EPARTMERT
EPARTMENT

EPARTMENT

ATERISS ¢

WA
W
RSITY OF WATERLOO C

ER SEENGE B
cF SCRNGED

Ot
UT
UT

e
OMP

&

B
R

HNIVE
UNIVE
UNIVE

Real Time,
Pseudo Real Time
And Linear Time ITA

Karel Culik 11
Sheng Yu

Research Report CS-86-03

January 1986

REAL TIME, PSEUDO REAL TIME
AND LINEAR TIME ITA

Karel Culik II & Sheng Yu

Department of Computer Science
University of Waterloo

Waterloo, Ontario, Canada

Research Report CS-86-03

ABSTRACT

A k-ary iterative tree automaton (k-ary ITA) is a
potentially infinite synchronous network of finite auto-
mata structured as k-ary tree with serial input and output
at the root of the tree. The computational power of ITA n
real-time, pseudo real-time and linear-time is compared.
The pseudo real time is a new notion and means that every
cell of an ITA makes a fized number of computational
steps for each input symbol. It is shown that every linear-
time ITA can be simulated either by a pseudo real-time ITA
of the same arity or by a real-time ITA of a higher arity.
As an example, an ITA implementation of real-time in fin-

ite memory is described.

2 Culik & Yu

1. Introduction

A linear array of processors is a type of parallel architecture that is
one of the easiest to implement. It is also a type of architecture which
has been extensively studied since the sixties. A linear array of finite
automata with parallel input is called a cellular automaton (see e.g.[7]);
one with serial input (and output) at the leftmost cell is usually called an
iterative array, see [2], [1]. In our earlier paper [4] we introduced a gen-
eralization of iterative arrays called iterative tree automata (ITA). It is a
tree structured network of finite automata with serial input-output at the
root of the tree. If the underlying structure of an ITA is a infinite k-ary
tree, then we call this ITA a k-ary ITA. Actually, an iterative array is
nothing but a unary ITA.

For simplicity we consider such automata only as language acceptors.
A language L is said to be accepted by ITA A in time T(n) if a string w is
in L if and only if after reading w the root cell of A enters an accepting
state within time T(n), where n is the length of w. Specifically L is
accepted by A in real time if the root cell enters an accepting or rejecting
state immediately after reading the last (rightmost) symbol of input string
w. Besides real time, we are mainly interested in linear time, ie. time
T(n) = cn for some ¢ > 1. A number of results about real-time and
linear-time ITA have been shown in {4], we mention just one: Every
language recognized by a deterministic Turing machine in time 7T(n) can
be recognized by a deterministic binary ITA in time ¢ T(n) for some ¢ >
1. A practically interesting case of (binary) ITA with logarithmic depth
has been studied in [3]. In this case an ITA A processing input w of
length n can use only cells up to depth logn. Hence A uses only O(n)
processors for an input of length n which is the same as a linear-time

iterative array does.

REAL TIME 3

The results in [4] indicated that for each k > 1 linear-time k-ary ITA
are considerably more powerful than real-time k-ary ITA. Here we show
the following rather surprising results. Every linear-time ITA can be
simulated by a pseudo real-time ITA of the same arity. Pseudo real-time
means that the systems reads an input symbol in every ¢® computation
step. ie. that its internal clock is ¢ times faster than that of its host. Or
alternatively, we can obtain a real-time simulation if we are willing to
increase the arity of the tree structure. For every linear-time k-ary ITA

we can construct an equivalent real-time k%ary ITA.

If we consider the family of all ITA (of all positive integer arities)
then we have the following result. The families of languages accepted by
linear-time ITA, pseudo real-time ITA and real-time ITA coincide. The
direct implication of this result is that every linear-time INTM language
can be accepted by an ITA in real time, e.g. every CF language can be

accepted by an ITA in real time.

As an example we describe an ITA implementation of real-time infin-
ite memory. Originally, this example was proposed by the first author
and Fris. We assume that the memory has an infinite number of locations
addressed by all strings in {0,1}* and each address is read sequentially bit
by bit. We also assume that at each location a finite amount of informa-
tion, formally a symbol from a finite alphabet, can be stored. We show
that this device can store and retrieve information to and from any loca-
tion in real time. Specifically, when the ITA reads the last symbol of w#

the information stored at address w is already available at the root.

