Sparse Cholesky Factorization on a
Local-Memory Multiprocessor*

Alan George 1
Michael T. Heath 1t
Joseph Liu i
Esmond Ng 11
CS-86-02

January 1986

* Research supported in part by Canadian Natural Sciences and Engineering Research Council under grants A8111 and
Ab509, by the Applied Mathematical Sciences Research Program, Office of Energy Research, U.S. Department of Ener-
gy under contract DE-AC05-840R21400 with Martin Marietta Energy Systems Inc., and by the U.S. Air Force Office of
Scientific Research under contract AFOSR-ISSA-85-00083.

t Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L, 3G1

41 Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

i Department of Computer Science, York University, Downsview, Ontario M3J 1P3

Sparse Cholesky Factorization on a
Local-Memory Multiprocessor

Alan George

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Michael T. Heath

Mathematical Sciences Section
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Joseph Liu

Department of Computer Science
York University
Downsview, Ontario, Canada

Esmond Ny

Mathematical Sciences Section
Oak Ridge National Laboratory
Oak Ridge, Tennessee

*Research supported in part by Canadian Natural Sciences and Engineering Research Council under grants
A8111 and A5509, by the Applied Mathematical Sciences Research Program, Office of Energy Research,
U.S. Department of Energy under contract DE-AC05-840R21400 with Martin Marietta Energy Systems
Inc., and by the U.S. Air Force Office of Scientific Research under contract AFOSR-ISSA-85-00083.

ABSTRACT

This article deals with the problem of factoring a large sparse
positive definite matrix on a multiprocessor system. The processors are
assumed to have substantial local memory but no globally shared
memory. They communicate among themselves and with a host
processor through message passing. Our primary interest is in designing
an algorithm which exploits parallelism, rather than in exploiting
features of the underlying topology of the hardware. However, part of
our study is aimed at determining, for certain sparse matrix problems,
whether hardware based on the binary hypercube topology adequately
supports the communication requirements for such problems. Numerical
results from experiments running on a multiprocessor simulator are
included.

Table of Contents

BN e} 75 oo Yo R0 Lo 1 e) + N

. Sparse Cholesky Factorization ..o,
2.1. Dense Case: the Basic Algorithmccooooiiiiiiiiiiiiiiiiiiiicrciren e,
2.2. Parallel Sparse Column-Cholesky and the Effect of Ordering

. Design and Implementationccociiiiiiiiiiiiiicciinnrnreeesrrere e
. Experiments and Conclusionscccciiiiiiiiiiiiiiniciiniercenrre e renseneseeeenes

B 0= () o = ¢ (oL =t SN

1. Introduction

This article deals with the problem of factoring a large sparse positive definite
matrix A on a multiprocessor system. It is assumed that the system supports message
passing among individual processors, and that each processor has a substantial amount
of local memory. We assume also that there is no globally shared memory. These
assumptions are appropriate for a number of recent commercially available machines,
such as the binary hypercube multiprocessors marketed by Ametek, Intel and NCUBE
corporations. In [7], a parallel algorithm was developed for solving dense positive
definite systems on such machines, so this article can be regarded as a sequel to that
work, in which the sparsity of the problem is addressed and exploited.

The process of solving large sparse positive definite systems typically involves four
distinct steps:

1 (Ordering) Find a good ordering P for A. That is, a permutation matrix P so
that PAPT has a sparse Cholesky factor L. This is usually referred to as the
ordering problem.

2 (Symbolic factorization) Determine the structure of the Cholesky factor L of
PAPT, and set up a data structure for this factor.

3 (Numerical factorization) Place the elements of A into the data structure,
and then compute L.

4 (Triangular solution) Using the computed L, solve the triangular systems
Ly=Pb, LTz=y, and then set z=PTz.

The problems of implementing an ordering algorithm and performing the symbolic
factorization procedure on a multiprocessor machine are major projects that will be
considered in a subsequent article. In this paper we develop and test a parallel
algorithm for step 3 only.

Before proceeding with the description and details of the algorithm, some general
remarks about the design and implementation of parallel algorithms should be made.
First, it should be kept in mind that the objective is speed-up. That is, given a p-
processor machine, we would like to solve our problem in time that is as close as
possible to a factor of p less than that needed to solve the same problem on a single
processor version of the machine, using the best serial algorithm available. Of course
in the latter case we assume that the single processor machine has adequate memory,
presumably much more than the amount available to a single processor in the

multiprocessor configuration.

