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ABSTRACT
The notion of synchronized and synchronizable deterministic
pushdown automata (DPDA’s) is introduced. It is shown that the
equivalence of two synchronized and even of synchronizable
DPDA’s can be tested. It is conjectured that every two equivalent
DPDA’s are synchronizable. It is also shown that the equivalence

of two deterministic pushdown transducers whose underlying
DPDA'’s are synchronized can be tested.

1. Introduction

Extensive efforts have been made in the past 20 years attempting to prove
the decidability of the equivalence problem for deterministic pushdown automata
(DPDA’s). The problem still remains open; however, a number of partial results
have been obtained. These results are surveyed in (20} by Tomita and classified
mto two “schools”. The technique of the first school is called branching algo-
rithms and was first used by Korenjak and Hopcroft [12] to show the decidabil-
ity of the equivalence problem for simple deterministic grammars or equivalently

simple DPDA’s, i.e. single-state real-time DPDA’s accepting by empty stack.

* This work was supported by the Natural Sciences and Engineering Research Council of
Canada under Grant A-7403.
This work has been done during the second author’s visit at the University of Waterloo.
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This technique has been mainly followed in [3,8,9,11,14,19,20,24].

The technique of the second school can be called simultaneous simulation
and was first used by Rosenkrantz and Stearns to prove the decidability of the
equivalence problem for LL(k) grammars. When using this method we typically
first construct a (nondeterministic) PDA M that simultaneously simulates the
actions of two given DPDA’s M, and M, so that M accepts a string iff M, and
M, are nonequivalent. Then we use the decidability of the emptiness problem
for context free languages. This second technique has been mainly followed in

[2,6,13,15,16,18,21-23].

We suggest that the second school can be further subdivided into two
groups. In the first group the composite PDA M directly simulates all computa-
tions of tested DPDA’s M, and M,, which is possible because M, and M, are
essentially synchronized in the way they use the stack. Typical example of

such synchronization is the alternate stacking technique of Valiant [21].

In the second group the composite PDA M modifies the computations of
almost synchronized DPDA’s M, and M, during the simulation whenever
there is the danger of dissynchronization. An example of this technique is the
parallel stacking technique of Valiant [22], here the replacement rules are the
modifications preserving synchronization. This almost synchronization method
has been the most powerful tool for testing equivalence of DPDA’s to this date
but it yet failed to solve the general case because it seems not possible to show
that every two equivalent DPDA’s are ‘“almost synchronized” in the required

sense.
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Here we propose a new more powerful technique, again based on synchroni-
zation. First we define, in quite a general way, the notion of synchronization for
DPDA’s and show that two synchronized DPDA’s can be tested for equivalence.
Then the main idea is to attempt to prove that for any two equivalent DPDA’s P
and R (from certain class) there exists a chain of DPDA’s
P=MyM,,..., M, =R, such that M; and M;,, are equivalent and syn-
chronized for 1 = 0,1, ..., n — 1. If this is so, we call P and R synchroniz-
able. We show that the equivalence of two synchronizable DPDA’s can be
tested. Thus in order to test their equivalence P and R do not need to be syn-
chronized directly, but rather in several steps. Actually, n = 2, i.e. only one
intermediate DPDA might be sufficient. We conjecture that every two
equivalent DPDA’s are synchronizable, however to prove that (even for some

suitable normal form) is probably very difficult.

In section 4 we consider deterministic pushdown transducers (DPDT’s). We
say that two DPDT’s are synchronized if their underlying DPDA’s are synchron-
ized. We show that two synchronized DPDT’s can be tested for equivalence, as
well. We reduce this problem to the morphic equivalence problem for context
free languages [5]. This gives an alternate proof and slightly extends the main
result (Theorem 1) in [10]. It implies, for example, that the equivalence problem

is decidable for DPDT’s based on real time DPDA’s accepting with empty stack.

