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2 Cubik and Karhumaki

ABSTRACT

We show a generalization of the Ehrenfeucht Conjecture: For
every language there exists a (finite) test set with respect to nor-
malized k-valued finite transducers with bounded number of states.
Further, we show that for each HDTOL language such a test set
can be found effectively. As a corollary we solve an open problem
by Gurari and Ibarra: The equivalence problem for finite valued
finite transducers is decidable. This is the first time the equivalence

problem is shown to be decidable for a larger class of multivalued

transducers.

1. Introduction

Let L be an arbitrary language over ¥. We say that a finite subset F’ of L
is a test set (with respect to morphisms) for L if whenever two morphisms agree
on F they agree on L as well. The Ehrenfeucht conjecture, cf. [CS2] and [K],
states that each language possesses a test set. It has been shown valid recently
by Albert and Lawrence [ALl], and independently by Guba [Gub]. In
[McN,P,Sa,St] several variations of the latter proof have been given, while in
[AL2] the conjecture has been generalized for k-bounded substitutions, i.e., for
substitutions satisfying that the cardinalities of the images of letters are bounded

by a fixed constant k.

We show here that the Ehrenfeucht conjecture holds also for much more
general types of mappings, namely for those defined by normalized finite trans-
ducers with bounded number of states and bounded degree of nondeterminism on
inputs of length one. (The term “normalized” refers to the fact that the trans-

ducer reads in a single step cither the empty word or a letter.) In particular, it
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follows that the conjecture holds for normalized k-valued transducers with
bounded number of states. Moreover, we show that for this family a test set can
be effectively found for each HDTOL language. Our main motivation is a corol-
lary of this result, the decidability of the equivalence problem for k-valued finite
transducers. In order to put our theorem into perspective we next list the his-

tory of main results on the equivalence of finite transducers.

Equivalence problems for various types of finite transducers (finite automata
with outputs) have been extensively studied since the beginning of automata
theory. In his famous paper [Mo] Moore showed that the equivalence problem is
decidable for length preserving deterministic sequential machines. This decidabil-
ity result was then gradually extended as follows: For deterministic gsm’s Jones
and Laaser [JL], cf. also Blattner and Head [BH2|, for single-valued transducers
Schiitzenberger [Sc] and independently Blattner and Head [BH1], for determinis-
tic two-way transducers Gurari [Gurl] and [Gur2], and finally for single-valued
two-way transducers the authors [CK3]. A strictly larger class than that of
deterministic gsm’s, but incomparable with the other classes above, is the class of
deterministic two-tape acceptors, for which the decidability of the equivalence

problem was proved by Bird [Bi].

On the other hand, Fischer and Rosenberg [FR] showed the undecidability of
the equivalence problem for nondeterministic finite transducers. At the same
time Griffiths [Gr] generalized this undecidability for e-free nondeterministic
gsm’s, and finally Ibarra [I1] proved it for e-free gsm’s with unary input (or out-
put) alphabet. Here, we further narrow the gap between the decidable and unde-
cidable equivalence problems for finite transducers. We show that the problem is
decidable for finite valued finite transducers. We give a detailed proof for the
case of one-way finite transducers, but using the techniques from our previous
paper [CK3| the result can be straightforwardly extended to finite valued two-

way finite transducers, too.
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Actually, we prove a considerably stronger result, namely that for every
HDTOL language and two natural members n and k there effectively exists a
test set with respect to normalized k-valued finite transducers with at most n
states. Clearly, this result implies that given an HDTOL language L and two fin-

ite valued transducers we can test whether they are equivalent on L.

The decidability of testing the equivalence of mappings of certain types on
languages from a family L has been considered by many authors. Most relevant

results from the point of view of this paper can be listed as follows.