—_9_

There is a tendancy to focus on processor wutilization in studying parallel
algorithms. However, while high processor utilization is a necessary condition for good
speed-up, it is clearly not sufficient; the processors have to be doing wuseful work.
Thus, in order to achieve our objective, it is necessary to be able to distribute the
computation approximately uniformly across the processors, and to identify sufficient
parallelism so that most of the computations can be performed simultaneously.

Let us assume that we are able to achieve this distribution. Except in unusual
circumstances, some communication among the processors will be required during the
computation. This leads us to another important point about communication traffic.

Ideally, every processor in the system should be able to send a message directly to
any other processor. However, for large p, economics make building machines with
such a capability infeasible, so most local-memory multiprocessors provide actual
physical communication links among only a few nearest neighbors in some geometric
layout. (Common topologies include the ring, the two-dimensional regular grid and the
binary hypercube.) A consequence is that a message to be sent from processor 7 to
processor j may have to traverse several physical links, and be forwarded by processors
along the transmission path.

It is therefore useful to distinguish between logical and physical data traffic. By
the logical traffic from processor ¢ to processor j, we mean the amount of data
originated from processor ¢+ that must be received and utilized by processor 5. On the
other hand, we use physical traffic from ¢ to 5 to refer to the total amount of data
traffic that actually flows on the physical link (assuming it exists) from processor 7 to j
in the multiprocessor network. If there is no direct link between processors z and 7,
the amount of physical traffic will always be zero even if there is some logical data
traffic between them. In this case, data originated from processor ¢+ and required by
processor j has to travel through one or more intermediate processors in some
transmission path before reaching j.

It is clear that logical traffic is determined by the way in which the total
computation has been distributed across the processors, and physical traffic further
depends on the underlying hardware topology and routing strategies. Loosely speaking,
logical traffic is a function of the algorithm only, while physical traffic is a function of
both the algorithm and the hardware.

2. Sparse Cholesky Factorization

2.1. Dense Case: the Basic Algorithm

We begin by providing a column-oriented version of the basic Cholesky
factorization algorithm, described in the following algorithmic form.

for 7:=1ton do

begin
for £ := 1 to 7—1 do
forv := jton do
Qij == Qi — Gy ¥y,
Gjj = Vajj

for k := 741 to n do

Apj = ak]-/ajj
end

It is shown in (8] that this form of Cholesky factorization, the so-called column-
Cholesky formulation, is particularly well suited to medium- to coarse-grain parallel
implementation. It was found to have the best combination of work-load balance and
overlapped execution in the outer loop sub-tasks. This version is implemented for
shared-memory multiprocessors in [8], and for various local-memory architectures

supporting message passing in [7,12].

Following [8], we let Teol(s) be the task that computes the j-th column of the
Cholesky factor. Each such task consists of the following two types of subtasks:

1. c¢mod(g,k) : modification of column j by column k (k <j);
2. cdiv(g) : division of column j by a scalar.

Thus, in terms of these sub-tasks, the basic algorithm can be expressed in the

following condensed form.

for y:=1ton do

begin
for k := 1 to j—1 do
emod(j,k)
cdiv(j)
end

We now consider the potential for parallelism in the above formulation of the
algorithm. We implicitly assume throughout this paper that the cmod and cdiv
operations are atomic in the sense that we do not attempt to exploit parallelism within
them, although such exploitation is clearly possible.

Note first that cdiv(j) cannot begin until ¢mod(j,k) has been completed for all
k < 7, and column j can be used to modify subsequent columns only after cdiv(y) has
been completed. However, there is no restriction on the order in which the emod
operations are executed, and c¢mod operations for different columns can be performed
concurrently. For example, after cdiv(1) has completed, emod(2,1) and e¢mod(3,1) could
execute in parallel. These precedence relations are depicted in Fig. 1.

cmod(j+1,5) emod(5+42,7) s cmod(n,j)
cdiv(y)
emod(j,1) cmod(7,2) s emod(g,5—1)

Fig. 1: Subtask precedence graph for column-Cholesky.

5

2.2. Parallel Sparse Column-Cholesky and the Effect of Ordering

The main difference between the sparse and dense versions of the algorithm stems
from the fact that for sparse A, column 5 may no longer need to be modified by all
columns k£ < j. Specifically, column j is modified only by columns k£ for which /50,
and after cdiv(j) has been executed, column j needs to be made available only to tasks
Teol(r) for which l,;#0. This can be understood easily by examining the basic form of
the algorithm displayed at the beginning of section 2.1. If ay =0, it is obviously
unnecessary to execute the loop on 7, since it has no effect.