We also show that we cannot extend our synchronizability conjecture to
DPDT’s; we give an example of two equivalent DPDT’s that does not seem to be
synchronizable. Finally, we show that, given DPDT T and DPDA M, synchron-

ized with the underlying DPDA M, of T, we can decide whether there exists a
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DPDT T, based on M, and equivalent to T,. Moreover if it does exist, then we
can construct it. As a corollary of this result we show that, given a DPDT, it is
decidable whether there exists an equivalent DPDT with the same underlying
DPDA and having only “empty” outputs for e-moves. Again, if this is the case

such DPDT can be constructed.

2. Preliminaries

We assume that the reader is familiar with the basic notions of deterministic
and nondeterministic pushdown automata as well as formal languages in general,

cf. e.g. [7]. So the following lines are mainly to fix our notation.

A deterministic pushdown automaton (DPDA for short) is a tuple
M= (Q,%,T, (s, Z2), F, P), where Q is a set of states, ¥ and I' are input and
stack alphabets, respectively, (s, Z) where, s €Q and Z €T designates the
bottom of the stack (which is never moved), is the initial mode, F C @ X I' is
the set of accepting modes and PC @ X T' X (£ U {€}) X @ X I'* is the set of

transition rules satisfying the well known ‘“determinism restriction”, cf. [7].

The transition (g, A, a, ¢, @), denoted also as (g, A) — (¢, @), is called
¢e-move or reading move depending on whether a is the empty word € or in X.
Correspondingly, the mode (g, A) is called e-mode or reading mode. The
language accepted by M is denoted by L(M), for the detailed definition cf. [7].
We use the abbreviation PDA for a (not necessarily deterministic) pushdown

automaton.



Synchronizable Determinisitc Pushdown 5

Our model of DPDA accepts with final modes instead of final states; how-
ever, this model is clearly equivalent as regards to the language definition power.
Moreover, we may assume without loss of generality that the set of accepting

modes is a subset of reading modes.

A deterministic pushdown transducer (DPDT for short) is obtained
from a DPDA by adding to its each transition an output word w € A*, If T is a
DPDT and we omit from it the outputs we obtain the underlying DPDA of 7.
It follows from the requirement that the set of accepting modes is a subset of the
reading modes that our DPDT’s are single-valued, i.e., for each input word
there exists at most one output word. If e-moves are allowed at the end of com-
putations of underlying automata, then the corresponding transducers need not
to be single-valued; therefore, we feel that our choice of definition is well

motivated since, intuitively, determinism implies single-valuedness.

Finally, we say that two DPDA’s are equivalent if they accept the same
language, and that two DPDT’s are equivalent if they define the same transla-
tion (input-output relation). Clearly, the equivalence of DPDT’s requires that

their domains are the same, i.e., that the underlying automata are equivalent.

3. Synchronized and synchronizable DPDA’s

Let M, and M, be two DPDA’s with common input alphabet
2, M; =(Q;, 2, Ty, (8, Z;), F;, P;) for i =1, 2. Without loss of generality, we
assume that I'; N 'y = ¢, and also that as M;’s are in a normal form namely
they do not have any pushing e-moves. We define the crossproduct M, X M,

of M, and M, as one stack machine accepting a subset of X* having
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(@1 X Ty X Q4 X Ty) as the set of states and I'; U I'y as the stack alphabet, and
operating in the following way: Let M, X M, be in a state (g,, A, g9, A;) and
having W, w, W,_jw,_; - Wowy, with w; €Ty and w; ely, for

t=0,...,n—1,and w, €T, w, €T}, in its stack. Then

(1)

if (¢;, A;) is a reading mode for ¢ = 1,2 and (g;, 4;) = (pi, &) is in
pi, M; X M, when reading symbol a moves to the state (p,, By, psBy),
where B, (resp. By) is the first symbol of o,w, (resp. ayw,w,_; ) and
changes the stack contents to W, . W,y Wy Wy, Wy—y * ' ° WoWg , Where
Wp41 = € and w) = B{lw, (resp. W,4, = ¢ and @, = B5'w, ) if a;=¢
(resp. ap = €), and if @, # € (resp. oy # €) then w,; = Bl e, and v, = w,