A more practically interesting version of this example might be a
(potentially infinite) hierarchy of memories. In this case each node of one
ITA is a conventional memory for n k-bit words with an logn-bit address.
"Total" address of a location is then comprised of a variable-length prefix

that is the address of the node and the "local" address. Storage and

4 Culik & Yu

retrieval would work again in real time, but of course a longer prefix must

be used for a more remote memory block.
2. General k-ary ITA’s

Informally, an k-ary ITA is a systolic automaton with an underlying
k-ary tree structure. Every cell of this system has k children. The root
cell is a special cell which is the only place where the system interfaces
with the external world. A cell which is the i** child of a cell is called an
i_cell. There are k+1 transition functions, denoted by 64, 6,, - - -, &;
for a k-ary ITA. §, is the transition function of the root cell. é; is the
transition function of ¢—cells, for ¢+ = 1,2,...,k, respectively. The next
state of a cell is the function of the current states of this cell, its parent,
and k children, except that the next state of the root cell also depends on

the current input symbol.
Following is the formal definition.
Definition 2.1 An k-ary ITA A = (Q, X, A, F) is the following :
Q s the finite set of states;
Y is the tnput alphabet;

A, = {64,6,, - - - ,6;} is a set of transition functions where & is the
transition function of the root cell, §; is the transition function of every
icel, 1 <i<k.

F C Q vs the set of final states.
g\ €Q is the special quiescent state and 8,(qy, " - - ,q)) = q» for all 1 <
1 <k.

A linear iterative array is a special case of ITA’s, i.e., it is a unary

ITA.

REAL TIME 5

A word w is said to be accepted by an ITA A if A reads w and the
root cell of A eventually enters a final state at some time ¢ >n, where n is
the length of w. A language L is said to be accepted by an ITA A if
every word of L is accepted by A and they are the only words accepted
by A. Then we also say that A is an ITA language. A ITA language L is
a real-time k-ary ITA language if every word w of L is accepted by A in
n = lwl (the length of w) steps, i.e. exactly at the time when the last
input symbol is read. An ITA language L is a linear-time k-ary ITA
language if there exists a constant ¢ such that every word of L is
accepted by A in cn steps. Note that the acceptance in exactly cn time
is equivalent to the acceptance in at most cn time. This follows from the

fact that the linear functions are computable by ITA’s (see [1]).

Definition 2.2 For L C 2‘, positive integer ¢ and spectal symbol #
g%, let Ly = {a,# Tag#*™ - - # a0, #° 7 |ayay - - a, EL }. Lis
called a pseudo real-time k-ary ITA language if L.y is accepted by an

ITA in real-time for some integer ¢ > 0.

Intuitively, a pseudo real-time ITA language is a language which is
accepted in real time by a variation of ITA whose internal computation

speed is ¢ times as fast as its input speed.

Pseudo real-time and real-time ITA languages are related as follows.

Theorem 2.1 FEvery pseudo real-time k-ary ITA language is a
real-time k°-ary ITA language, for somec > 0.

Proof outline: Let L be a pseudo real-time k-ary ITA language. By
Definition 2.2, there exists a constant ¢ such that L4 =
{a,# ag# - - #7, #° 7! |ajay - - - a, €L }is accepted by an k-
ary ITA A. We denote the levels of A by their distances from the root,
ie. level 0, level 1, ... , level n, Now, we divide ITA A into groups of

k-level sub-trees such that each cell at level cz, :=0,1,2,..., together with

6 Culik & Yu

all its descendents on the following c¢—1 levels are in a group. Figure 2.1

shows an example of the division for a binary ITA and ¢ =2.

Figure 2.1

If a cell in a group, say F,, is a child of a cell in another group, say F,,
then F, is said to be a child of F5. We replace each group of A by a cell
and keep their parent-child relation, then we get a k°-ary ITA A'. Now
we show that A’ can accept L in real time. A’ accepts L in the same way
as A accepts L.,y except the former is c—1 times faster. The principle
idea is that every cell of A’ simulates ¢ computation steps of a c-level sub-
tree of A in one step. In showing this simulation can be done, we consider

the following two cases:

(1) The root cell of A’ is able to simulate ¢ steps of the top c-level
subtree of A in one step, because A reads a;#°~! in ¢ steps while A’ reads
a; only in one step without loss of any information; and the children of

the root cell of A’ have the information of the states of all the cells in the

REAL TIME 7

next ¢ levels of A which is enough for the root cell of A’ to simulate ¢

steps of the top ¢ levels of A in one step.

(2) For a cell of A’ which is not the root cell, the simulation can be
also done because the parent and children of this cell can store enough
information to support the simulation of ¢ steps of a c-level subtree of A
in one step. Technically, each cell of A’ has to store the state information

of a 2¢—1 level subtree of A.

For the detailed construction, see the proof of Theorem 6.2 in [4]

which is essentially the same result.

The following results have also been shown in [4].