Ideally, we would like to choose an ordering for the matrix A which achieves a
number of objectives. First, just as in the use of serial machines, we would like to
preserve sparsity and obtain a low arithmetic operation count. In addition, the ordering
should allow a high degree of parallelism, and allow the distribution of the computation
across the processors in a way that allows the parallelism to be exploited without
requiring an inordinate amount of communication.

Fortunately, these objectives turn out to be mutually complementary. In order to
gain insight into this problem, it is useful to introduce the notion of elimination trees
for sparse Cholesky factors [3,15].

Consider the structure of the Cholesky factor L. For each column j<n, if
column j has off-diagonal nonzeros, define ~[j] by

Tl = mln{z |;;#0, >4}

that is, y[j] is the row subscript of the first off-diagonal nonzero in column j of L. If
column j has no off-diagonal nonzero, we set y[j]=7. (Hence vy[n]=n.)

We now define an elimination tree corresponding to the structure of L. The tree
has n nodes, labelled from 1 to n. For each j, if ¥[j]>7, then node (7] is the parent
of node 7 in the elimination tree, and node j is one of possibly several ch¢ld nodes of
node 7y[7]. We assume that the matrix A is ¢rreductble, so that n is the only node with
~Y[7]=7 and it is the root of the tree. Thus, for 1 <j<n, v[j] >4 (If A is
reducible, then the elimination tree defined above is actually a forest which consists of
several trees.) There is exactly one path from each node to the root of the tree. If node
7 lies on the path from node j to the root, then node 7 is an ancestor of node 7, and
node 7 is a descendant of node 1.

An example to illustrate the notion of elimination trees is provided by the
structure of the Cholesky factor shown in Fig. 2, with the associated elimination tree
being shown in Fig. 3. Elimination trees have been used either implicitly or explicitly
in NUMmMerous articles dealing with sparse symmetric factorization
[1,2,3,5,6,11,13,15,16,17,18,19]. In particular, the paper [17] uses the elimination tree

~6_

as a model to study the parallel sparse Cholesky factorization algorithm in a shared-
memory multiprocessor. In addition, Duff [2] is exploring the use of elimination trees
in the parallel implementation of multifrontal methods.

X

X X
X X

X X X X X

X X X X

Fig. 2: Structure of a Cholesky factor.

Fig. 3: The elimination tree associated with the Cholesky factor in Fig. 2.

The elimination tree provides precise information about the column dependencies.
Specifically, ediv(z) cannot be executed until cdiv(y) has completed for all descendant
nodes j of node 7.

The elimination tree has simple structure that can be economically represented
using 7y, as shown in Fig. 4. Thus, the representation requires only a single vector of

size n.

i 1 2 3 4 5 8
Y713 5 4 5 6 6

Fig. 4: Computer representation of the tree of Fig. 3.

In order to see the role that elimination trees might play in identifying
parallelism, we now consider two different orderings of the same problem, and study
their corresponding elimination trees. Consider a 3 by 3 grid problem, where the 9
vertices of the grid are numbered in some manner, and the associated matrix A has the
property that a,;;#0 if and only if vertex ¢ and vertex j are associated with the same
small square in the grid. Two different orderings of the grid are given in Fig. 5, the
associated Cholesky factors are displayed in Fig. 6, and their corresponding elimination
trees are shown in Fig. 7.

O———(OO—~"w» O—O—~O

O—O—O O—06—0

Fig. 5: Two orderings of a 3 by 3 grid.

X
X X
X X X
X X X X
X X X X X X X X
X X X X X X X X
X X X X X X
X X X X X X X X X
X X X X X X X X X X

Fig. 6: Structure of the Cholesky factors for the orderings of Fig. 5.

Fig. 7: The elimination trees associated with the matrices in Fig. 6.

The elimination tree on the left is typical of those generated by orderings that are
good in the sense of yielding low fill and low operation counts. Its tree structure is
short and wide, and such trees and their associated orderings lend themselves well to
parallel computation. For example, it should be clear that Tcol(1), Tcol(2), Tcol(3),
and Tcol(4) can start immediately in parallel. Moreover, when they have completed
execution, Tcol(5) and Tcol(6) may proceed independently. The remaining tasks are no
different than those for a dense matrix, and the findings in [7] apply equally well here.