—_— - — —
(resp. w,4, = B3 oy and w, = w,).

i1
) it (an AD) (resp. (g A9) s an e-mode and (g3 Ay) —> (py, ) is in M,

€
(resp. (go, A3) —> (po, €)) is in M,), then M; X M, moves to a state
(py, By, 92, Ag) (resp. (qy, Ay, pg, Bo), where B, (resp. By) is the first symbol
of w, (resp. W, W,_;) and changes in its stack contents w, to By w, (resp.

w, to By w, if W, # € and @,_, to B! w,_; otherwise).

Initially, M X M, is in the state (s, Zy, 89, Z5), and it accepts an input
word w if, after reading w, it is in a state (qy, A;, g9, Ag), where (g;, A;), for

it = 1, 2 is an accepting mode of M;.

A few remarks concerning the definition of M; X M, are in order. The
whole construction resembles Valiant’s “alternating stacking” construction, cf.
[21]. However, we generalize it by allowing e-moves as well as the acceptance

with nonempty stack. The nondeterminism of M,; X M, (due to (ii)) could be
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avoided by modifying the definition; however, this does not seem to yield any

advantage.

It is a straightforward consequence of the construction that M, X M, simu-

lates both M; and M, and hence we have:
Lemma 1. L(M,; X My} = L(M,) N L(M,).

From Lemma 1 it follows that the behaviour of M; X M, cannot be
described by either a DPDA or even by PDA (or other types of “simple”
machines) in general. However, the main point in this construction is that the
machine M,; X M, simulates M, and M, in a “synchronous” way, i.e., input
symbols are read simultaneously, and so for some structurally similar DPDA’s

M, X M, might be “simple”.

We proceed by looking for conditions under which the simulating machine
M, X M, is simple enough to have the emptiness problem decidable. Let k& be a
natural number. We say that a computation in M; X M, is k-bounded if, in
any step of this computation, the new stack configuration depends only on the
current state of the machine and the k& topmost symbols of the stack. The
DPDA’s M, and M, are k-synchronized if all the computations for the words in
L(M,) U L(M,) are k-bounded, and the machines are synchronized if they are

k-synchronized for some k.
As an easy consequence of the above we have:

Lemma 2. If M, and M, are synchronized, then M, X M, can be simu-

lated by a PDA.
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We also have the following important lemma:

Lemma 3. Let k£ be a natural number. It is decidable whether two given

DPDA’s are k-synchronized.
Proof. We define a machine M’ which operates as follows:
(i) it simulates all k-bounded computations of M, X M,;

(i) in each step of a simulation it detects whether k-boundedness property is
violated and if so it nondeterministically chooses the number 1 or 2 for ¢ and
from that point on simulates the machine M;. M’ accepts an input word if
and only if it is, after reading the whole word and making the above non-
deterministic choice, in an accepting mode of M; or M,. Clearly, M’ can be
realized by a PDA, and moreover, M; and M, are k-synchronized if and

only if the language of M’ is empty. Hence, the lemma follows. O

Although we do not know how to decide whether M, and M, are synchron-
ized, it follows straightforwardly from the proof of Lemma 3 that if we know that
they are synchronized we can effectively find a k& such that they are
k-synchronized and therefore also a simulating (push-down) machine for
M, X M,. Having this simulating PDA M’ we check the equivalence of M, and
M, by modifying M’ as follows: (i) if a computation in M’ is blocked the new
machine simulates the nonblocking (if such exists) M; and accepts if M; accepts;
(i) if the whole input word is read by M’, then the new machine does the same
and accepts if exactly one of the simulated machines is in an accepting mode.
Clearly, the testing of the emptiness for this new machine provides a test for the

equivalence of M; and M,. So we have proved:



Synchronizable Determinisitc Pushdown 9

Theorem 1. Given two synchronized DPDA’s, it is decidable whether they

are equivalent.