Testing the equivalence of mappings which are realized by finite transducers
on a regular language is a special case of the equivalence problem for finite trans-
ducers, since a restriction of a finite transduction to a regular set is again a finite
transduction. In [KK] it was shown that this problem is decidable for (mul-
tivalued) mappings of the form “morphism followed by inverse morphism”, while
it is undecidable for the mappings of the form “inverse morphism followed by
morphism”. This latter undecidability result was generalized in [Ma] for inverses
of finite substitutions. A lot of attention was given to the problem of deciding
the equivalence of two morphisms on a given language. Indeed, in order to prove
the decidability of the DOL sequence equivalence problem in [CF] it was shown
that the equivalence of two morphisms can be tested on the DOL language gen-
erated by one of them. Subsequently the following cases were shown to be decid-
able. Morphisms on a context-free language in [CS1], morphisms on an HDTOL
language in [CK2], and as generalizations of [CS1] and [CK2] single-valued finite
transducers on a context-free language in [C|, and single-valued two-way finite
transducers on an HDTOL language in [CK3]. For any family L of languages
which is effectively closed under inverse morphisms and intersections with regular
sets, and such that languages in L have effectively constructible semilinear
Parikh maps, another generalization of [CS1] was shown in [I2]: It is decidable
whether two deterministic two-way finite transducers are equivalent on a

language from L.
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Some of the above decidability results are based, or can be based, on the
effective existence of test sets for some families of languages, which is known to
hold in the following cases: For regular languages [CS2|, for context-free
languages [ACK], for supports of k-rational formal power series, with k a field,
[RR], for DOL languages [Ru], and for HDTOL languages [CK2]. The last result
in this list was generalized in [CK3], where it was shown that each HDTOL
language possesses a test set even with respect to single-valued two-way (sequen-
tial) transducers with bounded number of states. We shall see here that this
result can be further extended to the corresponding family of k-valued transduc-
ers, but that it does not hold in general, or even for gsm’s with bounded number

of states.

When considering a restricted class of transducers it is certainly important
whether this class is effectively given, that is whether we can test the member-
ship in the class for an arbitrary transducer. To test whether a given finite
transducer is a (deterministic) gsm is trivial. The decidability of single-
valuedness for one-way finite transducers was shown in [Sc], and for two-way fin-
ite transducers in [CK3]. It should be noted that in both these cases the decida-
bility of the single-valuedness actually easily implies the decidability of the
equivalence problem. In [GI] it has been shown decidable whether a given finite
transducer is k-valued for a given k. As will be outlined in Section 6, our earlier
result to decide the single-valuedness for a two-way finite transducer can be

extended to decide the k-valuedness as well.

The rest of this paper is organized as follows. In Section 2 we review some
basic notions in order to fix our terminology and establish an important generali-
zation of the Ehrenfeucht conjecture in terms of systems of equations. In the
next section we introduce transducer schemata as an auxiliary device in proving
the existence of a test set with respect to quite a large family of transducers. It
is shown that such a test set exists (noneffectively) for each language. In Section

4 we show that for each HDTOL language a test set with respect to normalized
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k-valued transducers with bounded number of states exists effectively. Since reg-
ular sets are a subfamily of HDTOL languages, this result implies the decidability
of the equivalence problem for k-valued transducers. In Section 5 we show that
for a given regular K and n > 1 a test set with respect to all normalized finite
transducers (or even gsm’s) having at most n states cannot be found effectively.
In the last section we introduce the notion of a semideterministic (having deter-
ministic transitions but possibly nondeterministic outputs) finite transducer and
show that their equivalence problem is decidable if and only if the problem of
testing the equivalence of two finite substitutions on regular languages is decid-
able, cf. [CK4]. Finally, we discuss the generalizations of our main results to

two-way k-valued finite transducers.

2. Preliminaries and an auxiliary result

We assume that the reader is familiar with the basic results on formal
languages [H], finite transducers [Be|] and L systems [RS]. Consequently, the fol-

lowing lines are mainly to fix our terminology.

