queries

(cf. [Dilger78]). Here we provide an intuitive specification of descriptions, as an adjunct to §3.2.1.

4.3.1. Definite Individuals

Recall (§3.1.1, syntax description T3) that a definite description of an individual in DLOG is
called a definite individual, and is written using the iota variable binding operator, eg.,
Lz,.inventor —of —dynamite(z,)
The DLOG data model treats these descriptions referentially in both assertions and queries. At asser-
tion time, a definite individual that fails to refer should cause rejection of the assertion. This is
merely a part of the DLOG specification, and no implementation commitment is intended. The
specification could be made more precise by using the same technique used to specify DLOG database
maintenance (§3.6). For example, for every use of a definite individual #(Lz,.%(z,)), 2 meta axiom
schema instance like
assertable($(Lz,.¥(z,)),DB,DBU{$(Lz,.¥{z,))})C

derivable(DB,Vz,z4.W(z,))A¥(z,5))DAz,=1z,.

must be considered. As queries are viewed as alleged theorems, a definite individual that fails to refer

results in query failure. This interpretation of definite individuals is essentially the test of an

73

assertion’s presuppositions regarding the individual being described (cf. [Mercer84, Hirschberg84]).

Here the presupposition is existence and uniqueness.

4.3.2. Indefinite Individuals

Indefinite descriptions of individuals are formed using Hilbert's symbo! €, intuitively interpreted
as the English indefinite article “an.” It should here be acknowledged that, whereas philosophical
treatments of reference have been most interested in the meaning of definite descriptions, theories of
indefinite descriptions have received relatively less attention. For example, Hilbert's operator can be
used to dispense with quantifiers but it does so only for syntactic expedience, to ease the mechanical
function of the proof theory [LeisenringGQ]. It is apparently for this reason that Kaplan [Kaplan75,
P. 213] denies Hilbert's term the status of an indefinite description operator even though there is some
basis to believe that Hilbert intended its interpretation as a designator could be based on a semantic

choice function (e.g., see [Leisenring69, Alps81}).

In DLOG, the term

€z.student(z)Arage—of (z,16)
can be read as “‘a student whose age is 16.” Indefinite descriptions are treated, in a sense, attributively
in assertions, and referentially in queries. In assertions they are interpreted attributively in the sense
that that failure of their preconditions (i.e., existence) cannot cause an assertion to be revoked
(cf. definite descriptions). An assertion of the form

P(€z.¥(z))
will be admitted as an axiom regardless of whether the clause ¥{z) is derivable (i.e., there is a referent
for z). This means that an indefinite assertion of the form

P(a)ve(d)

can be made by embedding the disjunction within a description, viz.

P(€z.z=avz=b)

This ability to express incomplete information has been claimed as a major advantage of logic data-

base research over traditional relational databases (e.g., |Reiter83, Minker83]). However, the current

. 74

DLOG implementation is based on a Horn clause theorem prover that cannot derive disjunctive
theorems. Minker’s recent proposal [Minker83] for a method of evaluating queries against an indefin-
ite database shows that a Horn clause theorem prover could be augmented to deal with these indefin-
ite assertions; §5.4 discusses a heuristic method for manipulating indefinite assertions, and suggests
how it can be used to retrieve indefinite information even when that information is not retrievable by

the standard answer extraction method.

In queries, indefinite descriptions are treated referentially, as they would be in their standard
rendering. In other words, indefinite descriptions encountered during the pursuit of a proof are subject
to reference determination. This treatment of indefinite individual descriptions is practical because, in

contrast to their definite counterparts, no uniqueness property must be maintained.

4.3.3. Definite sets

The expression
{z,:9(z))}
is interpreted as a reference to the set of all individuals zy, 51‘1ch that &(z,) is derivable. No evalua-
tion of a definite set description is made at assertion time, but its treatment can be considered as
referential. As mentioned in §3.1.1, the description is treated as definite because it refers to the set of
all appropriate individuals at any time during the life of the database. When interpreted in a query,

the definite set description refers to the current extension of the described set — it is (trivially) unique.

4.3.4. Indefinlte sets

Definite and indefinite sets are distinguished by the uniqueness of the former, just as for definite
and indefinite individuals. An indefinite set is specified by a description of a typical element (as for
definite sets), but in addition, by a predicate that may be derivable for several such sets. For exam-
Ple, consider an example as specified by syntax description (T8.1), §3.1.1:

{z,, X :course(z,)Acardinality—of (X ,,3)}

The first conjunct of the description describes a typical member of the set, in this case ‘course(z,)’;

e e R o b nm e m b e o o o~ . - e e e e e

75

the set to which this description refers will be an element of the subsets of the set of all courses, The
second conjunct names a property of sets rather than individuals, viz. ‘cardinality—of (X,,3)"; the
subsets of the “typical member set” with this property are the ones that satisfy the body of the set

description.

The restrictive interpretation of DLOG theories provides a computational view. The two parts
of the description body can be viewed as follows: the typical member description is a “‘generator,” and
the set property is a “terminator.” (The notion of generator is the same as that in Turner's KRC
language [Turner82)). To compute the family of sets referred to, we use the generator to construct
the power set of typiéal elements in some order, then apply the terminator to each one. Each member
of the powerset that satisfies the terminator is in the family of sets; the description refers to one of

that family.

This indefinite description mechanism can be used for writing numerical quantifiers [Brach-
man78, Shapiro79], simply by writing a cardinality restriction as a terminator. Furthermore, it sub-
sumes the quantification scheme of the KS system [Dilger78] because any set relation can be used to

form the indefinite set property.

The motivation for indefinite sets derives from the Department Database domain, and assertions
like “At least 12 CS courses are required for the BSc degree in CS.” The initial rendering of this state-

ment might be as something like

76

course=req(BSc—CS,CS115)
Acourse—~req(BSc—CS,CS215)

A

(4.12)

.

Acourse—req(BSc—CS,CS442)
(

course—req(BSc—CS,CS118)
Acourse—reg(BSc~CS,CS215)

A

Acourse—reg(BSc~CS,CS442)

where the components grouped by the left brace must be written once for each set of twelve CS
courses. Note that we are trying to describe the set of all sets consisting of twelve CS courses. This
is clearly a tiresome way to express the assertion, and furthermore, would require extensive modifica-

tion after any new CS course was created (e.g., by adding an assertion like “‘course(CS123)").

In general, we can reduce the fatigue of writing such assertions by noting that assertions of the
form “At least n with property P” can be expressed as
212, - 2,2, # 282 F 2y - 2, # 2, : (4.13)

AP(2))AP(z3) - - - AP(z,)]

where the first portion of the assertion expresses that each such object is unique and the second por-
tion attributes the property P to each object identified. We can then make the desired reference to

all sets with property P by introducing set variables and writing the formula

77

3z, |Vz,|2, € XD P(z,)|Acardinality —of (X1,2))Az,2n] (4.14)
Notice that the set variable ‘X’ is free — we are writing a formula that describes all such sets.
For the next elaboration, we choose some variable binding operator, say ‘', to mean ‘‘one of”’;
we then substitute ‘12’ for ‘n’ and ‘topic-of’ for ‘P’ in (4.14) to get

6X,.3z,.|Vz,|z,€ X, Dtopic~of (z2,CS))Acardinality—of (X1,2))8z,212) (4.15)

Expression (4.15) is then embedded within the course—req predicate to form the assertion

course=regq(BSc~-CS, ' (4.16)
6X 1 [Vz,[z, €X,Dtopic—of (z,,CS)] A31:2.cardinalx'ty—of(Xl,zz)Azzawl)

Notice that the description (4.15) is an instance of the contextual definition of indefinite sets described
in §3.2.1 (equation 3.4). The description body describes a typical set element “CS course” and the
property of the set in question “at least twelve members.” In the DLOG syntax we can write (4.16)
as

course—req(BSc~CS, (4.17)

{z1,X :topic~of (z,,CS)A(cardinality —of (X1,z)rz,212)})

In the intended interpretation some ambiguity remains, as the original assertion (4.12) is a relation on
individuals (e.g., degree names X courses) but the final version (4.17) involves sets (e.g., degree names
X sets of courses). Intuitively, we expect that if a set of courses is a course requirement, then so is
each member of that set. The DLOG implementation described in chapter 5 uses a weak typing
mechanism that permits the user to declare how the set arguments of each predicate are to be inter-

preted.

4.4. Mapping a domain into DLOG sentences

The specification of the DLOG data model provides a set of guidelines for implementing a
DLOG database management system, as well as a description of how to capture and interpret a
domain in terms of DLOG sentences. The claimed advantage of including the numerous kinds of Aspe-
cial terms is conceptual ease in mapping a domain to DLOG sentences. Much of the difficulty in using
a representation language or data model is deciding how to capture relevant domain facts in a data-

base. This section provides some examples of the intuition behind one particular rendering of the

78

example DDB domain.

Consider the information in fig. 4.1, which is a reproduction of a portion of The University of

British Columbia undergraduate calendar for the academic year 1981-1982.

COMPUTER SCIENCE
The Depanment offers opportunites for study ledding to bachelor’s, master’s and
doctor’s degrees, For information on the M.Sc. and Ph.D. degree courses, see Grad-
uate Swdies. All students who intend to take Honours in Computer Scxence must

consult the Head of the Department.
Requirements for the B.Sc. degree:
—mmoem e = e = e~ - Mgior and Honours
el First Year . .
_— _." " Computer Science 115" : B <) T
" Mathematics 100 and 101 (120 and 121) (©))
Physics 110 or 115 or 120 (k)]
Chemistry 110 or 120 o 3)

Eoglish 100 | 6

(13)
iComputer Science 118 (1%) and a 1% unit elective can be substituted by those
eligible for Computer Science 118. Special arrangements may be made for a student
who did not take Computer Science 115 or 118 in First Year. Such arrangements
may limit choice of 400-level courses.

Major
Second Year . Third and Fourth Years
Computer Science 215 . . (3 . Computer Science 315 3)
Computer Science 220 B §17)] Other Computer Science
Mathematics 205 and 221 3 courses numbered 300
Other Mxﬂn:mxmas . . (%) or higher?) (6)
Electives (6 Further Computer
L L — Science courses)
asy numbered 400 or higher? ©)
Mathematics courses
numbered 300 or lnghﬂJ ©)
Elecuves‘ . - ®

*For Major students, it is recommended that at least two of the optional Computer
Science Courses be chosen from application areas (e.g., Computer Science 302, 402,
403, 404, 405, 406). '

IMathematics courses :in analysis, applied mathematics, linear algebra, probability,
differential equations, and statistics are recommended. Such courses include Math-
ematics 300, 303, 306, 307, 315, 316, 318, 340, 344, 345, 400, 405, 407, 426, 480.

“Appropriate courses from other fields of possible computer applications are sug-
gested. in particular, attention is calied to the following courses outside the Facul-
ties of Arts and Science, for which credit will be granted: Commerce 356, 410, 411,
450, 459; Electrical Engineering 256, 358, 364.

Figure 4.1 A portion of the DDB domain

As described in §2.3, the experimental DDB is intended for use in building and maintaining student

transcripts. The question answering knowledge is informally classified as knowledge of program

79

requirements and knowledge of program prerequisites. Program requirements include faculty program
requirements, department program requirements, and course requirements, e.g.,
Jaculty—program —reg(Science, (4.18)
Bachelor,
I
second,
Azo.completed(z,,
{z3, X :(course(zy)
Aunits(zy,z,))
A{ total —units(X,,z5)
Azs=24))})

In general, Jaculty —program —req(a,B,7,6,¢) is interpreted as “in faculty a, at level B, in stream ¥
and year 8, requirement € must be satisfied.” Assertion (4.18) specifies a second year requirement for
Bachelor of Science programs, for all streams z, (e-g., Majors and Honours). The requirement is that
a student z, have completed a set of courses, specified as an indefinite set description; the indefinite
set is read as “‘a set of courses whose total number of course units is greater than or equal to twenty-
four.” Notice that the total —units predicate is applied to set terms; it can be defined in terms of the
simpler units predicate. We expect to be able to distinguish how a predicate is being used by deter-
mining the sorts of its arguments. One implementation technique for doing so is described in chapter

5.

Requirements are represented by lambda terms because, in the domain, they are perceived as
regulations, or truth conditions to be satisfied. As explained above, in §4.1.2, queries can retrieve
requirements as terms, and use the definition of satisfies to determine if some particular individual

satisfies that requirement.

Faculty program requirements are related to program requirements by the implication

program —req(ze,2,,24)C

Jaculty—program —req(z,,2,,74,2,,7)

80

Afaculty—of (z4,2,)
Mevel = of (z4,2,)
Astream —of (z4,25)

In a similar way, department and course requirements are included in the class of program require-

ments.

Most of the partial domain given in fig. 4.1 specifies course requirements. Consider the first

course requirement for first year B.Sc. Majors:

course—req(BScMajorsCS,
Jirst,
Azy.completed(z,,CS115)
v(completed(z,,CS118)
Acompleted(z,,€zy.elective(BScMajorsCS,z ,)
Aunits(z,,1.5)))

Notice that this requirement makes use of an indefinite description of an individual in rendering the

domain requirement “a 1% unit elective.” An alternative representation might have been

course—req(BScMajorsCS, first CS11 5)
A completed(z,,C5115)
v (course—req(BScMajorsCS, first ,CS118)
Acompleted(z,,CS118)
Aelective(BScMajorCS,z,)
Aunits(z,,1.5)
Acourse—req(BScMajorsCS,z,)
Acompleted(z,,z,))

The descriptive version shortens the representation by keeping the alternative course within the con-
text of course—req. Furthermore, the lambda constant allows the requirement to be tested for satis-

faction.

As a final example, notice that the third and fourth year requirements for the Majors program
are specified together in fig. 4.1. Consider the following as a representation of *6 units of other Com-

puter Science courses numbered 300 or higher:"

81

course—req(BScMajorsCS,

{third A fourth},
Az,.completed(z,,
{z2.X:(course(z,)A dept ~of (z2,CS)
Acourse—no(z,,z,)
Az ,2300)
Aunits(X,,6)}))

Since this requirement is specified for third and fourth year, the assertion is made for the set term
that contains third and fourth as individuals. Notice that the set term {third A fourth} means that
the assertion is not decomposable into two assertions of the form
course —req(BScMajorsCS third,—) and courae—req(BScAIajorsCS,fourth,-—) because the Jambda
constant is a requirement that must be satisfied in the third and fourth year period. The intended
interpretation of the predicate course—reg is such that both individual and set arguments in the
second position make sense. In the implementation of chapter 5, a user is given some control over the
specification of predicate constants, to achieve this flexibility in using sorts. The intuitive meaning of
the above combination of predicate constants implicitly asserts something like
Vz,2,24X,.course~reg(z 1. X 1,22)A23€X ,Dcourse —req(z,24,2,)

This kind of flexibility is provided by the implementation.

Footnote “2" in this specification (sce fig. 4.1) describes recommendations; in general recommen-
dations must be related to indefinitely specified requirements by some user decision, but the recom-
mendations themselves can be captured in the sentence

recommended (BScMajorsCS,
{third A fourth},
{z,,X:(course(z,)
A(z,e{cssozACS402ACS403ACS404ACS405ACS406})
V(topic—of (z,,applications))

A(cardinality(X,,z,)Az,22)})

that recommends “at least two” of those suggested courses.

Chapter 5
An implementation of the DLOG data model

An experimental database management system based on the DLOG data model has been imple-
mented in the programming language Prolog. Two different implementations have been developed,
one in Waterloo IBM Prolog under the CMS operating system [Roberts77], and another in
Prolog/MTS [Goebel80], a derivative of Waterloo IBM Prolog. Another version is currently under

construction in Waterloo Unix Prolog [Cheng84].

A Prolog interpreter is a flexible implementation tool because it provides a theorem-prover, a
database management system, and a programming language all in one package. This accounts for its

growing popularity in many areas of computing (e.g., see [Clark82]).

5.1. Prolog overview

This overview is necessarily brief, but should provide the concepts needed to interpret the specifi-

cation of DLOG in Prolog. For a programming introduction, see Clark and McCabe [Clarks4).
The syntax we will use is that of Prolog/MTS. The language is single sorted. Variables are writ-
ten as arbitrary alphanumeric strings preceded by asterisks, e.g.,

human(*z)

is Prolog’s representation for

Vz.human(z)

Implications are written in the form

consequent <- antecedent

and are interpreted by Prolog to mean “to establish congequent try deriving antecedent.” For exam-

ple, the axiom

83

mortal(*z) <- human(*z)

is Prolog’s representation for

Vz.human(z) D mortal(z)
To prove that some a is mortal, one can show that « is human. Prolog queries or goal statements are
conventionally written as

<-goal, & goal, & --- & goal,.

If the free variables are z,z, - - - Zn, this goal is considered as a request to establish

3z,z5 -+ zm.goal Agoalyh - - - Agoal,
as a theorem; all free variables are interpreted as existential. The back-chaining (i.e., goal-driven)
proof procedure is a depth-first implementation of the SLD proof procedure [Lloyd82]. Finite failure
on one search path will force backtracking to another path; terms are substituted for existential vari-

ables where appropriate.

The meta variable facility of Prolog is an implementation of the reflection rule used by
Weyrauch [Weyrauch80] and Bowen and Kowalski [Bowen82]. It is simply a way of treating the value
of a bound variable as a goal, e.g.,

derivable(*z) <- *z

is a Prolog statement representing the meta language statement
if DBz then DB Fderivable(z)

Intuitively, this axiom states that an attempt to establish £ as a theorem using derivable, is
equivalent to deriving z directly in the logic’s proof procedure. The axiom's validity is established
when the proof procedure axiomatized by derivable corresponds to the logic’s proof theory (ie., the
definition of ‘’). This rule permits the logic programmer to either simulate a proof procedure using
derivable, or to relinquish control to the Prolog proof algorithm and pursue a proof directly. By simu-
lating a derivation, a programmer can control each derivation step and substitute alternative proof
strategies or apply heuristics: this is how the DLOG implementation modifies Prolog’s standard proof
theory to deal with descriptions. Inefficiency is the penalty for simulating derivations: a derivation of

derivable(z) is simply a direct proof of z.

84

By using the meta variable mechanism, the Prolog implementation of DLOG can manipulate
DLOG sentences as terms, and can use Prolog’s proof theory to derive sentences that fall within the
standard Prolog interpretation. This is the mechanism required to manipulate DLOG higher-order

objects.

5.1.1. Prolog as a foundation for DLOG

The DLOG data model is an extension of the data model implicit in Prolog [Kowalski81].
Prolog’s data model uses the Horn clause subset of a first order language as its representation
language, Tarskian semantics, and a depth-first proof procedure based on SLD resolution. Prolog's

treatment of negation is defined by Clark's results [Clark78].

From this viewpoint, DLOG extensions include complex terms and constraints. These extensions
require features unavailable with the implicit data model of Prolog, but they are provided by treating
the Prolog language as its own meta language in which the appropriate extensions can be axiomatized

{Bowen82].

The DLOG extensions are defined, fndeed implemented, by using Prolog to describe their rela-
tionship to Prolog’s implicit data model. The handling of complex terms is provided by extending
Prolog’s theory of equality, as implemented in unification; the interpretation of lambda constants and
constraints is specified by a meta language axiomatization. For example, the specification of DLOG
database maintenance requires that we implement axiom (3.26) of §3.6

VzVX.assertion(z) (5.1)
. AVyly €X Aconstraint (y)Arelevant (z,y) > derivable(X U{z},y)]

O assertable(z, X, X U{z}))

We can massage formula (5.1) into a Prolog-like syntax by first rewriting it as:

assertable(z,X , X U{z}) C assertion(z) (5-2)
AVyyex

Aconstraint(y)

Arelevant(z,y) O derivable(X U{z},y)

Here we have reversed the implication sign, then dropped the universal quantifiers on z and X
because free variables in the consequent of an implication are interpreted by Prolog as universal
throughout the formula. However, we have explicitly retained the universal quantifier within the
antecedent of formula (5.2), as Prolog will interpret variables appearing only in the antecedent of an

implication as existential.

So far, formula (5.2) is similar to the database maintenance axioms proposed by Bowen and

Kowalski [Kowalski79, Bowen82], but notice that it is not a Horn clause (an explicit universal quantif-

ier appears in the antecedent). Kowalski’s more recent formulation does not have that problem:??

Assimilate(currdb,constraints,input ybound newdb) (5.3)
it Demo(currdbUconstraints,bound,not (input),yes (proof))
and AnalyseFailureReatoreConaiatency(currdb,con.strdx'nta,proof ;newdb)

This version might be read as ‘‘to establish that a new input is consistent with a current set of con-
straints, show that the input is derivable from the current database and the relevant constraints.” Of
course this reading is a simplification, since the axiom says that this should be done by attempting to
find an inconsistency, and then restore consistency by a procedure AnalyseFailureRestoreConsistency.
One difference between formulas (5.1) and (5.3) is that the former shows that a new assertion is con-
sistent by re-deriving only the relevant constraints. In Kowalski’s version, isolation of constraints is
done implicitly by assuming that variable names are interpreted as types, and that Demo and
AnalyseFailRestoreConsistency achieve their intended effect by using auxiliary procedures to collect
constraints and make database changes. The DLOG specification provides a way of determining
which constraints are relevant. Another advantage of (5.1} over (5.3) is implementation clarity: (5.3)
is closer to implementation using a procedural interpretation of Horn clauses, but (5.1) more clearly

shows the relationships between assertions, constraints, and databases.

Much of the effort in implementing DLOG is in specifying Prolog meta predicates for achieving

Z [Kowalskig1, p. 20).

86

the effect intended in (5.1). For example, if we assume an appropriate axiomatization of two new
predicates all(*,*,*) and update(z), then (5.2) might be rendered as:
assertable(z) C assertion(z) (5.4)
Aall(y,constraint (y)Arelevant (z,y)X)
Aderivable(X)

Aupdate(z)

First, we assume that there is always one current theory that is implicitly identified, so all references
to it (i.e., in assertable, and derivable) are dropped. Next, we use a meta predicate all
(cf. [Clocksin81, Pereira83]) to isolate the relevant constraints and bind them to the set variable X,
We expect that all will use its second argument as a generator, to construct the set of all relevant
constraints X. The final assumption is that derivable will be axiomatized so that when given a set X
of formulas, it will attempt to derive each formula of that set. The final modification is the addition
of a database predicate update that will add the “assertable” formula z to the implicitly specified

database. Under these assumptions, (5.4) closely mimics Prolog syntax, except for the set variable X.

5.1.2. Standard extenslons to Prolog

The Prolog implementation of DLOG uses some meta predicates that have, by now, become
established as “standard” extensions (e.g., see [Clocksin81]). These include a specification of the meta
predicate all used to mimic universal quantification in goal statements, and special axioms to mimic
finite disjunction. DLOG uses the following:

all(lambda(*z, *ezpression), *eztension)
The all meta predicate represents a relation on lambda terms and sets of individuals. It is similar to
CProlog’s setof (z,P,S) meta predicate that is used to create a set S of all individuals z that satisfy
the Cprolog goal P [Pereira83]. This meta predicate is derivable when the extension of the complex
predicate described by the lambda expression is bound to the variable *eztension. In the implementa-

tion, suitable modifications enforce the sort constraint that treats the extension as a DLOG set term.

The DLOG disjunctive connectives are described in Prolog as follows:

87

2y < "2
Y <Y
and

Iy <- 2 &Y
'z!'y <__.*z & ty

The implementation substitutes ‘|’ and I’ for ‘v' and ‘9’, respectively. The Prolog implementation
treats the operators as meta predicates: inclusive alternation requires ti\e derivation of at least one
alternative, while the exclusive case requires proof of one disjunct and the negation of the other. As
discussed below (§§5.2, 5.2.3), this implementation of disjunctive operators does not provide a general
facility for interpretating disjunctions embedded within descriptions. Note also that the definition of

the alternatives for the disjunctions rely on finite failure of both subgoals of the first alternative.

5.2. ADLOG implementation

The terminal session of fig. 2.5 was produced with the most recent DLOG implementation writ-
ten in Waterloo IBM Prolog [Roberts77]. The source code for this implementation is included as

Appendix 1.

The current prototype has only weak versions of negation and disjunction, but it is capable of
interpreting each form of DLOG descriptive term. At least one instance of each term occurs in the
DDB, as the motivation for their construction arose in that domain. A complete listing of the DDB is

give in Appendix 4.

Several features have been provided in response to traditional DBM system facilities, but others
are unique to DLOG. Examples of the former include a data dictionary facility, a facility for inter-
preting application commands (i.e., “‘data manipulation language” interface), and a transaction pro-
cessor. In addition, the system augments the traditional data dictionary with a topic structure [Goe-
bel77, Goebel78, Schubert79]. Topic predicates are included to organize predicates of the data dic-
tionary into categories. A user can use the topic structure to browse the database contents by topic,

to get a ““feeling” for the kinds of information stored.

88

A feature unique to this implementation is a facility for heuristic interpretation of various kinds
of queries. The system is capable of invoking heuristics when the logical interpretation of 2 DLOG
query fails. This is DLOG’s concession to “procedural attachment” (cf. FRL, KRL), but the DLOG
framework is such that heuristic processing is initi‘ated only after deductive processing fails. Further

details of this proof heuristic based on partial matching are given in §5.4.

5.2.1. Implementation syntax

The restricted syntax of complex terms given in §3.3.1 are only part of the way to our desired
specification in a standard single-sorted first order logic. The final step to an implementation is the
translation of the 3-sorted syntax to the single-sorted syntax of Prolog. In general, the translation of
an n-sorted language to a single-sorted language is done by rewriting sentences of the form

Vz,9(z,)
3z,.9(z,)

Vz.7{z)2¢(z)
Jz.r(z)rd(z)

respectively, where z, is a variable of sort 7. Intuitively, the sort 7 is translated as a unary predicate

of the theory described in the single-sorted language.

For example, in the case of sets we can use a unary predicate set to distinguish terms of sort

‘set’, and expand

3X,.8(a,X,)

3z,.s¢et(z,)AP(a,z,)

The latter is rather more complicated than the former, but gives the intended meaning in a standard

single-sorted way.

As a further example, the translation of the sentence

89

VX Vz, [[2,€X,O1(z)] AW X)| 28(X)]

to a single-sorted language is

Vz,[set(z,)3|Vz,|z2€2,5%z,)| A0 z,)|28(z,)]
This simply removes the set variable X,. Similar translations are made for the sort lambda.
This implementation syntax is summarized in the table below. Many of the syntactic constructs
are concessions to standard keyboard devices. The implementation syntax will be used in the rest of

this chapter.

lexical item specification implementation
individual variables z,,Z,,... *x1, *x2, ...

set variables X1,X. set(*x1), set(*x2), ...
set constants {arBA.. A8} set(fx & B & ... & B)
definite individuals Lz .9(z) the(*x,®(*x))
indefinite individuals || €z.¢(z)’ an(*x,®(*x))
definite sets {z:8(z)} set(*x:P(*x))

{z.X:¢(z)AII(X)} | set(*xI;set(*x2):D(*x1)& W (set(*x2)))
indefinite sets

{aRBR..R&! set(x R B R..R §)}
lambda expressions 2z.9(z) lambda(*x,P(*x))
implications CCANANAA, |C <A &AE -~ &A,
constraints ADCACA..AC, | A->C&C &% --- &C,
queries PCIACA.LAC, <-C,&C, & --- &C,

tRisanyof A, V or ¥, and one of V or ¥ must appear.
$Risanyof & |, or!, and one of | or ! must appear.

Table 5.1 Specification and Implementation Syntax

90

5.2.2. System structure

From a system implementor’s viewpoint, the DLOG system is a collection of independent pro-
grams, collected within a framework that routes information among these programs and controls their
operation. We will refer to these programs as DLOG processors, and describe the system in terms of

their relationships. The major processors and their basic relationships are given in fig. 5.1.

COMMAND
PROCESSOR
¢ v
BROWSE QUERY ASSERTION TRANSACTION
PROCESSOR PROCESSOR PROCESSOR PROCESSOR
T
7
DERIVATION CONSTRAINT
PROCESSOR [*| PROCESSOR

Figure 5.1 DLOG processor architecture

Directed edges show possible flow of control, e.g., the transaction processor may require the services of
both the assertion processor and constraint processor. Each processor can be viewed as a Prolog

axiomatization of the appropriate relation.

User inputs are filtered by the command processor and, depending on their content, are for-
warded to the appropriate sub-processors. Each processor may set various global flags to select
optional processing in dependent processors. This is most useful when combined with Prolog’s failure-
driven backtracking: each “call” is a goal request, and failing goals return control to their initiating
processor to pursue an appropriate alternative. However, it is not exemplary logic programming

style— it is done here for efficiency and expedience.

The DLOG implementation could be viewed as a single complex Prolog theory, however a loaded

application database is distinguished from implementation axioms by using the DLOG data dictionary.

Furthermore, since Kowalski requires that meta and object databases be clearly distinguished,

2 [Kowalskis1, p. 21].

91

application predicates are enumerated within the application’s data dictionary. The implementation
can use this dictionary to distinguish object theory axioms from meta theory axioms. Further data

dictionary details are provided in §5.5.4.

5.2.3. DLOG derlvability

The foundation of the DLOG implementation is the Prolog axiomatization of the derivable rela-
tion. This Prolog implementation of derivable performs DLOG query evaluation, and uses Prolog’s
meta variable facility (§5.1) only for more efficient derivation of system implementation predicates.
As discussed in §3.4, the Prolog implementation of DLOG's derivable predicate represents the relation
F on DLOG databases and queries. The implementation of derivable(DB,Q) given here is slightly
more elaborate in that it uses extra information about the form of a query to determine if the general
specification of derivable (§3.4) is required. In fact, the implementation actually includes three distinct
proof strategies, the selection of which is controlled by data dictionary information. The meta predi-
cate i —derivable corresponds most closely to the specification of derivable given in §3.4, except that
the connectives ‘&', ‘', and ‘|’ are interpreted elsewhere. Note also, that since there is at most only
one application database at any one time, the DB argument in derivable(DB,Q) is left out. The

three strategies are:

1) derivation of literals without set predicates (s-derivable). As mentioned §4.3.4, there can be
some ambiguity in the interpretation of assertions involving sets as terms. For example, if
‘set (a€¥b)’ is properly treated as a set constant, the formula ‘P(a)’ does not follow from the for-
mula P(set(a&b)). This implementation of DLOG will use s-derivable to attempt such a deriva-
tion. The ambiguity about whether the assertion P(set(a&b)) actually means P(a)&P(b) is
removed by a sct —predicate assertion in the DLOG data dictionary (§5.3.4). This is the way in |
which a user can specify a “weak typing” of predicates, as suggested in §4.3.4. The s-derivable

strategy is selected as follows:

2)

92

derivable(*atomic —goal) <-
get —predicate(*pname,*atomic —goal)
& -set —predicate(*pname)
& s —derivable(*atomic—goal).

A good example of this strategy's use is the frequent derivation of the satisfies predicate,
Recall (§4.1.2) that satisfies(a,f) can be derived when e is a DLOG constant and § is a DLOG
lambda expression applicable to a and derivable from the current database. The satisfies
predicate is axiomatized as

satisfies(*z lambda(*z,*g0al)) <-

derivable(*goal)

but is frequently used in queries with a set of lambda expressions. For example,
satisfies(John set(*z:course—req(BScMajorsCS, first,*z)))

asks if ““John has satisfied the set of all first year course requirements for BScMajorsCS." When
a goal involves a non-set —predicate but includes a set term, the s-derivable derivation strategy
expands the set description and applies the predicate to each element of the set’s extension. In
other words, the s-derivable strategy uses data dictionary information to decide how to interpret
the manipulation of predicates that have set arguments. Notice that this strategy doesn’'t make
sense for goals with multiple set terms, since the application of a predicate to a Cartesian pro-
duct of multiple set extensions is nonsense. Notice also, that this strategy is not part of the
DLOG data model specification — it is an implementation strategy that helps streamline the user

interface.

derivation of correctly typed arguments (i-derivable). The i-derivable proof strategy is used in
most cases, where either the goal includes a set term (and has been typed as such), or doesn't
contain a set term but cannot be derived directly. In other words, when predicates are used as
specified by the typing of the data dictionary, this proof strategy is selected. This strategy is the
most general, and is the one from which extended unification is used to match DLOG complex

terms. It is selected as follows:

93

derivable(*atomic—goal) <-
get —predicate(*pname, *atomic—goal)
& set —predicate(*pname)| ~contains — set —~term(*atomic—goal)

& i —derivable(*atomic—goal).