After having Theorem 1 an interesting question arises: When two DPDA’s

are synchronized?

Example 1. Any DPDA is synchronized with any deterministic finite auto-
maton. This is immediate since the stack of the simulating machine contains

only symbols from the stack alphabet of the DPDA.

Example 2. Any equivalent pair of realtime DPDA’s accepting with the
empty stacks is synchronized. This is proved in [16] as a generalization of

Valiant’s earlier proof for nonsingular DPDA’s, cf. [21].

Example 3. Consider the language a*b** and two DPDA’s M, and M,
accepting it: M, when reading a’s and 4’s pushes them into the stack, while read-
ing ¢’s pops one symbol in each step as long as there are symbols in the stack
and after that do not change the stack at all. M,, in turn, pushes only a’s into
the stack and starts popping already when reading b’s and continue that (as long
as the stack is nonempty) when reading ¢’s. Clearly M, and M, are not syn-
chronized. However, the use of the stack is now inessential since a*b*c* is regular,
so that it can be accepted by a deterministic finite automaton M. Moreover, by
Example 1, both M, and M, is synchronized with M. In particular, this shows

that the property of being synchronized is not transitive.

Example 3 naturally suggests the following generalized definition. Two
DPDA’s M,(0) and M40} are synchronizable if there exists a natural number ¢

and DPDA’s My(5) and My(s), for y=1,...,t, such that M;(j) and
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M;(j + 1) are equivalent and synchronized for i = 1,2 and y=0,...,¢t — 1,

and in addition, M,(t) and My(t) are synchronized.

Theorem 1 can be strengthened to

Theorem 2. Given two synchronizable DPDA’s, it is decidable whether

they are equivalent.

Proof. Let M,(0) and M,0) be two synchronizable DPDA’s. We guess a
natural number ¢ and DPDA’s M;(5),for ¢ = 1,2 and j=1, ..., t, satisfying
the properQies required in the definition of the synchronizability. By Lemma 3,
we can check whether our guess is correct and therefore, by Theorem 1, we can

decide the equivalence of M,(0) and M,(0). O

Although it is probably very difficult to show that two DPDA’s are syn-
chronizable, we feel that this framework might be fruitful in attacking the
equivalence problem for DPDA’s. In particular, an important question is: Are all
equivalent DPDA’s synchronizable? We conjecture that this might be the case,

and hence, our Theorem 2 might yield an affirmative answer to the equivalence

problem for DPDA’s.

As a related open problem we ask whether or not, for each two equivalent
DPDA’s M, and M,, there exists a third DPDA M which is synchronized with
both M, and M,. In other words, can two equivalent DPDA’s always be syn-

chronized via a third one?
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4. Synchronizing transducers

In this section we discuss in what regard, if at all, our notions of synchron-
ized and synchronizable can be extended to DPDT’s. We start with an example
indicating difficulties.

Example 4. Consider DPDT’s Ty and T, which translate the word a™b™#

into the word a™b"

and operate as follows: T} when reading a’s produces them as
outputs and pushes for each a another one into the stack. When seeing first b
(or endmarker #) T starts to pop a’s from the stack by reading the empty word
and producing output b in each step. When the stack is empty it continues to
read b’s (and #) without producing any output. T, behaves like T; when reading
a’s but when seeing b’s it reads them, simultaneously outputs b’s, and pops one a
from the stack as long as there are a’s there. From the point on when there are
no a’s in the stack T, continues reading b’s without producing outputs, and if

there are still some a’s in the stack when all the b’s are read, then T, pops them

by e-moves and outputs b in each move.