A finite transducer is a sixtuple T = <@, £, A, 84, F, E>, where Q is a
set of states, ¥ and A are input and output alphabets, respectively, s, is an ini-

tial state, F' is a set of final states and E C @ X £* X A* X Q is a finite set of

u,v
transitions. We write ¢ —» p if T goes from state ¢ into state p by reading
input ¥ and producing output v. Transducer T realizes a finite transduction

|IT|:Z*—=A* or rational relation R;rCX*X A* as follows:

y € |T| =z (or (z,y) €Ry) if soz-,—pr for some p € F. It is well known that
every rational relation can be realized by a normalized finite transducer i.e.,
with ECQ X (ZU{e}) XA*X Q. (In fact, also by a transducer with
EC@X(EZU{}) X AU({ex Q). Finally, a finite transducer is called a
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generalized sequential machine (gsm)if ECQ X £ X A*X Q.

We say that a finite transducer T admits an (input) e-loop if there is

g €Q, v € AT such that ¢ e—vP g. If T does not admit an e-loop it is e-loop-free.
Clearly, for each e-loop-free finite transducer T the cardinality of |T|z for any
z In X*is finite. Let k be an nonnegative integer. We say that a transducer T is
k-valued if, for each z in X* |T|z contains at most k words, and that it is fin-
ite valued if it k-valued for some k. Two finite transducers T| and T, are
equivalent on a language L if, for each word w in L, |T}|w = |T3| w. In
particular, if this holds for the language X* (or equivalently for

dom(T) U dom(Ty)) we say that T, and T, are equivalent.

We conclude this section with an important auxiliary result, essentially
proved in [AL2] as a consequence of the validity of the Ehrenfeucht conjecture.
For the sake of completeness we also give the proof of this result. First, however,

we have to introduce some more terminology.

Let V be a finite set (of variables) disjoint from our basic alphabet ¥. An
equation over ¥ with V as a set of variables is a pair (u, v) in V* X V* and its
solution is any morphism h : V* —X* satisfying h(u) = h(v). Two systems of
equations (i.e., sets of equations) are called equivalent if they have exactly the
same solutions. As shown in [CK1] the Ehrenfeucht conjecture can be stated as
follows: Any system of equations with a finite set of variables is equivalent to its
finite subsystem. The set of natural numbers is denoted by IN. Let k : IN —IN
be a function and let, for each pair (i, j) of natural numbers satisfying
1< 7 <k(2), S(Z, 7) be a finite system of equations over ¥ with the same set V'
of variables. We consider the formula

o k)

s=A V S(irj)

t=] jm=l
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and say that a morphism h : V* —=X* is a solution of S if, for each ¢ > 1, there
exists an index j;, with 1 < 5; < k(¢), such that h is a solution of S(i, 5;). The

claim that S is equivalent to its finite subpart now means, of course, that there
m k(i)
exists an m > 1 such that each solution of the formula A V S(¢, j) is a solu-

i=l j=1

tion of S as well. Now, we are ready for our auxiliary result:

oo k(i)
Theorem 1. For each formula S = _/\1 \/l S(<, 7), where k is a function
t== J-
from IN into IN and each S(7, j) is a finite system of equations, there exists an
m k(i)

m > 1 such that S is equivalent to the formula ‘/\1 _\/1 S(i, 5)-
t=] =

Proof. We associate with S a finitely branching infinite tree Tg labelled by
finite systems of equations as follows. The root node (labelled by the empty set
of equations) has descendants S(1, j), 7 =1, ..., k(1), and each node on level ¢
labelled by S has descendants S U S(i + 1, j) for j=1,..., k(i +1). So
each path in this tree defines an ascending chain of finite systems of equations
and a morphism k is a solution of S iff it is a solution of (at least) one infinite

system of equations defined by an infinite path in Tk.