3) direct derivation (d-derivable). Any literal of a DLOG query that uses 2 DLOG system predicate
(e.g., satisfies, extension) or a Prolog system predicate (e.g., SUM, AX) can be derived directly
by Prolog rather than be simulated with the more general strategies 1) and 2) above. This stra-
tegy is selected when the predicate of the current goal has the system —predicate or
prolog — predicate properties:

derivable(*atomic—goal) <-
get —predicate(*pname, *atomic —goal)

& system —predicate(*pname) | prolog —predicate(*pname)

& *atomic—goal.
5.2.3.1. DLOG unification

Though the refergntiél interpretation of descriptions (§4.2) requires manipulation of DLOG's
descriptive terms at assertion time, much of the required special treatment can be done at query
evaluation time at the term matching level. Instead of extending the derivable axiomatization to han-
dle the standard rewritings of descriptions (§3.2.1), the unification algorithm can be augmented to pro-
vide the correct matching of descriptive terms. In a sense, some of the complexity of derivation is

off-loaded to the pattern-matcher (cf. [Reiter75}).

The idea of extending a resolution proof procedure’s power by augmenting unification was first
suggested Sy Morris [Morris69], who proposes that equality be dealt with by so-called “E-unification.”
Other proposals include Stickel [Stickel75], Morgan [Morgan75], Kahn [Kahn81] and Kornfeld [Korn-
felds3). Kahn proposes unification as the only computation mechanism in a complete programming
language. Kornfeld’s proposal is more coherent; he intercepts normal unification to apply a simple

theory of equality that permits proofs like

94

6=succ(5), P(6)-P(succ(5))
More interesting (but less coherent) is the representation language KRL |[Bobrow77b, Bobrow77a,

Bobrow79], which relies on a comprehensive and complex “mapping” process on several different kinds
of object descriptions called *‘descriptors.” To illustrate how DLOG might provide insight into the
mapping operation of the KRL language, a version of Hayes' [Hayes80] logical rewriting of KRL exam-

ples appears in Appendix 3.

Returning to the handling of descriptive terms by augmenting unification, we cite Rosenschein

on the advantage of embedded terms:

...the data object is kept small and “hierarchical” so that where an exhaustive match must
be performed, failure can occur quickly. That is, deep, heterogeneous structures are pre-

ferred to broad, homogeneous structures. For example, {(){()()}} is better than {HHHH.2

We view Rosenschein’s claim as support for the interpretation of descriptions as embedded terms,

rather than as their contextual definition by rewriting.

The DLOG unification algorithm is invoked by the DLOG derivable predicate, similar to the
way Prolog's derivation procedure uses a built-in unification algorithm. Intuitively, whenever a unifi-
cation must be performed and there are special DLOG terms to be matched, standard unification is
intercepted, and DLOG unification is used. For example, suppose that the two terms

an(*z,9(*z))

and

Fred
are to be unified. The applicable DLOG unify axiom is

unify(an(*z,$(*z)),%) <-
individual — constant (*y)
& apply(lambda(*z,8(*z)),*y)

where apply is an internal variation of the satisfies predicate (§3.5). Here the axiom says that the

two terms unify if the property & of the indefinite description can be verified for the constant term

% [Rosenschein?8, p. 534).

95

Fred. This is the implementation of equality axiom schema (3.24) of §3.4.2.

Notice here that the relationship to a functional model of computation is strong because the
equals ‘‘test”” on the indefinite term and individual is expressed as the application of a lambda con-
stant. As mentioned in §3.4.1, the axioms for the predicate “="" could be viewed as the specification
for a kind of functional model of computation. As Goguen and Meseguer [Goguen84] show, the
derivation of an equality theorem can be treated as the computation of a solution for a set of equali-
ties. For example, Goguen and Meseguer’s Eqlog language includes a theory of equality that subsumes
Prolog’s theory of equality [Emden84]. In Eqlog, equality proofs are provided by using an equation
solving procedure called “narrowing.” In general, narrowing is not decidable so there is much debate
over the claimed advantages of Eqlog’s approach to equality. For example, Kowalski? suggests that,
because first order unification does have an algorithm, equality extensions should be expressed as

axioms about the predicate “=," instead of by a replacement like narrowing.

The DLOG unification definition uses an organization similar to the LOGLISP system of Robin-
son and Sibert [Robinson82a, Robinson82b]. LOGLISP consists of a logical proof theory embedded
within LISP, and allows the invocation of LISP by the theorem-prover, and the theorem-prover by
LISP. Similarly, the DLOG derivable procedure can invoke the standard Prolog proof procedure (via
the i-derivable proof strategy, §5.2.3), and both are recursively accessible from within DLOG’s unifica-

tion matcher.

In general, the correct “unification” of the DLOG extensions requires a derivation procedure
more powerful than that provided by Prolog. For example, the equivalence of two lambda expres-
sions, e.g.,

lambda (*z,$(*z))

lambda(*z,¥{*z))

can only be made if it can be shown that

% uvited address “Problems of logic programming,” to the Second International Conference on Logic Programming, Tuesday
July 3, 1884, Uppsala University, Sweden.

96

#(*z)=¥"z)

follows from the current database. The current DLOG unification procedure uses a meta predicate
eglambda to derive this equivalence. By using a local context mechanism, the equivalence can be esta-
blished by proving

#(*z) <- Y *z)

Wz) <- ¥(*z)

This is a case where disjunctive terms would require a more general proof mechanism, since a proof
of

$(*z) vty)= (2)vi(%y)
cannot be handled by the current implementation.

The local context mechanism provides the necessary temporary hypothesis used in the standard
strategy for deriving implications: to derive &(*z)~¥{*z), we first generate a new constant symbol,
say a, then assume $(a) and attempt to derive ¥(a). Kowalski [Kowalski81] proposes a similar
mechanism for pursuing Prolog derivations using “auxiliary” axioms. The DLOG implementation
includes general facilities for using temporary contexts, and for creating and destroying contexts by

name. These facilities are used in many other processors, e.g., the transaction processor (§5.4.4.4).

Now follows the top-level specification for each possible DLOG unification task. These specifica-

tions are intended to the implementation of the equality axioms for complex terms (§3.4.2).

1. unify(c,,co)
As in standard unification, two individual constants €)1, €2 unify if and only if they are identical
symbols. In Prolog this is determined by comparing the string representation of constants. In
Prolog we have
unify(e,,c;) <-
EQ(cy,co).
2. unify(*z,,c,)
Again as in standard unification, and individual variable *z, and an individual constant ¢, unify

with the result that ¢, is substituted for *z,. In Prolog we write

97

unify(*z,,¢c,) <-
bind(*z),¢c,).

where bind is implemented as the atomic assertion bind (*z,*z).
unify(the(*z,$(*z)),c,)
This combination of definite individual and individual constant can arise only when the definite
individual comes from a query. This is because definite individuals in assertions are processed at
assertion time (see §4.3.1). The two terms here are DLOG unifiable if and only if the extension
of the predicate & in the current database is a singleton set with ¢, as its sole member. The
implementation is

unify(the(*z,9(*z)),c;) <-

extension (set (*z:8(*z)),eet{c,)).

where eztension is the DLOG system predicate that computes the extension of any DLOG set
term. The above goal requests that eztension verify that the extension of & in the current data-

base is the DLOG set with one member ¢,.

unify(the(*z,8(%z)),en(*z,¥{*z)))
The successful unification of an indeTinite individual and a definite individual is similar to case 3,
except that, in addition to demonstrating the uniqueness of a referent for the definite individual,
the sentences $(*z) and ¥(*z) must also be shown equivalent. In this case, the eqlambda predi-
cate described above is used:

unify(the(*z,8(*z)),an(*z,¥(*))) <-

eqlambda (lembda(*z,8(*z)),lambda(*z,¥(*z)))
& eztension(set (*z:P(*z)),2et(*y))

& individual = constant (*y).
The eztension predicate is used to find the set of all individuals that satisfy the body of the

definite individual, and then individual — constant ensures that the extension found is a set con-

sisting of a single individual.

unify(en(*z,8(*z)),an(*z,¥*z))

The unification of two indefinite individuals simply requires the use of the eglambda predicate:

10.

11.

98

unify(an(*z,$(*z),en(*z,¥*2)) <-
eglambda(lambde (*z,9(*z) lambda (*z ,¥(*z)

unify(*z,an(*z,9(*z))
Since an indefinite term is treated like a Skolem constant (see §4.3.2), this case is the same as
case 2:
unify(*z,an(%z,9(*z))) <-
bind(*z,an(%z,8(*z))).
unify(lambda(*z,#(*z)),lambda(*z ¥(*z)))
Lambda terms are unifiable if and only if their defining sentences are equivalent:
unify(lembda(*z,8(*z),lambda(*z ,¥(*z)) <-
eglambda(lambda(*z,&(*z)),lambda (*z,¥(*z))).
unify(set(*z,),set(*z,))
As for standard unification, set variables unify with any other set term by simple substitution.
These substitutions include cases 8, 9, 10, and 11.
unify(set(*z,),set(*z,)) <-
bind(*z,,%z,).
unify(set(*z),set(c,&c,& -+ - &e,))
The term set (c,&c,& - - - &c,) is a set constant (see §3.1.1):
unify(set(*z),set(c,&c & - - - &e,))
bind(*z,c,&c.& - - - &¢,)
unify(set(*z),set(*y:¥(*y)))
Derinite sets are simply bound to the set variable, like set constants. In general, the expansion
(e.g., by computing an extension) of set descriptions is avoided as long as possible.
unify(set(*z),set(*y:%z)) <-
bind(*z,*y:¢(%y)).
unify(set(*z),set(*y;set (*z):*z)& W set (*2))))
Recall from §3.1.1 that both an individual and set variable are required in the indefinite set

term.

99

unify(set(*z),set (*y;set (*z):*z)&Wset (*2)))) <-
bind(*z,%y;set (*z): *z)& ¥(set (*z))).

The remaining cases include those which require by far the most computation to unify. This is

because demonstrating the equivalence of set descriptions often requires testing equivalence of their

extensions.

12.

13.

14.

15.

unify(set(c,&co& - - - &c,),0et(*z:8(*2)))
A set constant and definite set are unifiable whenever their extensions are equal.
unify(set(c,&e,& - - - &c,),0et(*z:4(%))) <-

extension(set (*z:$(*z)), *ezt)

& egext(set(c &k - - - &c,), %ezt).
unify(set(ci&c & - - - &,),set(*z;set(*y):$())& ¥ set *y)))
This situation is similar to case 6 for individuals; we must show that #(*z) is derivable for each
individual constant c,, and that W(set(*y)) is derivable for set(*y)=set(c,&c,& - - - &e,). Here

another DLOG built-in predicate map provides an iterative version of the previously used apply

-predicate:

unify(set(c,&c & - - - 8,).set(*z;set (*y):0(*z))&Wset *y))) <-
map(lambda(*z,$(*z)),set(c,&c,& - - - &,))
& apply(lambda(set (*y),W(set (*y))),set (c,&c & - - - &e,))

unify(set(c,&c & - - - &c,)56t (Cpa1&Cp ok - - - &epem))
Two set constants are equivalent if they are extensionally equivalent. In this case, the egext
predicate will sort the sets into a pormal form (ASCII collating sequence) to determine their
equivélence:
unify(set(c;&co& -+ - &c,),set(cy 41 &Cp a0k - - - &cim)) <-
egezt(set(c,&co& « + - &¢,)86t (Co ey R0y aok - - - &crim)).
unify(set (*z:8(*z)),set (*y:¥{(*y)))

The equivalence of descriptions is tested by using eglambda:

16.

17.

100

uni fy(set(*z:9(*z)),set (*y:¥(%)) <-
eglambda (lambda(*z,$(*z)),lambda (*y,¥(*y))).

unify(set(*z;set (*y): (¥)& W set (*y))),0et (*z;set (*w):0% *2)&T (et (*w))))

The equivalence of indefinite sets is tested by using eglambda:

unify(set(*z;set(*y):$(*z)& Wset (*y))),set (*z;set (*w) *2)&T (set (*w)))) <-
eglambda(lambda(*z,$(*z)),lambda (*z,02(*z)))
& eglambda(lambda(set (*y),W(set (*z))),lambda(set (*w),2(set (*w M)

unify(set (*z:P(*z)),set (*y;set (*z2): 9 *y)&2(set(*z))))
The equivalence test here is slightly more complex, as unification can succeed only if the exten-
sion of the indefinite set has but one extension; i.e.,, a set each of whose members satisfies the

property specified in the definite set:

unify(set(*z:9(*z)),set (*y;set (*2):9(*y)&2(set (*2)))) <-
eglambda (lambda (*z ,$(*z)),lambda(*y,¥(*y)))
& extension(set(*z,P(%z)), Yext)
& apply(lambda(set(*z),2(set(*z))), ezt)
& oll(lambda(*z eztension (set(*y;set (*z):¥(*y)&2(set (*z))), *z), ¥ezt,)
& cardinality(¥ezt,,1).

The properties required for equivalence are tested in such a way as to avoid computing the

- extension of the indefinite set if possible. As these set objects are the most complex in DLOG, it

is expected that this kind of match will rarely succeed; therefore the properties that are easier to
compute are tested first. The final computation verifies that the extension of the indefinite set

is unique.

§.2.4. DLOG processors

Having described the heart of the DLOG implementation, the DLOG derivation processor, we

turn to the six other major processors that appeared in fig. 5.1.

§.2.4.1. Command processor

DLOG’s command processor is the system’s user interface. It consists of axiomatizations of

101

three main predicates:

(1) snput(“string),
(2) parse(*input,*output), and
(3) assertion(*az).

The predicate input expects either a command, a query, or an assertion. Using the meta variable
facility, input uses command names to invoke the appropriate processor, e.g.,

input(¥*command) <- *command.
will invoke the predicate transaction if the user types the command “transaction.” Queries are writ-
ten in the standard Prolog/MTS fashion with a ‘<-’ prefix and are simply forwarded to the query pro-
cessor:

input(<-*z) <- query(*z)
When the input is not a command or a query, it is assumed to be an assertion. The parse and
assertion predicates are invoked to apply input macros, to verify syntax, and to perform any required

assertion time inference.

A feature of the command processor is its use of the syntax checking predicate assertion. The
assertion predicate can be viewed as the start symbol of a grammar that describes the DLOG asser-

tion syntax. For example we might have

assertion := atom
| implication
| constraint

as a production of such a grammar; in Prolog we can write this production as

‘assertion("z) <- atom(*z)
| implication(*z)
| constraint(*z)

with the bonus that, when we invoke assertion with a collection of terms, the Prolog derivation pro-
cedure does a top-down parse of the input. Note that the assertion predicate has only one argument,

and is distinct from the DLOG database maintenance predicate assertable (§§3.6, 5.2).

During the derivation of assertion goals (i.e., parsing), the input is broken into lexical items in

102

the normal way. The parse predicate can exploit this processing in the following way: when transfor-
mations must be applied to particular components of an assertion, the axioms for the predicate of the
corresponding non-terminals are augmented with an extra conjunctive goal that makes the appropri-
ate transformation. The parse predicate is a binary relation on inputs and transformed inputs; it sets
a flag that triggers the appropriate transformations when relevant syntactic items are encountered.
This is a matter of computational efficiency distinct from any logical consideration. The saving can be

significant, since each item is decomposed and parsed once, regardless of the number of transforma-

tions.

As an example, consider the referential interpretation of definite individuals (§4.3.1). Ordinarily,
the interpretation of an assertion like #(the(*z,¥(*z))) might begin after the syntax had been verified.
Instead, the command processor uses the parse predicate to set a flag that triggers the check —input
predicate added to the grammar “production” for definite individuals:

definite~individual(the(*z,%)) <-
individual —variable(*z)
& clause(*e)
& check = freevar(*z,%)
& check—input (the(*z,%))
The first three conjuncts of the antecedent verify the DLOG syntax of definite individual descriptions,

and the last ome will perform the referential check if requested by parse. The logical gist is that,
when a transformation is required, the input or parser axioms augment the current implementation
theory with an assertion about the current input. The check —input predicate is always true, but in
the augmeﬁted theory will apply the required transformations and update the current input assertion
with the transformed input. If the parse is successful, the transformed input can be retrieved. When
no current inputs are asserted the parse proceeds normally, so any other processor can use the

assertion predicate to verify syntax without fear of transformations being applied.

103

5.2.4.2. Assertion and constraint processors

As described in §3.3.1, DLOG constraints have the form A->B where A is an atomic assertion
and B is a body. The actual implementation of integrity maintenance is just as §3.6 suggests: each
constraint of the form above is treated as an assertion about assertability, viz.

assertable(A) <- derivable(B)
The current set of integrity constraints are taken as a Prolog axiomatization of the predicate
assertable on DLOG atomic assertions. To enforce integrity, the DLOG implementation treats each

Rew assertion as a query — as a request to establish the “assertability” of the assertion.

The implementation does not require that each assertion be made by explicitly requesting that
assertability be demonstrated. Instead, any user input that is not a DLOG system command s passed
on to the assertion processor to be tested for assertability. The top level program for the assertion
processor is:

assertable(%az) <- (5.5)
ell(lambda(*con , AX (*ant->*con)
& unify(*az,%nt)),*constraints))
& derivable(*constraints)

& ADDAX (*az).

Compare this with formula (5.4) above. Recall that the all predicate will compute the extension of its
first argument, a unary lambda expression, and bind the result to its second argument (§5.1.2). In this
case, the lambda expression describes the set of all terms of the form *ant ->*con whose antecedent
part *ant unifies with the new assertion *az. The AX predicate is a Prolog predicate (cf. clause in
DEC 10 or. Edinburgh CProlog) that is used to retrieve axioms from the current Prolog database. In

this case AX is being used to retrieve all integrity constraints.

As mentioned in §3.6, we would rather not rederive all the constraints for each new assertion but
only those “relevant” to the new assertion. In this implementation the relevance of a constraint is
determined by the unify(*az,%ant) portion of the lambda expression in sentence (5.1). In other

words, the set of all constraints identified by AX("ant->"con) is further restricted by requiring that

Rl e A W T ML e O A st o et em x4

104

the antecedent "ant of each constraint unifies with the new assertion *az.

A simple example will illustrate. Consider the following constraints:

1) course-enrolled(*s, *c) ->
course(*c)
& (registered(*s, *p, *)| eligible-for-admission(*s, *p))
& satisfied(s, set(*z:course-prerequisite(*c, *z)))
& student-program-contribution(*s, *p, *c).

2) course-enrolled(*s, CS786) ->
has-special-permission(*s, CS786).

8) recommended(*p, *y, *)->
program-contribution(*p, *y, *¢).

Constraint 1) applies to all new assertions that enroll a student *s into some course *¢. The second
constraint 2) applies to any student who attempts to enroll in CS786 —it is a special consideration
particular to that course. The last constraint, 3), deals with assertions about recommended courses; it
requires that any course being recommended for some year *y in program *p must be a contribution

to that program.

Now consider the set of constraints retrieved by the all predicate of sentence (5.5) when the
assertion course—enrolled(Kari,CS115) is bound to the variable *az. The AX (*ant-> *con) portion
of the lambda expression will match and retrieve all of the above constraints 1), 2), and 3), but the
unify(*az,*ant) portion will filter constraints 2) and 3). Constraint 3) is obviously not relevant: the
predicates are different. Constraint 2) is rejected, not because the predicates conflict, but because the
course names conflict. Constraint 3) is relevant only to assertions about enrolling in the course
CS786. Now the assertability of course—enrolled(Kari,CS115) will be determined by the derivability
of

course(CS115) (5.6)
& (registered(Kari,*p,*)| eligible— for —admission (Kari, %))
& satisfied(Kari,set(*z:course —prerequisite(CS115,%z)))

& student —program — contribution (Kari,* ,CS115).

Notice that the assertion course—enrolled(Kari ,CS786) would simply add the extra condition

has—permission(Kari,CS786) to the appropriate version of (5.6).

105

5.2.4.3. Query processor

The query processor is quite simple since DLOG's derivable predicate does most of the work. As
with assert, the parse predicate of the command processor verifies query syntax. The query processor
must only forward a query to the derivable predicate:

query(<-*gq) <- derivable(*g)

In addition query will take arbitrary set descriptions and compute their extensions:

query(<-set(*z)) <-
extension (set(*z),*y)
& write(*y).

For example,
<-set(*z:program(BScMajorsCS, first ,*z)
will return the set of program requirements for a Bachelor of Science in Computer Science for the first

year. The eztension predicate is the same one used in §5.2.3.1 during DLOG unification.

5.2.4.4. Transaction processor

Since constraints are verified for each assertion, situations can arise where one ordering of asser-
tions results in a set of consistent updates, but an alternative ordering results in rejection of the same
assertions. For example, assuming an empty DLOG database, the assertions

course(CS115)
course=no(CS115,115)

course(*z) -> course—no(*z,%) & integer (*y)

will be accepted, but the same assertions in the order

course(CS115)
course(*z) -> course~no(*z,%y) & integer(*y)
course—no(CS115,115)

will pot. In fact, without some mechanism for “packaging” a collection of updates and checking their
consistency simultaneous, the integrity constraint in the latter list of three new assertions will be

rejected, as it is cannot be satisfied in the database consisting only of the assertion ‘course(CS115).

106

This is because there is no way to verify that all courses have a course number before the course
number for CS115 is asserted. This integrity checking on individual updates is especially annoying
when loading databases —if a data base is globally consistent, then assertion order should not affect

integrity enforcement.

In response to this problem, DLOG has a transaction processor that will accept sets of assertions
before applying integrity constraints. When transaction mode is terminated, all relevant constraints

are checked, and all assertions are revoked if any integrity constraint is violated.

The transaction mechanism works by augmenting the DLOG data base with each new assertion
while maintaining a list of those assertions in the implementation database (i.e., an internal database
separate from the application database). When the transaction ends, normal constraint processing is
done for each assertion recorded in the internal database. If a constraint fails, the appropriate asser-
tions are removed from the DLOG database. Otherwise, the internal database list is deleted and nor-

mal processing continues.

5.2.4.5. Browser

When the contents of an application database are unfamiliar, it is useful to inspect the database
directly, rather than with a barrage of potentially meaningless or irrelevant queries. The browse pro-
cessor is a system feature, independent of the DLOG data model specification, that allows a user to
browse the application database much in the same way a relational database user might list tables of
relations. The browser performs no (object level) inference; it merely retrieves axioms as directed by

the user. When invoked with the browse command, the user is presented with the following menu:

1: Topics

2: Constraints

3: User predicates

4: System predicates
5: Enter predicate
6: Enter skeleton

Selection?

After selecting an alternative, the user is guided through the relevant information a bit at a time,

107

until he has seen enough, or until no further entries of that category exist.

The first and third menu alternatives (topics and user predicates) let a user peruse the applica-

tion database’s data dictionary. Its format is described below (§5.5.4).

The topic browser takes arbitrary names or strings as input, and attempts to produce a list of
user predicates relevant to that topic. Relevant topics are determined by a synonym dictionary and a
topic hierarchy [Goebel77, Goebel78, Schubert79)], both included as a portion of the application data

dictionary (see §5.3.4 for an example).

The ‘‘user predicate” selection steps through the application database’s list of predicates. Simi-
larly, option 4 steps through the user accessible DLOG system predicates recorded in an internal sys-

tem data dictionary.

The fifth option prompts the user for a predicate name. If that name can be identified, its
axioms are presented. The remaining options (2 and 6) will prompt for atomic clauses, and browse
axioms that match the user-specified clause. For example, after the menu appears and option 2 is
selected, the input

course—req(BScMajorsCS,*,*

will browse all relevant constraints for the course—req predicate whose first argument is

BScMajorsCs.

5.3. Traditlonal Database Management facilities

The DLOG system is an experimental program, too uncivilized and brittle for real world use.
However, i'ts usefulness as an experimental tool is greatly enhanced by several facilities motivated by
traditional Database Management (DBM) implementations. These include a data sublanguage embed-
ded within a general purpose programming system, a transaction facility, an integrity constraint facil-

ity, and data dictionary support.

Except for integrity constraints, these facilities are implementation adjuncts to the DLOG data

model. The data model specification has nothing to say about the correctness or semantics of any

108

implementation-dependent feature. Nevertheless, these facilities are an important part of any civilized
system, and can be implemented as sets of Prolog axioms. This makes their relationship to the DLOG

data model much clearer than, say, an equivalent PL/1 implementation.

5.3.1. Embedding data sublanguages in DLOG

Despite the apparent expressive power of any data modelling technique, there eventually arises
an application that strains the model to its useful limits. Often the model is simply incapable of

expressing the desired information (e.g., disjunction), or is hopelessly inefficient in marnipulating that

information.?® For example, the current DLOG data model does not include any explicit notion of a
composite or aggregate data structure where components can be individually identified, and their rela-
tions to the larger object manipulated (cf. TAXIS [BorgidaSl]). DLOG does provide extensive built-in
predicates for using set objects (e.g., extension, member, subset, union), so aggregate structures could
be constructed by the user. Note that this does not mean that the user must construct his own sets;
set objects are defined, together with many operations for manipulating them. The user’s responsibil-

ity would be to construct his notion of aggregate in terms of individuals and sets.

From the efficiency viewpoint, DLOG’s major shortcoming is that it expects its application data-
base to reside in mainstore —a significantly large database would be impossible without a scheme for

using secondary storage.

Traditional DBM implementations sometimes extend their flexibility by embedding the data
model’s manipulation primitives within a general purpose programming language [Tsichritzis77,
Date81]. This notion is sometimes called an embedded data sublanguage (DSL) or a “self-contained
data language.”¥ Similar notions have been used in Al representation systems (E.g., MICRO-
PLANNER [Sussman71], QA4 [Rulifson72]), and have usually referred to this extra flexibility as “pro-

cedural attachment.”

3 In Artificial Intelligence these notions have been called, respectively, epistemological and hexristic adequacy [McCarthys9,
McCarihy77].

Z Eg., see [Tsichritsis77, p. 59).

109

*

The bLOG data sublanguage includes the DLOG meta predicates (e.g., derivable, satisfies),
and the rest of the data sublanguage is embedded with no Jurther effort. The designer of an applica-
tion database may specify Prolog programs, if Decessary, together with the existing DLOG implemen-
tation predicates. Furthermore, user-written manipulation routines can be monitored to ensure data-
base integrity. Because all user-asserted axioms are read and parsed by DLOG, each predicate can be
compared with a restricted set provided for user use. DLOG maintains an internal data dictionary of

all user-invokable DLOG primitives, and can compare the predicates used in new assertions to this set,

The current DLOG implementation includes a mechanism for loading and invoking user-defined
commands, implemented in the DLOG defined Prolog subset. The command processor (§5.4.4.1) will
try to interpret any unknown input as a user command. To define a user command, the user simply
provides the command's data sublanguage axiomatization, and includes the command name in the

user data dictionary by using the predicate user ~command.

The transcript user command of the Department Database (§2.3.1) is a good example of an
application-dependent user command. When invoked, the command provides the user with a meny of

the following alternatives:

: load

: save

: list

: edit

: create
: browse

O v WD)

Selection?

Because student transcripts are the most volatile portion of the DDB, a facility for their separate
manipulation would be more efficient than considering the whole DDB at once. As mentioned in
§2.3.1, DLOG views the application database as a single theory, but transcript is a user-defined facil-
ity that makes more efficient use of DLOG by providing its own view of the data. The DDB tran-
script facility has its own definition of what a transcript is (cf. “subschema” or “frame”’), and uses this
definition in manipulating the DDB. For example, the transcript list option (3) is defined by an axiom

like this:

110

list =transcript(¥z) <-
LIST(age—of (*s,%a))
LIST (registered(*s,*,*))
LIST(completed(*s,*c))
LIST(grade—of (*s,*,%))
LIST(course~enrolled(*s,*c))

Just as one might identify a particular transcript subschema or frame by its individual name in DBM
or Al systems, providing list —transcript with a particular student name identifies the assertions that

comprise that student’s transcript.
This transcript facility is coupled to the DLOG implementation in a domain-independent way by
including the assertion

user —command (transcript)

in the application database’s data dictionary.

5.3.2. Integrity maintenance

Integrity constraints are really a specification of what can be done to a database without des-
troying its logical consistency. DBM research calls this “semantic integrity,” to distinguish it from
physical integrity. According to LaFue [LaFue82] there are very few implementations of systems with
automatic integrity enforcement. DLOG's integrity processor compares favourably with the most

sophisticated DBM implementation (see [Stonebraker75, Woodfillg1]).

Two major classes of constraints have been identified in the database management and logic
" database literature: constraints that verify the consistency of a new assertion before accepting it as an
axiom are called ‘state constraints” by Nicolas and Gallaire [Nicolas7éb]. These are distinct from
constraints that not only accept new assertions, but remove existing ones: these are called “transition
constraints,” and are a subject of lengthy discussion in the description of the TAXIS system [Mylo-
poulos80]. The application of state constraints has a strong theoretical foundation (e.g., see [Reiter81,
Reiter83]), but transition constraints are more difficult because they assert properties on different

databases. The current implementation of DLOG can manage both kinds of constraints, however,

. 111

only state constraints are specified in the DLOG data model specification. The semantics of transition
constraints requires some kind of formalization of operations that not only augment a database with a
new update, but potentially remove existing assertions to maintain the consistency of a database. As
suggested in §3.6, the meaning of transition constraints could be brought within DLOG's logical foun-
dation by adopting a more elaborate representation. Even if this were to be done, the extended
representation would not solve the practical problem of automatically maintaining multiple versions of

a changing world. The problem of providing an efficient and logical solution to the problem requires a

specification of the semantics of destructive assignment.”® DLOG does not provide such a theory, but
does use destructive assignment to model change in the world being described. The DLOG implemen-
tation provides transition constraints by providing user access to a deletion predicate. For example,
the DDB includes the constraint:
completed(*s,*c) ->
course=enrolled(*s,*)

& grade—of (*s,%,%)

'& passing—grade—of (*c,*p)

& greater —or —equal(*g,*)

& DELETE (course—enrolled(*s,*))

The constraint asserts that if you complete a course by attaining a passing grade, then you are no
longer enrolled in that course. The semantic difficulty is that the satisfaction of this constraint
requires an interpretation over domains consisting of individual databases. The practical difficulty is
that the user must interpret the meaning of a transition constraint operationally, instead of using the

DLOG semantics specified in Chapter 3.

As previously claimed, DLOG constraints provide a straightforward way of defining relation

schemas:

2 R.A. Kowalski, invited address “Problems of logic programming,” to the Second International Conference on Logic Program-
ming, Tuesday July 3, 1984, Uppsala University, Sweden. suggested that the semantics of destructive assignment is a seri-
ous problem for all of computing.

112

head—of (*h,*d) ->
Jaculty —member (*h)
& department (*d)

This constraint specifies the attributes of the relation head—of, i.e., constrains the argument types of
the predicate head—of. The constraint
course=enrolled(*s,*c) ->
course(*c)
& (registered(*s,*p,*) | eligible — for ~admission(*s,*))
& satisfies("s,set(*z:course—prereguisite(*c,*z)))
& student —program ~ contribution (*s,*c)

says that “you can enroll in a course if you're registered (or eligible to register), have satisfied the

course's prerequisites, and the course is a contribution to your program.”

$.3.3. Transaction processing

The concept of a transaction has been used extensively in DBM [Gray81], usually as a mechan-
ism tq enforce database integrity on a batch of updates. For those familiar with the nomenclature of
Badal and Popek |Badal79], DLOG uses “post execution semantic integrity validation” within the
transaction processor. In other words, integrity constraints are applied after the transaction com-

pletes, and all assertions of the transaction are retracted if any constraint fails.

5.3.4. Data dictionaries

In DBM, a data dictionary provides information about the database — it contains meta level
information. For example, IBM's System R has a data dictionary that includes relations that describe
the TABLE's and COLUMNs of an application database.® System R’s data dictionary is organized in
relations just like the rest of the application database, and can be interrogated with the same query

mechanism.

A similar mechanism is provided in DLOG. For example, the TABLE relation of System R lists

See [Date8l, p. 138].

113

all database relations and the number of columns in each, viz.

RELATION | COLUMNS

TABLE

course 1
course-no 2

The DLOG data dictionary uses user —predicate to achieve the same effect:

user — predicate(course,1)

user —predicate(course—no,2)

This information can be examined with the browse mechanism descrii)ed in §5.2.4.5, or used by the

system to reject queries with unknown predicate names.