Theorem 2.2 For any integer 0 < m < n, the family of real-ttme
m-ary ITA languages is a proper subset of the family of real-time n-ary

ITA languages.

Theorem 2.3 If L is accepted by an ITA in time T(n)+c where c is
a integer constant, then L is accepted by an ITA in time T(n).

3. ITA’s with Global Broadcasting

First, we introduce the concept of ITA’s with global broadcasting.
Informally, an ITA with global broadcasting is an ITA except that every
input symbol comes directly to every cell at the same time. The following

is a formal definition which is a bit stronger than the informal definition.

Definition 3.1 A is called an ITA with global broadcasting (ITAG)
if A is formed from an ITA A, by adding a direct edge of 0 delay from

the root cell to every cell of A.

8 Culik & Yu

Figure 3.1 shows a binary ITAG. Note that the ITAG shown in Fig-
ure 3.1 can be simulated by the system shown in Figure 3.2. We actually

use the latter presentation of ITAG’s in the following proofs.

1
“ ? represents ‘"

-1

Figure 3.1

In the following, we will show that for any ITAG, there is an
equivalent ITA of higher arity. Thanks to this property, ITAG’s become
useful tools for designing algorithms for ITA’s, especially for real-time and
pseudo real-time ITA’s. The Retimimg Lemma from (6] is used for the

proof of the following theorem.

Theorem 3.2 For any k-ary ITAG Ag, there exists a k*-ary ITA A

which is equivalent to Ag.

Proof: Let A; be a k-ary ITAG. Note that every edge of Ag; has
one unit delay except the edges for global broadcasting. We prove the

theorem in the following steps:

REAL TIME 9

1
represents “4_1___*”

[14)?

Figure 3.2

(1) A systolic automaton A, is obtained by doubling the delay of
every édge in Ag; and slowing down both the internal computation speed

and input speed such that A; runs twice as slow as A.

(2) We define a mapping 7 which maps every cell of level ¢ in A, into

integer ¢ as shown for k¥ = 2 in Figure 3.3.

10 Culik & Yu

4 ? represents

Figure 3.3

For every directed edge, e.g. (c;, c;) with delay of d, we calculate the new
delay d' =d + m(c;) — m(c;) and obtain a systolic automaton A, of the

form shown for k£ = 2 in Figure 3.4.

Figure 3.4

By the Retiming Lemma from [6], A, is equivalent to Aj, i.e. the root of

REAL TIME 11

A, and the root of A; enter the same state for the same input string of

any length.

(3) Ay can be further transformed to an equivalent systolic automa-
ton Ag of the form shown for k¥ = 2 in Figure 3.5. Notice that the input

speed of Aj is still slow, i.e. one symbol the every other step.

Figure 3.5

(4) By applying Theorem 2.1, we speed up the input speed of A;
twice to obtain an k*ary ITA.

Corollary 3.3 L is accepted by a k-ary ITAG in real time if and
only if it is accepted by a k2-ary ITA in real time.

Corollary 3.4 L is a real-time k-ary ITAG language if and only i f

it 1s a pseudo real-time k-ary ITA language.

Corollary 3.3 is a directly consequence of Theorem 3.2. Corollary 3.4

can be easily proved by Theorem 3.2 and Theorem 2.1.

12 Culik & Yu

4. Relations Between Real-Time, Pseudo Real-Time, and Linear-

Time ITA languages

Theorem 2.2 shows that for any integer n > 0, the family of real-
time n-ary ITA languages is a proper subset of the family of real-time
(n+1)-ary ITA languages. For any integer m > n > 0, it is easy to
prove that any real-time m-ary ITA language is a linear-time n-ary ITA
language. So, for any given k, the family of real-time k-ary ITA
languages is properly contained in the family of linear-time k-ary ITA
languages. In this section, we will show somewhat surprising result,
namely, that for arbitrary ITA’s, i.e., ITA’s of any arity, the families of
real-time, pseudo real-time, and linear-time ITA languages actually coin-
cide. In particular, we show that a linear-time ITA can be transformed

into a equivalent real-time ITA of higher arity.

Theorem 4.1 L is a linear-time ITA language i f and only if it is a

pseudo real-ttme ITA language.

Proof:

If - Let L be a pseudo real-time k-ary ITA language. Then there
exists an integer ¢ such that L.y = {a #° ag#ol - - # e, #0|
ajaqe - - - a, €L} is accepted by a k-ary ITA A in real time. Let A’ be a
k-ary ITA which works in two phases:

(1) A’ reads one input symbol at each step and puts this symbol at
the tail of a queue. The queue is implemented by the leftmost (or right-
most) path of A’. See [5] for the details of the implementation of a sys-

tolic queue. This process is going on until the whole input is read.