Now, we cut off the “unnecessary” branches of Tg as follows. We say that a
node s in T is terminal if there exists an infinite path starting from that node
such that each system of equations appearing as a label of a node in this path is
equivalent to the system of equations appearing as a label of s. We throw away
all descendants of terminal nodes and let a tree thus obtain be Ts. If T would
contain an infinite branch, then, by the construction, for each system of equa-
tions S occurring as a label of a node in this path there exists another node
labelled by a system S' of equations such that S and S’ are not equivalent. This,

in turn, would yield an infinite system of equations that does not possess a finite
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equivalent subsystem. This, however, is impossible by the Ehrenfeucht conjec-

ture, see [AL1], therefore Ty is finite.

It also follows directly from the construction that T is equivalent to Tg in
the sense that any solution of a system of equations occurring as a label of a ter-
minal node in Ts is a solution of a system of equations defined by an infinite path
in Tg, in other words, it is a solution of S. So we can choose m to be the length

of the longest path in ’fs. a

3. Existence of a test set

Let L C X* be a language and © a family of finite transducers having £ and
A as input and output alphabets, respectively. We say that a finite subset F' of
L is a test set for L with respect to © if, 'for any two transducers from O, they
are equivalent on L if and only if they are equivalent on F'. In particular, if © is
a family of morphisms, then we have the ordinary notion of a test set, cf. [CS2],

and the recently proved Ehrenfeucht conjecture states that such an F always

exists, cf. [AL1] and [Gub).

Our goal here is to generalize this result for families of transducers. Clearly,
a test set does not exist for every L with respect to the family of all finite trans-
ducers. On the other hand, we shall show that it exists for each L with respect
to the family of e-loop-free, normalized finite transducers satisfying the following
two conditions: the number of states is bounded by a fixed (but arbitrary) con-
stant, and the degree of edge-ambiguity, that is the maximal cardinality of
the set E N ({g} X {a} X A* X {¢'}) where ¢ and ¢' range over @ and a over
Y U {e}, is bounded by another fixed (but arbitrary) constant d. Let us denote

this family of finite transducers by T, 4 (£, A).
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Theorem 2. Let n and d be natural numbers. Each language L C &*

possesses a test set F' with respect to T}, 4(X, A).

Proof. In order to group T, 4(X, A) into a finite number of cases we intro-
duce the notion of transduce schema as in [CK3]. A transducer schema over a
finite set 1 is a e-loop-free, normalized transducer Tq, with ¥ and 2 as input

and output alphabets, and satisfying the following three properties:
(i) if(g,a,u,q')€EE,thenu €1,
(i) the edge-ambiguity of T is at most d,

(iii) if (¢,a,u,¢)€EE and (p,b,v,p) EE with (g, ¢,q)# (p,b,p') then
u F# v.

Clearly, for a fixed £ and fixed number of states, there exists only a finite
number of distinct transducer schemata (up to renaming of outputs). Thus,
under these assumptions {2 can be assumed to be fixed, too. For our purposes it

is Hlustrative to call 2 the set of variables.

Let S, 4(%, Q) = {S €T, 4(X, Q) | S is a transducer schema}. For a map-
ping ¢ : 2 —A*and S in S, 4(Z, Q), we denote by ¢(S) the transducer obtained
from S by replacing in E each output (variable) ¢ by i(c). We say that i(5) is
an interpretation of S via 1. Let I(S) denote the set of all interpretations of S

and let 1(5,4(%, Q) = __ Us mI(S). Obviously, I(S, (%, Q) = T, 4(E, A),
n,d\~"

so that S, 4(X, Q) provides a “finite base” for the family of e-loop-free, normal-
ized finite transducers with ¥ and A as input and output alphabets and having
at most n states and edge-ambiguity at most d. Consequently, to prove the

theorem it is enough to establish the following claim.
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Assertion. Let S; and S, be two transducer schemata. There exists a fin-
ite subset F(S,, Sy) of L such that for any two transducers T, and T, from I(S,)
and I(S,), respectively, T, and T, are equivalent on L if and only if they are

equivalent on F(S;, Sy).