On the other hand, the band-oriented ordering shown above is undesirable
because it imposes the same serial execution on the e¢div operations that is imposed in
the dense case. Moreover, the operation counts and fill-in are inferior to that of the
first ordering.

In the elimination tree, if node ¢ and node 7 belong to the same level of the tree,
it is clear that the tasks Tcol(7) and Tcol(j) can be performed independently so long as
the tasks associated with their descendant nodes have all been completed. In order to
gain high processor utilization, it is therefore desirable to assign, if possible, nodes on
the same level of the tree to different processors. An overall task assignment scheme
will then correspond to assigning the Tcol(f) tasks to successive processors in a
breadth-first bottom-up manner from nodes of the elimination tree.

It should be pointed out that some of the practical fill-reducing orderings will
already order the nodes of the elimination tree in this desirable sequence. They
include the recent implementation of the minimum degree ordering using multiple
elimination [14] and some version of the nested dissection ordering [9]. In such cases,
the task assignment scheme corresponds to the straightforward wrap-around
assignment, where task Tcol() will be assigned to the processor s, given by
s = (¢—1) mod p.

3. Design and Implementation

In this section, we consider the design and implementation of a sparse Cholesky
factorization algorithm appropriate for a parallel multiprocessor with local memory.
Let A be the given n by n sparse symmetric positive definite matrix with Cholesky
factor L. We assume that the matrix has already been permuted by some fill-reducing
ordering appropriate for parallel elimination.

As before, we let Tcol(j) be the task of computing the j-th column of the sparse
Cholesky factor L. This task consists of the two types of subtasks: ¢mod(j,k) and
cdiv(7).

- 10 =

In the sparse case, the task Tcol(j) can be expressed in the following algorithmic
form:

for each k with nonzero ;. and j>k do
emod(7,k)
ediv(y)

It should be clear that the number of ¢mod operations required in the task Tecol(y) is
given by the number of off-diagonal nonzeros in the j-th row of L. To facilitate our
discussion, we introduce the vector nmod[*], where the value nmod|[j] is the number of
column modifications e¢mod required in the execution of Teol(j). This vector can be
obtained by simply counting the number of off-diagonal nonzeros in each row of L.

Consider the symmetric factorization of A in a given parallel message-passing
multiprocessor environment. Let p be the number of processors in the parallel
machine. We assume that an assignment of the column tasks Tcol(*) to the
computational nodes of the multiprocessor has been given. For definiteness, let map|[#]
be the mapping of these n tasks into the p processors. That is, map[j] will be the
processor that is responsible for the performance of the task Tcol(s), and hence the
computation of column 7 of L. It should be pointed out that the effect of task-to-
processor assignment on load balancing and communication cost can be studied by
choosing different map|#| functions.

In the parallel environment, we further assume that there are two primitives: send
and awart. Execution of a send does not cause the sending process to wait for a reply.
On the other hand, execution of an await causes the process executing it to be
suspended until the message is received. Messages that arrive at the destination
process before the execution of the receiving await are placed in a queue until needed.

We shall now describe, in an algorithmic form, the work to be performed by the
host and node processors. Each node processor uses a multisend routine, which will be
discussed later in detail.

- 11 -

HOST processor:

Determine the mapping function map [+*]
fors :=1top do /* broadcast map[*] */
send map [#] to processor s

Determine the nmod|+] function
for j:=1ton do
send column j of A and nmod|j] to processor map|j]

repeat n times do
await a column of I and store it into the data structure

~-12 —

NODE processor s:

awatt map|*] from the host

compute ncol (using map), the number of columns to be processed by processor s

/* obtain columns from the host and eliminate if possible */
repeat ncol times do
begin
await a column j of A and nmod|[j] from the host
if nmod[j] = O then
begin
cdiv(y)
multisend (7, L,;)
end
end

ncol := ncol— number of columns received with zero nmod

/* main loop: driven by the incoming columns */
while ncol > 0 do
begin
awart a column of L, say L,
for each offdiagonal nonzero [with map[j] = s do
begin
emod(7,k)
nmod|j] ;= nmod|[j]—1
if nmod[j] = 0 then

begin
cdiv(g)
multisend (s, L,;)
ncol = ncol—1
end
end
end

It is clear that the host processor is merely responsible for the initiation of the tasks by
sending the relevant information to each node processor, and then for the collection of
the computed columns of the factor matrix L. In each node processor, a routine called
multisend is used. Its function is to send the column L,; to the host processor and
also to all the node processors that require this column for performing modifications.