Sinc; DLOG includes rules as well as facts within jts language, there is no reason to exclude
rules from the data dictionary — the underlying inference mechanism can make inferences in both the
object level and meta level database with equal ease. For example, by classifying the user predicates
by topic and storing that classification in the data dictionary, we provide a facility for browsing the

user predicates by topic (see §5.4.4.5). The DDB application includes the following topics in its data

dictionary:

topic(advising)
topic(registration)
topic(cour.ses)
topic(standing)
topic(admission)
topic(grades)
topic(promotion)

Each topic is related to a user predicate by the data dictionary predicate topic—category, e.g.,

topic— category(admission ,program — prereq)

topic—category(admission, faculty — program —preregq)

114

topic—category(admission,dept — program —prereq)

Furthermore, topics can be structured into a hierarchy with the sub—topic predicate, e.g.,

sublopic(advising registration)

subtopic(advising,courses)

Finally, because we can interpret the data dictionary like any other database, general relationships
between topic categories and subtopics can be specified:
topic—category(®,%) <-
subtopic(*,*st)

& topic—category(*st,*c)

This topic information can be used to retrieve all user predicates relevant to a particular topic — this
is what the topic browser does (see §5.4.4.5). Notice that this facility is directed at users who are
unfamiliar with a particular application database. Since we cannot assume that a user is familiar with
topic names, this DLOG implementation includes a topic synonym predicate to help map user topic
names to their data dictionary equivalents. For example, the data dictionary assertions

topic— equivalent (advising,advice)

topic—equivalent (advising,counsellor)

topic—equivalent (advz'sing,counselling)

topic—equivalent (advisz’ng,counsel)

will allow predicates relevant to advising be retrieved by using those synonyms.

5.4. Heurlistic Interpretation of querles

Despite claims that the issues of maintaining soundness and completeness are merely artifacts of
the logical paradigm, a certain freedom can be had by viewing computation as inference. The idea is
that the object level behaviour of a theorem-proving algorithm (or procedure) can be controlled by a
theorem-prover that deals with properties and relations on the proofs view as objects. This idea is

usually attributed to the GOLUX project of Hayes [Hayes73] and has since been exploited in some

115

actual implementations (e.g., [Bundy81, Kleer77)).

One thing that critics of the logical paradigm (e.g., [Minsky75) have overlooked is that there is
no ‘“‘regulation” that requires that the behaviour of a complex logic-based reasoning system be based
only the notion of a completed proof. The heuristic method described below uses controlling axioms

at the meta level to make use of partial proofs as assumptions in the query evaluation process.

5.4.1. Partlal matching and partlal proofs

Before describing the matching heuristic embedded in DLOG, we review two related notions of
matching. The first comes from Hayes-Roth [Hayes-Roth78] who discusses one view of partial
matches and their general use within so-called “pattern-directed inference systems.” The second view
is that of the match framework of KRL [Bobrow77b, Bobrow77aj. It is also worth noting that both of
these discussions cite the matching component of MERLIN [Moore74] as background. We briefly
explain MERLIN's reasoning technique before turning to a discussion of Hayes-Roth and the KRL 5ys-

tem.

The MERLIN system sought to produce a model of analogical reasoning by employing a match-

ing procedure called “mapping” to data structures call “B-struciures." A B-structure consists of a
concept name, a class name, and a list of properties or features which are themselves B-structures. A
mapping operation proceeds by ‘‘positing” one B-structure as another, and then recursively making
“sub-posits” between corresponding properties of the original “posit.” For example, a B-structure for
the concept man might be something like

mN [MAMMAL NOSE | ... JHOUSE| ...] ...]
where MAN is the concept name, MAMMAL the class name, and the remaining properties are B-
structures describing various properties of the MAN concept. Similary, the concept pig might be ren-
dered as

PIG | MAMMAL SNOUT [..]STY[..]..]
A comparison of MAN and PIG would be performed by a mapping of the MAN B-structure onto the

PIG B-structure, producing the posit “MAN/PIG.” After one level of sub-positing, the mapping could

116

’

report that a “MAN is like a PIG if a NOSE is like a snout and a HOUSE is like a STY." This map-

ping process is touted as a basis for analogical or metaphorical reasoning, however the B-structures

have no clearly defined meaning, and the mapping procedure is not well defined.

Despite these problems, the notion of partial match by this recursive sub-positing has been ack-

nowledged as an important contribution to symbolic reasoning by both Hayes-Roth and Bobrow and

Winograd.

Hayes-Roth’s [Hayes-Roth78] discussion of partial matching is rather vague, but his general
framework focuses on the results of an attempted matching of two “‘descriptions” A and B, described
as the three-tuple (A¥B,A—A*B,B—A*B). A description is apparently any symbolic data structure.
The A*B component denotes what A and B have in common. The two remaining components denote
the “residue” of A and B, or what of A and B remain after extracting their common parts. The only
thing of further relevance here (aside from this nomenclature) is Hayes-Roth’s suggestions for possible
uses of partial matches. He explains how the mapping of MERLIN simulates “analogical” reasoning
by using partial instead of complete matching. The important concept for DLOG is that a partial

match is evidence enough to continue the reasoning in progress.

Bobrow and Winograd's description of KRL's matching framework (see [Bobrow77b, §2.5]) does
not focus exclusively on the notion of partial match, but their discussion about what is deductive and
what is heuristic is sufficiently interesting to pursue here, because DLOG already provides some of the

features of KRL's “flexible” matching.

The basic data type of KRL is a frame-like structure called a “unit.” A unit is a collection of
‘'descriptors’ that attribu‘te various properties to the unit in which they appear. Appendix 3 contains
examples of KRL's various data structures. Of interest here are the various ways in which units can
be related by matching their descriptors. For example, consider KRL's matching by “using properties

of the datum elements” [Bobrow77b, pps. 23-24):

Consider matching the pattern descriptor (which Owns (a Dog)) against a datum which
explicitly includes a descriptor (which Owns Pluto). The SELF description in the memory
unit for Pluto contains a perspective indicating that he is a dog. In a semantic sense, the

117

match should succeed. It can only do so by further reference to the information about
Pluto. :

This form of matching can be simulated in DLOG. For example, the KRL descriptors (wkich Owns (a
Dog)) and (which Owns Pluto) might be rendered as

Owns(*z,an(*y,dog(*y)))

and

Owns(*z ,Pluto)
It seems that such descriptors in KRL always appear within the scope of a particular unit, so that
they attribute a property to the individual described by that unit. In this case the variable *z above
would be interpreted as an existential variable, and we anticipate its use as a referent to an individual
with the property of owning a dog. If we have the fact that Pluto is a dog (i.e., the assertion
dog(Pluto)), then DLOG unification rule 6 (§5.2.3.1) will successfully unify the above pair by recur-

sively proving that dog(Pluto) follows from the database.

Several other forms of matching fall into similar categories, where a recursive proof will provide
the inferences required to demonstrate the equality of descriptions. The only clear instance in which
partial matches arise are due to resource limitations. Again the partial results determine whether the

current line of reasoning is to continue (perbaps given further resources), or to be abandoned.

From both of the above views, one important use of partial matching is to sanction contim;ation
of a current line of reasoning. In DLOG, a “line of reasoning" is simply the current search for a proof
of a DLOG query. The DLOG partial match heuristic is a way of continuing the search by recording
a partial match of two terms as an assumption under which the current search for a proof can con-
tinue. The relatively vague notion of partial match described above is articulated in DLOG as a par-

tial proof.

5.4.2. The eztends predicate

The heuristic in this DLOG implementation uses failure of the deductive proof procedure to ini-

tiate a heuristic derivation based on a DLOG meta predicate called eztends. The heuristic is based on

118

a partial match in the sense that it is applied during unification, and allows unification to succeed
when it would otherwise fail. If a proof step in the current proof search fails because two descriptive

terms can not be matched, the eztends predicate can be invoked to attempt to find a partial match.

The extends predicate is implemented as a binary Prolog predicate that takes two DLOG sen-
tences as arguments. The predicate is asymmetric: the first argument is the hypothesis, and the
second argument is the goal. The derivation of the eztends relation on two arguments attempts to
verify that the goal follows from any part of the hypothesis. In implementation terms, ezxtends
reduces the hypothesis to a conjunction of atomic sentences, and attempts to show that the goal fol-
lows from some portion of the hypothesis. In other words any disjunctive symbols " 4 in a
hypothesis are treated as conjunctions ‘&’; all of the following are derivable instances of the exlends
relation:

eztends (p(*z)83(*y).p(c)).
extends(p(*z)!q(*y),p(a)).

extends(p(*z)!g(*y)| 8(a)8(*z),5(*2)).

This choice of partial match definition was made because of Prolog’s inability to deal with disjunctive
assertions. The eztends predicate sanctions a partial match by replacing inference with pattern-

directed retrieval.

The implementation of extends simply takes each atom of the bhypothesis and temporarily adds
it to the current database. After each atom is added, an attempt is made to prove the goal from the
augmented database. If the goal can be achieved before the atoms of the hypothesis are exhausted,
then ezxtends succeeds. Because DLOG unification can recursively invoke DLOG derivability (§5.2.3),
this heuristic can involve further invocation of DLOG proofs and a proof can continue under the

ezxtends assumption.

To illustrate the use of this heuristic, consider the following query from the example terminal

session of fig. 2.5:

119

<-course—=req(BScMajorsCS, first lambda (*z,completed(*z,CS1 15))).

This query can be paraphrased as “Is the completion of CS115 a course requirement for the first year
of the BSc Majors program in CS?”” The DDB asscrtion relevant to this query is
course=req(BScMajors,
Jirst,

lambda(*z ,completed(*z,CS115) completed(*z,CS1 18))).

Notice that the two lambda terms are different, and in fact cannot be shown equivalent by the
lambda equality schema (§3.4.2) as implemented in the DLOG unification procedure (§5.2.3, case 7):
the matching subgoal

eglambda(lambda(*z, —),lambda(*z,—))
fails, thus causing the search for a proof of the query to fail. Logically this failure is to be expected,
as we are requesting a deduction of the form (PE-Q)v(~-PE&Q)+ P, which is not deducible. However,
because CS115 or CS118is a requirement, the query answer “no” seems somewhat unintuitive. (This

is an example of what the critics of logic use as evidence against the use of the ideas of truth and

Jact.)

At this point, the heuristic based on the eztends predicate can be invoked as follows:

<-eztends(lambda(*z completed(*z,CS1 15)lcompleted(*z,CS118)),
lambda(*z ,completed(*z,CS115))).

and will succeed because assuming the first disjunct of the hypothesis will easily produce a proof of

the goal. At this point, DLOG unification reports the following:

heuristic assumption:
completed(*x, CS115)
extends
completed(*x, CS115) ! completed(*x, CS118)

and completes the proof under this assumption. The query has not been deduced, but the user can see

that CS115 is a suitable course requirement, in lieu of CS118.

5.4.3. Implementation of heuristic evaluation

The extends predicate is invoked from within DLOG unification by adding the following Prolog

120

assertion to the unification definition of §5.2.3:

unify(lambda(*v,%,),lambda(*v,%,) <-
heuristic —mode
& query —mode
& extends(*e,,%,).

The two propositional atoms keuristic—mode and query —mode verify that DLOG is in both heuristic
and query modes. The former is used because heuristic mode is very expensive-—recall that the
heuristic interpretation of queries is attempted only after deductive failure, so applying the beuristic in
all failure cases would result in heavy overhead in most cases, and disaster in others. For example, the
constraint mechanism (§§3.6, 5.2.4.2) should never use heuristic mode to complete a derivation that
demonstrates the updated database is still consistent. When in heuristic-mode, this is avoided by the

second atomic proposition query —mode.

It should be noted that the current eztends predicate is a very limited use of the enormous
poténtial for heuristic processing in this structure. For example, it would be relatively easy to include
further heuristics based on partial matches of set terms, e.g., continue if one of two different set terms

is a subset of the other.

Chapter 6
An approach to DLOG ’s formal semantics

6.1. Montague’s concept of obligation

The semantics of DLOG’s 3-sorted syntax cannot easily be specified in terms of a first-order
semantics, even with special computational procedures. An appealing alternative is a second-order
intensional logic as used by Montague to explain such concepts as “obligation,” “event,” and “task."”
As will be explained below, Montague’s formalization of the concept of obligation [Montague74,
p. 1511f.] corresponds well with the interpretation of lambda constants as regulations in the Depart-

mental Database application domain.

Montague’s system provides a way of specifying the semantics for DLOG’s lambda constants. It
is used here to describe the semantics of the complete DLOG language. While only DLOG lambda
terms require this treatment, Montague's system provides a rather more uniform treatment of

DLOG's semantics than is possible in weaker systems.

8.2. Contextual description based on a second order Intensional loglc

The essence of Montague's system can be explained in a relatively straightforward manner. An
essential concept is the classification of individuals into categories of two different kinds. Each n
place predicate constant has an associated type <&4,8), - * * 8,_;> that indicates the kind of object
that can appear in each term position: 8, = =1 specifies a standard! individual; 8, =0 specifies a pro-

position; and s, = 1 specifies a 2,-place predicate.2

! Here “standard individual” means the usual notion of an individual in a first order model. This is in contrast to higher-order
models, where there are different kinds of individuals.

2See |MontagueT4, p. 150]. The notion of predicate used in this context is sometimes called a “relation in intension.”

. 122

For example, a predicate constant P of type <-1,1> takes individual constants in its first posi-
tion and unary predicates in its second. In the Department Data Base domain, the satisfies predicate
constant has type <-1,1>, e.g., the assertion

satisfies(fred,\z.completed(z cs115))
has an individual constant ‘fred’ in the first argument position, and a lambda constant in the second
argument position. The first denotes an individual object (the person with name ‘fred’), and the

second denotes a predicate specifying the property of “z completing the course CS115.”

The meaning of the above assertion is assigned in a way that introduces the second and most
important difference of Montague's system. The assignment of truth values to sentences is an
inherently two phase process. As Montague explains [Montague74a, p. 157), an interpretation assigns
intensions to symbols, and a model assigns ertensions. Extensions include the standard objects well-
known from traditional ’i‘arksian first-order semantics, as well as sets of sequences of individuals.
Intensions are functions from possible worlds to the universe of individuals. They are introduced in
order to distinguish the sense or abstract meaning of a predicage from its denotation in a particular

possible world.

Though the complexity of Montague's complete system can be perplexing, but of the complexity
dissolves because of the simplicity of DLOG theories: they are finite, and the intended interpretation is
over a highly restricted domain. This simplicity constrains the number of possible worlds that can
serve as interpretations for DLOG theories (for example, this provides a restricted interpretation of
“0"). In effect, the world that a particular DLOG database is intended to describe is the intended
possible world for semantic interpretation. Therefore the first phase of interpreting a sentence, the

selection of a possible world, is trivial.

6.2.1. DLOG's semantics in Montague's system

A possible interpretation for the DLOG language is a triple <IU,F>, where I is a set of possi-

ble worlds, U is the set of possible individuals®? and F is a function from individual and predicate

123

constants to intensions. That is, for any individual or predicate constant ¢, F,, is a function F,..I-U.
This is the formal notion of intension—F, is a function which, computed in a possible world § , pro-
duces the extensional denotation of that constant. In other words, F(i) is the individual in possible

world ¢ denoted by the constant c.

Individual constants of DLOG’s syntax correspond to possible individuals in the set of possible
worlds. In any actual DLOG database, the intended possible world is fixed by that database’s

intended interpretation.

The set objects in the DLOG language can be expressed in several ways in Montague’s system.
In one method a DLOG set object is expressed as a predicate with the property of being the set in
question. That is, the set constant ‘{a}’ is semantically associated with the predicate that, in a possi-
ble world i, describes the set whose only member is the possible individual assigned to a in ¢. In
Montague's formal language the set constant {a} can be expressed as 33

TQAuOQ[u]=u=0¢)

For example, consider the DLOG formula
cardinality({a},1)
Here cardinality is a predicate constant with type <1,-1>; its first argument is a unary predicate
constant and its second an individual constant. We can express the DLOG assertion as
cardinality(TQAu(Q[u]=u=4a),1) ‘ (6.1)
Here Montague's T’ symbol has a similar role to Russel's symbol ‘L’ in the DLOG syntax. It is used
to name a predicate @, i.e.,, we can read T Q° as “the predicate @ such that...” The symbol ‘O s
needed to specify that the prédicate definition is unique across all possible worlds. It asserts that the

predicate @ has the same definition, regardless of in which possible world an interpretation is made.

2 In Montague's “Pragmatics” {Montague74b)] U= }‘J!Al, while in “Entities” [Montague74a] UDUA,, where Ajis the set of
14

possible individuals existing in the possible world i. The interested reader is referred to those papers for a deeper under-
standing of the philosophical issues arising from the consideration of possible objects not included in one’s selection of 1, the
set of possible worlds.

B Montague [Montague74a) uses the symbols ‘A’ and v’ for ‘Y’ and ‘T, respectively. He also uses brackets where
parentheses are typical, e.g., P{z] for P(z). In addition Montague employs the symbols ‘T and ‘Q, read as “the” and
“pecessarily,” respectively. These latter symbols ar= ®sed to form names of predicates.

124

Montague offers the following abbreviation for formula (6.1):

cardinality(tu=g,1)
In general, the ‘4 ¢’ syntax is shorthand for TRAuD(Q[u]=p).

The above approach to expressing the meaning of DLOG sets requires that the type of a predi-
cate constant reflect the size of the set to which it is applied. For example, we need a different cardi-
nality predicate constant for each size set, i.e., cardinality <1,-1>, cardinality <2,-1>, etc. Since
the DLOG domain is finite, this poses no theoretical problem. However, we can avoid this inelegance
by interpreting a DLOG set object as an individual of Montague’s logic and then rendering DLOG set
descriptions as predicates that relate that “individual” to its members. In effect, we are avoiding the
inelegance of the first encoding by defining a kind of local sorting within the Montague encoding of set

descriptions. For example, with this strategy the set constant {a} is now written as

TRAzO(Q[z]=(Q[z,a] A Ayy #aD~Q"z,y]))

or, in the abbreviated form as

Q' z,a]AAyy # 62-Q'[z,y]

The new predicate constant Q' is introduced to name the relation of “being a member of set z,” i.e.,
VzVyQ'(z,y)mset(z)ry €z

Its introduction avoids the necessity of providing a different type for each predicate constant — for
example, cardinality can have type <1,-1> regardless of the cardinality of the set on which it is
asserted. The newly introduced predicate constant Q' avoids the need for explicitly sorting
Montague’s language, and permits the meaning of DLOG sets to be expressed without explicitly
increasing fhe number of predicate constants in any particular DLOG theory. This introduction of a
new ‘‘element-of” relation for each set is again theoretically feasible, and can be hidden in an imple-

mentation.

Definite sets can be similarly expressed. A definite set

{z| &(z)}

is expressed as

125

TQAzO(Q|z]=¢(z))
or, in abbreviated form
zd(z)
There are two syntactic forms of indefinite set. The first has the general form {z X P(z),2X)};
the DLOG set variable X is treated as a new individual variable, say y, and the Montague encoding is

TRAYOQ[y]=2(y)AAzQ1y,z]2%(z))

or the abbreviation

Iy)AAzQ"y 2]29(z))

Similarly the second form of indefinite set, {oycia5cq - - - Cn-10,} is written as
£(Q'lz, e} e, Qz,az)cy - - - a-1Qz,0,) A (Ayy #F oAy £aga - - - AYy#a,0-Q'z,y))
Here the first parenthesized sub-formula specifies a set’s potential members and the second sub-

formula specifies its closure conditions.
Finally, DLOG lambda expressions are expressed as unary predicate constants. For example, the
DLOG formula

requirement (BScMa jorsCS \z.completed(z,CS1 15))

is written as

requirement (BScMajorsCS,Zcompleted(z,CS115)) (6.2)
This not only shows that DLOG’s lambda symbol ‘N’ plays the same role as Montague'’s ** symbol,
but reveals a deeper equivalence: when expressed in .Montague’s system, the meaning of DLOG’s
lambda terms and set terms are identical. The reason should be apparent: it is because there js a
natural relation between the notion of a set and being a member of a set. They are distinguished here
so that one can refer to the set as an object. At the expense of a more complex syntax (i.e., adding
set variables), we could retain the intended DLOG distinction within the Montague framework. In

DLOG this distinction is made by having sorted variables.

The intended meaning of lambda expressions does not collapse in the same way as sets. This is
because the formula (6.2) is intended to mean “a requirement of the BScMajorsCS program is to bear

the relation completed to the course CS115.” The intensional semantics provides a way of admitting

126

different intensions for the completed relation, e.g., completing a course might have different meanings
in different possible worlds. In the case of DLOG, the particular possible world in which symbols are

assigned extensions is fixed to be the Departmental Database.

The second order power of Montague's logic provides the expressive ability to assert relations on
predicates: it is the property of completing C'S115 that bears the requirement relation to the program
BScMajorsCS, and not any particular extension of the property. In particular, we determine the
truth of formula (6.2) as follows: the predicate constant requirement has type <-1,1> and so denotes
a relation <I,U,U,>, where I is the set of possible worlds, U the set of individuals, and U, is the set
of all predicates <I,U>. Now the formula (6.2) is true in a structure <ILLU,F> just in case there is
a denotation z€U for BScMajorsCS and A E<ILU> for fcampleted(z,CSllS) such that
Frepuirement (1) holds on <z,4 >. (Recall that Fioquirement is the intension of the predicate constant

requirement, and that F, .y, 10m.n:(7) is the extension of requirement in possible world i)

8.2.2. Interpretation of DLOG based on Intensional logic

In general, the interpretation of Montague’s formulas is specified as follows. This specification is
adapted from Montague [Montague74a, Pps. 150-159). Let <I,U,F> be a possible interpretation, and

let i be a member of I.

(1) If u is an individual variable and ¢ an individual constant, then the possible individual z satisfies
the formula u=c (in ¢ with respect to <LU,F>)if and only if z is identical with F.(7).

(2) 1f in addition, P is a predicate constant of type <-1,-1>, then z satisfies the formula Plu,c] (in
{, wiih respect to <I,U,F>) if and only if the pair <z JF.(s)> is a member of Fp(i).

(3) If u is an individual variable, Q@ a one-place predicate variable, ¢ a predicate constant of type
<-1,1>, z a member of U, and A a predicate of type <I,U>, then the pair <z,A > satisfies
the formula &[u,Q] (in §, with respect to <LU,F>) if and only if <z,A> is a2 member of
Fyls).

(4) If P is a zero-place predicate variable and A a predicate of type <I> (that is, a proposition),

()

(6)

(7)

@)

(9)

127

then A satisfies the formula P[] (in 4, with respect to <I,U,F>) if and only if the empty

sequence is a member of A(:’) (that is, if and and only if A(f) is truth).

If ¢ is a sentence, then ~& is true (in ¢, with respect to <ILU,F>) if and only if & is not true

(in ¢, with respect to <I,U ,F'>); similarly for other sentential connectives.

If u is an individual variable and ¢ a formula of which u is the only free variable, then Vu® is
true {in 4, with respect to <LU,F>) if and only if there is an object z in U such that z satis-

fies & (in ¢, with respect to <I,U,F>).

If @ is an n-place predicate variable and @ a formula of which Q is the only free variable, then
VQ® is true (in §, with respect to <LLU,F>) if and only if there is a predicate of type
<LU,,...,.U, .y > which satisfies ® (in i, with respect to <LU,F>), where each U, (for k <n)
is U.

If @ is a sentence then DD is true in i (with respect to <LU,F>) if and only if ® is true in j

(with respect to <I,U,F>), for every j in I.

If v is an individual variable, Q a one-place predicate variable, 2 a predicate constant of type
<-1,1>, & a formula of which the only free variable is @, and z a member of U, then z satis-

fies 2[u, T Q] (in ¢, with respect to <ILU,F>)if and only if <z,A> isin Fg{i), where either

(i) there is exactly one predicate of type <I,U> which satisfies & (in ¢, with respect to

<ILLU,F>), and A is that predicate, or

(i) it is not the case that there is exactly one such predicate and A is the empty predicate

(ie., Ix{A}).

Finally, we require an addition that considers the meaning of DLOG’s definite individuals. While

Montague's language uses the symbol ‘T’ to form new predicate constants, the language has no

equivalent symbol for forming individual names. Therefore we add

(10) P(tz®(z)) is true (in & with respect to <I,U,F>), if and only if either

(i) there is exactly one u in U such that u satisfies &(z) (in 7 with respect to <LU,F>) and

128

u €Fp(s), or

(ii) there is not exactly one u such that u satisfies #(z) (in & with respect to <LU,F>) and
there is a distinguished individual A€Fp(i).

The special individual A is the individual, different from any other individual, that is denoted by those
definite individuals that are ambiguous. In the DLOG implementation each definite individual is sub-
ject to reference determination. Definite individuals that fail to refer cause the rejection of the asser-
tion in which they appear. In theory, the selected individual is that special individual that achieves
parsimony in the specification of the first order semantics of definite descriptions (cf. |Rosser68,
Kaplan75, p. 215]). In application, A represents the computer program that rejects the offending

assertion (for further details see §4.3.1).

To conclude this section, we note that Hilbert's symbol ‘€’ has not yet been given a meaning
within Montague's system. This is because we desire an interpretation where ‘€’ is treated as a selec-
tion operator(cf. [Leisenring69, p. 4-5]). The particular individual denoted by a term of the form
‘€z.®(z) is determined proof theoretically —or in implementation terms, by the index structure of a

particular DLOG database implementation (see §54.2, 4.3.2, 5.2.3.1).

6.3. Higher order Intensional proof theory?

While some basis exists for the implementation of higher-order proof theories based on extended
unification (e.g., [Huet75, Jensen75, Darlington77]), no such basis exists for intensional higher-order
logic. Part of the reason for the lack of this foundation is evident in the following quote taken from

an introductory book on Montague’s semantic theory:

“..we will concentrate exclusively on model theoretic definitions of semantic entailment,
validity and related notions, rather than deductive systems. This is not to say that the
study of deductive systems has no interest for semantics and pragmatics of natural
language. It might, for example, have particular applications in the psycholinguistic study
of how people draw inferences from sets of sentences, or in artificial intelligence studies.
Rather, this means that we can safely ignore formal deductive systems...since our model-
theoretic method renders them superfluous for our purposes.”4

4 [DowtyB!, p. 53].

129

As the development and application of Montague's intensional logic was not motivated by deductive
concerns, it is not surprising to find that little has been done to consider the nature of an intensional
higher-order proof theory. As computational linguists develop a coherent model of language interpre-
tation based on Montague semantics, the need for a computational understanding will grow. For
example, Hobbs and Rosenschein have already illustrated the relationship between Montzgue’s inten-

sional interpretation of quantification and LISP [Hobbs78].

An essential notion in any intensional proof theory is the definition of a syntactic operator that
performs the equivalent of assigning an intensional to a syntactic object. This is the first phase of

truth determination in an intensional logic, and a suitable proof-theoretic correlate is required.

As an example, consider the intensional interpretation of DLOG's lambda constants. As inten-
sional objects, their proof-theoretic manipulation should require a mechanism that considered some-
thing like a set of possible theorics as the corresponding syntactic notion of possible worlds. Of course
the interpretation of the DLOG lambda constant is simplified by having only one possible intended
interpretation. In that situation, lambda constants can be manipulated as if their intension had been

determined.

As others have indicated, there are many natural language utterances that require an intensional
interpretation because of the opaque contexts created by propositional attitudes. These cases do mot
arise in DLOG, and so the derivation strategy specified in §3.4 is sufficient. It seems, however, that
the general problem of how to provide an effective proof-theoretic equivalent of constrained subsets of

higher-order intensional logic is an open question.

Chapter 7

Conclusions

The motivation for the specification and construction of DLOG shares goals from Database
Management (DBM) and Artificial Intelligence (Al). The former emphasizes data independence and
the efficient organization and use of large volumes of information, while the latter emphasizes concep-
tual efficiency in representing information and the recovery of implicit information by drawing infer-

ences. The DLOG system combines these motivations, using logic as a unifying methodology.

DLOG demonstrates that elaborate descriptive terms can be used to simplify the task of describ-
ing an application domain. DLOG further demonstrates that such terms can be embedded in a Horn
clause syntax and effectively maripulated within the SLD resolution theorem-proving framework.
Both the specification and implementation demonstrate the usefulness of decoupling a theorem-
prover’s equality theory from the general proof procedure. This decoupling allows non-standard syn-

tactic objects like lambda terms to be cleanly manipulated with meta language predicates.

The methodology employed in the design, specification, implementation, and application of
DLOG provides an example of how logic can be used to achieve a symbiosis of database management
and knowledge representation ideas. DLOG is unlike any traditional database management system,
yet it usefully incorporates many of their features in a working system that has been applied to a real

domain.

7.1. Contributions as traditional Database Management

The prototype DLOG system provides a database management system that provides traditional
facilities like integrity maintenance, data dictionaries, transactions, and a database sublanguage. In
addition, the standard facilities are integrated with a deductive mechanism so that every operation

can be explained in terms of deduction. The DLOG implementation demonstrates that important

131

database management concepts are realizable in terms of deduction based on logic programming.

DLOG's data description or “representation” language provides rich language for expressing
information in a data independent way. DLOG's descriptions of individuals, sets, and lambda expres-
sions are more powerful thén any current traditional data description language. The transformation
of these complex syntactic entities to simpler ones is dynamic in DLOG; the proof-theoretic definition
of equality provides the mechanism, and the method of contextual definition provides the meaning. In
other words, part of the DLOG language’s richness comes from not forcing the user to “‘normalize” his
input; the underlying deductive mechanism is used to provide standard interpretations of the more ela-

borate input language.

Integrity maintenance is provided by interpreting a database as a restricted logical theory, and
by defining integrity as a form of deductively-determined assertability. The generally undecidable
problem of proving consistency after an update is restricted by the simple assumption that integrity
can be defined as demonstrating a subset of integrity constraints re-provable. update. Instead of test-
ing arbitrary theories for consistency, we incrementally test the consistency of an update against the
finite database and a restricted class of constraints relevant to that update. By defini;lg a syntactic
class called “integrity constraint,” deduction can be used to verify the consistency of an update. The
algorithm for this style of integrity maintenance is as powerful as any currently existing database Sys-

tem, and is simple and straightforward from a logic programming perspective.

The logic programming implementation of a data dictionary shows that no special mechanism is
necessary to provide a user with facilities for asserting relations on relations. The DLOG data diction-
ary is simply a subset of the complete DLOG database, and can be manipulated with the same deduc-

tive mechanisms.

The uniformity of DLOG provides a powerful datasublanguage in a simple way. There is no
need for a complex software interface to define the relationship between a foreign data sublanguage
and the data definition language (e-g., for using PL/1 to manipulate databases). The Prolog definition

language of DLOG is simply a subset of the DLOG language, and user-dependent requirements that

132

cannot be met by DLOG can be easily provided in Prolog (e.g., see §5.3.1).

While DLOG demonstrates the advantages of using a logic programming approach to database
management definition and implementation, there are several features lacking in the current proto-
type. These include facilities that are most important in actual database management systems, but
for which we have no implementation. Included here are things like software for concurrency control,
efficient (indeed, any) use of secondary storage, error recovery mechanisms, security authorization, and
data communication services. Some of these facilities will be forthcoming with more sophisticated
logic programming systems (e.g., ESP [Chikayama83]), but others are lacking simply because their

provision was not considered important in the prototype development (e.g., error recovery).

7.2. Contributions as Artifical Intelligence

DLOG has been implemented and applied to a real domain. The DLOG data model and experi-
mental implementation represents another step in the direction initiated by Hayes' concept of a
representation scheme [Hayes74). The original goal of using the data model concept to guide the
design and construction of a “knowledge base management system” is [ully realized in DLOG.
Although DBM researchers do not agree on the components that constitute a data model (see §2.2), a

reasonable approximation results in a clear separation of

(1) data definition (representation) language,

(2) semantic theory, and

(8) relationships between assertions, queries, and application databases (theories).

Hayes' representation scheme concept encompasses (1) and (2), and is well met by adopting a logical
foundation. In Al, the transition from scheme to system requires a specification of the details for (3),
and this hﬁs typically been the area where semantics and implementation become entangled and con-
fused. Al formalists have alway argued that representation languages, not systems, must be given
denotational semantics independent of implementation [Hayes77, McDermott78b]. The data model

concept provides a framework for pursuing this goal: data independence is the goal behind the adage

133

“no notation with denotation” [McDermott78b).

The DLOG representation language achieves implementation independence by using the data
model concept. An implementation could have been done in LISP or PASCAL without altering the
intended meaning of DLOG sentences. The DLOG system is an implementation of a representation

language whose meaning is independent of implementation details.