Proof of Assertion. It
L(S;, S3) = L N ((dom(S;) — dom(S3)) U (dom(Sy) — dom(S}))) is nonempty we
can choose F(S,, Sy) to be any singleton subset of L(S), S;). So assume that
L(S,, Sy) is empty. Consider a word z in L N dom(S,;). Since S| and S, are -

loop-free the output sets |S, |z and |S,|z are finite, say

ISilz = {y1,..., »} and [Solz ={z,..., 2}.

Let Y={y,,..., 5} and Z={z;,..., 2} Let Py and P; denote the sets
of all partitions of Y and Z, respectively. For each pair (Py, Pz) in Py X P,
with the same cardinality, and for each bijection o : P, —+P; we define a finite

set of equations as follows:

vi = z; ff afy] =[], (1)
where the square brackets are used to denote the equivalence class defined by its
representative and z; denotes the barred copy of z;. Clearly, the above pro-

cedure yields only a finite number of systems of equations with 2 U Q as a set of

variables.

Now, an important observation is that each of the systems of equations in
(1) describes one of the possible ways in which two transducers T from I(S;) and
T, from I(Sy) can be equivalent on 2. That is to say, if T is obtained from S,
via interpretation ¢, and T, from S, via ¢4, then T) and T, are equivalent on z if
and only if the morphism h : (2 U {2)* —A* defined by h(w) = i;(w) for w in Q

and h(w) = iy(w) for W in Q is a solution of (at least) one of the equations in (1).
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We carry out the above construction over all words = in L N dom(S,). This

results an formula

oo k(i)

S=A V SG,37), (@)

i=1 j=1
with k : IN —IN and each S(i, ;') a finite system of equations over 2 U (—i, such
that the solutions of this formula characterizes these pairs of transducers in
I(S)) X I(Sy which are equivalent on L. But, by Theorem 1, (2) has an
equivalent finite subsystem. Hence, the corresponding finite subset of L tests the
equivalence of any pair of transducers from I(S;) X I(S;). So our proof for

Assertion, and also for the theorem, is complete. O

We finish this section with a couple of remarks explaining our choice of fam-
ily of transducers. First of all, in order to keep the set of variables finite (and
have a “finite base” property) we have to bound the cardinality of the state set
as well as the degree of edge-ambiguity. Because of the same reason we also
have to bound uniformly the set of input words read in a single step, hence we
consider only normalized transducers. Finally, the e-loop-freeness is required in
order to get only finite systems of equations in (1). Despite these restrictions our
class T, 4(X, Q) is large enough to yield interesting corollaries, as we shall see in

the following two sections.

We also want to emphasize that it is not only our proof techniques but the
nature of the problem which requires both the parameters k and d. Clearly,
Theorem 2 does not hold if the number of states is not bounded. The fact that
for the case of nonbounded edge-ambiguity it does not hold either follows from a
recently proved result [L] that even the simple regular language ab*c does not

possess a test set with respect to the family of finite substitutions.
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4. Effective subcase

In this section we are looking for conditions under which the test set of
Theorem 2 can be effectively found, while in the next section we show that this is

not possible in general.

Let TE(X, A) denote the family of k-valued, normalized transducers with X
and A as input and output alphabets, respectively, and with at most n states.

€€
Clearly, the only possible e-loops in k-valued transducers are of the form ¢ —gq.

These, however, can be eliminated without affecting the transduction realized by
the transducer and the number of states of the transducer. It is also obvious
that every e-loop-free transducer in T¥(EZ, A) is also in our earlier class

T, x(¥, A). Hence, we have a corollary of Theorem 2.

Theorem 3. Let £ and n be natural numbers. For each language L there

exists a test set F with respect to T¥(Z, A).