(2) A’ simulates A on the input symbols obtained by popping the

queue once every c steps.

REAL TIME 13

The above two phases start simultaneously. Phase (1) continues for
n steps and then stops. Phase (2) runs for ¢n steps and gives its answer.

So, A’ is a linear-time ITA and it accepts L.

Only If : By Theorem 3.2, we know that any ITAG is equivalent to
an ITA. It suffices to show that any linear-time ITA language can be
accepted by an ITA with global broadcasting in pseudo real-time. Let L
be accepted by a k-ary ITA A in cn time, for some integer constant c.
We will show that there is an ITA Ag of higher arity with global broad-
casting which accepts L in pseudo real time (¢ #’s after each input sym-
bol). Let [be the cardinality of the input alphabet of A. Consider a sys-
tolic automaton Ay which is an l-ary ITAG except that every cell of
which is a k-ary ITA rather than a finite automaton. Intuitively, the
underlying structure of Ag is an infinite {-ary tree with a infinite k-ary
tree growing on each of its nodes. Figure 3.6 shows a case for [= 2 and
k = 2. It is clear that Ay can be simulated directly by a (k+/)-ary ITAG

in real time. The following is a description of Ag.

(1) Let the input alphabet be ¥ = {b;,by, - - - ,b;}. Every cell, except
the root cell, of Ag represents a symbol in 3. The root cell represents
“¢” ¢ & which is the end-marker of any input string. A i_cell (an ¢* cell
of another cell) represents “b;” for any 1<¢<I. Then any path of Ag
represents a string in £'$ and every string in 2°$ is represented uniquely

by a path from a cell to the root of Ag.

(2) When the first input symbol is read, the root cell broadcasts a
“start” command to every cell. Immediately every cell of A4 starts to
simulate A on the input string presented by the path from itself to the
root. Since A is a cn-time ITA, every cell at level ¢ (the root is at level

0) will take c7 steps to complete this simulation.

14 Culik & Yu

@
O
O 0
@ (Y}
. »
O~ C ®
() @ -
. / L4
® O
€
" ‘ c ..
: ¢ = OO~
® , ® . o
.. ‘A
v =0 O=.
® () .
o L S T T T S

Figure 3.6

(3) Ag reads an input symbol every c+1 steps. In other words, Ag
reads a input string a,#%a,#° - - - #°a,#°. The root cell broadcasts the
input symbols in ¥ to every cell of A;. When a cell receives a broad-
casted symbol, it compares this symbol with the value represented by
itself and gets a truth value T if they are equal or F if they are not equal.
For every cell, there is a truth-value queue to store these truth values.
Since every cell of A; is an ITA, the truth-value queue can be simply
implemented by a path of this ITA. Note that (2) and (3) start at the

same time and continue in parallel.

(4) Whenever a cell completes (2), it checks the top symbol of its
truth-value queue and pop it. If the value is 7, the signal accept or
reject according the result of the simulation from (2), will be sent up to
its parent. If the value is F, a signal nonresult will be sent up. A parent
will handle these signals from its children according the following rules: a)

If all the signals from its children are nonresult, a signal nonresult will be

REAL TIME 15

send up no matter what the top-of-queue symbol is; and the top-of-queue
symbol is popped. b) If one of the signals from its children is accept or
reject, it checks the top symbol of its truth-value queue. If it finds a T, it
sends up a signal accept or reject. Otherwise, it will send the signal
nonresult. It pops the truth-value queue. Note that at most one signal
from its children has the value accept or reject because at any time

exactly one of top-of-queue symbols of all its children has value T.

We claim that the above technique gives an correct answer, accept or

reject, to every prefix of the input string.

In order to show that the result is correct, we have to prove that the
path where the result has been passed through represents the same string
as the input string broadcasted by the root. Consider the fact that every
cell at level ¢ will complete its simulation of A earlier than any cell at
level :+1 because the cells at level ¢ work on shorter input strings. If a
result obtained at a cell of level n is coming up along the path to the root
and all the top of queue symbols it encountered are T”s, then it means
that the #** cell it encountered represents the i** symbol in the input
string, for all 1=1,2,....n, namely, this path represents the input string.
Thus the result computed by this cell and sent up to the root is the result
for the given input string. It is easy to prove that there is only one such

path for any input string.

As immediate corollaries of Theorem 4.1 and Theorem 2.1, we have:

Corollary 4.2 L is a linear-time ITA language if and only if it s

a real-time ITA language.