Clearly, the underlying automata of T| and T, are not synchronized; there-
fore T; and T, are not synchronized either. On the other hand, the underlying
automata are synchronizable (since the domains are regular), but this does not
synchronize the transducers, i.e., does not provide a chain of equivalent DPDT’s
such that, for each consecutive two, there exist a single PDT which simulates
simultaneously both these transducers. In fact, 7| and T, seems to be nonsyn-

chronizable in this sense.
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The above example indicates that the equivalence problem for DPDT’s is
essentially more difficult than for DPDA’s. In particular, we cannot make the
similar conjecture as we made for DPDA’s in the previous section. For this rea-
son we define formally only the notion of synchronized transducer by saying that
two DPDT’s are synchronized if their underlying DPDA’s are synchronized. In
this case Theorem 1 can be strengthened for DPDT’s, too. In order to be
allowed to use results of the previous section we note that the normal form of

Section 3 (no pushing e-moves) can be assumed here, too.

Theorem 3. Given two synchronized DPDT’s, it is decidable whether they

are equivalent.

Proof. Let T and T, be synchronized DPDT’s and let M, and M, be the
underlying DPDA’s, respectively. We first test, by Theorem 1, whether M, and
M, are equivalent. If not we are done; so assume that they are equivalent.
Then, as we described in the previous section, we can find a PDA M simulating
simultaneously M; and M,. Moreover, this simulation is “faithful” in the sense
that all the successful computations of M, and M, can be recovered from those
of M, or formally, for ¢ = 1, 2, there exists a weak coding ¢; (a morphism map-
ping letters into letters or the empty word) mapping the set of all successful com-
putations of M onto those of M;. Therefore the testing of the equivalence of T}
and T, can be reduced to the testing of whether two morphisms are equivalent on
the language corresponding to all successful computations of a PDA. Such a

language is context-free, as is easy to see, and so Theorem 3 follows since the
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morphic equivalence for context-free languages is decidable, cf. [5] or [1]. O

Theorem 3 provides an alternate proof and a slight generalization of
Theorem 1 in [10]. For example, it shows that the equivalence problem is decid-
able for DPDT’s based on realtime DPDA’s accepting with empty stack, cf.
Example 2. It also shows that the equivalence of a DPDT and a deterministic

finite transducer can be decided, cf. Example 1.

We conclude this section with a couple of results which, besides being
interesting on their own, might be useful in proving the decidability of the

equivalence problem for some classes of DPDT’s.

Theorem 4. Let Ty be a DPDT and M, a DPDA such that the underlying
automaton M, of T and M, are synchronized. Then it is decidable whether
there exists a DPDT T,, with M, as the underlying automaton, such that 7', and

T, are equivalent, and if such a T exists it can be found effectively.

Proof. Again we first test, by Theorem 1, whether M; and M, are
equivalent, and if not we are done. So assume that they are equivalent. We
attach to each tranmsition of M, an output which we consider as an unknown.
Let the DPDT thus obtained be T5(X) where X denotes the set of the unknowns.
Now, the fact that 7 and Ty(X), for a fixed assignment of the unknowns, are
equivalent on a word w € L{M,) means that the assignment is a solution of the

equation



14 Culik and Karhumaki

Ty(w) = TAX)(w) (1)

where the left hand side is a word over the output alphabet of T, and the right
hand side is a word over the set X of unknowns. More generally, all the solu-

tions of the (infinite) system
Ty(w) = Ty(X)(w), w € L(M)) (2)

of equations characterizes all those transducers obtained from T9(X) by fixing the

variables which are equivalent to T}.

Now, we use the fact that M, and M, are synchronized. It means that the
system (2) is algebraic, cf. [4], and therefore there effectively exists a finite
equivalent subsystem of (2), cf. {1]. Hence, Theorem 4 follows, since there

remains only a finite number of possibilities which has to be checked. O
As a special case of the above proof we obtain:

Corollary. Given a DPDT, it is decidable whether there exists an
equivalent DPDT with the same underlying automaton and having only empty

outputs for e-moves. If this is the case such a DPDT can be effectively found.

Finally, we note that using the ideas of the proof of Theorem 4 we can find
effectively, for a given deterministic finite transducer, an equivalent minimal
(with respect to the number of states, for example) DPDT. A proof of Theorem

4 based directly on Theorem 3 can be obtained, too.
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