The ‘inadequacies of any general purpose data description language usually require a supporting
data manipulation language to capture the idiosyncracies of application databases. This view, gleaned
from DBM, offers a new view of “procedural attachment” in Al languages. The user_ command facil-
ity in DLOG provides for procedural attachment in a way that is independent of application domain.
Furthermore, the DLOG system's data dictionaries provide the mechanisms for monitoring all user-
defined data sublanguage programs to avoid the creation of objects not interpretable by the DLOG

data model’s semantic theory.

Although the DLOG language does not include any explicit notion of frame, script, schema,
pl.ane, or depiction, it does include a technical contribution to representation languages. Many have
acclaimed the advantage of “the ability to construct partial descriptions of an object without identify-
ing the object,” but there have been few attempts to use logic as the basis for doing so: the DLOG

system contains the most comprehensive set of embedded terms of any system known to this author.

The implementation of DLOG has produced two contributions to knowledge representation tech-
niques. First, this implementation shows the impact of admitting descriptions as syntactic objects
(84.2). The DLOG interpretation of descriptive terms is but a scratch on the surface of an old philo-
sophical problem, but, by using a logical approach, the problems are at least clarified. Ad hoc
approaches to the treatment of descriptions are in danger of stumbling on, or even ignoring the contri-

butions of philosophers to a theory of descriptions and naming [Carroll78].

The second technical contribution of DLOG's term interpretation is the way in which the deduc-

% [Robinson80, p. 150).

134

tions required to match DLOG terms are initiated via the “unification” procedure.®® This mechanism
is an extension of Reiter's idea [Reiter75], who observed that any deductive abilities that could be
effectively offloaded to the matching component of a theorem-proving procedure would improve its
efficiency. DLOG’s interpretation of embedded terms exploits this idea, and provides an initial
analysis of the mapping-based reasoning proposed in KRL. DLOG further illustrates that this embed-
ded style of descriptions can use a logical proof theory as the basis for plausible reasoning. The
extends predicate (§5.4) is one small part of a notion of Plausible reasoning, but it shows that the per-
ception of logic-based reasoning as too rigid (or “too all-or-nothing,” or *“too zero-one") is unfounded.
Even the simple DLOG heuristic based on partial proof shows that the logical methodology can sup-

port plausible reasoning strategies.

7.3. Prolog as an implementation language

The advantage of using Prolog as an implementation language is evident in the statement of an

Al researcher outside the logic programming community:

...Prolog supplies certain Al-oriented features, such as pattern-matching and an assertjonal
database, so that the user doesn’t have to provide them...Two groups of students were
taught Al programming, one in POP-2 (a LISP-like language), and one in Prolog. After
two months, the POP-2 group was writing pattern matchers, and the Prolog group was
writing natural language question answerers.”

A principle drawback of Prolog is that there are no production quality implementations (e.g., see
[Moss80]), and only limited support facilities. Arguments for adapting the elaborate environments of
LISP (e.g., [Komorowski81, Robinson82a]) are not yet conclusive. In addition, it is not only good edit-
ing and debugging facilities that are needed, but more sophisticated database management. Efforts

directed at using secondary storage have only just begun

The basic facilities of Prolog required the following extensions for the DLOG implementation:

explicit requests for deterministic derivation, creation and destruction of local proof contexts,

% The quotes concede that DLOG unification is based on, but not equivalent to Robinson’s original definition [Robinsonés).

|McDermott80, p. 18].

135

retractable database updates, and proof procedure extensions for various kinds of disjunction and
equivalence. This should be enough evidence to show that Prolog is but one kind of logic program-
ming, and that heavy investments in lieu of investigating alternatives may mot be warranted (e.g.,
[Bowen80, Bruynooghe82, Naish83b, ICOTS83]). In many ways, the criticism of MICRO-PLANNER as
a programming language [Sussman72] should be taken to heart once again by those prone to equate

logic programming and Prolog programming.

7.4. Future research

The ideas developed in DLOG could be further pursued along several avenues, some of which
reflect the merging of Al and DBM research developments. For example, the development of expert
systems in Al could benefit from DLOG-like implementations. The claim that embedded descriptions
provide some kind of conceptual ease of expression could further be verified by using them in expert
development systems like EMYCIN [Melle81]. Most of the effort required will be in implementing

knowledge acquisition tools for use with the DLOG data model (e.g., [Davis76)).

The use of desc}iptions in a formal language unearths a spate of philosophical problems related
to the status of names and naming (e.g., [Donnellan66, Brinton77, Kat277]). The KRL language and
DLOG?’s interpretation based on logic provide evidence that Al studies of naming and descriptions in
limited domains may help shed light on their computational aspects (this is anticipated by Carroll
[Carroll78]). This is clearly true in philosophy, where, for example, Katz’' analysis of descriptions and

naming exploits computational concepts to describe naming phenomena.®®

As discussed in §§2.3.1, 3.2.3, 5.3.2, DLOG provides no semantic foundation for dealing with the
maintenance of a representation of an evolving world. The problem of providing this foundation as
well as a computationally practical implementation of it remains unsolved. One possible idea, as
regards semantics, is to investigate the maintenance of evolving databases based on possible worlds

semantics (cf. §6.2). For example, the current implementation of DLOG admits only one of the

® See [Kats77, p. 47].

136

possible worlds of the Montague possible world semantics (86.2). By admitting and maintaining multi-
ple theories whose intended interpretations corresponds to time related possible worlds, we may get a
reasonable semantic foundation within the current framework. Whether this will provide insight into
a computationally practical maintenance algorithm remains to be determined. One idea here is to
classify all DLOG application relations as timeless or not timeless, and then develop a data structure
that provides efficient access to a modified DLOG proof procedure that manages time. Such a scheme

is currently under investigation.

The idea of using partial proofs to generate assumptions that sanction plausible query answers
deserves much more attention. Future investigations should include classification of different kinds of
Plausible reasoning that can be modelled with such an approach, as well as empirical investigations
directed at improving the efficiency of the failure-directed invocation of heuristics. Note that much of
the inefficiency in the Prolog style of derivation stems from unnecessary backtracking; heuristics that
are applied only after deduction fails must await exhaustion of all derivation alternatives. Even with

proof procedures effective for finite domains, the inefficiency is potentially outrageous.

Further in this vein is the possibility of developing a reasoning system that uses multiple theories
of equality; van Emden and Lloyd's [Emden84] general SLD proof procedure might be augmented with
any number of equality theories, each with a special purpose. The eztends heuristic of DLOG is an
alternative form of equality, invoked when “standard” equality proofs fail. It will be interesting to
consider multiple equality theories that range in their fidelity to logical deduction, e.g., “strictly

equal,” “‘similar,” “nearly identical,” ete.

A related pursuit is to investigate the relationship between DLOG unification and Eqlog’s nar-
rowing procedure. More generally, one would like to be able to specify both the logical and computa-
tional properties of a family of equality theories in order to be able to understand the affects of aug-

menting an elementary logic with various kinds of equality axioms.

There is, of course, some future in developing DLOG ideas for traditional DBM. At least two

prospects seem interesting. First, much of the power of DLOG comes from using a proof theory as a

137

computational mechanism to manipulate the “intensional”® component of a relational database sys-
tem. DLOG shows that not only object level inferences (e.g., for evaluating queries against a database
of general facts) are useful, but that many DBM facilities can be characterized at the meta level as the
manipulation of theories (cf. [Kowalski81]). Further work in this area would involve experimental
implementations of the ideas similar to Mylopoulos et al. [Mylopoulos80, Borgida81], with a commit-

ment to investigating database states as objects of logic-programming theories.

A second prospect is to investigate the feasibility of combining a DLOG-like front end with an
existing DBM system (e.g., INGRES). Like Reiter’s proposal for a deductive question-answering facil-
ity [Reiter78a], the DBM component would provide facilities for managing large extensional databases,

and the DLOG front end would provide intelligent user interface facilities based on logic program-

ming.

The ambitious fifth generation project of the Japanese [Fuchi8l, ICOTS2, ICOT83, Warren82,
Kowalski82, Moto-oka83] deserves notice in this regard, since it may be plausible to believe that
future machines will be logic programming machines whose speed is measured in logical inferences per
second (LIPS) instead of the now traditional floating point operations per second (FLOPS). Should

these developments be successful, the application of DLOG-like systems will consolidate Al and DBM

to a stronger degree than anyone can yet predict.

® Logic database theorists have used the terms “extensional” and “intensional” to describe, respectively, the tables and gen-
eral constraints of traditional DBM systems (e.g., [Reiter78al).

References

[Abrial74] J.R. Abrial (1974), Data semantics, Data Management Systems, J.W. Klimbie and K.L.
Koffeman (eds.), North Holland, Amsterdam, 1-60.

[Alps81] R.A. Alps and R.C. Neveln (1981), A predicate logic based on indefinite description and two
notions of identity, Notre Dame Journal of Formal Logic 22(3), 251-263.

[Armstrong80] W.W., Armstrong and C. Delobel (1980), Decompositions and functional dependencies in
relations, ACM Transactions on Database Systems 5(4), 404-430.

[Astrahan76] M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P. Eswaran, J.N. Gray, P.P. Grif-
fiths, W.F. King, R.A. Lorie, P.R. McJones, J.W. Mehl, G.R. Putzolu, LL. Traiger, B.W.
Wade, and V. Watson (1976), System R:relation approach to database management, ACAf
Transactions on Database Management 1(2), 97-137.

[Attardi81] G. Attardi and M. Simi (1981), Consistency and completeness of Omega, a logic for
knowledge representation, Proceedings of the Seventh International Joint Con ference on
Artificial Intelligence, August 24-28, The University of British Columbia, Vancouver, Brit-
ish Columbia, 504-510.

[Badal79] D.Z. Badal and G.J. Popek (1979), Cost and performance analysis of semantic integrity vali-
dation methods, Proceedings of the ACM SIGMOD International Con ference on Manage-
ment of Data, May 30-June 1, Boston, Massachusetts, 109-115.

[Berstein76] P.A. Berstein (1976), Synthesizing third normal form relations from functional dependen-
cies, ACM Transactions on Database Systems 1(4), 277-298.

[Bledsoe77a) W.W. Bledsoe (1977), Set variables, Proceedings of the Fifth International Joint
Con ference on Artificial Intelligence, August 22-25, Cambridge, Massachusetts, 501-510.

[Bledsoe77b] W.W. Bledsoe (1977), Non-resolution theorem proving, Artificial Intelligence 8(1), 1-35.

[Bobrow77a] D.G. Bobrow and T. Winograd (1977), Experience with KRL-0, one cycle of a knowledge
representation language, Proceedings of the Fifth International Joint Conference on

. Artificial Intelligence, August 22-25, MIT, Cambridge, Massachusetts, 213-222,

[Bobrow77b] D.G. Bobrow and T. Winograd (1977), An overview of KRL-0, a knowledge representa-
tion language, Cognitive Science 1(1), 3-46.

[Bobrow79] D.G Bobrow and T. Winograd (1979), KRL, another perspective, Cognitive Science 3(1),
29-42.

[Borgida81] A. Borgida and HK.T. Wong (1981), Data models and data manipulation languages: com-
plementary semantics and proof theory, Proceedings of the Seventh International Con fer-
ence on Very Large Data Bases, September 9-11, Cannes, France, 260-271.

[Bowen80] K. Bowen (1980), Logic programming and relational data bases progress report, Proceed-
ings of the Logic Programming Workshop, July 14-16, Debrecen, Hungary, S-A. Tarnlund
(ed.), 219-223.

[Bowen82] K. Bowen and R.A. Kowalski (1982), Amalgamating language and metalanguage in logic
programming, Logic Programming, A.P.L.C. Studies in Data Processing 16, K.L. Clark and
S.-A. Tarnlund (eds.), Academic Press, New York, 153-172.

[Brachman78] R.J. Brachman (1978), A structural paradigm for representing knowledge, Report
No. 3605, Bolt Beranek and Newman, Cambridge, Massachusetts, May.

[Brachman79] R.J. Brachman, R.J. Bobrow, P.R. Cohen, J.W. Klovstad, B.L. Webber, and W.A.
Woods (1979), Research in natural language understanding annual report, Report

139

No. 4274, Bolt Beranek and Newman Inc., Cambridge, Massachusetts, August,

[Brachman80] R.J. Brachman and B.C. Smith (1980, eds.), Special issue on knowledge representation,
ACM SIGART Newsletter 70, February.

[Brinton77} A. Brinton (1977), Uses of definite descriptions and Russell's theory, Philosophical Studses
31, 261-267.

[Brodie81] M.L. Brodie and S.N. Zilles (1981, eds.), ACM SIGMOD Record 11, Pinegree Park,
Colorado [also ACM SIGART Newsletter 74, ACM SIGPLAN Notices 16(1)].

[Brown78] F.M. Brown (1978), Towards the automation of set theory and its logic, Artificial Intell;-
gence 10(3), 281-316.

[Bruynooghe82] M. Bruynooghe (1982), The memory management of PROLOG implementations,
Logic Programming, A.P.1.C. Studies in Data Processing 16, K.L. Clark and S.-A. Tarn-
lund (eds.), Academic Press, New York, 83-98.

[Bundy81] A. Bundy and B. Welham (1981), Using meta-level inference for selective application of
multiple rewrite rules in algebraic manipulation, Artificial Intelligence 16(2), 189-212.

[Carnap47] R. Carnap (1947), Meaning and Necessity, University of Chicago Press, Chicago, Hllinois.

[Carroll78] J.M. Carroll (1978), Names and naming: an interdisciplinary view, Research Report
RC7370, IBM Watson Research Center, Yorktown Heights, New York, October.

[Chamberlin81] D.D. Chamberlin, M.M. Astrahan, M.W. Blasgen, J.N. Gray, P.P. Griffiths, W.F.
King, B.G. Lindsay, R.A. Lorie, J.W. Mekl, T.G. Price, F. Putzoly, P.G. Selinger, M.
Schkolnick, D.R. Slutz, LL. Traiger, B.W., Wade, and R.A. Yost (1981), A history and
evaluation of System R, ACM Communications 24(10), 632-646.

[Chang73] C.L. Chang and R.C.T. Lee (1973), Symbolic Logic and Mechanical Theorem Proving,
Academic Press, New York.

[Cheng84] M.H.M. Cheng (1984), The design and implementation of the Waterloo Unix Prolog
environment, M.Math thesis dissertation, Department of Computer Science, University of
Waterloo, September, 114 [ICR Report 26; Department of Computer Science Technical
Report CS-84-47].

[Chikayama83] T. Chikayama (1983), ESP — Extended Self-contain Prolog — as a preliminary kernel
language of Fifth Generation Computers, New Generation Computing 1(1), 11-24.

[Clark78] K.L. Clark (1978), Negation as failure, Logic and Data Bases, H. Gallaire and J. Minker
(eds.), Plenum Press, New York, 293-322.

[Clark82] K.L. Clark and S.-A. Tarnlund (1982, eds.), Logic Programming, A.P.1.C. Studies in Data
Processing 16, Academic Press.

[Clark84] K.L. Clark and F.G. McCabe (1984, eds.), micro-PROLOG: Programming in Logic,
Prentice-Hall, Englewood Cliffs, New Jersey.

[Clocksin81] W.F. Clocksin and C.S. Mellish (1981), Programming in PROLOG, Spring-Verlag, New
York.

[Codd70] E.F. Codd (1970), A relational model for large shared data banks, ACM Communications
13(6), 377-387.

[Codd72] E.F. Codd (1972), Relational completeness of database sublanguages, Data Base Systems, R.
Rustin (ed.), Prentice Hall, Englewood Cliffs, New Jersey, 65-98.

[Codd74] EF. Codd (1974), Seven steps to rendezvous with the casual user, Data Base Management,
J.W. Klimbie and K.L Koffeman (eds.), North Holland, Amsterdam, 179-200.

[Codd79] E.F. Codd (1979), Extending the database relational model to capture more meaning, ACM
Transactions on Database Systems 4(4), 397-434.

[Codd81] E.F. Codd (1981), Data models in database management, ACM SIGMOD Record 11(2),
112-114.

[Codd82] E.F. Codd (1982), Relational database: a practical foundation for productivity, ACM Com-
munications 25(2), 109-117.

[Colombetti78] M. Colombetti, P. Paolini, and G. Pelagatti (1978), Nondeterministic languages used
for the definition of data models, Logic and Data Bases, H. Gallaire and J. Minker (eds.),

140

Plenum Press, New York, 237-257.

[Dah180] V. Dahl (1980), Two solutions for the negation problem, Proceedings of the Logic Program-
ming Workshop, July 14-16, Debrecen, Hungary, S.-A. Tarnlund (ed.), 61-72.

[Dah182] V. Dahl (1982), On database systems development through logic, ACM Transactions on
Database Systems 7(1), 102-123.

[Darlington77] J.L. Darlington (1977), Improving the efficiency of higher-order unification, Proceedings
of the Fifth International Joint Con ference on Artificial Intelligence, August 22-25,
Cambridge, Massachusetts, 520-525.

[Date81] C.J. Date (1981), An Introduction to Database Systems, edition 3, The Systems Program-
ming Series, Addison-Wesley, Reading, Massachusetts.

Davidson82] J. Davidson 1982), Natural language access to databases: user modeling and focus,

[}]’roceedings of(the Fourth National Con ference of the Canadian Society for the Compu-
tational Studies of Intelligence, May 17-18, University of Saskatchewan, Saskatoon,
Saskatchewan, 204-211.

[Davis60] M. Davis and H. Putnam (1960), A computing procedure for quantification theory, ACM
Journal 7(3), 201-215.

[Davis76] R. Davis (19733), Applications of meta-level knowledge to the construction, maintenance, and
use of large knowledge bases, STAN-CS-76-552 [also published as Stanford Al Laboratory
Memo AIM-283].

[Dilger78] W. Dilger and G. Zifonun (1978), The predicate calculus-language KS as a query language,
Logic and Data Bases, H. Gallaire and J. Minker (eds.), Plenum Press, New York, 377-408.

[Donnellan66] K.S. Donnellan (1966), Reference and definite descriptions, Philosophical Review 75(3),
281-304.

[Dowty81] D.R. Dowty, R.E. Wall, and S. Peters (1981), Introduction to Montague semantics, D.
Reidel, Dordrecht, Holland.

[Emden78] M.H. van Emden (1978), Computation and deductive information retrieval, Formal
Description of Programming Concepts, E. Neuhold (ed.), North Holland, New York, 421-
440.

[Emden84] M.H. van Emden and J.W. Lloyd (1984), A logical reconstruction of Prolog II, Proceedings
of the Second International Logic Programming Con ference, July 2-6, Uppsala University,
Uppsala, Sweden, 115-125.

[Findler79] N.V. Findler (1979, ed.), Associative Networks: Representation and use of Knowledge by
Computers, Academic Press, New York.

[Fry76] J.P. Fry and EH. Sibley (1976), Evolution of data-base management systems, ACM Comput-
ing Surveys 8(1), 7-42.

[Fuchi81] K. Fuchi (1981), Aiming for knowledge information processing systems, Proceedings of the
International Conference on Fifth Generation Computer Systems, October 19-22, Tokyo,
Japan, T. Moto-Oka (ed.), 107-120.

[Gallaire78] H. Gallaire and J. Minker (1978, eds.), Logic and Data Bases, Plenum Press, New York.

[Gallaire81] H. Gallaire, J. Minker, and J.M. Nicolas (1981, eds.), Advances in Data Base Theory,
vol. 1, Plenum Press, New York.

[Gerlenter63] H. Gerlenter (1963), Realization of a geometry-theorem proving machine, Computers
and Thought, E.A. Feigenbaum and J. Feldman (eds.), McGraw-Hill, New York, 134-152
[reprinted from Proceedings of an International Conference on Information Processing,
Paris, 1959, UNESCO House, 273-282).

[Gilmore60] P.C. Gilmore (1960), A proof method for quantification theory; its justification and realj-
2ation, IBM Journal of Research and Development 4(1), 28-35.

[Goebel77] R.G. Goebel (1977), Organizing factual knowledge in a semantic network, M.Sc. disserta-
tion, Department of Computing Science, University of Alberta, Edmonton, Alberta, Sep-

141

tember, 99 pages.

[Goebel78] R.G. Goebel and N.J. Cercone (1978), Representing and organising factual knowledge in
proposition networks, Proceedings of the Second National Conference of the Canadian
Society for the Computational Studies of Intelligence, July 19-21, University of Toronto,
Toronto, Ontario, 55-63.

[Goebel80] R.G. Goebel (1980), PROLOG/MTS User’s Guide, Technical Manual TM80-2, Department
of Computer Science, The University of British Columbia, December, 55 pages.
[Goguen84] J.A. Goguen and J. Meseguer (1984), Equality, types, modules and generics for logic pro-
gramming, Proceedings of the Second International Logic Programming Con ference, July

2-6, Uppsala University, Uppsala, Sweden, 115-125.

|Gray81] J. Gray (1981), The transaction concept: virtues and limitations, Proceedings of the Seventh
International Con ference on Very Large Data Bases, Cannes, France, 144-154.

[Green69] C.C. Green (1969), Theorem proving by resolution as a basis for question-answering sys-
tems, Machine Intelligence, vol. 4, B. Meltzer and D. Michie (ed.), American Elsevier, New
York, 183-205.

[Haridi83] S. Haridi (1983), Logic programming based on a natural deduction system, Ph.D. disserta-
tion, Department of Telecommunication and Computer Systems, The Royal Institute of
Technology, Stockholm, Sweden.

[Hayes73] P.J. Hayes (1973), Computation and deduction, Second Symposivm on the Mathematical
Foundations of Computer Science, Czechoslovakia Academy of Sciences.

[Hayes74] P.J. Hayes (1974), Some problems and non-problems in representation theory, Proceedings
of the Artificial Intelligence and Simulation of Behaviour Summer Con ference, July,
Univeristy of Sussex, Brighton, England, 63-79.

[Hayes77] P.J. Hayes (1977), In defence of logic, Proceeding of the Fifth International Joint Con fer-
ence on Artificial Intelligence, August 22-25, MIT, Cambridge, Massachusetts, 559-565.

[Hayes80] P.J. Hayes (1980), The logic of frames, Frame Conceptions and Tezt Understanding,
Research in Text Theory 5, Dieter Metzing (ed.), Walter de Gruyter, Berlin, Germany, 46-
61. T

[Hayes-Roth78] F. Hayes-Roth (1978), The role of partial and best matches in knowledge systems,
Pattern-Directed Inference Systems, D.A. Waterman and F. Hayes-Roth (eds.), Academic
Press, New York, 557-574.

[Hewitt80] C. Hewitt, G. Attardi, and M. Simi (1980), Knowledge embedding in the description system

’ Omega, Proceedings of the First American Association of Artificial Intelligence Con fer-
ence, August 18-21, Stanford University, Stanford, California, 157-163.

[Hilbert39] D. Hilbert and P. Bernays (1939), Grundlagen der Mathematik, vol. 2, Springer-Verlag,
New York.

[Hirschberg84] J. Hirschberg (1984), Scalar implicature and indirect responses to yes/no questions,
Proceedings of the Fifth National Conference of the Canadian Society for the Computa-
tional Studies of Intelligence, May 15-17, University of Western Ontario, London, Ontario,
11-15.

[Hobbs78] J. Hobbs and S.J. Rosenschein (1978), Making computational sense of Montague's inten-
sional logic, Artificial Intelligence 9(3), 287-306.

[Huet73] G.P. Huet (1973), The undecidability of unification in third order logic, Information and
Control 22(3), 257-267.

[Huet75] G.P. Huet (1975), A unification algorithm for typed A-calculus, Theoretical Computer Science
1(1), 27-57.

[IcOoTs?| ICSDT (1982), Outline of research and development plans for fifth generation computer sys-
tems, Institute for New Generation Computer Technology, Tokyo, Japan, May.

{ICOT83] ICOT (1983), Outline of research and development plans for fifth generation computer sys-
tems, second edition, Insitute for New Generation Computer Technology, Tokyo, Japan,

142

April.

[Janas81] J.M. Janas (1981), On the feasibility of informative answers, Advances in Data Base Theory,
vol. 1, H. Gallaire, J. Minker and J.M. Nicolas (eds.), Plenum Press, New York, 397-414.

[Jensen75] D.C. Jensen and T. Pietrzykowski (1975), Mechanizing w-order type theory through unfica-
tion, Theoretical Computer Science 3(2), 123-171.

[Kahn81] K. Kahn (1981), UNIFORM - a language based upon unification which unifies (much of)
LISP, PROLOG and ACT1, Proceedings of the Seventh International Joint Conference
on Artificial Intelligence, August 24-28, Vancouver, British Columbia, 933-939.

[Kaplan75] D. Kaplan (1975), What is Russell's theory of descriptions?, The Logic of Grammar, D.
Davidson and G. Harman (eds.), Dickenson, Encino, California, 210-217.

[Kaplan79] S.J. Kaplan (1979), Cooperative responses from a portable natural language data base
query system, HPP-79-19, Heuristic Programming Project, Stanford University, Stanford,
California.

[Kaplan82] S.J. Kaplan (1982), Cooperative responses from a portable natural language query system,
Artificial Intelligence 19(2), 165-187.

[Katz77] J.J. Katz (1977), A proper theory of names, Philosophical Studies 31, 1-80.

[Kellogg78] C. Kellogg, P. Klahr, and L. Travis (1978), Deductive planning and pathfinding for rela-
tional data bases, Logic and Data Bases, H. Gallaire and J. Minker (eds.), Plenum Press,
New York, 179-200.

[Kent79] W. Kent (1979), Limitations of record-based information models, ACM Transactions on
Database Systems 4(1), 107-131.

[Kleer77] J. de Kleer, J. Doyle, G.L. Steele, and G.J. Sussman (1977), AMORD explicit control of rea-
soning, ACM SIGART Newsletter 64, 116-125 [also published as ACM SIGPLAN Notices
12(8)).

[Komorowski81] H.J. Komorowski (1981), Embedding PROLOG in LISP: an example of a LISP craft
technique, LITH-MATH-R-1981-2, Informatics Laboratory, Linkoping University, Linkop-
ing, Sweden, March.

[Kornfeld83] W.A. Kornfeld (1983), Equality for Prolog, Proceedings of IJCAI-83, August 8-12,
Karlsruhe, Germany, 514-519.

[Kowalski71] R.A. Kowalski and D. Keuhner (1971), Linear resolution with selection function, Artifi-
cial Intelligence 2(3&4), 227-260.

[Kowalski78] R.A. Kowalski (1978), Logic for data description, Logic and Data Bases, H. Gallaire and
J. Minker (eds.), Plenum Press, New York, 77-103.

[Kowalski79] R.A. Kowalski (1979), Logic for Problem Solving, Artificial Intelligence Series 7, Elsevier
North Holland, New York.

[Kowalskig81] R.A. Kowalski (1981), Logic as a data base language, Department of Computing,
Imperial College, London, England, July.

[Kowalski82] R.A. Kowalski (1982), Logic programming for the fifth generation, Proceedings of the
Fifth Generation: the dawn of the second computer age, July 7-9, SPL International, Lon-
don, England. '

[LaFue82] G.M.E. LaFue (1982), Semantic integrity management of databases: a survey, LCSR-TR-32,
Laboratory for Computer Science Research, Rutgers University, New Brunswick, New Jer-
sey, October.

[Lehnert78] W. Lehnert and Y. Wilks (1978), A critical perspective on KRL, Cognitive Science 3(1),
1-28.

[Leisenring69] A.C. Leisenring (1969), Mathematical Logic and Hilbert's E-symbol, MacDonald Techn-
ical & Scientific, London, England.

[Levien67] R.E. Levien and M.E. Maron (1967), A computer system for inference execution and data
retrieval, ACM Communications 10(11), 715-721.

[Lipski79] W. Lipski (1979), On semantic issues connected with incomplete information data bases,

143

ACM Transactions on Database Systems 4(3), 262-296.

[Lloyd82] J.W. Lloyd (1982), Foundations of logic programming, Technical Report 82/7, Department
of Computer Science, University of Melbourne, Melbourne, Australia, August.

[Loveland78] D.W. Loveland (1978), Automated theorem proving: e logical basis, North-Holland,
Amsterdam, The Netherlands.

[Mays81] E. Mays, S. Lanka , A. Joshi, and B.L. Webber (1981), Natural language interaction with
dynamic knowledge bases: monitoring as response, Proceedings of the Seventh Interna-
tional Conference on Artificial Intelligence, August 24-28, The University of British
Columbia, Vancouver, British Columbia, 61-63.

[McCarthy68] J. McCarthy (1968), Programs with common sense, Semantic Information Processing,
M. Minsky (ed.), MIT Press, Cambridge, Massachusetts, 403-418,

[McCarthy69] J. McCarthy and P.J. Hayes (1969), Some philosophical problems from the standpoint
of Artificial Intelligence, Machine Intelligence, vol. 4, B. Meltzer and D. Michie (eds.),
American Elsevier, New York, 463-502 [Q335 M27].

[McCarthy77] J. McCarthy (1977), Epistemological problems of Artificial Intelligence, Proceedings of
the Fifth International Joint Conference on Artificial Intelligence, August 22-25, MIT,

. Cambridge, Massachusetts, 1083-1044.

[McDermott78a] D.V. McDermott (1978), The last survey of representation of knowledge, Proceedings
of the Artificial Intelligence and Simulation of Behaviour /Gesellschaft fur Informatik
Conference on Artificial Intelligence, Hamburg, Germany, 206-221.

[McDermott78b] D.V. McDermott (1978), Tarskian semantics, or no notation without denotation, Cog-
nitive Science 2(3), 277-282.

[McDermott80] D.V. McDermott (1980), The PROLOG Phenomenon, ACM SIGART Newsletter 72,
16-20. :

[McLeod81] D. McLeod (1981), Tutorial on database research, ACM SIGMOD Record 11(2), 26-28.

[Melle81] W. van Melle, A.C. Scott, J.S. Bennett, and M. Peairs (1981), The EMYCIN Manual,
STAN-CS-81-885, Computer Science Department, Stanford University, Stanford, Califor-
nia, October. .

[Mendelson64] E. Mendelson (1964), Introduction to Mathematical Logic, Van Nostrand Reinhold,
New York.

[Mercer84] R.E. Mercer and R.S. Roseberg (1984), Generating corrective answers by computing
presuppositons of answers, not of questions, Proceedings of the Fifth National Conference
of the Canadian Socicty for the Computational Studies of Intelligence, May 15-17,
University of Western Ontario, London, Ontario, 16-19.

[Minker75] J. Minker (1975), Performing inferences over relation data bases, Proceedings of the ACM
SIGMOD International Conference on the Mangement of Data, May, San Jose, Califor-
nia, W.F. King (ed.), 79-91.

[Minker78] J. Minker (1978), An experimental relational data base system based on logic, Logic and
Data Bases, H. Gallaire and J. Minker (eds.), Plenum Press, New York, 107-147.

[Minker83] J. Minker (1983), On theories of definite and indefinite databases, Department of Com-
puter Science, University of Maryland, College Park, Maryland, 53 pages.

[Minsky75] M. Minsky (1975), A framework for representing knowledge, The Psychology of Computer
Vision, P.H. Winston (ed.), McGraw-Hill, New York, 211-277.

[Montague74a) R. Montague (1974), On the nature of certain philosophical entities, Formal Philoso-
phy, RH. Thomason (ed.), Yale University Press, 148-187 [reprinted from The Monist
53(1960), 159-194).

[Montague74b] R. Montague (1974), Pragmatics and intensional logic, Formal Philosophy, R.H. Tho-
mason (ed.), Yale University Press, 119-147 [reprinted from Synthese 22(1970), 68-94].

[Moore74] J. Moore and A. Newell (1974), How can Merlin understand?, Knowledge and Cognition,

144

L.W. Gregg (ed.), Lawrence Erlbaum Associates, Potomac, Marland, 201-252.

[Moore76] R.C. Moore (1976), D-SCRIPT, a computational theory of descriptions, IEEE Transactions
on Computers C-25(4), 366-373.

[Morgan75] C.G. Morgan (1975), Automated hypothesis generation using extended inductive resoly-
tion, Advance Papers of the Fourth International Joint Con Jerence on Artificial Intell;-
gence, September 3-8, Tblisi, USSR, 351-356.

[Morris69] J.B. Morris (1969), E-resolution: extension of resolution to include the equality relation,
Proceedings of the Internation! Joint Conference on Artificial Intelligence, May 7-9,
Washington, D.C., 287-294.

[Moss80] C.D.S. Moss (1980), The comparison of several PROLOG systems, Proceedings of the Logic
Programming Workshop, July 14-16, Debrecen, Hungary, 198-200.

[Moto-oka83] T. Moto-oka (1983), Overview to the fifth generation computer system project, ACM
SIGARCH Neuwsletter 11(3), 417-422.