-~ 13 -
Specifically, this routine can be formulated as follows.

Subroutine multisend(j, L,;):

for each processor d such that for some 7 > j, l;; ¥ 0 and map [¢] =d do
send L,; to processor d

send L,; to the host

It should be emphasized that the routine multisend should only send one copy of
the column L,; to a processor even though the processor may use this column to
modify more than one column in this processor. Furthermore, the routing strategy in
the distribution of the column L,; to the processors concerned can be changed by

simply coding a new version of multisend.

There are a few points worth mentioning in the scheme for each node processor.
As soon as a column L,; of L is completely formed, it is immediately sent to the other
processors that need this column. This allows an overlapping of column elimination
and column input from the host in the repeat loop in the algorithm. More
importantly, by making columns of I immediately available, this will reduce wait time
on node processors.

Note also that the main loop is driven by the incoming columns of L. This
implies that the parallel algorithm is working at the granularity level of the subtasks
emod(7,k) and cdiv(y), rather than at the level of the tasks Tcol(j). This is in direct
contrast to the serial implementation of the sparse Cholesky method (for example,
SPARSPAK]J10] or YSMP[4]), where each Tcol(j) is executed and completed in
succession.

Another important characteristic of this formulation is that it is independent of
the interconnection network topology. In other words, the parallel algorithm as
formulated is applicable to any parallel multiprocessor in a message-passing
environment. For different processor interconnections, it may be desirable to choose a
different task-to-processor mapping function map[#] or a different message routing
strategy. But the basic algorithm remains unchanged.

~ 14 -

4. Experiments and Conclusions

In the previous sections our discussion has been independent of the
interconnection topology of the multiprocessor. Our objective has been to distribute
the workload uniformly and to reduce the amount of communication that must be
performed. In this section we report some experimental results obtained from an
implementation of our algorithm running on a binary hypercube multiprocessor. For
background information about hypercube multiprocessors, see [7] and the references
contained therein.

In order to test our implementation, and to gain some information on
communication traffic, we solved some finite element problems derived from a sequence
of L-shaped triangular meshes described in [9]. The ordering used for these problems
was an automatic nested dissection ordering produced by the algorithm described in
[9]. The Tecol(z) tasks were assigned to the processors in a simple serial wrap-around
manner, with no account whatsoever being taken of the underlying topology of the
hypercube multiprocessor. Both the ordering and the symbolic factorization phases
were done in serial mode. Parallel versions of these algorithms are under development.

Our experiments were conducted using a binary hypercube simulator written by
T. H. Dunigan of the Oak Ridge National Laboratory. For details about the simulator,
see [7].

Statistics on both the logical and physical communication for one of the problems
were collected, as shown in the tables that follow. The results reported are typical of
those found in experiments for other problems in the set of nine problems in [9]. The
entry in row r and column ¢ of each table is the amount of data traffic from the
processor corresponding to row r to the one corresponding to column ¢. Thus, the
entries in the last row of the tables represent traffic from the host processor to the
individual node processors.

We have included both communication counts and volume in the statistics.
Communication count simply refers to the number of messages sent. Note that a
message associated with the nonzeros of a column includes the number of nonzeros, the
subscript information and the actual nonzero values. The numbers reported are the
total number of bytes transmitted. In the experiments, an integer requires 4 bytes, and
a floating point number requires 8 bytes.

~ 15—

0 1 2 3 4 5 6 7 Host

0 125 121 115 107 111 106 106 100 126

1 108 126 120 108 107 100 100 101 127

2 108 102 125 118 112 105 100 98 126

3 105 105 104 125 120 112 109 104 126

4 99 103 102 99 125 120 113 103 126

5 110 106 98 97 90 125 118 106 126

6 116 112 107 102 100 97 125 117 126

7 118 116 113 101 110 103 98 125 126
Host 127 128 127 127 127 127 127 127 0

Table 1: Logical communication counts for 8 processors and n=1009.