In order to state our main result of this section, which provides an effective
subcase of Theorem 3, we have to recall some definitions on L systems, cf. [RS].

A DTOL system is a (¢t + 2)-tuple (X, hy, ..., hy, w) where each h; : * —X*

[ o]
is a morphism and w is a word in £%. It defines the language L = U L;, where
im0

t
Ly={w} and L;,, = Ul hi{L;) for ¢ > 0. Languages thus obtained are called
J=

DTOL languages and languages of the form h{L), where L is a DTOL

language and h is a morphism, are called HDTOL languages.

Theorem 4. Let k and n be natural numbers. For each HDTOL language

L there effectively exists a test set F with respect to TH(E, A).
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Proof. As it has been already stated at the beginning of this section it is
enough to consider e-loop-free transducers in ’If,’(E, A), or equivalently, we may
assume that T,'f(Z, A) contains only such transducers. Now, the proof is split

into two Assertions.

Assertion I. Given two languages L,, L, C X* with L, C L,, and two
natural numbers n and k, it is decidable whether L, is a test set for L, with

respect to TH(Z, A).

In order to prove Assertion I we recall the construction in the proof of
Theorem 2. By that proof, we can associate each word with a finite number of
finite systems of equations in such a way that the set of all the solutions of at
least one of these systems characterizes all these pairs of transducers from
11,‘(2, A) which are equivalent on this given word. Consequently, since L, and L,
are finite, the assertion follows from the fact that it is decidable whether two fin-

ite systems of equations have exactly the same solutions, ef. [CK1].

Assertion II. Let h : ¥* —=X* be a morphism and let n and k& be two
natural numbers. If F’ is a test set for L' C £* with respect to T§(Z, A), then
R(F") is a test set for h(L') with respect to TF(Z, A).

In order to prove Assertion II we first conclude that for a transducer T in

THX, A), there exists another transducer T(h) in T§(X, A) such that
|T(R) | (w) = |T | (h(w)) for all win X*. (1)

The construction of T(h) is a routine one: The sets of initial and final states are

h(a)u
subsets of those of T, and for each computation of the form ¢ — ¢/, with @ in

¥, according to T, T}, contains a transition (g, a, u, ¢'), and no other transitions.

Hence, the number of states of T(h) is at most that of T It also follows directly
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from (1) that T(h) is k-valued.

Now, assume the contrary that Assertion II does not hold. Then there exist
transducers T; and T, in T¥(Z, A) such that they are equivalent on h(F') but
IT,| (h(z")) # |Ty | (h(2")) for some z' in L'. Hence the transducers T)(h) and

Ty(h) are equivalent on F', but not on L', a contradiction.

Now we are ready to finish the proof of Theorem 3. Let L = g(L), where
L is generated by a DTOL system (X, h, , ..., h,, w). Define

t
Lo={w} and L;, = pl hi{L;) U {w} for ¢ >0. (2)
J=

By Theorem 2, there exists an indexed i’ such that L, is a test set for L, and
hence also for L,_,, with respect to T¥Z, A). By Assertion I, we can find such
an index ¢, that L; is a test set for L,-O_,_l. We claim that actually L; is a test set
for L, as well. By Assertion II, for each y=1,...,¢t, h; (L,-o) is a test set for
h; (L,-o+1), and so, by (2) and elementary properties of test sets, L; 1 is a test
set for L,-0+2. So by the transitivity property of test sets L,-0 is a test set for L,-0+2

and our claim follows by induction. Finally, applying again Assertion II, we con-

clude that g(L; ) is a test set for L with respect to THE, A). O

After having Theorem 4 a natural question arises: Is it decidable whether a
given finite transducer is k-valued? The answser to this question is affirmative.
Indeed, in [GI] it has been shown that the problem can be solved in polynomial
time. An alternate algorithm for this problem would be obtained as a modifica-
tion of our proof of Theorem 4, where test sets for the k-valuedness instead of
those for the equivalence would be considered, cf. [CK3]. As a consequence of
Theorem 4 and the above discussion we obtain the following strengthening of the

DTOL sequence equivalence problem, cf. [CK3].
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Theorem 5. It is decidable whether two finite valued finite transducers are

equivalent on a given HDTOL language.