[Mylopoulos80] J. Mylopoulos and HK.T. Wong (1980), Some features of the TAXIS data model,
Proceedings of the Sizth International Conference on Very Large Data Bases, September
30-October 3, Montreal, Quebec, 399-410.

[Naish83a] L. Naish (1983), MU-PROLOG 3.0 reference manual, Department of Computer Science,
University of Melbourne, Melbourne, Australia, July.

[Naish83b] L. Naish (1983), An Introduction to MU-PROLOG, Technical Report 82/2 , Department of
Computer Science, Melbourne University, Melbourne, Australia, July.

[Nicolas78a] J.M. Nicolas and H. Gallaire (1978), Database: theory vs. interpretation, Logic and Data
Bases, H. Gallaire and J. Minker (eds.), Plenum Press, New York, 33-54.

[Nicolas78b] J.M. Nicolas and K. Yazdanian (1978), Integrity checking in deductive data bases, Logic
and Data Bases, H. Gallaire and J. Minker (eds.), Plenum Press, New York, 325-344.

[Norman79] D.A. Norman and D.G. Bobrow (1979), Descriptions: an intermediate stage in memory
retrieval, Cognitive Psychology 11(1), 107-123.

[Ortony77] A. Ortony and R.C. Anderson (1977), Definite descriptions and semantic memory, Cogni-
tive Science 1(1), 74-83.

[Pereira83] F.C.N. Pereira, D.H.D. Warren, L. Byrd, and L. Pereira (1983), CProlog User's Manual
Version 1.2, SRI International, Menlo Park, California, 28 pages.

[Pietrzykowski73] T. Pietrzykowski (1973), A complete mechanization of second-order type theory,
ACM Journal 20(2), 333-365.

[Pirotte78] A. Pirotte (1978), High level data base query languages, Logic and Data Bases, H. Gallaire
and J. Minker (eds.), Plenum Press, New York, 409-436.

[Prawit-zﬁO] D. Prawitz, H. Prawitz, and N. Vogera (1960), A mechanical proof procedure and it reali-
zation in an electronic computer, ACM Journal 7(1&2), 102-128.

[Quine69] W.V.O. Quine (1969), Set Theory and its Logic, revised edition, Harvard University Press,
Cambridge, Massachusetts.

[Quine80] W.V.0. Quine (1980), From Logical Point of View, second edition, revised, Harvard
.University Press, Cambridge, Massachusetts.

[Reiter71] R. Reiter (1971), Two results on ordering for resolution with merging and linear format,
ACM Journal 18(4), 630-646.

[Reiter75] R. Reiter (1975), Formal reasoning and language understanding systems, Proceedings of the
First Conference on Theoretical Issues in Natural Language Processing, June 10-13, MIT
Cambridge, Massachusetts, 175-179.

[Reiter76] R. Reiter (1976), A semantically guided deductive system for automatic theorem proving,
IEEE Transactions on Computers C-25(4), 328-334.

[Reiter78a) R. Reiter (1978), Deductive question-answering on relational data bases, Logic and Data
Bases, H. Gallaire and J. Minker (eds.), Plenum Press, New York, 149-177.

[Reiter78b] R. Reiter (1978), On closed world data bases, Logic end Data Bases, H. Gallaire and J.

L

145

Minker (eds.), Plenum Press, New York, 55-76.

[Reiter80] R. Reiter (1980), A logic for default reasoning, Artificial Intelligence 13(1&2), 81-132.

[Reiter81] R. Reiter (1981), On the integrity of typed first order data bases, Advances in Data Base
Theory, vol. 1, H. Gallaire, J. Minker and J.M. Nicolas (eds.), Plenum Press, New York,
137-157.

[Reiter83] R. Reiter (1983), Towards a logical reconstruction of relational data base theory, On Con-
ceptual Modelling, M. Brodie, J. Mylopoulos and J. Schmidt (ed.), Springer-Verlag [in
press).

[Roberts77] G. Roberts (1977), An implementation of PROLOG, M.Math thesis dissertation, Com-
puter Science Department, University of Waterloo, April.

[Robinson80] A.E. Robinson and D.E. Wilkins (1980), Representing knowledge in an interactive
planner, Proceedings of the First Annual National Conference on Artificial Intelligence,
August 18-24, Stanford, California, 148-150.

[Robinson65] J.A. Robinson (1965), A machine-oriented logic based on the resolution principle, ACM
Journal 12(1), 23-41.

[Robinson79] J.A. Robinson (1979), Logic: Form and Function, Artificial Intelligence Series 6, Elsevier
North Holland, New York.

[Robinson82a) J.A. Robinson and E.E. Sibert (1982), LOGLISP: motivation, design and implementa-
ton, Logic Programming, A.P.1.C. Studies in Data Processing 16, K.L. Clark and S.-A.
Tarnlund (eds.), Academic Press, New York, 299-313.

[Robinson82b] J.A. Robinson and E.E. Sibert (1982), LOGLISP: an alternative to PROLOG, Machine
Intelligence, vol. 10, J.E. Hayes, D. Michie, and Y-H Pao (eds.), Ellis-Horwood, 399-419.

[Rogers71] R. Rogers (1971), Mathematical Logic and Formalized Theories, North Holland, New
York.

[Rosenschein78] S.J. Rosenschein (1978), The production system: architecture and abstraction,
Pattern-Directed In ference Systems, D.A. Waterman and F. Hayes-Roth (eds.), Academic
Press, New York, 525-538.)

[Rosser68] J.B. Rosser (1968), Logic for mathematicians, Chelsea, New York.

[Rosser78] J.B. Rosser (1978), Logic for Mathematicians, McGraw-Hill, New York.

[Rulifson72] J.F. Rulifson, J.A. Derksen, and R.J. Waldinger (1972), QA4: a procedura! calculus for
intuitive reasoning, Technical Note 73, Stanford Research Institute, Menlo Park, Califor-
nia, November.

[Schubert76] L.K. Schubert (1976), Extending the expressive power of semantic networks, Artificial
Intelligence 7(2), 163-198.

[Schubert79] L.K. Schubert, R.G. Goebel, and N.J. Cercone (1979), The structure and organization of
a semantic net for comprehension and inference, Associative Networks: Representation
and use of Knowledge by Computers, N.V. Findler (ed.), Academic Press, New York, 121-
175.

[Shapiro79] S.C. Shapiro (1979), Numerical quantifiers and their use in reasoning with negative infor-
.mation, Proceedings of the Sizth International Joint Conference on Artificial Intelli-
gence, August 20-23, Tokyo, Japan, 791-796.

[Steels80] L. Steels (1980), Description types in the XPRT-system, Proceedings of the AISB-80
Conference on Artificial Intelligence, July 1-4, Amsterdam, Holland, (STEELS 1-9).

[Stickel75] M.E. Stickel (1975), A complete unification algorithm for associative-commutative func-
tions, Advence Papers of the Fourth International Joint Conference on Artificial Intell;-
gence, September 3-8, Tblisi, USSR, 71-76.

[Stonebraker75] M. Stonebraker (1975), Implementation of integrity constraints by query modification,
Proceedings ACM SIGMOD International Con ference on Management of Data, May, San
Jose, California, 65-78.

[Stonebrakeﬂﬁ] M. Stonebraker, E. Wong, P. Kreps, and G. Held (1976), The design and implementa-

. 146

tion of INGRES, ACM Transactions on Database Systems 1(3), 189-222,

[Stonebraker80] M. Stonebraker (1980), Retrospective on a database system, ACM Transactions on
Database Management 5(2), 225-240.

[Stoy77] J.E. Stoy (1977), Denotational Semantics: the Scott-Strachey Approach to Programming
Language Theory, MIT Press, Cambridge, Massachusetts.

[Sussman71] G.J. Sussman, T. Winograd, and E. Charniak (1971), Micro-planner reference manual, Al
Memo 203A, Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts, December.

[Sussman72] G.J. Sussman and D.V. McDermott (1972), Why conniving is better than planning, Al
Memo 255A, Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts, April.

[Thompson69) F.B. Thompson, P.C. Lockemann, B. Dostert, and R.S. Deverill (1969), REL:a rapidly
extensible language system, Proceedings of the Twenthy-Fourth ACM National Con Jer-
ence, August 26-28, San Francisco, California, 399-417.

[Tsichritzis77) D.C. Tsichritzis and F.H. Lochovsky (1977), Data Base Management Systems,
Academic Press, New York.

[Turner82] D.A. Turner (1982), Recursion equations as a programming language, Functional program-
ming and its applications: an advanced course, J. Darlington, P. Henderson, and D.A.
Turner (eds.), Cambridge University Press, Cambridge, England, 1-28.

[Vassiliou79] Y. Vassiliou (1979), Null values in database management: a denotational semantics
approach, Proceedings of the ACM SIGMOD International Conference on Management
of Data, May, Boston, Massachusetts, 162-169.

[Wang52] H. Wang (1952), Logic of many-sorted theories, Journal of Symbolic Logic 17(2), 105-116.

[Warren82] D.H.D Warren (1982), A view of the fifth generation and its impact, Al Magazine 3(4),
34-39. ‘

[Weyrauch80] R.W. Weyrauch (1980), Prolegomena to a theory of mechanized formal reasoning,
Artificial Intelligence 13(1&2), 133-170.

[Williams83] M.H. Williams, J.C. Neves, and 5.0. Anderson (1983), Security and integrity in logic data
bases using query-by-example, Proceedings of Logic Programming Workshop '83, June 26 -
July 1, Algarve, Portugal, 304-340.

[Wong77] HK.T. Wong and J. Mylopoulos (1977), Two views of data semantics: a survey of data
models in Artificial Intelligence and Database Management, INFOR 15(3), 344-383.

[Woodfill81] J. Woodlfill, P. Siegal, J. Ranstrom, M. Meyer, and E. Allman (1981), INGRES version 7
reference manual, Electronics Research Laboratory, University of California, Berkeley, Cal-
ifornia, August.

Appendix 1
DLOG implementation in Waterloo Prolog

Below are the source code listings for the current Waterloo Prolog implementation of DLOG sys-

tem.

/*USAGE

RELATIONS: all
_all
_allset

DESCRIPTION: computes all bindings of freevar in the current
PROLOG/CMS data base. _all produces a list in the
form 'a.b.c.NIL’, all produces a list of the
foorma&b&c&. z’

NEEDS: element SETFNS1
_elementset
_sort SORT1

USED IN: extension EXT1
*/

all(*expr, *list) <-
ADDAX(_all(NIL))
& “gen(*expr)
& DELAX(_all(*res))
& remNIL(*res, *list).

/t
*/

gen(lambda(*el, *expr)) <-
*expr
& _all(*sol)
& “element(*el, set(*sol))
& DELAX(_all(*sol))
& ADDAX(_all(*el & *sol })
& FAIL.

/*

*
remNIL(*x & NIL, *x).

remNIL(*x & *y, *x & *1) <-
remNIL(*y, *z).

*/

_all{ lambda(*x, *expr), *list) <-
ADDAX(__all(NIL))
& "_gen(lambda(*x, *expr))
& DELAX(__all(*list)).

*

_gen(lambda(*x, *expr)) <-
*expr
& __all(*sol)
& "_element(*x, *sol)
& DELAX(__al}(*sol))
& ADDAX(__all(*x.*sol))
& FAIL.

¥/

_allset(lambda(*x, *expr), *list) <-
ADDAX(__allset(NIL))
& "_genset(lambda(*x, *expr))
& DELAX(__allset(*list)).

/*
*/

—genset(lambda(*x, *expr)) <-
*expr
& __ allset(*sol)
& _sort(*x, *xs)
& "_elementset(*xs, *sol)
& DELAX(__allset(*sol))
& ADDAX(__allset(*xs.*sol))
& FAIL.

148

149

J*USAGE

RELATION: assert

DESCRIPTION: assert applies integrity constraints, then adds the
clause to the global data base,

NEEDS: verify_ic IC1
print UTILS1

atomic

USED IN: input INPUT1
transaction TRANSI

*

assert(*a <= *c) <- [* integrity constraint */
verify_ic(*a <= *c)
& print('Assert constraint: '*a.’<="'%*c)
& ADDAX(*a <= *c).

assert(*c <-*a) <- /*implication */
verify_ic(*c <-*a)
& print('Assert implication: ".*c.’<-".*a)
& ADDAX(*c <- *a).

assert(*a) <- /* atom */
atomic(*a)
& verify_ic(*a)
& print("Assert atom: ’.*a)
& ADDAX(*a).

assert(*a) <-
print('Constraints failed for '.*a).

150

J*USAGE

RELATION: browse
browse_predicate
browse_skeleton
browse_topic

DESCRIPTION: User feature to browse through the DLOG data base
contents.

NEEDS: for UTILS1
user
update
print
printl
prompt
read_string
menu_position
_all ALL1

USED IN: parse PARSE1
*/

browse <-
menu_position("Topics’

.'Constraints’
."User predicates’
.'System predicates’
JEnter predicate’
JEnter skeleton’
.NIL, *n)

& browse_1{ *n)

& user('Continue browsing?’)

& RETRY/(browse).

browse,
*
£/
browse_1{ 1) <-

browse_topic.

browse_1(2) <-
get_skeleton(*sk)
& browse_skeleton(*sk<=*),

browse_1(3) <-
browse_predicate(user_predicate, 2).

browse_1(4) <-
browse_predicate(system_predicate, 2)-

151

browse_1(5) <-
get_predicate(*p, *n)
& browse_predicate(*p, *n).

browse_1(6) <-
get_skeleton(*sk)
& browse_skeleton(*sk).

/*
¥

get_predicate(*p, *n) <-
prompt('Predicate? ')
& read_string(*p)
& verify_predicate(*p, *n)
&/

get_predicate(*, *) <-
RETRY(browse).

/*
*

get_skeleton(*sk) <-
prompt('Skeleton (end with .)?*)
& read_skeleton{ *sk)
& verify_skeleton(*sk)
&/

get_skeleton(*) <-
RETRY(browse).

/*
*/

get_topic(*t) <-
prompt('Topic? ’)
& read_string(*i)
& verify_topic(*i, *t)
& /.

get_topic(*) <-
user('‘Browse topics?’)
& browse_predicate(topic, 1).

get_topic(*) <-
RETRY/(browse).

/*
*/

verify_predicate(*p, *n) <-

user_predicate(*p, *n)
| system_predicate(*p, *n).

verify_predicate(*p, *n) <-
print('Unknown predicate: '.*p)
& user('Retry?')
& RETRY/(get_predicate(*, *)).

*/

browse_predicate(*p, *n) <-
ADDAX(_bi(1))
& browse_predicate_1(*p, *n)
& DELAX(_bi(*)).

browse_predicate_1(*p, *n) <-
bi(*i)
& SUM(*i, 3, *ne)
& for(*i, *ne, 1, _for(*x.*)

& AXN(*p, *n, *ax, *x)

& print(*ax))
& SUM(*ne, 1, *nx)
& AXN(*p, *n, *, *nx)
& user('More?’)
& update(_bi(*i), _bi(*nx))

& RETRY(browse_predicate_1(*,*)).

browse_predicate_1(*, *).

/*
*/

browse_skeleton(*sk) <-
ADDAX(_bi(1))
& browse_skeleton_1{ *sk)
& DELAX(_bi(*)).

browse_skeleton_1(*sk) <-
AX(*sk, *sk)
& print(*sk)
& _bi(%)
& SUM(%, 1, *n)
& update(_bi(*i), _bi(*n))
&

& SUM(%, 1, *n)

& update(_bi(*i), _bi(*n))
& GE(*n, 4)

& update(_bi(*), _bi(1))
& “user('More?’).

browse_skeleton_1(*).

152

153

*/

browse_topic <-
get_topic(*t)
& _all(lambda(*x, topic_category(*t, *x)) *1)
& print('Predicates relevant to '.*t)
& printl(*1)
& user('Another topic?')
& RETRY/(browse_topic).

browse_topic.

154

[*USAGE

RELATION: create_context
destroy_context
local_ctx

DESCRIPTION: create and destroy data base context by adding some
assertions to the current data base. Create_ctx and
destroy generate unique context tag, which is used
to expliciting create and destroy contexts. Local_ctx
creates a context, and destroys it when finished.

NEEDS: gensym UTILS1

copy
deterministic

USED IN: many places
*/

create_ctx(*tag, *expr) <-
gensym(ctx, *tag)
& deterministic(create_ctx_1(*expr))
& ADDAX(_ctx(*tag, *expr)).

create_ctx_1(*lit & *rest) <-
ADDAX(*lit)
& create_ctx_1(*rest).

create_ctx_1(*lit) <-
ADDAX(*Iit).

/*
*/

destroy_ctx{ *tag) <-
ATOM(*tag)
& _ctx(*tag, *expr)
& deterministic(destroy_ctx_I(*expr))
& DELAX(_ctx(*tag, *)).

destroy_ctx_1(*lit & *rest) <-
DELAX(*lit)
& destroy_ctx_1(*rest).

destroy_ctx_1(*lit) <-
DELAX(*lit).
3
4/
local_ctx(*assertions, *goals) <-
deterministic(create_local_ctx(*assertions))

155

& deterministic(*goals)
& deterministic(destroy_local_ctx(*assertions)).

local_ctx(*assertions, * } <-
destroy_local_ctx(*assertions)
& FAIL.

*
4/
create_local_ctx(*lit & *rest) <-

ADDAX(*lit)
& create_local_ctx(*rest).

create_local_ctx(*lit) <-
ADDAX(*lit).

*

destroy_local_ctx(*lit & *rest) <-
DELAX(*lit)
& destroy_local_ctx(*rest).

destroy_local_ctx(*lit) <-
DELAX(*lit).

156

/*USAGE
RELATION: derivable

DESCRIPTION: Simulates PROLOG/CMS derivations. Handles goals
with set terms.

NEEDS: atom SYNTAX1
set_constant
set_description
debug UTILS1
deterministic
unify UNIFY1
system_predicate PREDS1
prolog_predicate
set_predicate

USED IN: verify_ic IC1
implies META1
satisfied

*

derivable(derivable(*g)) <- /* peel off one level of simulation */
deterministic(derivable(*g)).

derivable(*g & *grest) <-
derivable(*g)
& derivable(*grest).

derivable(*g | *grest) <-
derivable(*g)
| derivable(*grest).

derivable(*g ! *grest) <-
derivable(*g)
! derivable(*grest).

/*
individual goals

*/

derivable(“*g) <-
atom(*g)
& “derivable_1(*g).

derivable(*g) <-
atom(*g)
& derivable_1{ *g).

*

derivable_1 splits 3 ways: system goals, goals requiring set expansion, and
DLOG goals.

*

derivable_1(*g) <-
CONS(*p.*t, *g) .
& (set_predicate(*p) | "contains_set_term(*g))
& system_predicate(*p, *)
& debug(sys, *g)
& *g.

derivable_1(*g) <-
CONS(*p.*t, *g)
& contains_set_term{ *t)
& “prolog_predicate(*p)
& “set_predicate(*p)
& debug(set, *g)
& s_derivable(*g).

derivable_1(*g) <-
CONS(*p.*t, *g)
& “system_predicate(*p, *)
& (set_predicate(*p) | “contains_set_term(*t))
& debug(ind, *g)
& i_derivable(*g).

/*

derivation of non-set predicates requiring set expapsion
*/

s_derivable(*g) <-
CONS(*p.*t, *g)
& _substitute(*x, set(*x : *el, *e2), *t, *nt)
& CONS(*p.*nt, *ng)
& extension(set(*x : *el & *ng, *e2), *).

s_derivable(*g) <-
CONS(*p.*t, *g)
& _substitute(*x, set(*x : *el), *t, *nt)
& CONS(*p.*nt, *ng)
& _extension(set(*x : *el), *ext)
& map(lambda(*x, *ng), *ext).

/*
i_derivable does derivation of DLOG atoms. Note that if any set terms appear,
“?*they are treated as terms, not aggregates as in s_derivable.

*/

i_derivable(*g) <-
retrieve(*g, *db)

& atom(*db)
& unify(*g, *db).

i_derivable(*g) <-

157

158

retrieve(*g, *csq <- *ant)
& unify(*g, *csq)
& debug(recurse, *ant)
& derivable(*ant).

/*
*

retrieve(*g, *db) <-
AX(*g, *db)
& debug(retrieve, *db).

*
4/
contains_set_term{ *x.*y) <-

deterministic(set_constant(*x) | set_description(*x))
| contains_set_term(*y).

159

J*USAGE

RELATION: extension
_extension

DESCRIPTION: extension will produce the extensions of DLOG
individual and set terms. The relation _extension
gives terms of the form 'a.b. ... NIL’, extension
produces terms of the form 'a & b ... & 2’

NEEDS: _union SETFNS1
_intersection
_psubset
aggregate SYNTAX1
individual_constant
all ALL1
_all
apply META1
cons_amp UTILS1

USED IN: unify UNIFY1

*
*

individuals and individual sets
*/

_extension(*x , *x.NIL) <-
individual_constant(*x).

_extension(*ag, *ext) <-
aggregate(*ag)
& _ext(*ag, *ext)

—extension(an(*v, *expr), *v.NIL) <-
*expr.

—extension(the(*v, *expr), *i.NIL) <-
—all{ lambda(*v, *expr), *e)
& bind(*i.NIL, *¢)
- & individual_constant(*i).

—extension(set(*x ; set(*y) : *exprl & *expr2), *ext) <-
~all(lambda(*x, *exprl), *ext1)
& _psubset(*ext, *extl)
& cons_amp(*ext, *ext?2)
& apply(lambda(set(*y), *expr2), *ext2).

—extension(set{ *x : *expr), *ext) <-
_all{ lambda(*x, *expr), *ext).

—extension(set(*ag), *ext) <-
aggregate(*ag)

& _ext(*ag, *ext).

/t
aggregates

*/

_ext(*x, *) <-
individual_variable(*x)
& [(_ext(%,*))
& FAIL.

—_ext(*x, *x.NIL) <-
individual_constant(*x).

_ext(*x| %y, *ex) <- [*7]? */
—ext(*x, *ex).

_ext{ *x | *y, *ey) <-
—_ext(*y, *ey).

_ext{ *x | *y, *exy) <-
_ext(*x, *ex)
& _ext(*y, *ey)
& _union(*ex, *ey, *exy).

_ext(*x!*y, *ex)<- [rr17%/
—ext(*x, *ex),

ext(*x! %y, *ey) <-
_ext(*x, *ex)
& _ext(*y, *ey)
& _intersection(*ey, *ex, NIL).

ext(*x & ¥y, Yexy) <- [*r&1%)
_ext(*x, *ex)
& _ext(*y, *ey)
& _union(*ex, *ey, *exy).

/t
,*/

extension(set(*x), set(*ext)) <-
—extension(set(*x), *list)
& cons_amp(*list, *ext).

extension(set(*x : *e), set(*ext)) <-
—extension(set(*x : *e), *list)
& cons_amp(*list, *ext).

exténsion(set(*x ;set(*y) : *el & *e2), set(*ext)) <-
—extension(set(*x ; set(*y) : *el & *e2), *list)
& cons_amp(*list, *ext).

160

161

extension(*x, *ext) <-
_extension(*x, *list)
& cons_amp(*list, *ext).

162

J*USAGE

RELATION: verify_ic

DESCRIPTION: applies integrity constraints to new assertions.

NEEDS: print UTILS1
bind
atomic
derivable DERIVE21

USED IN: assert ASSERT1
assertTRANS TRANS1

*/

verify_ic(*a <= *¢) <-
"AX(*a, *).

verify_ic(*a <= *c) <-
_all(lambda(*x,
& AX(*a, *y) & atomic(*y) & bind(*a <= *c, *y <= *x »
*ics)
& verify_ic_1(*ics).

verify_ic(*c <-*t). /* no test yet for IMPLs */

verify_ic(*a) <-
AX(*a<="**a<="*)

verify_ic(*a) <-
—all lambda(*ic, AX(*a <=*, *a <= *ic)), *ics)
& verify_ic_1(*ics).

*/

verify_ic_1(*ie.NIL) <- /* isolate constraint */
verify_ic_2(*ic).

verify_ic_Y(*ic.*icrest) <-
verify_ic_2(*ic)
& verify_ic_1(*icrest).

*
’{/
verify_ic_2(*c1 & *crest) <- /* isolate conjuncts */

verify_ic_3(*cl)
& verify_ic_2(*crest).

verify_ic_2(*c1) <-
verify_ic_3(*cl).

163

/*
*/

verify_ic_3(*c) <- /* test constraint */
derivable(*c).

verify_ic_3(*c) <- /* constraint fails */
print('Failed constraint: *.*c)
& [(verify_ic(*))
& FAIL.

164

/*USAGE
RELATION: input

DESCRIPTION: Interprets DLOG system commands, applies read macros,
and forwards transformed inputs to the other processors.

NEEDS: assert ASSERT1
browse BROWSE1
transaction TRANS1
query QUERY1
parse PARSE1
deterministic META1
print UTILS1
load

USED IN:start STARTI
*/

input(version) <-
print('DLOG 1.0’).

input(stop) <-
print('EXIT DLOG’)
& [(restart)
& FAIL.

input(load) <-
deterministic(load).

input(browse) <-
deterministic(browse).

input(transaction) <-
deterministic(transaction).

input(*¢) <-
user_command(*c)
& deterministic(*c).

input{ <- *q) <-
deterministic(query(*q)).

input(*a) <-
deterministic(parse(*a, *at))
& deterministic(assert{ *at)).

input(*i) <-
print('Input ignored: '.*i).

J*USAGE

RELATIONS: eqlambda
eqset
eqaggregate
eqext
implies
extends
satisfied
apply
map

DESCRIPTION: implements meta logical operations on DLOG terms.

NEEDS: _remove SETFNSI
create_ctx CTX1
destroy_ctx
local_ctx
sort SORTI
_allset ALL1}
derivable DERIVEI1
aggregate SYNTAX1
unify_1 UNIFY1

USED IN: unify UNIFY1
verify_ic IC1

*/

eqlambda(lambda(*v1, *I1) , lambda(*v2, *12)) <-
implies(*I1, *I2)
& implies(*12, *11).

/#
*/

egset(set(*s), set(*s)).

egset(set(*x : *exprl), set(*y : *expr2)) <-
eqlambda(lambda(*x, *exprl), lambda(*y, *expr2)).

eqset(set(*x ; set(*y) : *exprl & *expr2), set(*z ; set(*w) : *expr3, *expr4)) <-
eqlambda(lambda(*x, *expr1), lambda(*z, *expr3))
& eqlambda(lambda(set(*y) , *expr2), lambda(set(*w), *expr4)).

eqset(set(*s1), set{ *s2)) <-
aggregate(*s1)
& aggregate(*s2)
& eqaggregate(*sl, *s2).

egset(set(*s1), set(*s2)) <-
sort(*s1, *s)
& sort(*s2, *s).

165

*/

eqaggregate(*agl, *ag?) <-
-allset(lambda(*e1, _extension(*agl, *el)), *extl

& _allset(lambda(*e2, _extension(*ag2, *e2)), *ext2)
& eqext(*extl, *ext2).

/*
*/

eqext(*s, *s).

eqext(*x.*r1, *x.*r2) <-
eqext(*rl, *r2).

egext(*x.*r1, *y.*r2) <-
_remove(*x, *r2, *rx2)
& _remove(*y, *r1, *ryl)
& eqgext(*rx2, *ryl).

*
4/
implies(*dj | *rest, *csq) <-

deterministic(implies(*dj, *csq)
& implies(*rest, *csq)).

implies(*xj ! *rest, *csq) <-
deterministic(implies(*xj, *csq)
& implies{ *rest, *csq)).

implies(*cj & *rest, *csq) <-
local_ctx(*cj, implies(*rest, *csq)).

implies(*ant, *csq) <-
local_ctx(*ant, derivable(*csq)).
*
£/
extends(*cj & *rest, *hy) <-
deterministic(extends(*cj, *hy) | extends(*rest, *hy))

extends(*dj | *rest, *hy) <-
deterministic(extends(*dj, *hy) | extends(*rest, *hy))

extends(*xj ! *rest, *hy) <-
deterministic(extends(*xj, *hy) | extends(*rest, *hy)).

extends(*db, *hy) <-
local_ctx((unify_1{ *a.*qts, set(*x : *el, *e2).*dbts) <-

166

ATOM(*a)
& apply(lambda(*x, *el), *a)
& unify_1(*qts, *dbts))
& (unify_1(an(*y, *e3).*qts, sct(*z : *e4, *e5).*dbts) <-
eqlambda(lambda(*y, *e3), lambda(*z, *e4))
& unify_1(*qts, *dbts)),
CONS(*p.*hyt, *by)
& CONS(*p.*dbt, *db)
& unify_1{ *hyt, *dbt)).

/*
*/

satisfied(*x, lambda(*x, *expr)) <-
derivable(*expr)
& /.

satisfied(*x, lambda(*x, *expr)) <-
print(Failed to satisfy: '.*expr)
& FAIL.

/[* -
*/

apply(lambda(*x, *y), *z) <-
copy(*x.*y, *z.*w)
& *w.

*
1/
map(lambda(*var, *pred), *arg.*rest) <-

copy(lambda(*var, *pred), lambda(*arg, *test))
& *test

& map(lambda(*var, *pred), *rest).

map(lambda(*var, *pred), NIL).

167

168

/*USAGE
RELATION: N/A
DESCRIPTION: a collection of operator definitions for DLOG.
NEEDS: N/A

USED IN: (must be loaded before any DLOG/CMS relations, since
operators define DLOG/CMS syntax).

*/
/‘

The special operators used are as follows:

! - infix operator used for exclusive or,
e.g., req(CS,CS111!CS115)

< > - alternative way to delimit DLOG set terms,
e.g., input parser will convert <CS115&CS111>
to set(CS115&CS111)

{} - alternative way to delimit DLOG set terms,
e.g., input parser will convert {CS115&CS111}
to set(CS115&CS111)

- variable delimiter in set specification,
eg., {*x:p(*x)}

; - variable delimiter in set specification,
eg., {*x;set(*y):p(*x)&q(set(*y))}

? - prefix operator for queries

<= -infix operator for integrity constraints

*/
OP('<='RL,10). /* non-Horn constraint */
OP(!,LR,20). [* exclusive or operator */

:x : :y <- ::(&;L':y. /* semantics of ! */
x!I%y <-"*x y.

OP(: LR,15). /* set syntax delimiter */
OP(;, LR, 15). /* set syntax delimiter */
OP('{’, PREFIX, 11). /* set delimiters */
OP('}, SUFFIX, 11).

169

/*USAGE
RELATION: parse

DESCRIPTION: Verifies the syntax of input assertions, applying various
input transformations specified as input constraints.

NEEDS: local_ctx CTX1
print UTILS1
extension EXT1
_substitute SETFNS1

USED IN: input INPUT1
*/

parse(*i, *o) <-
local_ctx(input_mode
& _input(*i, *),
update(_input(*i, *), _input(*i, *i))
& assertion(*i)
& _input(*, %o)).

/#
input constraints (used for assertion time inference)

*/

input_constraint(the(*x, *e)) <-
extension(the(*x, *e), *c)
& user('Is ".*c.’ the intended referent of ".the(*x, *e).'?")
& _input(*i, *)
& CONS(*p.*1, *i) :
& _substitute(*c, the(*x, *e), *1, *nl)
& CONS(*p.*nl, *n)
& update(_input(*i, *), _input(*i, *n))
& /.

input_constraint(the(*x, *e)) <-
print('No known referent for ".the(*x, *e))
&/
& FAIL.

J*USAGE

RELATIONS: system_predicate
set_predicate

DESCRIPTION: a list of DLOG predicates which may appear in
DLOG user data bases. Equivalent to the primitives
of DLOG’s data manipulation/definition language.

Currently uppercase predicates are the PROLOG/CMS
predicates accessible at the DLOG user interface.

NEEDS:

USED IN: assertion SYNTAX]
derivable DERIVE1
browse @ BROWSE1

¥

system_predicate(union, 3).
system_predicate(intersection, 3).
system_predicate(subset, 2).
system_predicate(element, 2).
system_predicate(cardinality, 2).
system_predicate(difference, 3).
system_predicate(all, 2).
system_predicate(extension, 2).
system_predicate(extends, 2).
system_predicate(local_ctx, 2).
system_predicate(satisfied, 2).
system_predicate(digit_suffix, 2).
system_predicate(nth_digit, 3).

system_predicate(letter_prefix, 2).

system_predicate(nth_char, 3).

system_predicate(concatenate, 3).

system_predicate(length, 2).

system_predicate(apply, 2).

system_predicate(user_select, 2).
_ system_predicate(load, 0).

system_predicate(user_predicate, 2).
system_predicate(user_command, 1).

system_predicate(topic, 1).
system_predicate(subtopic, 2).

system_predicate(topic_category, 2).
system_predicate(topic_equivalent, 2)-

system_predicate(assertion, 1).
system_predicate(implication, 1).
system_predicate(constraint, 1).
system_predicate(clause, 1).
system_predicate(literal, 1).
system_predicate(atom, 1).