0 1 2 3 4 5 6 7 Host

0 34068 33576 32916 31656 32412 31776 31716 30972 34116

1 30504 32688 32040 30408 30540 29748 29724 29748 32724

2 30864 30048 32976 32088 31524 30552 29868 29676 33096

3 30768 30828 30720 33312 32640 31500 31260 30528 33420

4 29664 30180 30108 29628 32832 32160 31248 29988 32928

5 30552 30060 29076 28944 27996 32280 31464 30024 32364

6 32028 31656 31032 30252 30216 29688 33168 32088 33240

7 32496 32244 31848 30336 31536 30600 29832 33312 33372
Host 42212 40820 41192 41516 41024 40460 41336 41468 0

Table 2: Logical communication volume for 8 processors and n=1009.

—16 —

0 1 2 3 4 5 6 7 Host

0 125 438 423 0 423 0 0 0 126

1 441 126 0 423 0 408 0 0 127

2 438 0 125 426 0 0 415 0 126

3 0 444 435 125 0 0 0 445 126

4 403 0 0 0 125 428 422 0 126

5 411 0 0 427 125 0 425 126

6 0 437 0 414 0 125 418 126

7 0 0 448 0 445 425 125 126
Host 127 128 127 127 127 127 127 127 0

Table 3: Physical communication counts for 8 processors and n=1009.

0 1 2 3 4 5 6 7 Host

0 34068 125460 124308 0 126876 0 0 0 34116

1 124320 32688 0 120468 0 119760 0 0 32724

2 124596 0 32976 123624 0 0 121620 0 33096

3 0 126336 123684 33312 0 0 0 125928 33420

4 119580 0 0 0 32832 124176 123924 0 32928

5 0 118632 0 0 122712 32280 0 120960 32364

6 0 0 124968 0 121980 0 33168 122724 33240

7 0 0 0 126924 0 126276 122280 33312 33372
Host 42212 40820 41192 41516 41024 40460 41336 41468 0

Table 4: Physical communication volume for 8 processors and n=1009.

There are several noteworthy aspects of the numbers in Tables 1-4. First, observe
that the logical communication is quite evenly distributed among all the processors.
That is, the algorithm generates about the same amount of traffic between any and
every pair of processors.

-17 -

Entries in the logical communication tables associated with the processor nodes
are all nonzero. However, there are a number of zero entries in the physical
communication table. Indeed, each zero in the tables (except for the "Host" row and
column) means that a physical link does not exist between the two associated
processors. For example, there is no direct link between processors 0 and 3. The
messages from processor 0 to 3 must be directed through an intermediate processor,
processor 1. This will have the effect of increasing the physical traffic from processor 0
to 1 and from processor 1 to 3. This explains why the nonzero entries in the physical
communication tables are much larger than the corresponding entries in the logical
communication tables.

Furthermore, it is interesting to observe that the actual physical links in the
hypercube topology all carry about the same amount of traffic. Thus, it would appear
that this particular topology adequately supports the actual (logical) traffic generated
by the algorithm, at least for this class of sparse problems.

In order to determine what our implementation achieved in actual speed-up, we
ran our code using one processor and eight processors, and in addition we ran the best
serial code we have available.

A comparison of the times for the serial code and the parallel code with one
processor was done to assess the cost incurred in the parallel implementation per se. It
is noteworthy that the penalty is quite substantial, in the neighborhood of 25 percent.
This is different from experience with solving dense systems on multiprocessors, where
the performance of the best serial code and the parallel code running on one processor
are comparable. This is to be expected for the dense case, since the parts of the codes
where the majority of the computation is done are identical. However, serial codes for
sparse Cholesky factorization gain important performance advantages through heavy
use of context. For example, efficient processing and storage of a column depend on
rapid and direct access to information about certain selected previous columns. This
context is inevitably lost in a parallel implementation, since the columns are
distributed among many processors, and the use of such context would almost certainly
require prohibitive amounts of communication. Thus, the data structures and
computational schemes used in the serial and parallel implementations are quite
different.

Another aspect of parallel sparse matrix computations that tend to make them
less efficient than their dense counterparts is that the associated messages in sparse
parallel implementations tend to be shorter. Since the time required to transmit a
message from one processor to another typically involves a fixed startup time plus a
cost proportional to the message length, it is desirable for an algorithm to generate a
few large messages rather than many small ones. This is much less easy to achieve for

- 18 —

sparse matrix computations than for the corresponding dense problems.

The results of our experiments are contained in Table 5. Note that the ‘“‘time”

reported is artificial. The simulator measures time simply as the number of machine

instructions executed, with no distinction being made between the relative cost of

executing instructions of different types.