Proof. Let T and T, be two finite valued transducers. As discussed above
we can decide whether T;’s are k-valued for a fixed k, and hence find the smal-
lest £ such that they are £-valued. Then we construct for T;’s the equivalent
normalized transducers fl_’, Clearly, we may assume that 7_‘,-’5 are e-loop-free and
so in T(Z, A) where m is the maximal cardinality of the state sets of T, and T,

Now, Theorem 5 follows directly from Theorem 4. O

As another corollary of Theorem 4 we have a solution of an open problem

stated in [GI]:

Theorem 6. The equivalence problem for finite valued finite transducers is

decidable.

Proof. Given two finite valued transducers T} and T, we first check
whether their domains, which are regular sets, coincide. If “not” we are done:
The transducers are not equivalent. If ‘“‘yes” we proceed as in the proof of
Theorem 5 and conclude our result from the fact that we can find a morphism ¢
and a DTOL language L such that dom(T;) = g(L). This is, indeed, possible

since dom(T;) is regular. O

As a concluding remark of this section, we want to-emphasize that problems
concerning k-valued, and hence also finite valued, transducers are essentially dif-
ferent from those of single-valued transducers. For example, the single-
valuedness of a finite transducer can be relatively easily checked, as first shown
in [Sc], and it follows directly from this decidability that the equivalence problem
for single-valued transducers is decidable, as well. On the other hand, k-

valuedness, for a fixed k > 2, is much more difficult to decide, and moreover, the
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decidability of this problem does not seem to give any algorithm to test the

equivalence of k-valued transducers.

5. Noneffective subcase

Since the equivalence problem for finite transducers is undecidable, cf. [B],
Theorem 4 does not hold for the whole family T, 4 (X, A). Indeed, the trans-
ducer T(h) at the beginning of the proof of Assertion II can have a larger edge-
ambiguity than T, and hence the number of variables associated with T(h) is not
the same as that associated with T. It is, however, interesting to observe that

this is the only point where the proof for T,, 4 (£, A) breaks down.

In this section we reduce further this noneffectiveness. For a regular
language R C X* and for two natural numbers n and d let GSM, , (R, A)
denote the family of all gsm’s with at most n states, with the edge-ambiguity at
most d, with the domain equal to R, and with A as the output alphabet. We

have:

Theorem 7. For natural numbers n and d and for a regular language R
there exists a test set F' for R with respect to GSM, , (R, £), but it cannot be

found effectively, in general.

Proof. The existence of a test set F' follows as a special case from Theorem
2. The noneffectiveness, in turn, is a consequence of the fact that the

equivalence problem for gsm’s is undecidable, cf. [Gr]. O

Actually, analysing the proof of [Gr| one observes that the parameter n, but
not d, can be fixed (to be no larger than 13) without affecting the noneffective-

ness of Theorem 7.
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We believe that Theorem 7 is interesting in the sense that it is one of the
few known results stating that something holds for regular languages, but prov-

ably noneffectively. In what follows we give another result of this nature.

Instead of considering the equivalence of two transducers on a language we
now consider their inclusion, that is the problem of whether for a language L and
for two transducers T, and T, the relation |T|z C [T,| z holds for all z in L.
We define, in a natural way, the notion of an inclusion test set for L with

respect to a family of finite transducers.