170

system_predicate(term, 1).
system_predicate(lambda, 1),
system_predicate(individual, 1).

system_predicate(individual_description, 1).

system_predicate(individual_constant, 1).
system_predicate(individual_variable, 1)
system_predicate(individual_aggregate, 1).
system_predicate(set, 1).
system_predicate(set_description, 1).
system_predicate(set_constant, 1).
system_predicate(set_variable, 1).
system_predicate(definite_individual, 1).
system_predicate(indefinite_individual, 1).
system_predicate(definite_set, 1).

system_predicate(SUM, 3).
system_predicate(DIFF, 3).
system_predicate(QUOT, 3).
system_predicate(PROD, 3).
system_predicate(GE, 2).
system_predicate(LE, 2).
system_predicate(LT, 2).
system_predicate(GT, 2).
system_predicate(EQ, 2).
system_predicate(ADDAX, 1).
system_predicate{ DELAX, 1).
system_predicate(INT, 1).
system_predicate(ATOM, 1).

/*
*/

set_predicate(union).
set_predicate(intersection).
set_predicate(subset).
set_predicate(element).
set_predicate(difference).
set_predicate(cardinality).
set_predicate(all).
set_predicate(extension).

171

172

J*USAGE

RELATION: query

DESCRIPTION: processes DLOG queries, as prepared by parse.

NEEDS: derivable DERIVE1
print UTILS1
extension EXT1

USED IN: parse PARSE1
*/

query(set(*x : *e)) <-
print('Query: "set(*x : *e
& extension(set(*x : *e), *ext)
& print('Result: ".*ext).

query(set{ *x ; set(*y) : *el & *e2)) <-
print('Query: "set(*x ; set(*y) : *el & *e2))
& extension(set(*x ; set(*y): *el & *e2), *ext)
& print('Result: ' *ext).

query(*t) <-
“set(*t)
& print('Query: ".*t)
& local_ctx(query_mode, derivable(*t))
& print('Succeeds: '.*t).

query(*t) <-
print('Not deducible’).

/*USAGE
RELATIONS: element
‘__elementset
_seteq
cardinality _cardinality
subset _subset
_psubset
intersection _intersection
union _union
difference _difference
remove _remove
_tail
_substitute

DESCRIPTION: user and system set relations. User relations
operate on sets represented as conjuncts, viz.
A &B& ..& Z System relations use PROLOG/CMS
lists for sets, viz. A.B.C.NIL.

NEEDS: _sort SORTI1
bind UTILS1

USED IN: many places
*/
_element(*x, *x.*y).

_element(*x, *y.*z) <-
_element(*x, *z).

x
4/
_elementset(*x, *y.*z) <-

_seteq(*x, *y).

_elementset(*x, *y.*z) <-
_elementset(*x, *z).

x®
*/
_seteq(*x, *x).

_seteq(*x, *y) <-
_sort(*x, *xs)
& _sort(*y, *xs).

*

*/

173

_cardinality(NIL, 0).

—cardinality(*x.*y, *n) <-
—cardinality(*y, *n1)
& SUM(*n1, 1, *n).

*
4/
_subset(NIL, *).
- _subset(*x.%y, *z) <-

_remove(*x, *z, *w)
& _intersection(*y, *z, *w),

*
4/

_psubset(NIL, *).
_psubset(*x.*y, *z) <-

_tail(*x, *z, *w)
& _psubset(*y, *w).

*
4/
—intersection(*x, *x, *x).
—intersection(NIL, *x, NIL).
_intersection(*x, NIL, NIL).
—intersection(*x.*y, *z, *w) <-

_remove(*x, *z, *)

& _intersection(*y, *z, *w).

—intersection(*x.*y, *z, *x.*u) <-

_remove(*x, *z, *w)
& _intersection(*y, *w, *u).

!

~union(*x, *x, *x).

—union(NIL, *x, *x).
_union(*x, NIL, *x).
~union{ *x.*y, *z, *x.*v) <-

“_remove(*x, *z, *)
& _union(*y, *z, *v).

174

_union(*x.*y, *z, *v) <-
_remove(*x, *z, *w)
& _union(*y, *w, *v).

*
1/

difference(NIL, *x, NIL).
_difference(*x, NIL, *x).

_difference(*x, *y, *x) <-
_intersection(*x, *y, NIL).

_difference(*x.*y, *z, *x.*v) <-
“_remove(*x, *z, *)
& _difference(*y, *z, *v).

~difference(*x.*y, *z, *v) <-

_remove(*x, *z, *w)
& _difference(*y, *w, *v).

*
4/
_remove(*x, *x.%y, *y).

_remove(*x, *y.*rest, *y.*z) <-
_remove(*x, *rest, *z).

*
*/
_tail(*x, *x.*y, *y).

_tail(*x, *y.*z, *w) <-
_tail(*x, *z, *w).

/#

*/

—substitute(*x, *y, *z.*w, *x.*w) <-

“VAR(*z)
& bind(*y, *z).

—substitute(*x, *y, *z.*w, *z2.%u) <-

_substitute(*x, *y, *w, *u).

/*
*/

element(*x, set(*x)) <-

175

ATOM(*x).

element(*x, set(*x & *y)) <-
ATOM(*x).

element(*x, set(*y & *1)) <-
element(*x, set(*z)).

*
*/
cardinality(set(NIL), 0).
cardinality(set(*x), 1) <-
“bind(*x, NIL)
& ATOM(*x).
cardinality(set(*x & *y), *n) <-

cardinality(set(*y), *nl)
& SUM(*nl1, 1, *n).

/‘
*/
subset(set(NIL), set(*)).
subset(set(*x), set(*x)).

subset(set(*x), set(*x & *y)).

subset(set(*x), set(*y & *1)) <-
subset(set(*x), set(*z)).

subset(set(*x & *y), set(*x & *z)) <-
subset(set{ *y), set(*z)).

subset(set(*x & *y), set(*z & *w)) <-
“bind(*x, *z)
& element(*x, set(*w))
& subset(set(*y), set(*z & *w)).

/*
*/

intersection(set(*x), set(*x), set(*x)).

intersection(set(NIL), set(*x), set(NIL)).
intersection(set(*x), set(NIL), set(NIL)).
intersection(set(*x), set(*z), set(*x)) <-

ATOM(*x)
& element(*x, set(*z)).

176

177

intersection(set(*x), set(*z), set(NIL)) <-
ATOM(*x)
& “element(*x, set(*z)).

intersection(set(*x & *y), set(*x & *z), set(*x & *w)) <-
intersection(set(*y), set(*z), set(*w)).

intersection(set(*x & *y), set(*z & *w), set(*u)) <-
EQ(*x, *z)
& “element(*x, set(*w))
& intersection(set(*y), set(*z & *w), set(*u)).

intersection(set{ *x & *y), set(*z & *w), set(*x & *u)) <-
EQ(*x, *z)
& element(*x, set(*w))
& intersection(set(*y), set(*z & *w), set(*u)).

/*

*/

union(set(*x), set(*x), set(*x)). -
union(set(NIL), set(*x), set(*x)).

union(set(*x), set(NIL), set(*x)).

union(set(*x), set(*y), set(*y)) <-
ATOM(*x)
& element(*x, set(*y)).

union(set(*x), set(*y), set(*x & *y)) <-
ATOM({ *x)
& “element(*x, set(*y)).

union(set(*x & *y), set(*x & *z), set(*x & *w)) <-
union(set(*y), set(*z), set(*w)).

union(set(*x & *y), set(*z & *w), set(*x & *v)) <-
EQ(*x, *z)
& “element(*x, set(*w))
& union(set(*y), set(*z & *w), set(*v)).

union(set(*x & *y), set(*z & *w), set(*v)) <-
EQ(*x, *z)
& element(*x, set(*w))
& union(set(*y), set(*z & *w), set(*v)).

*
*/
difference(set(NIL), *x, set(NIL)).

difference(set(*x), set(NIL), set(*x)).
difference(set(*x), set{ *x), set(NIL)).

difference(set(*x), set(*y), set(*x)) <-
intersection(set(*x), set(*y), set(NIL)).

difference(set(*x & *y), set(*x), set(*y)).
difference(set(*x & *y), set(*y), set(*x)).

difference(set(*x & *y), set(*x & *v), set(*w)) <-
difference(set(*y), set(*v), set(*w)).

difference(set(*x & *y), set(*z & *w), set(*x & *v)) <-
EQ(*x, *z)
& “element(*x, set(*w))
& difference(set(*y), set(*z & *w), set(*v)).

difference(set(*x & *y), set(*z & *w), set(*v)) <-
EQ(*x, *z)
& element(*x, set(*w))
& difference(set(*y), set(*2 & *w), sct(*v)).

/#
*

remove(*x, set(*x), set(NIL)).
remove(*x, set(*x & *y), set(*y)).
remove(*x, set(*y & *x), set(*y)).

remove(*x, set(*y & *rest), set(*y & *z)) <-
remove(*x, set(*rest), set(*z)).

178

179
J*USAGE

RELATION: sort
sortb

_sort

DESCRIPTION: sorts DLOG sets in lexicographic order.
NEEDS:

USED IN: eqset SETFNS1

*/
_sort(*x.NIL, *x.NIL).

_sort(*x.*y.NIL, *x.*y.NIL) <-
ATOM(*x)
& ATOM(*y)
& LE(*x, *y).

_sort(*x.*y.NIL, *y *x.NIL) <-
ATOM(*x)
& ATOM(*y)
& LE(*y, *x).

_sort(*x.*rest, *x.*y.*z) <-
_sort(*rest, *y.*z)

& LE(*x, *y)
& /.

_sort(*x.*rest, *y.*v) <-
_sort(*rest, *y.*z)
& LE(*y, *x)
& _sort(*x.*z, *v)
&/

/*
*/

“sort(*x, *x) <-
ATOM(*x).

sort(*x & *y, *x & *y) <-
ATOM(*x)
& ATOM(*y)
& LE(*x, *y).

sort(*x & *y, *y & *x) <-
ATOM(*x)
& ATOM(*y)
& LE(*y, *x).

sort(*x & *rest, *x & *y & *z) <-
sort(*rest, *y & *z)
& LE(*x, *y).

sort(*x & *rest, *y & *v) <-
sort(*rest, *y & *z)
& LE(*y, *x)
& sort(*x & ¥z, *v).

2

sortb(*x, *x, *base) <-
apply(*base, *x).

sortb(*x & *y, *x & *y, *base) <-
apply(*base, *x)
& apply(*base, *y)
& ordered(*x, *y).

sortb(*x & *y, *y & *x, *base) <-
apply(*base, *x)
& apply(*base, *y)
& ordered(*y, *x).

sortb(*x & *rest, *x & *y & *z, *base) <-
sortb(*rest, *y & *z, *base)
& ordered(*x, *y)
& /.

sortb(*x & *rest, *y & *z, *base) <-
sortb(*rest, *y & *v, *base)
& ordered(*y, *x)
& sortb(*x & *v, *z, *base)
& /.

/*
*/

_sortb(*x.NIL, *x.NIL, *base) <-
apply(*base, *x).

_sortb(*x.*y, *x.*y, *base) <-
apply(*base, *x)
& apply(*base, *y)
& ordered(*x, *y).

_sortb(*x.*y, *y.*x, *base) <-
apply(*base, *x)
& apply(*base, *y)
& ordered(*y, *x).

180

_sortb(*x.*rest, *x.*y.*z, *base) <-
_sortb(*rest, *y.*z, *base)
& ordered(*x, *y)
&/

_sortb{ *x.*rest, *y.*z, *base) <-
_sortb(*rest, *y.*v, *base)
& ordered(*y, *x)
& _sortb(*x.*v, *z, *base)
&/

*/

ordered(*x, *y) <-
ATOM(*x)
& ATOM(*y)
& LE(*x, *y).

ordered(*x.*r1, *y.*r2) <-
ATOM(*x)
& ATOM(*y)
& LT(*x, *y)
| EQ(*x, *y) & ordered(*r1, *r2).

ordered(*x & *rl, *y & *r2) <-
ATOM(*x)
& ATOM(*y)
& LT(*x, *y)
| EQ(*x, *y) & ordered(*r1, *r2).

181

182

J*USAGE
RELATION: start
DESCRIPTION: Invokes DLOG 1.0.
NEEDS: input INPUT1

USED IN:
*

START <-
start.

start <-
print('DLOG 1.0’)
& restart.

start.

ERROR <-
print('Re-enter last input’)
& RETRY(restart).

restart <-
NEWLINE
& READ(*input)
& input(*input)
& NEWLINE
& RETRY(restart).

J*USAGE

RELATIONS: assertion

DESCRIPTION: Grammar for DLOG assertions. Each unary predicate
will verify the syntax of the corresponding DLOG object.
The check_input predicate provides a hook for the
input parser to apply transformations on objects of that
type. If “input_mode" is on, then any relevant constraints
are applied, otherwise the syntax derivation proceeds as
specified.

NEEDS: deterministic UTILS1
bind '

implication
constraint

clause

literal

atom

terms

term

individual

set

lambda
individual_variable
individual_constant
individual_description
definite_individual
indefinite_individual
set_variable
set_constant
set_description
definite_set
indefinite_set
aggregate
check_freevar
check_term
check_input

USED IN: parse PARSE1

*/

assertion{ *s) <-

/*
*/

atom(*s)
| implication(*s)
| constraint(*s).

implication(*c¢ <- *a) <-

atom(*c)

183

& clause(*a).

*/

constraint(*a <= *c¢) <-
atom(*a)
& clause(*c).

*/

clause(*1) <-
literal(*1).

clause(*I & *rest) <-
“individual_variable(*I)
& clause(*1)
& clause(*rest).

clause(*1| *rest) <-
“individual_variable(*I)
& clause(*1)
& clause(*rest).

clause(*}! *rest) <-
“individual_variable(*1)
& clause(*1)
& clause(*rest).

/*
*/

literal(“*1) <-
atom(*1).

literal(*1) <-
atom(*1).

*
4/
atom(*a) <-
SKEL(*a)
& CONS(*p.*tlist, *a)
& 'OP(*p, ‘, *)
& terms(*tlist).
*
1/

terms(*t.NIL) <-

deterministic(term(*t)).

184

terms(*t.*tlist) <-
“bind(*tlist, NIL)
& term(*t)
& terms(*tlist).

/‘
*/

term(*t) <-

deterministic(individual(*t) | set(*t) | lambda(*t)).

/*
*/

individual(*i) <-

deterministic(individual_variable(*i))

| individual_constant(*i)
| individual_description(*i).

/t
*/

set(*s) <-
set_variable(*s)
| set_constant(*s)
| set_description(*s).

*
l/
lambda(lambda(*x, *expr)) <-
individual_variable(*x)

& clause(*expr)
& check_freevar(*x, *expr).

*
£/
_individual_variable(*v) <-
VAR(*v).
*
*/
individual_constant(*¢) <-

INT(*c)
| ATOM(*c).

/*
*

individual_description(*i) <-

185

definite_individual(*i)
| indefinite_individual(*i).

*/

definite_individual(the(*x, *e)) <-
individual_variable(*x)
& clause(*e)
& check_freevar(*x, *e)
& [
& check_input(the(*x, *e)).

/*
*/

indefinite_individual(an(*x, *e)) <-
individual_variable(*x)
& clause(*e)
& check_freevar(*x, *e).

*/

set_variable(*s) <-
SKEL(*s)
& CONS(set.*v.NIL, *s)
& individual_variable(*v).

/*
*/

set_constant(set(*c)) <-
individual_constant(*c).

set_constant(sct(*c¢ & *rest)) <-

individual_constant(*c)
& set_constant(set(*rest)).

*/

set_description{ set(*s)) <-
definite_set(set(*s)).

set_description(set(*s)) <-
indefinite_set(set(*s)).

/*
*

definite_set{ set(*x : *e)) <-

186

individual_variable(*x)
& clause(*e)
& check_freevar(*x, *e).

*/

indefinite_set(set(*x ; set(*y) : *el & *e2)) <-
individual_variable(*x)
& individual_variable(*y)
& clause(*el)
& clause(*e2)
& check_freevar(*x, *el)
& check_freevar(set(*y), *e2).

indefinite_set(set(*ag)) <-
aggregate(*ag).

*/

aggregate(*x) <-
individual_variable(*x)
&/
& FAIL.

aggregate(*al | *a2) <-
aggregate_1(*al)
& aggregate_1(*a2).

aggregate(*al! *a2) <-
aggregate_1{ *al)
& aggregate_1(*a2).

aggregate(*x & *y) <-
aggregate_1(*x)
& aggregate_2(*y).

aggregate(*x & *y) <-
aggregate_2(*x)
& aggregate_1(*y).

aggregate_1(*c) <-
individual_constant(*c).

aggregate_1(*x | *y) <-
aggregate_1{ *x)
& aggregate_1(*y).

aggregate_1(*x ! *y) <-
aggregate_1(*x)
& aggregate_1(*y).

187

. 188

aggregate_1(*x & *y) <-
aggregate_1{ *x)
& aggregate_1(*y).

aggregate_2(*x ! *y) <-
aggregate_1(*x)
& aggregate_1{ *y).

aggregate_2(*x | *y) <-
aggregate_1(*x)
& aggregate_1(*y).

/*
utility relations for syntax checking

*/

check_freevar(*x, *expr) <-
VAR(*x)
& copy(*x.*expr, _.*z)
& check_term(_, *z)
&/

check_freevar(set(*x), *expr) <-
VAR(*x)
& copy(*x.*expr, _.*z)
& check_term(_, *z)
&/

check_freevar(*x, *expr) <-
print('Warning: expecting free variable’”.*x."” in ™ *expr.””).

/#
*/

check_term(*x, *y) <-
SKEL(*y)
& CONS(*p.*tlist, *y)
& check_term_1(*x, *tlist).

check_term(*x, *y) <-
ATOM(*y)
& EQ(*x, *y).

check_term_1(*x, *y.*rest) <-
check_term(*x, *y)
| check_term_1{ *x, *rest).

*/

check_input(*) <-
“input_mode
&/

189

check_input(*t) <-
input_constraint(*t).

190

[*USAGE
RELATION: transaction
DESCRIPTION: reads and processes a DLOG/CMS transaction.

NEEDS: assertion SYNTAX1
verify_ic IC1
user UTILS1
augment
print
read_skeleton
update

USED IN: parse PARSE1
*/

transaction <-
print('Begin transaction’)
& NEWLINE
& ADDAX(_trans(NIL)) -
& ADDAX(_tno(0))
& read_trans
& process_trans
& DELAX(_trans(*))
& DELAX(_tno(*)).

*/

read_trans <-
read_skeleton(*t)
& read_trans_1(*t)
&/

read_trans_l{ end).

read_trans_1(list) <-
list_trans
& RETRY(read_trans).

read_trans_1(*t) <-
assertion(*t)
& update_trans(*t)
& assert_trans(*t)
& RETRY(read_trans).

read_trans_1(*t) <-
print('Illegal syntax in '.*t)
& print('Input ignored’)
& RETRY(read_trans).

191

*/

process_trans <-
_trans(NIL)

& print('Null transaction...processing terminates’).

process_trans <-
_trans(*t)
& process_trans_1(*t)
& user('Update DB with transaction?’)
& print('Transaction completed’).

process_trans <-
_trans(*t)
& revoke_trans(*t)
& print("Transaction revoked...processing terminates’).

process_trans_1(NIL).

process_trans_1((*tno.*t).*rest) <-
verify_ic(*t)
& process_trans_1(*rest).

/*
*/

assert_trans(*a <= *c) <-
print('Assert constraint: *.*a.'<="*c)
& ADDAX(*a <= *c).

assert_trans(*c¢ <- *a) <-
print('Assert implication: *.*c.’<-".*a)
& ADDAX(*c <- *a).

assert_trans(*a) <-
print("Assert atom: '.*a)
& ADDAX(*a).

*
l/
revoke_trans(NIL).

revoke_trans((*tno.*t).*rest) <-
DELAX(*t)
& revoke_trans(*rest).

/*
*/

update_trans(*new) <-
_trans(*t)

& _tno(*tno)

& SUM(1, *tno, *ntno)

& augment(*t, *ntno.*new, *nt)

& update(_trans(*t), _trans(*nt })

& update(_tno(*tno), _tno(*ntno)).

*
4/
list_trans <-

_trans(NIL)
& print('Transaction is empty’).

list_trans <-
_trans(*t)
& list_trans_1{ *t).

list_trans_1(NIL).
list_trans_1{ (*tno.*t).*rest) <-

print(*tno.” '.*t)
& list_trans_1(*rest).

192

/*USAGE
RELATION: unify

DESCRIPTION: unifies two DLOG literals, the first a query literal,
the second a DB literal. The atom “heuristic_mode" is
a global switch which enables the heuristic clauses.

NEEDS: _element SETFNS1
_extension EXT1
local_ctx CTX1

_all ALL1
eqlambda METAI
eqset

apply

extends

individual_variable SYNTAX1
individual_constant

individual

set

indefinite_set

debug UTILS1

print

USED IN: derivable DERIVE1
extends META1

*/

unify(*qlit, *dblit) <-
CONS(*p.*qterms, *glit)
& debug(unify, 'Q: *.*qlit." DB: ".*dblit)
& CONS(*p.*dbterms, *dblit)
& unify_1(*qterms, *dbterms)

J*
*/

~unify_1(NIL, NIL).

unify_1{ *c1.*qts, *c2.*dbts) <- [* for efficiency only */
individual_constant(*c1)
& individual_constant(*¢2)
& “bind(*c1, *c2)
& /(unify(*,*))
& FAIL.

unify_1(*il.*qts, *i2.*dbts) <-
individual(*i1)
& individual(*i2)
& bind(*il, *i2)
& unify_1{ *qts, *dbts).

193

194

unify_I(*s1.*qts, *s2.*dbts) <-
set(*s1)
& set(*s2)
& bind(*s1, *s2)
& unify_1(*qts, *dbts).

unify_1(the(*x, *e).*qts, *c.*dbts) <-
individual_constant(*c)
& _extension(set(*x : *e), *c.NIL)
& unify_1(*qts, *dbts).

unify_1(the(*x, *el).*qts, an(*y, *e2).*dbts) <-
eqlambda(lambda(*x, *el), lambda(*y, *e2))
& _extension(set(*y : *e2), *2.NIL)
& unify_1(*qts, *dbts).

unify_1(an(*v, *e).*qts, *c.*dbts) <-
individual_constant(*c)
& apply(lambda(*v, *e), *c)
& unify_1(*qts, *dbts).

unify_1(*c.*qts, an(*v, *e).*dbts) <-
individual_constant(*c)
& apply(lambda(*v, *e), *c)
& unify_1(*qts, *dbts).

unify_1(an(*v1, *el).*qts, an(*v2, *e2).*dbts) <-
eqlambda(lambda(*v1, *el), lambda(*v2, *e2))
& unify_1(*qts, *dbts).

unify_1(*s1.*qts, *s2.*dbts) <-
set(*s1)
& set(*s2)
& eqgset(set(*s1), set(*s2))
& unify_1(*qts, *dbts).

unify_1(lambda(*v, *el).*qts, lambda(*v, *e2).*dbts) <- /* heuristic */
heuristic_mode
& query_mode
& extends(*e2, *el)
& print("Heuristic assumption: *.*e1.’ extends '.*e2)
& unify_1(*qts, *dbts).

unify_1(lambda(*v, *el).*qts, lambda(*v, *e2).*dbts) <-
eqlambda(lambda(*v, *el), lambda(*v, *e2))
& unify_1(*qts, *dbts).

195

J*USAGE

RELATION: user
user_select
print
printl
prompt
augment
acknowledge
concatenate
copy
bind
list
gensym
letter_prefix
digit_suffix
nth_digit
nth_char
length
deterministic
atomic
menu_value
menu_position
menu_print
menu_pick
nth_element
read_integer
read_string
read_skeleton
read_charlist
reverse
append
for
le_UC
load
cons_amp
amp_cons
bar_cons
bang_cons
disjunct
debug

DESCRIPTION: various utilities used in many DLOG subsystems.
NEEDS: OPS1
USED IN: almost everywhere.

*/

/*

user poses yes/no queries to the user
*

196

user(*list) <-
print(*list)
& acknowledge.

/*
uses menu_value to have user pick one element of a list
formed with &, |, or !

*/

user_select(*x & *y, *s) <-
amp_cons(*x & *y, *list)
& menu_value(*list, *s).

user_select(*x | *y, *s) <-
bar_cons(*x | *y, *list)
& menu_value(*list, *s).

user_select(*x ! *y, *s) <-
bang_cons(*x ! *y, *list)
& menu_value(*list, *s).

/t
print writes a list of arguments

*/

print(*s1.*list) <-
WRITECH(*s1)
&/
& print(*list).

print(*s) <-
WRITECH(*s)
& NEWLINE.

/‘
print] prints the elements of a list *x.*y. ... *2.NIL

*/

printl{ *x.NIL) <-
WRITECH(*x)
& NEWLINE
&/

printl{ *x.*rest) <-

WRITECH(*x)

& WRITECH(' ")
& printl{ *rest).

/#

prompt is identical to print, except '&’ carriage control is used

NOTE: PROLOG/CMS doesn't support CONTROL(CC, *) switch (yet).

*/

prompt(*list) <-
CONTROL(CC, *sw)
& ADDAX(CONTROL(CC, ON })
& concatenate(' ', *list, *prompt)
& print(*prompt)
& ADDAX(CONTROL(CC, *sw)).

/t
augment is true when the last arg is a copy of the first list arg
with the second arg at the end.

*/
augment(NIL, *x, *x.NIL).
augment(*x.NIL, *y, *x.*y.NIL).

augment(*u.*x, *y, *u.*z) <-
augment(*x, *y, *z).

*

acknowledge asks the user to respond 'y’ or 'n’
*/

acknowledge <-
prompt("Acknowledge(y|n):")
& read_string(*s)
& STRING(*s, y.*).

/#
concatenate put two strings together.

*/

concatenate(*id1, *id2, *id1id2) <-
STRING(*id1, *id1list)
& STRING(*id2, *id2list)
& combine(*id1list, *id2list, *id1id2list)
&/
& STRING(*id1id?2, *id1id2list)-

combine(*x.NIL, *y, *x.*y).
combine(*x.*rest, *y, *2) <-

combine(*rest, *y, *u)
& combine(*x.NIL, *u, *z).

/*
¥

copy(*x, *y) <-
ADDAX(_copy(*x))

197

& DELAX(_copy(*y)).

list(*x.NIL) <-
ATOM(*x).

list(*x.*y) <-
ATOM(*x)
& list(*y).

%

*/

symbol_counter(0). /* intialize counter */

gensym(*pfx, *unique) <-
symbol_counter(*new)
& DELAX(symbol_counter(*))
& SUM(*new, 1, *next)
& ADDAX(symbol_counter(*next))
& concatenate(*pfx, *new, *unique).

/*
*/

letter_prefix(*x, *y) <-
STRING(*y, *list)
& Ip(*pfxlist, *list)
& STRING(*x, *pfxlist).

Ip(*x.NIL, *x.NIL) <-

LETTER(*x).

' Ip(*x.NIL, *x.*y.*list) <-

LETTER(*x)
& DIGIT(*y).

Ip(*x.*y, *x.*Itst) <-
LETTER(*x) & Ip(*y, *list).

*

*/

digit_suffix(*x, *y) <-
STRING(*y, *list)
& ds(*sfxlist, *list)

198

& STRING(*x, *sfxlist).

ds(*x.NIL, *x.NIL) <-
DIGIT(*x).

ds(*x.*y, *x.*list) <-
DIGIT(*x)
& ds(*y, *list).

ds(*x, *y.*list) <-
LETTER(*y)
& ds(*x, *list).

*/

nth_digit(*n, *int, *d) <-
INT(*int)
& INT(*n)
& STRING(*int, *digitlist)
& length(*digitlist, *1)
& LE(*n, *1)
& GE(*n,0)

& nth_char_1(*n, *digitlist, *d).

/t
*/

nth_char(*n, *str, *c) <-
INT(*n)
& ATOM(*str)
& STRING(*str, *charlist)
& length(*charlist, *1)
& LE(*n, *1)
& GT(*n, 0)

& nth_char_1(*n, *charlist, *c).

nth_char_I(1, *c.*rest, *c).

_nth_char_1(*n, *x.*rest, *c) <-
DIFF(*n, 1, *n1)
& nth_char_1{ *nl, *rest, *c).

*
*/

length(NIL, 0).
length(*x.*y, *n) <-

length(*y, *n1)
& SUM(*nl, 1, *n).

/*

199

*

deterministic(*g) <-
*
g
&/

/t
*/

atomic(*a) <-
CONS(*p.*, *a)
& “OP(*p, *, *).

*/

menu_value(*list, *val) <-
menu_position(*list, *n)
& nth_element(*n, *list, *val).

/t
*

menu_position{ *list, *n) <-
NEWLINE
& menu_print(*list, 1)
& NEWLINE
& length(*list, *max)
& menu_pick(*n, 1, *max)

/t
*/

menu_print(NIL, *).

menu_print(*e.*rest, *n) <-
print(*n.": "*e)
& SUM(*n, 1, *n1)
& menu_print(*rest, *nl).

/t
¥/

menu_pick(*n, *min, *max) <-
prompt('Selection?’)
& read_integer(*n)
& GE(*n, *min)
& LE(*n, *max).

menu_pick(*, ¥, *) <-
print('Bad selection’)

200

201

& RETRY(menu_pick(*,*,*)).

/#
*/

nth_element(1, *e.*rest, *e).

nth_element(*n, *x.*rest, *e) <-
INT(*n)
& DIFF(*n, 1, *n1)
& nth_element(*nl, *rest, *e).

/*
Y/

read_integer(*n) <-
read_charlist(*1)
& STRING(*n, *1)
& INT(*n)
&/

read_integer(*n) <- -
print('Illegal integer’)
& FAIL.

*/

read_string(¥s) <-

read_charlist(*1)

& STRING(*s, *1)
& /.

read_string(*) <-
print('Ilegal string’)
& FAIL.

/*
*/

read_skeleton(*sk) <-
READ(*sk)
& /. '

*

*

read_charlist(*1) <-
ADDAX(_¢l(NIL))
& read_charlist_1
&/
& DELAX(_cl(*Ir))

& reverse(*Ir, *1).

read_charlist_1 <-
READCH(*c)
& update(_cl(*cur, _cl(*c.*cur))
& EOL.

/*
*

reverse(*x.NIL, *x.NIL).

reverse(*x.*y, *z) <-
reverse(*y, *w)
& append(*w, *x.NIL, *z).

/t
*/

append(NIL, *x, *x).

append(*u.*x, %y, *u.*z) <-
append(*x, *y, *z).

/*
*/

for(*b, *e, *i, *g) <-
ADDAX(_for(*b.*e.*i.*g))
& forgoal
& DELAX(_for(*)).

fOT(*' t, " *) <-
DELAX(_for(*))
& FALL.

forgoal <-
_for(*b.*e.*i*g)
& LE(*b, *e)
&/
& copy(*g, *cg)
& *cg
& SUM(*b, *i, *nb)

& update(_for(*b.*e.*i.*g), _for(*nb.*e.*i*g))

& RETRY(forgoal).

forgoal.
*
4/

update(*o, *n) <-
DELAX(*o)

202

& ADDAX(*n).
3
1/
le_UC(*lc, *uc) <-
STRING(*lc, *Ic1)

& le_UC_1(*lc1, *ucl)
& STRING(*uc, *ucl).

le_UC_1(NIL, NIL).
le_UC_1(*lc.*rlc, *uc.*ruc) <-
UPSHIFT(*Ic, *uc)
& 1c_UC_1(*rlc, *ruc).

le_UC_1(*lc.*rlc, *lc.*ruc) <-
le_UC_1(*rle, *ruc).

/#
*/

load <-

prompt('Filename (q to quit)? ')

& read_string(*f)

& 'EQ(*f,q)

& le_UC(*1, *ucf)
&/

& LOAD(*ucf)

& print(*ucf.’ loaded’)
& RETRY(load).

load.
4
cons_amp(NIL, NIL).
cons_amp(*x.NIL, *x).
cons_amp(*x.*y, *x & *rest) <-
SKEL(*y)
& cons_amp(*y, *rest).

*
*/

amp_cons(*x, *x.NIL) <-
“CONS(&%, *x).

amp_cons(*x & *y, *x.*z) <-
“CONS(&.*, *x)

203

& amp_cons(*y, *z).