Corollary 4.3 The famzlies of real-time, pseudo real-time, and
linear-time ITA languages coincide, if all the ITA’s of positive integer

arity are considered.

16 Culik & Yu

5. ITA as a real-time infinite memory

as an example, we show an ITA implementation of a real-time infinite
memory. We assume that memory locations are addressed by binary
numbers and each address is read sequentially bit by bit. We also assume
that at each location a finite amount of information can be stored. For-
mally, every store command is in the form z I, where z €{0, 1} is an
address and I € A is the information to be stored. Every retrieval com-
mand is in the form z#, where z €{0, 1}* is an address and # is a end-
marker. An input string is an arbitrary stream of “store’ and “retrieve”
commands. If an z# command precedes any z I command, then a special
“blank symbol” is retrieved. We show that such information storage and
retrieval can be done on a binary ITAG in real time. Consequently, this
can also be achieved on a 4-ary ITA by Theorem 3.2. The results of this
section can be easily extended to the case when the addresses are not res-

tricted to binary numbers; they are from an arbitrarily given base.

Claim 5.1 The operation of storing can be done in real time on an

ITAG.

Proof: Let xI be an arbitrary store command, where =z €{0, 1}t is
the address and I is the symbol to be stored. It is assumed that every cell
of the ITAG represents a value. The root represents a ‘§’. Each left cell,
i.e. a left child of some cell, represents a ‘0’ and each right cell represents

a ‘1’. There are two modes of operations on the ITAG for an insertion:

(1) When the first bit of z is broadcasted, every cell initiates a signal
whose value is the same as the one this cell represents. These signals
start to flow down by one level at each step. For example, the signal ‘§’
is initiated at the root at first step; it goes to every cell on level 1 at
second step, and reaches every cell on level n at n* step. These signals

all die out after the symbol I is broadcasted.

REAL TIME 17

(2) During the address z is being broadcasted bit by bit, every cell, at
each step, compares the value received from the broadcasting with the

signal, as described in (1), which is passing through.

The cell which satisfies the following two conditions is the cell to
store the information I: @) all the pairs of values it has compared are

matching; b) the signal ‘§’ is just arriving when I is being broadcasted.

It is easy to see that for any address z, one and only one cell will be
chosen by the above algorithm to store the given symbol, and the infor-

mation storage is performed in real time.

Claim 5.2 The operation of a information retrieval on a binary

ITAG can be done in real time.

Proof: As in the proof of Claim 5.1, every cell of the ITAG
represents a value. When the operation is initiated, i.e. when the first bit
of the address is broadcasted, all the stored information symbols are
motivated and started to climb up towards the root. Any information
symbol will be killed during the climbing if it arrives at a cell at the time
when the value represented by this cell is not equal to the broadcasting
value of the current step. We can see that one and only one information
symbol will reach at the root, for any given address, at the time the last
bit of the key is just read. Actually, there is a stored symbol (or empty)

reaching to the root for any prefix of a given address.

Based on the observation that the symbol retrieved by the algorithm
of Claim 5.2 must be the symbol stored by the algorithm of Claim 5.1, we

have the following theorem.

Theorem 5.1 The operations of information storage and retrieval

can be accomplished in real time on an ITA.

18 Culik & Yu

By the result in Theorem 3.2, we have the following.

Corollary 5.2 The operations of information storage and retrieval

can be accomplished on an ITA in real time.

References

[1] Choffrut, C., and Culik II, K., “On Real-Time Cellular Automata
and Trellis Automata”, Acta Informatica 21, pp.393-407, 1984.

[2] Cole, S.N., “Real-Time Computation by n-Dimensional Iterative
Arrays of Finite-State Machines”, IEEE Trans. on Comp., vol. c-18,
no.4, pp.349-365, 1969.

[3] Culik II, K., Ibarra, O.H., and Yu, S., “Iterative Tree Arrays with
Logarithmic Depth”, Research Report CS-85-03, Dept. of Computer
Science, Univ. of Waterloo, 1985.

[4] Culik II, K. and Yu, S, Iterative Tree Automata, Theoretical Com-
puter Science, 32 (1984) 227-247.

[5] Guibas, L.J. and Liang, F.M. Systolic Stacks, Queues, and
Counters, Proceedings of 1982 Conference on Advanced Research
in VLSI, M.IT., 155-164.

[6] Leiserson, C.E. and Saxe, J.B., Optimizing Synchronous Systems,
Proc. of 22nd Ann. FOCS Symposium, (1981), 23-36.

(7] Smith I, A. r., “Real-Time Languages Recognition by One-
Dimensional Cellular Automata’, J. of Computer and System Sci-
ence, 6, pp.233-253, 1972.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