We restrict our considerations to the family of transductions realized by
single-state gsm’s with the edge-ambiguity bounded by a fixed constant k, i.e., to
k-bounded finite substitutions. Let us denote this family by FSi(X, A) and
its two elements by 7 and o. Obviously, we can describe the fact that
7(z) C o(z), for a word z, by using a formula similar to that we used to describe
the fact that two transducers are equal or a given word, cf. Section 3. Moreover,
it is shown in [Ma] that the problem of deciding whether for a given regular
language R and for two finite substitutions 7 and & the relation 7(z) C o(z)

holds for all z in R is undecidable. So in analogy to Theorem 7 we also have:

Theorem 8. For a natural number k and for a regular language R C ©*
there exists an inclusion test set F' for R with respect to FSi(X, A), but it can-

not be found effectively.

Whether or not Theorem 8 holds for ordinary test sets remains open, cf. also

Section 6.
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6. Concluding remarks

We have generalized the Ehrenfeucht conjecture for mappings realized by
families of transducers. We have also been able to exhibit quite large families of
transducers (Theorem 4) such that every regular language possesses effectively a
test set with respect to these families. On the contrary, we also show that for
still larger families this effectiveness does not hold anymore (Theorem 7). The
distinctions between these two families of transducers is that in the former case
the mappings are of bounded nondeterminism, while in the second case the non-
determinism is unbounded. In terms of equivalence problems the above can be
stated as follows: If the nondeterminism of the mappings realized by finite trans-
ducers is bounded by a fixed constant, then their equivalence is decidable, while

if it is unbounded, then it is undecidable (even in the case of gsm’s).

One way to generalize deterministic gsm’s is to consider single-valued or k-
valued finite transducers. As we saw, the decidability of the equivalence problem
is not affected by this generalization. Another possibility is to require that a gsm
is deterministic with respect to inputs, but may produce several outputs in each
step, i.e., the set of transitions E satisfies the condition: if (g, a, u, ¢') € E' and
(g,a,v, ¢") €E, then ¢' = ¢" (but possibly u # v). We call such gsm’s sem-

ideterministic.

It is open whether the equivalence problem for semideterministic gsm’s is
decidable. However, we can show that this problem is equivalent to a simpler

problem, which is conjectured to be decidable, cf. {CK4].

Theorem 9. The equivalence problem for semideterministic finite transduc-
ers is decidable if and only if the problem of deciding whether two finite substitu-

tions are equivalent on a given regular language is decidable.
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Proof. Clearly, the decidability of the equivalence of two semideterministic
gsm’s implies the decidability of the other problem. To prove the converse let
T; = (@:, Z;, A, s0;, F;, E;), for i = 1, 2, be two semideterministic gsm’s. Let
A, and A, respectively, be the underlying deterministic automata. We test their
equivalence, and if the answer is negative we are done: T and T, are not
equivalent. If A; and A, are equivalent we define their crossproduct A, which is
a deterministic automaton equivalent to both A, and A,. We set L to be the set
of all successful computations of A. Clearly, L can be described as a regular sub-
set of (@)X Qa2X X X QX Q,)". Further, we define finite substitutions
75721 {(@1 X @2 X ¥ X @ X Qp)F —A* by the formula

Ti(qu gz, @, qi; qé) = {u I (qt" a,u, qi’) eEi}’ 1= 17 2.

It is a direct consequence of our construction that T and T, are equivalent if and

only if 7, and 7, are equivalent on L. Hence, our proof is complete. O

As our final remark we want to mention that combining the techniques used
in this paper with our older one used in [CK3], the results of this paper can be
strengthened for 2-way finite transducers as well. Without going into further
details we only state the generalizations of Theorems 8 and 9 from [CK3| and

believe that the interested reader can work out the details.

Theorem 10. The equivalence problem for k-valued two-way finite trans-

ducers is decidable.

Theorem 11. It is decidable whether a given two-way finite transducer is

k-valued.
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Observe that, as in the case of one-way finite transducers, either of
Theorems 10 and 11 does not follow, at least immediately, from the other. The

special cases, where k = 1, were proved in [CK3|, while in [GI] Theorem 11 was

shown for one-way finite transducers.
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