/t
*/

bar_cons(*x, *x.NIL) <-
"CONS(|.*, *x).

bar_cons(*x | *y, *x.*z) <-
"CONS(|.*, *x)
& bar_cons(*y, *z).

*
{/
bang_cons(*x, *x.NIL) <-
"CONS{ 1.*, *x).

bang_cons(*x ! *y, *x.*z) <-
“CONS(1.*, *x)
& bang_cons(*y, *z).

*
4/
disjunct{ *dj, *dj) <-
CONS(*p.*, *dj)
& "OP(*p, *, *).
disjunct{ *dj, *dj | *rest).

disjunct(*dj, * | *rest) <-
disjunct(*dj, *rest).

*
4/
debug(*n, *g) <-

debug(*n)
& print(*n.": "*g).

debug{ *, *).

204

Appendix 2

Departmental Database predicate descriptions

The following list includes a brief description of the predicates that are used to define the

Department Data Base (DDB) application data base.

atudent_program_contribut:'on(:c,y,z). The course z will fulfill some requirement toward the comple-
tion of program y for student z. This predicate is derivable when the course z has not yet been
taken by student z, but if completed, would make a contribution to the completion of program
y.

completed(z,y). Student z has completed the course y. Matriculation courses do not require that the
student had first been enrolled; nor do they require that a grade be recorded. For non-
matriculation courses, the student z must have been enrolled in course y, and must have
attained a passing grade in y before this relation can be asserted.

program_enrolled(z,y). This asserts that student z is enrolled in degree program y. It requires that
there be some program in which z has successfully registered.

registered(z,y,z). This asserts that student z is registered in year z of degree program z. This asser-
tion cannot be made unless the student in question has satisfied the prerequisites for year z of
program y.

elective(z,y). This predicate asserts that course y is a legal elective for program y. It is a weaker
assertion than Jaculty_elective(z,y,z), since it does not specify which faculty the course is an
elective for, nor what faculty the course is presumed to be from (see below).

dept_program_prercq(u,v,w,z,y,z). This predicate asserts that course z is a requirement in year y, for
any degree program offered in department u, at level v {e.g., Bachelor, Master, etc.), in stream
w (e.g., majors, honours, etc.), with field z (e.g., Computer Science, Physics-Mathematics, etc.).
Requirements stated in this way provide the details of courses specified at the department level,
and can be inherited by program course requirements.

matriculation_course(z). This specifies the known domain of matriculation courses (e.g., ALGE-
BRA11, ALGEBRA12, CHEM11, etc.).

course_enrolled(z,y). This predicate asserts that student z is enrolled in course y. The predication
cannot be made without verifying that the student has first satisfied the necessary prerequisites
for course y, and furthermore, that course y is a contribution to the student’s program (an
admittedly fascist constraint).

Jield_of (z,y). This predicate asserts that the field of degree program z is field y. For example the
field of “BScHonoursCSMATH" is “Computer Science and Mathematics.”

year_of (z,y). This predicate asserts that y is the year in which student z is currently enrolled. This
is derivabled from the registered(z,y,2) predicate, and therefore carries the same constraints.

recommended(z,y,z). This predicate is used to record the recommendations for filling elective courses
in degree program requirements. It means that course z is recommended as an elective in year y
of program z.

206

Jaculty_of (z,y). This predicate asserts that the faculty of z is y. The value of z can be a course,
department or degree program.

course(z). This predicate specifies the domain of courses; the only constraint is that each course name
z be a string of the form “<D><N>" where “<D>" is a known department, and “<N>" js
an integer.

program_of (z,y). This predicate asserts that student z is enrolled in degree program y. It is identical
to the predicate program_enrolled(z,y).

program_reg(z,y,z). This predicate asserts that z is a requirement of year y for degree program z.

stream_of (z,y). This predicate asserts that the stream of degree program z is y (e.g., majors,
honours, etc.).

level(z). This predicate specifies the domain of degree program levels (e.g., Bachelor, Master, Doctor-
ate).

year(z). This predicate specifies the domain of degree program years. In the current DDB application
data base, this includes “first,"” “second,” “third,” and “fourth.”

Jaculty_grad_req(w,z,y,z). This predicate asserts that z is a graduation requirement for all degree
programs from faculty w at level z (e.g., bachelor, master, etc.), in stream y (e.g., majors,
honours, etc.). The set of faculty graduation requirements are a subset of the extension of the
more general predicate graduation_req(z,y) for appropriate programs z.

program_prereq(z,y,z). This predicate asserts that requirement z is a prerequisite for enrolment in
year y of program z.

Jaculty_elective(z,y,z). This predicate asserts that course z can be considered to be a course from
faculty y, when considered as an elective for programs offered in the faculty z.

unit_value(z,y). This predicate asserts that course z has unit value y

Jaculty_course_req{v,w,z ,¥,2). This predicate is Recessary to specify course requirements set at the
faculty level (cf. dept_course_req). The predicate asserts that course z is a requirement for all
degree programs with year y, in stream z (e.g., majors, honours, etc.), at level w (e.g., bachelor,
master, etc.) in faculty v. The requirements specified at this level are a subset of those specified
by the predicate course_reg(z ,¥) for the appropriate degree programs.

course_equivalent (z,y). This predicate asserts that course z is viewed as equivalent to course y. This

is used for cross listed courses, or for those which are similar enough so that credit cannot be
had for both.

jaculty_program_req(v,w,z,y,z). This predicate is used to specify general program requirements set
at the faculty level (e.g., a certain number of Science units). It asserts that requirement z must
be satisfied for year y of all programs with stream z, level w, and faculty v.

faculty_pragram_prereq(v,w,z,y,z). This predicate is used to specify faculty level requirements z that
are prerequisite to enrolling in year y of a degree program with stream z, at level w in faculty
v. As for dept_program_prereq, these prerequisites are a subset of those specified by
program_prereq for the appropriate degree programs,

program_contribution(z,y,z). This predicate is true when course z will make a contribution toward
the requirements of completing year y of the degree program in which student z is enrolled.
The derivation of this predicate requires the use of the DLOG predicate eztends (see §5.4).

eligible_for_degree(z,y). This predicate is true when student z has satisfied all the graduation require-
ments for degree program y. Derivation of this relation as a query initiates the most complex
and time consuming computation possible in the version of DLOG in which this application data
base was developed.

eligible_for_course(z,y). This predicate is true when student z has satisfied the prerequisites for
course y.

etiga'ble__jor_admission(z,y). This predicate is true when person z (i.e., someone know only by

207

name_id who is not yet a student) is known to have completed the prerequisites for admission
to degree program y. :

eligible_for_year(z,y). This predicate is true when student z has completed the prerequisites for
admission to year y of the program they are currently enrolled in.

Jield(z). This predicate specifies the domain of known fields (e.g., Computer Science, Computer Sci-
ence and Mathematics, Computer Science and Physics, etc.).

dept_of (z,y). This predicate specifies that the department of course z is department y.
Jaculty(z). This predicate specifies the domain of known faculties (e-8., Science, Arts, etc.).
course_no(z,y). This predicate asserts that the course number of course z is the integer y.

program(z). This predicate specifies the domain of known degree programs (e.g., BScMajorsCS
BScHonoursCS, etc.).

grad_req(z,y). This predicate asserts that requirement y is one requirement to be satisfied in order to
graduate with degree z.

13

level_of (z,y). This predicate asserts that the level (e.g., bachelor, master, etc.) of degree program z is
y.
stream(z). This predicate specifies the domain of known streams (e.g., majors, honours, etc.).

course_req(z,y,z). This predicate asserts that course z is a requirement of year y for program z. In
this application data base, requirements of this sort are normally stated as lambda expressions
(see §4.1.2).

head(z). This predicate specifies the domain of known department heads. Its assertion requires that
the z in question be a faculty member, and the member of some department (i.e.,
y.depart_of (z,y)).

dept(z). This predicate specifies the domain of know departments (e.g., CS, MATH, ENGL, etc.).

previous_year(z,y). This predicate specifies a total ordering on the four years of undergraduate degree
programs, i.e., that "first_year""second_year"“third_year"“fourth_year."

Jaculty_member(z). This predicate specifies the domain of known faculty members. In this applica-
tion data base, it is required only when admission to some course requires “‘the head's permis-
sion” in which case the existence of a department head presupposes that he/she is a faculty
member. One claboration of this application data base would be to provide the details of course
lecturers.

course_prereg(z,y). This predicate is used to assert that course z requires the satisfaction of require-
ments y. In this axiomatization of the application domain, these requirements are specified as
lambda expressions to be satisfied (see §4.1.2).

student(z). This predicate specifies the domain of known students. Notice that, for this application
domain, the successful specification of a new student transcript will update this relation (see
§5.3.1).

grade_of (z,y,z). This predicate asserts that the grade attained by student z in course yisz.
degree(z). This predicate specifies the domain of known degree program names.

passing_grade_of(z,y). This predicate specifies that the passing grade of course z is the grade y.
Currently in this application data base, the value for all courses is 50,

age_of (z,y). This predicate asserts that the age of person z is y years.

name_id(z). This predicate specifies the domain of known person names. The intended interpretation
is that unique name identifiers correspond to unique persons in the application domain model.
Both name_id and student are necessary, because the current application domain can hold
assertions about a person who exists, but has not yet been enrolled as a student,

Appendix 3
KRL descriptors in logic

The KRL language of Bobrow and Winograd [Bobrow77a, Bobrow77b, Bobrow79] represents an
ambitious effort to embody current ideas about knowledge representation (e.g., frames [Minsky75])
into a comprehensive computational framework. Much has been written in response to KRL, but
most of the reactions express confusion about the possible contributions (e.g., [Lehnert78]), berates the
language for lack of clarity (e.g., [McDermott?B]), or argues that much of the language’s compendium

of concepts is directly interpretable via the denotational semantics of first order logic (e-g., [Hayes80]).

When the concepts of epistemological and heuristic adequacy were articulated by McCarthy and
Hayes [McCarthy69, McCarthy77], they argued that much work in Artificial Intelligence had addressed
heuristic issues at the expense of epistemological ones, and that progress in Al required further under-
standing of the latter. Hayes’ analysis of frames and KRL [HayesSO] uses Tarskian semantics as a
normative theory of meaning to argue that much of KRL's machinery is heuristic in flavour, and that
the non-Tarskian excesses (self reference and non-monotonicity) are the only interesting epistemologi-

cal aspects.

While Hayes’ analysis is a useful antidote to KRL’s “edifice of notation,””*® the experience with
constructing DLOG suggests that there may be some epistemological import to the apparently heuris-
tic aspects of KRL: in particular, it seems that descriptions are not merely abbreviations for their con-
textual definitions, but that they are vital to symbolic reasoning in that they provide a method for
packaging information in a form that would otherwise require much more extensive magipulation.
(cf. abstract data types for programming languages). This analysis is speculative, but it seems plausi-

ble enough to warrant further investigation.

® [McDermott78, p. 280).

209

As Hayes [Hayes80] explains, the concept of a frame (or KRL unit) can be viewed as an
epistemologica.l notion if it can be argued that such structures are a basic component of knowledge —
that they are included in our ontology. Here the contention is that the organization of knowledge
into KRL units is the foundation for an Al theory of reasoning, not in spite of, but because of Hayes
analysis. The intersting thing about this claim is not that it is new (e.g., it is the major reason Min-
sky [Minsky75] proposed the idea), but that the logical analysis in terms of descriptions supports the

idea, and even suggests new directions for pursuing it.

Here we outline the framework of the idea. Bobrow and Winograd propose that most of KRL's
reasoning is carried out by a comprehensive “matching” process, with little responsibility relegated to
a “general purpose theorem prover.”*! But of course the DLOG pattern matcher is based on invoca-
tion of the DLOG proof procedure (cf. LOGLISP [Robinson82]). The most important idea supported
by the logical analysis of descriptions is that the KRL style of reasoning is based on demonstrating the
equality of descriptions. KRL acknowledges the importance of MERLIN's “mapping” procedure
[Moore74], and that an object-centered representation should be constructed as collections of various
forms of descriptors. The DLOG unification process, and especially the eztends predicate (§5.4)
demonstrates that this kind of reasoning can be interpreted logically, and that the “quality of the

match”*? can be based on logical notions, i.e., a partial derivation.

Here follows a rewriting of Hayes’ rendering of various KRL examples [HayesSO]. Writing every
KRL descriptor as a first order equality proposition demonstrates that the DLOG unification mechan-
ism together with the eztends meta predicate is the seed of an interesting theory of reasoning that

seems to help resolve the long-standing dispute about whether reasoning should be based on logic.

KRL descriptors In logle

The language used to rewrite the various KRL examples is similar to that used in chapters 2, 3,

€ [Bobrow77a, p. 24).

© [Bobrow77a, p. 26).

210

and 4. The various kinds of reasoning suggested by KRL would be performed by attempting to

demonstrate the equality of descriptions as formulated in the following examples. Viewing some indi-

vidual under one of possibly “multiple perspectives”*® might be performed by demonstrating the
equality of two individuals by instantiating one disjunct of a unit's descriptors written in disjunctive
normal form. For example, the process of viewing ‘“Juan” as a traveller is performed by attempting
to match ‘Juan” with the KRL unit “G0043”, and instantiating the disjunct beginning with the predi-

cation “Traveller(x)...”

direct pointer
KRL: Block17, PaloAlto, etc.

logic: any individual constant (i-e., non-logical constant).

perspective

KRL: (a Trip with destination=Boston Airline=TWA)

logic: €x.trip(x) Adestination(x)=Boston A airline(x)=TWA

specification
KRL: (the Actor from Act (a Chase with quarry={car22 (a Dodge)}))

logic: Lx.Actor(x) Ax=actor-of(€y.Act(y) ACh ase(y)
Aquarry(y)=€z.Dodge(z) A 2=car22)

predication

KRL: (which Owns (a Dog))

logic: €x.0wns(x,Ey.Dog(y))

Using descriptions, an assertion would be
Minnie=€x.Owns(x,Ey.Dog(y))

Using a lambda expression (cf. [Hayes80]) we have
Ax.(3y.Dog(y) AOwns(x,y)) Minnie

© [Bobrow77a, p. 6).

logical boolean
KRL: (OR (a Dog) {(a Cat) (which hasColor Brown)})

logic: €y.[Dog(y)v [€y.cat(y)A hasColor(y,Brown)]]

restriction
KRL: (the {(a Mouse) (which Owns (a Dog))})

logic: Lx.Mouse(x) AOwns(x,Ey.Dog(y))

selection

KRL: (using (the age for Person ThisOne)
selectFrom (which isLessThan 2) Infant
(which isAtLeast 12) Adult
otherwise Child)
logic:Lx.[age(y)2 Alnfant(x)]
vlage(y)=12 A Adult(x)]
v[age(y)2 Aage(y)=<12 AChild(x)]

set specification

KRL: (SetOF {\(an Integer) (which hasFactor 2)})

logic: €X.[Vx.x€Xminteger(x) AhasFactor(x,2)]

KRL: (Items 2 4)

logic: €X.[Vx.x€Xm[x=2v x=1]]

KRL: (Allitems 2 4 64 {(an Integer) (which hasFactor 3)})

logic: €X.[Vx.x€X=x=2vx=4vx=64
vx=E€y.Integer(y) AhasFactor(y,3)]

KRL: (Notltems 51)
logic: €X.51€X
KRL: (In (SetOf {(an Integer) (Items 2 5 8) (Notltems 4)})

logic: €x.[3X.x€X A Vy.[y €XD[x=2vx=5
vx=8vx=E€z.[Integer(z) Ax=4]]]]

contingency

211

. 212

KRL: during State24 then (the top from (a Stack with height=3)))
logic: Ex.top(x,ey.stack(y,StateM)/\beight(y,State24)=3)
KRL: during (a Dream with dreamer=1Jacob) then (an Angel))

logic: Ex.angel(x,éy.statc(y)/\y=€z.dream(z)/\dreamer(z)=Jncob)
multiple perspectives

KRL: [G0043 UNIT Individual
<SELF {(a Person with
firstName="Juan"
lastName={(a ForecignName)
(a String with firstCharacter="M"})
age=(which IsGreaterThan 21))
(a Traveller with
preferredAirport=SJO
age=Adult)
(a Customer with
credit=(a CreditCard with
company=UniversalCharge
number="G45-7923-220"))}>|

logic: G0043=€x.individual(x)
M[Person(x) AMirstName(x)="Juan"
MlastName=€y ForeignName(y) A firstCharacter(y)="M"]
v|Traveller(x) ApreferredAirport(x)=SJO
Aage(x)=Adult]
v [Customer(x) Acredit(x)=€y.CreditCard(y)
ACompany(y)=UniversalCharge
Anumber(y)="'G45-7923-220""]

Appendix 4
Department Database implementation in DLOG

This appendix contains the current DLOG representation of the Department Database (DDB).

/*

Department Data Base: Application command definitions

The following PROLOG code is the User definition of the
transcript command, as described in chapter 5, §5.3.1.

*
user_command(transcript).

/*
Application command: transcript

.

transcript <-
menu_position(’load’

J'save’
Jlist’ .
Jedit’
Jcreate’
’browse’
.NIL, *n)

& transcript_1(*n)

& user('Continue?")

& RETRY(transcript).

transcript.

*/

transcript_1(1) <-
load_transcript.

transcript_1(2) <-
save_transcript.

transcript_1(3) <-

214

list_transcript.

transcript_1(4) <-
print('Not yet implemented’).

transcript_1(5) <-
create_transcript.

transcript_1(6) <-
browse_predicate(name_id, 1).

/t
*

get_id(*n) <-
prompt('Student identifier? ')
& read_string(*n)
& verify_id(*n)
&

verify_id(*n) <-
name_id(*n).

verify_id(*n) <-
user('Unknown name identifier...retry?’)

& RETRY(get_id(*)).

/t
*/

get_new_id(*n) <-
prompt('New name identifier?)
& read_string(*n)
& verify_new_id(*n)
&/

verify_new_id(*n) <-
“name_id(*n).

verify_new_id(*n) <-
user('Student id in use...retry?’)
& RETRY(get_new_id(*)).

/*
*

get_program_id(*p) <-
prompt('Program name? ’)
& read_string(*p)
& verify_program(*p)
& /.

verify_program(*p) <-

program(*p).

verify_program(*p) <-
user('Unknown program...retry?’)
& RETRY(get_program_id(*)).

/#
*/

load_transcript <-
get_id(*n)
& 1c_UC(*n, *nuc)
& concatenate('T’, *nuc, *f)
& LOAD(*f)
& print(*n.’ transcript loaded’)
&/

load_transcript <-
print("transcript not obtainable’).

/t
*/

save_transcript <-
get_id(*n)
& 1c_UC(*n, *nuc)
& concatenate('T’, *nuc, *f)
& LISTS(age_of(*n, *a), *f)
& LISTS(registered(*n, *p, *y), *)
& LISTS(completed(*n, *c), *f)
& LISTS(grade_of(*n, *c, *g), *)

& LISTS(course_enrolled(*n, *c), *f)

& LISTS(name_id(*n), DDBTDIR)
& print(*n.’ transcript saved’)
& /.

save_transcript <-
print('transcript save failed’).
/*

*

list_transcript <-
get_id(*n)
& print("Transcript of ".*n)
& LISTS(age_of(*n, *a))
& LISTS(registered(*n, *p, *y))
& LISTS(completed(*n, *c))
& LISTS(grade_of(*n, *c, *g))
& LISTS(course_enrolled(*n, *c))
& /.

*

*/

215

216

create_transcript <-
get_new_id(*n)
& get_program_id(*p)
& create_transcript_1(*n, *p)
&/

create_transcript <-
print('Transcript not created’).

. create_transcript_1{ *n, *p) <-

print('Enter admissions data (Type end to stop):')
& transaction ’
& create_transcript_2(*n, *p).

create_transcript_2(*n, *p) <-
derivable(eligible_for_admission(*n, *p })
& assert(name_id(*n))
& print(*n.’ transcript created’).

create_transcript_2(*n, *p) <-
print(*n.’ not eligible for first year *p)
& user('Augment admissions data?")
& print('Continue transcript creation...’)
& RETRY(create_transcript_1(*n, *p)).

/‘

Department Data Base: data dictionary

The DDB consists of three classes of information (see Chapter 2,
§2.3.2): data dictionary (DD), integrity constraints (IC), and
question-answering (QA).

This is the data dictionary component (the topic definitions and
synonym dictionary below can also be considered as data dictionary
information).

*

user_predicate(student _program_contribution, 3).
user_predicate(completed, 2).
user_predicate(program_enrolled, 2).
user_predicate(registered, 3).
user_predicate(elective, 2).
user_predicate(dept_program_prereq, 6).
user_predicate(matriculation_course, 1).
user_predicate(course_enrolled, 2).
user_predicate(field_of, 2).
user_predicate(year_of, 2).
user_predicate(recommended, 3).
user_predicate(faculty_of, 2).
user_predicate(course, 1).
user_predicate(program_of, 2).
user_predicate(program_req, 3).
user_predicate(stream_of, 2).
user_predicate(level, 1).
~ user_predicate(year, 1).
user_predicate(faculty_grad_req, 4).
user_predicate(program_prereq, 3).
user_predicate(faculty_elective, 3).
user_predicate(unit_value, 2).
user_predicate(faculty_course_req, 5).
user_predicate(course_equivalent, 2).
user_predicate(faculty_program_req, 5).
user_predicate(faculty_program_prereq, 5).
- user_predicate(program_contribution, 3).
user_predicate(eligible_for_degree, 2).
user_predicate(eligible_for_course, 2).
user_predicate(eligible_for_admission, 2).
user_predicate(eligible_for_year, 2).
user_predicate(field, 1).
user_predicate(dept_of, 2).
user_predicate(faculty, 1).
user_predicate(course_no, 2).
user_predicate(program, 1).
user_predicate(grad_req, 2).
user_predicate(level_of, 2).
user_predicate(stream, 1).
user_predicate(course_req, 3).

217

user_predicate(head, 1).
user_predicate(dept, 1).
user_predicate(previous_year, 2).
user_predicate(faculty_member, 1).
user_predicate(course_prereq, 2).

user_predicate(anticipated_credit, 3).

user_predicate(student, 1).
user_predicate(grade_of, 3).
user_predicate(degree, 1).
user_predicate(passing_grade_of, 2).
user_predicate(age_of, 2).
user_predicate(name_id, 1).

218

/t

Department Data Base: Domain specification

The DDB consists of three classes of information (see Chapter 2,
§2.3.2): data dictionary (DD), integrity constraints (IC), and
question-answering (QA).

The QA compontent includes the domain specifications,

the bachelor's requirements, bachelor’s prerequisites, and general
question-answering knowledge. This section includes the domain
specifications.

*/

program(BScMajorsCS).
program(BScHonoursCS).
program(BScHonoursCSPHYS).
program(BScHonoursCSMATH).

*/

level(Bachelor).
level(Master).
level(Doctor).

/*
*/

stream(Majors).
stream(Honours).

/t
*/

field(CS).
field(CSMATH).
field(CSPHYS).

*/

faculty(Science).
faculty(AppliedScience).
faculty(Arts).

faculty(Commerce).

/*
*/
dept(CS).

dept(MATH).
dept(EE).

219

dept(ENGL).
dept(PHYS).
dept(CHEM).
dept(PSYC).
dept(GEOG).
dept(ANTH).
dept(ASIA).

dept(CHIN).

dept(CWRI).
dept(ECON).
dept(CLAS).

*
l/

year(first).
year(second).

year(third).
year(fourth).

*

*/

course(CS448).
course(CS435).
course(CS430).
course(CS422).
course(CS420).
course{ CS414).
course(CS413).
course(CS411).
course(CS410).
course(CS407).
course{ CS406).
course(CS405).
course(CS404).
course(CS403).
course(CS402).
course(CS350).
course(CS321).
course(CS315).
course(CS313).
course(CS312).
course(CS311).
course(CS302).
course(CS251).
course(CS220).
course(CS215).
course(CS200).
course(CS118).
course(CS115).
course(CS101).
course(MATH100).

220

course(MATH101).
course(MATH120).
course{ MATH121).
course{ MATH205).
course(MATH221).
course(MATH300).
course(MATH305).
course(MATH306).
course(MATH307).
course(MATH315).
course(MATH316).
course(MATH318).

course(MATH320).

course(MATH340).

course(MATH344).

course(MATH345).

course(MATH400).
course(MATH405).

course(MATH407).

course(MATH426).
course(MATH413).
course(MATH480).

course(COMM356).
course(COMM410).
course(COMMA411).
course{ COMM450).
course{ COMM459).

course(EE256).

course(EE358).

course(EE364).

course(PHYS110).
course(PHYS115).
course(PHYS120).
course(CHEM110).
course(CHEM120).
course(ENGL100).
course(GEOG101).
course(GEOG212).
course{ GEOG213).
course(GEOG311).
course(GEOG312).
course(GEOG313).
course(GEOG316).
course(GEOG379).
course(GEOG410).
course(GEOG411).
course(GEOG412).
course({ GEOG413).
course(GEOG414).
course{ GEOG416).
course(GEOG447).
course(GEOG449).
course(GEOG500).

221

course(GEOG504).
course(GEOG505).
course(GEOG516).
course(GEOG521).
course(GEOG522).
course(GEOG525).
course(GEOG555).
course{ GEOG560).
course{ GEOG561).
course(PSYC260).
course(PSYC360).
~ course(PSYC366).
course(PSYC460).
course(PSYC463).
course(PSYC466).
course(PSYC467).
course(PSYC348).
course(PSYC448).
course(ANTH100).
course(ANTH200).
course(ANTH201).
course(ANTH202).
course(ANTH203).
course(ANTH213).
course(ASIA105).
course(ASIA115).
course(ASIA206).
course(CHIN100).
course(CLAS100).
course(CLAS210).
course(CWRI202).
course(ECON100).
course(FART125).
course(FART181).

*/

matriculation_course(ALGEBRAL11).
matriculation_course(ALGEBRA12).
matriculation_course{ CHEM11).
matriculation_course(CHEM12).
matriculation_course(PHYS11).
matriculation_course(PHYS12).
matriculation_course(BIOL11).
matriculation_course(BIOL12).

/t

Department Data Base: Integrity constraints

Another of the three components of the DDB (Chapter 2, §2.3.2)
is the following set of integrity constraints.

222

*/

course_enrolled(*s, *c) <=
course(*c)
& (registered(*s, *p, *) | eligible_for_admission(*s, *p))
& satisfied(*s,
set(*x: course_prereq(*c, *x)))
& student_program_contribution(*s, *p, *c).

3

registered(*s, *p, *y) <=
satisfied(*s,
set(*pr :
program_prereq(*p, *y, *pr)))
& local_ctx(completed(*s, *c) <- course_enrolled(*s, *c)

derivable(satisfied(*s,

set(*cr :
course_req(*p, *y, *cr))))).

/* NOTE transition constraint
*/

completed(*s, *c) <=
matriculation_course(*c)
| course_enrolled(*s, *c)
& grade_of(*s, *c, *g)
& passing_grade_of(*c, *p)
& GE(*g, *p)
& DELAX(course_enrolled(*s, *c)).

/*
*/

recommended(*p, *y, *¢) <=
program_contribution(*p, *y, *c).

*
4/
student(*s) <=
registered(*s, ¥, *).

*/

degree(*d) <=
level_of(*d, *1)
& faculty_of(*d, *fa)
& field_of(*d, *fi).

223

224

*/

level_of(*x, *1) <=
(program(*x) | student(*x))
& level(*1).

level_of(*x, Bachelor) <=
stream_of(*x, Honours)
| stream_of(*x, Majors).

/#
*/

faculty_of(*x, *f) <=
(dept(*x)| student(*x)| program(*x))
& faculty(*f).

/*
*/

dept_of(*x, *d) <=
(course(*x) | student(*x) | faculty_member(*x))
& dept(*d).

/*
*

field_of(*x, *l) <=
(program(*x) | student(*x) | degree(*x))
& field(*).

/#
¥

stream_of(*x, *s) <=
(program(*x) | student (*x })
& stream(*s).

/*
*

head(*h, *d) <=
faculty_member(*h)
& dept(*d).

/*
*/

grade_of(*s, *c, *g) <=
student(*s)
& course(*c)
& grade(*g).

225

*
'{/
passing_grade_of(*c, *g) <=

course(*c)
& grade(*g).

226

/‘

Department Data Base: bachelor's requirements

The DDB consists of three classes of information (see Chapter 2
§2.3.2): data dictionary (DD), integrity constraints (IC), and
question-answering (QA).

The QA compontent includes the domain specifications,

the bachelor's requirements, bachelor’s prerequisites, and general
question-answering knowledge. This section includes the bachelor's
requirements.

*/

grad_req(*p, *req) <-
faculty_of(*p, *fac)
& level_of(*p, *lev)
& stream_of(*p, *str)
& faculty_grad_req(*fac, *lev, *str, *req).

grad_req(*p, *req) <-
dept_of(*p, *dep)
& level_of(*p, *lev)
& stream_of(*p, *str)
& field_of(*p, *fie)
& dept_grad_req(*dep, *lev, *str, *fie, *req).

/*
faculty graduation requirements - Science

*/

faculty_grad_req(Science,

Bachelor,

Majors,

lambda(*s,

completed(*s,
set(*c ; set(*s) : course(*c)
& ((unit_value(set(*s), *v)
& GE(*v,600)))))).

faculty_grad_req(Science,
Bachelor,
Honours,
lambda(*s,
completed(*s,

set(*c ; set(*s) : course(*c)
& (unit_value(set(*s), *v
& GE(*V,600)))))).

faculty_grad_req(Science,
Bachelor,
*str,

lambda(*s,
completed(*s,
set(*c ; set(*s):
(course(*c)
& faculty_of(*c, Science))
& (unit_value(set(*s), *v)
& GE(*v,360)))))).

faculty_grad_req(Science,
Bachelor,
*str,
lambda(*s,
completed(*s,
set(*c ; set(*s) :
(course(*c)
& faculty_of(*c, Arts))
& (unit_value(set(*s), *v)
£ GE(*v,%))))))

faculty_grad_req(Science,
Bachelor,
*str,
lambda(*s,
completed(*s,
set(*c ; set(*s):
(course(*c)
& course_no{ *c, *n)
& GE(*n, 300))
& (unit_value(set{ *s), *v)
& GE(*v,210)))))).

faculty_grad_req(Science,
Bachelor,
*str,
lambda(*s,
completed(*s,
set(*c ; set(*s):
(course(*c)
& course_no(*c, *n)
& GE(*n, 300)
& faculty_of(*c, Science))
& (unit_value(set(*c), *v)
& GE(*v,150))))))
/*
program requirements
*/

program_req(*p, *yea, *req) <-
faculty_of(*p, *fac)
& level_of(*p, *lev)
& stream_of(*p, *str)
& faculty_program_req(*fac, *lev, *str, *yea, *req).

227

program_req(*p, *yea, *req) <-
dept_of(*p, *dep)
& level_of(*p, *lev)
& stream_of(*p, *str)
& field_of(*p, *fie)
& dept_program_req(*dep, *lev, *str, *fie, *yea, *req).

program_req(*p, *yea, *req) <-
course_req(*p, *yea, *req).