RESULTS ON SPEED-UP
n serial one processor eight processors
time time speed-up time speed-up
265 719606 1027215 .70 285614 2.52
406 1462056 2005731 .73 484443 3.02
077 2567430 3454271 .74 776278 3.31
778 4022592 5357658 75 1120536 3.59
1009 6112334 8060091 .76 1591583 3.84

Table 5: Speed-up for one processor and 8-processor configurations.

5. References

[]

2]

8]

[4]

[5]

[6]

I. S. DUFF, “Full matrix techniques in sparse Gaussian elimination”, in Lecture
Notes tn Mathematics (912), ed. G. A. Watson, Springer-Verlag (1982).

I. S. DUFF, ‘Parallel implementation of multifrontal schemes’, Technical
Memorandum No. 49, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IL. (March 1985).

I. S. DUFF AND J. K. REIDD, ‘“The multifrontal solution of indefinite sparse
symmetric linear equations”’, ACM Trans. on Math. Software 9, pp. 302-325
(1983).

S. C. EISENSTAT, M. C. GURSKY, M. H. SCHULTZ, AND A. H. SHERMAN, “The
Yale sparse matrix package, I. the symmetric codes’, Internat. J. Numer. Meth.
Engrg. 18, pp. 1145-1151 (1982).

S. C. EISENSTAT, M. H. SCHULTZ, AND A. H. SHERMAN, ‘‘Applications of an
element model for Gaussian elimination’, in Sparse Matrix Computations, ed.
J.E. Bunch and D.J. Rose, Academic Press, pp. 85-96 (1976).

S. C. EISENSTAT, M. H. SCHULTZ, AND A. H. SHERMAN, ‘‘Software for sparse
Gaussian elimination with limited core storage’”, in Sparse Matrix Proceedings,
ed. 1.S. Duff and G.W. Stewart, SIAM Press, pp. 135-153 (1979).

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

~19 -

G. A. GEIST AND M. T. HEATH, ‘‘Parallel Cholesky factorization on a hypercube
multiprocessor’”’, Technical Report 6190, Mathematical Sciences Section, Oak
Ridge National Laboratory, Oak Ridge, Tennessee 37831 (1985).

J. A. GEORGE, M. T. HEATH, AND J. W-H. L1U, ‘“Parallel Cholesky factorization
on a multiprocessor’’, Research Report CS-84-49, Department of Computer
Science, University of Waterloo (1984).

J. A. GEORGE AND J. W-H. LIU, “An automatic nested dissection algorithm for
irregular finite element problems”, SIAM J. Numer. Anal. 15, pp. 1053-1069
(1978).

J. A. GEORGE AND J. W-H. LIU, “The design of a user interface for a sparse
matrix package”, ACM Trans. on Math. Software 5, pp. 134-162 (1979).

J. A. GEORGE AND J. W-H. LIU, “An optimal algorithm for symbolic factorization
of symmetric matrices”, SIAM J. Comput. 9, pp. 583-593 (1980).

M. T. HEATH, ‘“Parallel Cholesky factorization in message passing multiprocessor
environments’’, Technical Report ORNL-6150, Mathematical Sciences Section,
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (1985).

J. A. G. JESs AND H. G. M. KEEs, “A data structure for parallel L/U
decomposition”, IEEE Trans. Comput. C-31, pp. 231-239 (1982).

J. W-H. LIU, ‘“Modification of the minimum degree algorithm by multiple
elimination”, ACM Trans. on Math. Software 11, pp. 141-153 (1985).

J. W-H. LIU, “A compact row storage scheme for sparse Cholesky factors using
elimination trees”, ACM Trans. on Math. Software, (1985). (To appear)

J. W-H. LU, “On general row merging schemes for sparse Givens
transformations”, SIAM J. Sci. Stat. Comput., (1986). (to appear)

J. W-H. L1u, “Computational models and task scheduling for parallel sparse
Cholesky factorization”, Parallel Computing, (1986). (to appear)

F. J. PETERS, ‘‘Sparse matrices and substructures "’, Mathematical Centre Tracts
119, Mathematisch Centrum, Amsterdam, The Netherlands (1980).

R. SCHREIBER, ‘““A new implementation of sparse Gaussian elimination’”’, ACM
Trans. on Math Software 8, pp. 256-276 (1982).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