/t

faculty program requirements - Science
E 4

faculty_program_req(Science,

Bachelor,

*str,

first,

lambda(*s,

completed(*s,
set(*c ; set(*s):
course(*c)
& (unit_value(set(*s), *v)
&£ GE(*,9)))))).

faculty_program_req(Science,
Bachelor,
*str,
first,
lambda(*s,
completed(*s,
sct(*c ; set(*s):
course(*c)
& (unit_value(set(*s), *v)
& GE(*v,60)
& extension(set{ (CHEM110
! CHEM120)

& MATHI100
& MATH101
& (PHYS110
! PHYS115
! PHYS120)),
set(*x))
& subset(set(*s),
set(*x)))))))
faculty_program_req(Science,
Bachelor,
*str,
second,

lambda(*s,
completed(*s,
set(*c ; set(*s) :

228

course(*c)

& (unit_value(set(*s), *v)
& GE(*v,240)))))).
faculty_program_req(Science,

Bachelor,
*str,
second,
lambda(*s,
completed(*s,
set(*c ; set(*s):
course(*c)
(& extension(set({ CHEM110
! CHEM120)
& MATH100
& MATH101
& (PHYS110
! PHYS115
! PHYS120)),
set(*x))
& subset(set(*s), set(*x))
& unit_value(set(*s), *v)
& GE(*v,90)))))).

faculty_program_req(Science,
Bachelor,
*str,
second,
lambda(*s,
completed(*s,
set(*c ; set(*s) :
course(*c)
(& extension(set((CHEM110
! CHEM120)
& MATHI100
& MATHI101
& (PHYS110
! PHYS115
! PHYS120)),
set(*x))
& subset(set(*s), set(*x))
& unit_value(set(*s), *v)
& GE(*v,70)))))).

faculty_program_req(Science,

Bachelor,

*str,

third,

lambda(*s,

completed(*s,
set(*c ; set(*s):
course(*c)
& (unit_value(set(*c), *v)

229

& GE(*v,390)))))).

faculty_program_req(Science,
Bachelor,
*str,
third,
lambda(*s,
completed(*s,
set(*c ;set(*s):
(course(*c)

& faculty_of(*c, Science))

& (unit_value(set(*c), *v
& GE(*v,250)))))).

faculty_program_req(Science,
Bachelor,
Honours,
second,
lambda(*s,
completed(*s,
set(*c ; set(*s) :
course(*c
& (unit_value(set(*c), *v
& GE(*v,300)))))).

faculty_program_req(Science,

Bachelor,

Honours,

third,

lambda(*s,

completed(*s,
set(*c ; set(*s) :
course(*c)
& (unit_value(set(*c), *v)
& GE(*v,450)))))).

faculty_program_req(Science,
Bachelor,
*str,
fourth,
lambda(*s,
completed(*s,
set(*c ; set(*s) :
course(*c)
& (unit_value(set(*c), *v
& GE(*v,600)))))).

/*
course requirements

*/

230

course_req(*pro, *yea, *req) <-
faculty_of(*pro, *fac)
& level_of(*pro, *lev)
& stream_of(*pro, *str)
& faculty_course_req(*fac, *lev, *str, *yea, *req).

course_req(*pro, *yea, *req) <-
dept_of(*pro, *dep)
& level_of(*pro, *lev)
& stream_of(*pro, *str)
& field_of(*pro, *fie)
& dept_course_req(*dep, *lev, *str, *fie, *yea, *req).

/*
faculty course requirements - Science

*/
faculty_course_req(Science,

Bachelor,

*str,

second,

lambda(*s,

completed(*s, ENGL100))).

/t

course requirements - BScMajorsCS
*/

course_req(BScMajorsCS,
first,
lambda(*s,
completed(*s, CS115)
! (completed{ *s, CS118)
& completed(*s,
an(*c, elective(BScMajorsCS, *c)

& unit_value(*¢,15)))))).

course_req(BScMajorsCS,
first,
lambda(*s,
completed(*s, MATH100)
& completed(*s, MATHI101)
!'(completed(*s, MATH120)
& completed(*s, MATH121)))).

course_req(BScMajorsCS,
first,
lambda(*s,
completed(*s, PHYS110)
! completed(*s, PHYS115)
! completed(*s, PHYS120))).

course_req{ BScMajorsCS,

231

232

first,
lambda(*s,
completed(*s, CHEM110)
! completed(*s, CHEM120))).

course_req(BScMajorsCS,
first,
Iambda(*s,
completed(*s, ENGL100))).

course_req(BScMajorsCS,
second,
lambda(*s,
completed(*s, CS215))).

course_req(BScMajorsCS,
second,
lambda(*s,
completed(*s, CS220))).

course_req(BScMajorsCS,
second,
lambda(*s,
completed(*s, MATH205))).

course_req(BScMajorsCS,
second,
lambda(*s,
completed(*s, MATH221))).

course_req(BScMajorsCS,
second,
lambda(*s,
completed(*s,
an(*c,
course(*c)
& dept_of(*c, MATH)
& unit_value(*¢,15))))).

course_req{ BScMajorsCS,
second,
lambda(*s,
completed(*s,
set(*c ; set(*s):
elective(BScMajorsCS, *c)
& unit_value(set(*s),60))))).

course_req(BScMajorsCS,
set(third & fourth),
lambda(*s,
completed(*s,
set(*c ; set(*x):
(course(*c)

& dept_of(*¢, CS)
& course_no(*c, *n)
& GE(*n, 300))

& unit_value(set(*s),60)))))).

course_req(BScMajorsCS,
set(third & fourth),
lambda(*s,
completed(*s,
set(*c ; set(*x):
(course(*c)

& dept_of(*c, CS)
& course_no(*c, *n)
& GE(*n, 400))

& unit_value(set(*s), 60)))))).

course_req(BScMajorsCS,
set(third & fourth),
lambda(*s,
completed(*s,
set(*c ; set(*x) :
(course(*c)
& dept_of(*¢, MATH)
& course_no(*c, *n)
& GE(*n, 300))
& unit_value(set(*s),60)))))).

course_req(BScMajorsCS,
set(third & fourth),
lambda(*s,
completed(*s,
set(*c;set(*x):
elective(BScMajorsCS, *c)
& unit_value(set(*s),90))))).

233

234

/*

Department Data Base: bachelor’s prerequisites

The DDB consists of three classes of information (see Chapter 2,
§2.3.2): data dictionary (DD), integrity constraints (IC), and
question-answering (QA).

The QA compontent includes the domain specifications,

the bachelor’s requirements, bachelor's prerequisites, and general
question-answering knowledge. This section includes the bachelor's
prerequisites.

*/

program_prereq{ *p,
first,
lambda(*s,
age_of(*s,*a) & GE(*a, 16))).

program_prereq(*p, *yea, *pre) <-
faculty_of(*p, *fac)
& level of(*p, *lev)
& stream_of(*p, *str)
& faculty_program_prereq(*fac, *lev, *str, *yea, *pre).

program_prereq(*p, *yea, *pre) <-
dept_of(*p, *dep)
& level_of(*p, *lev)
& stream_of(*p, *str)
& field_of(*p, *fie)
& dept_program_prereq(*dep, *lev, *str, *fie, *yea, *pre).

/*

faculty program prerequisites
*

faculty_program _prereq(Science,
Bachelor,
*str,
first,
lambda(*s,
completed(*s, CHEM11))).

faculty_program_prereq(Science,
Bachelor,
*str,
first,
lambda(*s,
completed(*s, ALGEBRA11))).

faculty_program_prereq(Science,
Bachelor,

*str,
first,
lambda(*s,
completed(*s, ALGEBRA12))).

faculty_program _prereq(Science,
Bachelor,
*str,
first,
lambda(*s,
completed(*s, PHYS11))).

faculty_program_prereq(Science,
Bachelor,
*str,
first,
lambda(*s,
completed(*s,
an(*c,
topic_of(*c, Science)
& (course_no(*c, 11)
| course_no(*¢,12))))
| (permission(*s, *d, Science)

& dean(*d, Science))) }).

faculty_program_prereq(Science,
Bachelor,
Honours,
second,
lambda(*s,
program_of(*s, *p)
& dept_of(*p, *d)
& head_of(*d, *h)
& permission(*s, *h, *p))).

faculty_program_prereq{ Science,
Bachelor,
Honours,
third,
lambda(*s,
program_of(*s, *p)
& dept_of(*p, *d)
& head_of(*d, *h)
& permission(*s, *h, *p))).

faculty_program_prereq(Science,
Bachelor,
Honours,
fourth,
lambda(*s,
program_of(*s, *p)
& dept_of(*p, *d)
& head_of(*d, *h)

235

& permission(*s, *h, *p))).

/*
department program prerequisites

*/

dept_program_prereq(CS,
Bachelor,
Honours,
*fie
*yea
lambda(*s,
permission(*s, *h, Honours)
& head(*h, CS))).

/*
course prerequisites - Computer Science
*/

course_prereq(CS448,
lambda(*s,
permission(*s, *h, CS448)
& head(*h, CS))).

course_prereq(CS435,
lambda(*s,
permission(*s, *h, C5435)
& head(*h, CS)
| completed(*s, CS215))).

course_prereq(CS430,
lambda(*s,
permission(*s, *h, CS430)
& head(*h, CS)
| (completed(*s, *c)
& dept(*¢,CS)))).

course_prereq(CS422,
lambda(*s,
completed(*s, CS215)
& (completed(*s, CS312)
| course_enroll(*s, CS312)))).

course_prereq(CS420,
lambda(*s,
completed(*s, CS215)
& completed(*s, CS220))).

course_prereq{ CS414,
lambda(*s,
completed(*s, CS115)
| completed(*s, CS118)
| (permission(*s, *h, CS414)

236

& head(*h,CS)))).

course_prereq(CS413,
lambda(*s,
completed(*s, CS313)
| completed(*s, EE358)))

course_prereq(CS411,
lambda(*s,
completed(*s, CS311)
& completed(*s, CS313)
& completed(*s, CS315))).

course_prereq(CS410,
lambda(*s,
completed(*s, CS313)
& completed(*s, CS315))).

course_prereq(CS407,
lambda(*s,
year_of(*s, fourth))).

course_prereq(CS406,
lambda(*s,
completed(*s, *h)
& course_equivalent(*h, CS115)
& completed(*s, *c)

& course_equivalent(*c, MATH340)

& completed(*s, MATH221))).

course_prereq(CS405,
lambda(*s,
completed(*s, *h)
& course_equivalent(*h, CS115)
& completed(*s, *c)

& course_equivalent(*c, MATH205))).

course_prereq(CS404,
lambda(*s,
(permission(*s, *h, CS404)
& head(*h, CS))
| completed(*s, CS315)))

course_prereq(CS403,
lambda(*s,
completed(*s, CS302)
& (completed(*s, MATH300)
| completed(*s, MATH315)

| completed(*s, MATH320 1))

course_prereq(CS402,
lambda(*s,
completed(*s, CS302)

237

& (completed(*s, MATH300)
| completed(*s, MATH315)
| completed(*s, MATH320 }))).

course_prereq(CS350,
lambda(*s,
completed(*s, CS251))).

course_prereq(CS321,
lambda(*s,
completed(*s, CS115)
& completed(*s, CS220))).

course_prereq{ CS315,
lambda(*s,
completed(*s, CS215))).

course_prereq(CS313,
lambda(*s,
completed(*s, CS215))).

course_prereq(CS312, -
lambda(*s,
completed(*s, CS215))).

course_prereq{ CS311,
lambda(*s,
completed(*s, C5215))).

course_prereq(CS302,
lambda(*s,
completed(*s, *h)
& course_equivalent(*h, CS115)
& completed(*s, MATH200)
& completed(*s, MATH221))).

course_prereq(CS251,
lambda(*s,
program_of(*s, *h)

& faculty_of(*h, AppliedScience))).

course_prereq(CS220,
lambda(*s,
(completed(*s, CS115)
| completed(*s, CS118))
& (completed(*s, MATH101)
| (completed(*s, CS118)

& course_enrolled(*s, MATH101))))).

course_prereq(CS200,
lambda(*s,
“eligible(*s, CS115))).

238

course_prereq(CS118,
lambda(*s,
(completed(*s, *c)
course_enroll(*s, *c))
& course_equivalent(*c, MATH100)
& (completed(*s, CS101)
| (completed(*s, *c)
& course(*c)
& subject_of(*c, Programming)))
& “completed(*s, CS115))).

course_prereq(CS115,
lambda(*s,
(completed(*s, *c)
course_enroll(*s, *c))
& course_equivalent(*c, MATH100)
& “completed(*s, CS118))).

course_prereq(CS101,
lambda(*s,
(completed(*s, *c)
| course_enrolled(*s, *c))
& dept_of(*c, MATH)
& units(*c, 15)
& “completed(*s, CS115))).

/*
course prerequisites - Mathematics
*

course_prereq(MATH100,
lambda(*s,
completed(*s, MATH12)
| completed(*s, ALGEBRA12)))

course_prereq(MATHI101,
lambda(*s,
completed(*s, MATH100)
| course_enrolled(*s, MATH100)
| completed(*s, MATH111)))

course_prereq(MATH120,
lambda(*s,
(completed(*s, MATH12)
| completed(*s, ALGEBRA12)
& permission(*s, *h, MATH120)
& head(*h, MATH))).

course_prereq(MATH121,
lambda(*s,
(completed(*s, MATH12)
| completed(*s, ALGEBRA12)
& permission(*s, *h, MATH121)

239

& head(*h, MATH))).

course_prereq(MATH205,
lambda(*s,

completed(*s, MATH101))).

course_prereq(MATH221,
lambda(*s,
completed(*s, MATH101))).

course_prereq(MATH300,
lambda(*s,
completed(*s, MATH200)
& completed(*s, MATH221)
& (course_enrolled(*s, MATH?220)
| (completed(*s, MATH301)
| completed(*s, MATH316)) })).

course_prereq(MATH315,
lambda(*s,
completed(*s, MATH200)
& completed(*s, MATH221)
& “completed(*s, MATH165))).

course_prereq(MATH320,
Jambda(*s,
completed(*s, MATH200)
& completed(*s, MATH220)
& completed(*s, MATH221)
& grade_of(*s, MATH200, *h)
& grade_of(*s, MATH220, *c)
& grade_of(*s, MATH221, *w)
& GE(*h, second)
& GE(*c, second)
& GE(*w, second))).

course_prereq(MATH340,
lambda(*s,
completed(*s, MATH221) }).

course_prereq(MATH413,
lambda(*s,
(permission(*s, *h, MATH413)
& head(*h, CS))
| (completed(*s, set(*c ; set(*x):
dept_of(*c, MATH)

& units(set(*c), 120)))))).

/t
course prerequisites - Physics
*/

course_prereq(PHYS110,

240

241

lambda(*s,
completed(*s, PHYS11)
& (course_enrolled(*s, MATH100)
| completed(*s, MATH100))
& (course_enrolled(*s, MATH101)
| completed(*s, MATH101))))

course_prereq(PHYS115,
lambda(*s,

completed(*s, PHYS11)

& completed(*s, PHYS12)

& (course_enrolled(*s, MATH100)
| completed(*s, MATH100))

& (course_enrolled(*s, MATH101)
| completed(*s, MATH101))))

course_prereq(PHYS110,
lambda(*s,

completed(*s, PHYS12)

& grade_of(*s, PHSY12, *g1)

& GE(*g1,80)

& completed(*s, ALGEBRA12)

& grade_of(*s, ALGEBRA12, *g2)

& GE(*g2, 80)

& (course_enrolled(*s, MATH100)
| completed(*s, MATH100))

& (course_enrolled(*s, MATH101)
| completed(*s, MATH101)))).

/t
course prerequisites - Chemistry
*/

course_prereq(CHEM110,
lambda(*s,
completed(*s, CHEM11)
& completed(*s, CHEM12)
& (course_enrolled(*s, MATH100)
| completed(*s, MATH100))
& (course_enrolled(*s, MATH101)
| completed(*s, MATH101))
& (course_enrolled(*s,
an(*c,
course(*c)
& dept_of(*c, PHYS)
& course_no{ *c, *n)
& nth_digit(1,%n,1)))
| completed(*s, an(*c,
course(*c)
& dept_of(*c, PHYS)
& course_no(*c, *n)
& nth_digit(1, %n,1))))))

242

course_prereq(CHEM120,
lambda(*s,
completed(*s, CHEM11)
& completed(*s, CHEM12)
& completed(*s, PHYS11)
& (course_enrolled(*s, MATH100)
| completed(*s, MATH100))
& (course_enrolled(*s, MATH101)
| completed(*s, MATH101))
& (course_enrolled(*s,
an(*c,
course(*c)
& dept_of(*¢, PHYS)
& course_no(*c, *n)
& nth_digit(1, *n,1)))
| completed(*s, an(*c,
course(*c)
& dept_of(*¢, PHYS)
& course_no(*c, *n)
& nth_digit(1,%*n,1)))))).

/#
course prerequisites - English
*

course_prereq(ENGL100,
lambda(*s,

eligible_for_admission(*s, *p))).

243

/t

Department Database: general QA knowledge

The DDB consists of three classes of information (see Chapter 2,
§2.3.2): data dictionary (DD), integrity constraints (IC), and
question-answering (QA).

The QA compontent includes the domain specifications,

the bachelor’s requirements, bachelor’s prerequisites, and general
question-answering knowledge. This section includes the general
question-answering knolwedge.

*/
student(*s) <-
registered(*s, *, *).
*
*/
program_of(*s, *p) <-
registered(*s, *p, *).
y
program_enrolled(*s, *p) <-
registered(*s, *p, *).
*
*/
year_of(*s, *y) <-
registered(*s, ¥, *y).
*
*/

previous_year(second, first).
previous_year(third, second).
previous_year(fourth, third).

*
1/
eligible_for_degree(*s, *d) <-
student(*s)
& program_enrolled(*s, *d)
& satisfied(*s,
set(*gr : grad_req(*d, *gr))).

eligible_for_course(*s, *c) <-

244

course(*c)
& (registered(*s, *p, *)
| eligible_for_admission(*s, *p))
& satisfied(*s,
set(*cr : course_prereq(*c, *cr)))
& student_program_contribution(*s, *p, *c).

eligible_for_admission(*s, *p) <-
program(*p)
& satisfied(*s,
set(*pr : program_prereq(*p, first, *pr)))

eligible_for_year(*s, *y) <-
program_enrolled(*s, *p)
& previous_year(*y, *py)
& satisfied(*s,
set(*pr : program_req(*p, *py, *pr)))
& satisfied(*s,
set(*pq : program_prereq(*p, *y, *pq)))

/*
*/

program_contribution(*p, *c) <-
program(*p)
& course(*c)
& course_req(*p, *, lambda(*, *cr))
& extends(*cr, completed(*s, *c)).

/t
*/

student_program_contribution(*s, *p, *c) <-
course_req(*p, *, lambda(*s, *r))
& extends(*r, completed(*s, *c))
& “satisfied(*s, lambda(*s, *r)).

*/

anticipated_credit(*s, *c, *v) <-
student(*s)
& course(*c)
& unit_value(*c, *v)
& individual_constant(*v).

anticipated_credit(*s, *c, *v) <-
student(*s)
& course(*c)
& unit_value(*c, *ia)
& individual_aggregate(*ia)
& user_select(*ia, *v).

*
4/
elective(*p, *c) <-
faculty_of(*p, *fac)

& faculty_elective(*fac, *facl, *c).

elective(*p, *c) <-
dept_of(*p, *dep)
& dept_elective(*dep, *depl, *c).

/*
*/

unit_value(set(*c), *v) <-
unit_value(*c, *v)
| unit_value(*c, *v | *).

unit_value(set(*c & *rest), *v) <-
unit_value(set(*c), *v1)
& unit_value(set(*rest), *v2)
& SUM(*v1, *v2, *v).

/‘

*/

grade(*g) <-
INT(*g)

& LE(*g, 100)
& GE(*g, 0).

/*
*/

passing_grade_of(*¢, 50) <-
course(*c).

/*
*

faculty_of(BScMajorsCS, Science).

faculty_of(BScHonoursCSMATH, Science).
faculty_of(BScHonoursCSPHYS, Science).

faculty_of(BScHonoursCS, Science)-

faculty_of(CS, Science).
faculty_of(MATH, Science).
faculty_of(EE, AppliedScience).
faculty_of(ENGL, Arts).
faculty_of(PHYS, Science).
faculty_of(CHEM, Science).
faculty_of(PSYC, Arts).
faculty_of(GEOG, Arts).

245

faculty_of(COMM, Commerce).
faculty_of(ANTH, Arts).
faculty_of(ASIA, Arts).
faculty_of(CHIN, Arts).
faculty_of(CWRI, Arts).
faculty_of(ECON, Arts).
faculty_of(CLAS, Arts).

faculty_of(*c, *f) <-
course(*c)
& dept_of(*c, *d)
& faculty_of(*d, *f).

J*
*/

stream_of(BScMajorsCS, Majors).

4

stream_of(BScHonoursCSMATH, Honours).

stream_of(BScHonoursCSPHYS, Honours).
stream_of(BScHonoursCS, Honours).

*/

level_of(BScMajorsCS, Bachelor).
level_of(BScHonoursCS, Bachelor).
level_of(BScHonoursCSPHYS, Bachelor).
level_of(BScHonoursCSMATH, Bachelor).

/#
*/

dept_of(*c, *d) <-
course(*c)
& letter_prefix(*d, *c)
& dept{ *d).

/*
*/

field_of(BScMajorsCS, CS).

field_of(BScHonoursCS, CS).

field_of(BScHonoursCSPHYS, CSPHYS)
field_of(BScHonoursCSMATH, CSMATH).

*/

topic_of(PHYS11, Science).
topic_of(PHYS12, Science).
topic_of(CHEM11, Science).
topic_of(CHEM12, Science).
topic_of(BIOL11, Science).

246

topic_of(BIOL12, Science).
*
*/

previous_year(second, first).
previous_year(third, second).
previous_year(fourth, third).

/*
)

course_equivalent(MATH12, ALGEBRA12).

course_equivalent(CS115, CS118).
course_equivalent(CS118, CS115).
course_equivalent(FOR435, CS435).
course_equivalent(C5435, FOR435).
course_equivalent(EE478, CS414).
course_equivalent(CS414, EE478).
course_equivalent(EE476, CS413).
course_equivalent(CS413, EE476).

course_equivalent{ *c, *c) <-
course(*c).

¥

course_no(*c, *n) <-

(course(*c)

| matriculation_course(*c))
& digit_suffix(*n, *c).

/*
*/

unit_value(CS448, 15| 30).
unit_value(CS435, 15).
unit_value(CS430, 15).
unit_value(CS422, 30).
unit_value(CS420, 15).
unit_value(CS414, 15).
unit_value(CS413, 15).
unit_value(CS411, 30).
unit_value(CS410, 30).
unit_value(CS407, 15).
unit_value(CS406, 15).
unit_value(CS405, 15).
unit_value(CS404, 15).
unit_value(CS403, 15).
unit_value(CS402, 15).
unit_value(CS350, 10).
unit_value(CS321, 15).

247

unit_value(CS315, 30).
unit_value(CS313, 15).
unit_value(CS312, 15).
unit_value(CS311, 15).
unit_value(CS302, 30).
unit_value(CS251, 10).
unit_value(CS220, 15).
unit_value(CS215, 30).
unit_value(CS200, 15).
unit_value(CS118, 15).
unit_value(CS115, 30).
unit_value(CS101, 15).

unit_value(MATH100, 15).
unit_value(MATH101, 15).
unit_value(MATH120, 15).

unit_value(MATH121, 15).

unit_value(MATH205, 15).
unit_value{ MATH221, 15).

unit_value(MATH300, 30).
unit_value(MATH305, 15).

unit_value(MATH306, 15).

unit_value(MATH307, 15).

unit_value(MATH315, 15).

unit_value(MATH316, 15).
unit_value(MATH318, 30).

unit_value(MATH320, 30).

unit_value(MATH340, 15).
unit_value(MATH344, 15).
unit_value(MATH345, 15).
unit_value(MATH400, 30).
unit_value(MATH405, 30).
unit_value(MATH407, 15).
unit_value(MATH413, 30).
unit_value(MATH426, 30).
unit_value(MATH480, 15).

unit_value(COMM356, 30).
unit_value(COMM410, 15).
unit_value(COMM4{11, 15).
unit_value{ COMM150, 15).
unit_value(COMM459, 30).

unit_value(EE256, 15).

unit_value(EE358, 15).

unit_value(EE364, 15).

unit_value(PHYS110, 30).
unit_value(PHYS115, 30).
unit_value(PHYS120, 30).
unit_value(CHEM110, 30).
unit_value(CHEM120, 30 }.
unit_value(ENGL100, 15).
unit_value(GEOG101, 30).
unit_value(GEOG212, 15).
unit_value(GEOG213, 15).
unit_value{ GEOG311, 15).

248

unit_value(GEOG312, 15).
unit_value(GEOG313, 15).
unit_value(GEOG316, 15).
unit_value(GEOG379, 15).
unit_value(GEOG410, 15).
unit_value(GEOG411, 15).
unit_value(GEOG412, 15).
unit_value(GEOG413, 15).
unit_value(GEOG416, 15).
unit_value(GEOG447, 15).
unit_value(GEOG449, 30).
unit_value(GEOG500, 15).
unit_value(GEOG504, 15).
unit_value(GEOG505, 15).
unit_value(GEOG516, 15).
unit_value(GEOG521, 15).
unit_value(GEOG522, 15).
unit_value(GEOGS525, 15).
unit_value(GEOG560, 15 | 30).
unit_value(GEOG561, 15).
unit_value(PSYC260, 30).
unit_value(PSYC360, 30).
unit_value(PSYC366, 30).
unit_value(PSYC460, 30).
unit_value(PSYC463, 30).
unit_value(PSYC466, 30).
unit_value(PSYC467, 15 | 30).
unit_value(PSYC348, 15| 20| 25| 30).
unit_value(PSYC448, 15| 20| 25| 30).
unit_value(ANTH100, 30).
unit_value(ANTH200, 30).
unit_value(ANTH201, 30).
unit_value(ANTH202, 30).
unit_value(ANTH203, 15).
unit_value(ANTH213, 30).
unit_value(ASIA105, 30).
unit_value(ASIA115, 30).
unit_value(ASIA206, 30).
unit_value(CHIN100, 30).
unit_value{ CLAS100, 30).
unit_value(CLAS210, 30).
unit_value(CWRI202, 30).
unit_value(ECON100, 30).
unit_value(FART125, 30).
unit_value(FART181, 30).

*

*/

faculty_elective(Science, Science, GEOG101)-
faculty_elective(Science, Science, GEOG212).
faculty_elective(Science, Science, GEOG213).
faculty_elective(Science, Science, GEOG311)

249

faculty_elective(Science, Science, GEOG312)
faculty_elective(Science, Science, GEOG313).
faculty_elective(Science, Science, GEOG316).
faculty_elective(Science, Science, GEOG379)-
faculty_elective(Science, Science, GEOG410).
faculty_elective(Science, Science, GEOG411).
faculty_elective(Science, Science, GEOG412).
faculty_elective(Science, Science, GEOG413).
faculty_elective(Science, Science, GEOG414).
faculty_elective(Science, Science, GEOG416).
faculty_elective(Science, Science, GEOG447).
faculty_elective(Science, Science, GEOG449).
faculty_elective(Science, Science, GEOG500).
faculty_elective(Science, Science, GEOG504).
faculty_elective(Science, Science, GEOG505)
faculty_elective(Science, Science, GEOG516).
faculty_elective(Science, Science, GEOG521).
faculty_elective(Science, Science, GEOG522).
faculty_elective(Science, Science, GEOG525).
faculty_elective(Science, Science, GEOG555).
faculty_elective(Science, Science, GEOG560)-
faculty_elective(Science, Science, GEOG561).
faculty_elective(Science, Science, GEOG561).
faculty_elective(Science, Science, PSYC348).
faculty_elective(Science, Science, PSYC448).

faculty_elective(Science, Science, COMM356).
faculty_elective(Science, Science, COMM410).
faculty_elective(Science, Science, COMM411).
faculty_elective(Science, Science, COMM450).
faculty_elective(Science, Science, COMM459).

faculty_elective(Science, Science, EE256).
faculty_elective(Science, Science, EE358).
faculty_elective(Science, Science, EE364).
faculty_elective(Science, Arts, ANTH100).
faculty_elective(Science, Arts, ANTH200).
faculty_elective(Science, Arts, ANTH201).
faculty_elective(Science, Arts, ANTH202).
faculty_elective(Science, Arts, ANTH203).
faculty_elective(Science, Arts, ANTH213).
faculty_elective(Science, Arts, ASIA105).
faculty_elective(Science, Arts, ASIA206).
faculty_elective(Science, Arts, CHIN100).
faculty_elective(Science, Arts, CLAS100).
faculty_elective(Science, Arts, CLAS210).
faculty_elective(Science, Arts, CWRI202).
faculty_elective(Science, Arts, ECON100).
faculty_elective(Science, Arts, FART125).
faculty_elective(Science, Arts, FART181).

faculty_elective(Science, Science, *c) <-
course(*c)
& dept_of(*¢, PSYC)
& digit_suffix(*n, *c)

250

& nth_digit(2, *n, *d)
& GE(*d, 6).

*

*/

recommended(BScMajorsCS, set(third & fourth), MATH300).

recommended(BScMajorsCS, set(third & fourth), MATH305).

recommended(BScMajorsCS, set(third & fourth), MATH306).

recommended(BScMajorsCS, set(third & fourth), MATH307).

recommended(BScMajorsCS, set(third & fourth), MATH315)

recommended(BScMajorsCS, set(third & fourth), MATH316).
recommended(BScMajorsCS, set(third & fourth), MATH318).
recommended(BScMajorsCS, set(third & fourth), MATH340).
recommended(BScMajorsCS, set(third & fourth), MATH344).
recommended(BScMajorsCS, set(third & fourth), MATH345)-
recommended(BScMajorsCS, set(third & fourth), MATH400).

recommended(BScMajorsCS, set(third & fourth), MATH405).’

recommended(BScMajorsCS, set(third & fourth), MATH407).
recommended(BScMajorsCS, set(third & fourth), MATH426).
recommended(BScMajorsCS, set(third & fourth), MATH480).

recommended(BScMajorsCS, set(third & fourth), COMM410).
recommended(BScMajorsCS, set(third & fourth), COMM450).
recommended(BScMajorsCS, set(third & fourth), COMM459).
recommended(BScMajorsCS, set(third & fourth), COMM256)-

recommended(BScMajorsCS, set(third & fourth), EE256).
recommended(BScMajorsCS, set(third & fourth), EE358).
recommended(BScMajorsCS, set(third & fourth), EE364).

recommended(BScMajorsCS,
set(third & fourth),
set(*c ; set(*s) :
(course(*c)
& element(*c, set(CS302
& CS402
& CS403
& CS5404
& CS406)))
& (cardinality(set(*s), *n)
& GE(*n,2)))).

251

/*

Department Data Base: user predicate topic classification

The DDB consists of three classes of information (see Chapter 2
§2.3.2): data dictionary (DD), integrity constraints (IC), and
question-answering (QA).

This section can be considered a portion of the data dictionary,
as it provides information about the DDB.

*/

topic(advising).
topic(registration).
topic(courses).
topic(standing).
topic(admission).
topic(promotion).
topic(grades).
topic(graduation).

/*
*/

subtopic(advising, registration).
subtopic(advising, courses).
subtopic(advising, standing).
subtopic(registration, admission).
subtopic(registration, promotion).
subtopic(standing, grades).

/t
*/

topic_category(admission, program _Drereq).
topic_category(admission, faculty_program_prereq).
topic_category(admission, dept_program _prereq).
topic_category(promotion, grad_req).
topic_category(promotion, faculty_grad_req).
topic_category(promotion, dept_grad_req).
topic_category(promotion, registered).
topic_category(promotion, eligible_for_year).
topic_category(promotion, eligible_for_degree).
topic_category(courses, program_req).
topic_category(courses, faculty _program_req).
topic_category(courses, dept _program_req).
topic_category(courses, program_contribution).
topic_category(courses, student _program_contribution).
topic_category(courses, eligible_for_course)-
topic_category(courses, course _prereq).
topic_category(courses, course_equivalent).
topic_category(courses, unit_value).

topic_category(courses, elective).

252

topic_category(courses, faculty_elective).
topic_category(grades, completed).
topic_category(grades, grade_of).
topic_category(grades, passing_grade)-
topic_category(standing, registered)-
topic_category(standing, eligible_for_ycar).
topic_category(standing, eligible_for_degree).
topic_category(standing, completed).
topic_category(standing, grade_of).
topic_category(standing, course_enrolled).
topic_category(standing, year_of).
topic_category(standing, faculty_of).
topic_category(standing, dept_of).
topic_category(standing, level_of).
topic_category(standing, field_of).
topic_category(standing, stream_of).
topic_category(registration, registered).

topic_category(registration, eligible_for_admission).

topic_category(registration, eligible_for_year).
topic_category(graduation, eligible_for_degree).

*/

topic_category(*t, *c) <-
subtopic(*t, *st)
& topic_category(*st, *c).

*/

topic_equivalent(admission, admissions).
topic_equivalent(admission, admitting).
topic_equivalent(promotion, promotions).
topic_equivalent(promotion, promoting).
topic_equivalent(courses, course).
topic_equivalent(courses, classes).
topic_equivalent(courses, class).
topic_equivalent(grades, grade).
topic_equivalent(grades, marks).
topic_equivalent(grades, scores).
topic_equivalent(registration, registering).
topic_equivalent(registration, register).
topic_equivalent(registration, registrations).
topic_equivalent(registration, enrolling).
topic_equivalent(registration, enrolment).
topic_equivalent(advising, advice).
topic_equivalent(advising, counsellor).
topic_equivalent(advising, counselling)-
topic_equivalent(advising, counsellors).
topic_equivalent(advising, counsel).
topic_equivalent(advising, help).

253

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

