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ABSTRACT

The problem of determining which (if any) among a static set
of n disjoint rectangles contains a query point is shown to take less
than 8+¢€ comparisons in the average case for any ¢>0. The tech-
nique is based upon a hashing scheme that requires O(n+na?/e?)
space where a is a function of the aspect ratios of the rectangles.
Initial preprocessing to initialize the hash table takes
O(nlogn+na®/e?) time. The data structures and algorithms are
practical to implement. The technique is useful for applications in

interactive computer graphics.

1. Introduction

A common problem in computer graphics is the determination of which
among a number of menu items is currently selected by the user. The menu
items are typically enclosed in rectangles and distributed about the display; the
user selects a menu item by placing a tracker inside the appropriate rectangle
and clicking a button. Disjoint rectangles remove ambiguities in the selection of
items. Often the tracker consists of a pictorial ‘“icon” whose shape depends upon
which menu item would be selected upon a button click. The software that
drives such an menu system must repeatedly sample the position of the tracker
and check for containment among the set of menu rectangles. It is important
that the detection of both hits and misses among the set of rectangles be per-
formed as quickly as possible as it is reasonable for the tracker to be positioned
outside all menu items at least as often as inside any. An attractive feature of

the technique described here is its ability to quickly determine misses.
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The straightforward solution to this problem is to perform a linear search
among the rectangles. This technique uses 4n comparisons in the worst case. An
average of 2n comparisons for hits are used assuming that any of the n rectan-
gles are equally likely to be selected. 4n comparisons are used for queries that
miss all of the rectangles. Linear space requirement and implementation ease are
principal attractions of linear search.

Binary search techniques as described by Edelsbrunner and Maurer 1]
reduce the worst case performance of an algorithm for this problem to O(logn)
comparisons with O(nlog®n) space. It is possible to reduce the space require-
ments to O(n) at the expense of increasing the time requirement to O(loan).
The detection of a miss always requires examination of an entire root to leave
path in a search tree. The average number of comparisons to answer a query is
{2(logn) if any of the rectangles are equally likely to be selected.

A quadtree is useful for this problem, but suffers from a space requirement
that could be on the order of nM, the resolution of the query region [2]. It is pos-
sible for some of the queries to be determined quickly, but in the worst case they
will take 3logM comparisons to traverse the tree from root to leaf. Typical
values for M are 512 and 1024. Average case analysis is particularly difficult for
quadtrees; their structure is not stable under small perturbations in the set of
rectangles.

The corner-stitched data structure of Ousterhout [3] may be used to
represent the set of rectangles using O(n) space and achieving a worst case query
time of O(n). Ousterhout claims that for “nice” sets of rectangles, the query
time drops to O(\/;) This data structure has the attractive feature that many
queries can take time related to the manhattan distance between the current and
previous query. Thus, for queries that are very close to each other, as may be
the case for interactive graphics applications, high performance may be possible.
No provable average case results are known for this data structure.

Assuming that query points are uniformly distributed over a rectangular
query region bounding the rectangles, this paper demonstrates how hashing can
be used to find the rectangle (if any) containing a query in less than 8+¢ com-
parisons in the average case for any €>0. The technique requires O(n+no?/e%)
space. The value of o depends upon the aspect ratios of the rectangles. The
pre-processing time taken to initialize the data structure is shown to be
O(nlogn+max{n,na?®/e?)}). The main advantage of this scheme over others is its
fast expected behavior and quasi-linear space when ¢=1. A secondary advantage
over the search-tree techniques of [1] is its simplicity of implementation. The

data structure and associated query algorithm are robust in the sense that non-
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disjoint rectangles and on-the-fly rectangle insertions and deletions can be han-
dled correctly. However, the stated time and query bounds may be exceeded in
both of these cases.

Sketch of Technique

Assume that all the rectangles and query points are contained within a rec-
tangular query region. A rectangular grid consisting of cells having size HXW is
placed over the region. It is convenient to increase the size of the query region

to Z,XZ, so that every cell in the grid is contained entirely within the regiont .

Cells are numbered from 0 in a left-to-right, bottom-to-top fashion. See Fig.
1. Cells intersecting any rectangles are placed into a hash table of size m with
collisions resolved via chaining. Chains are ordered by increasing cell number
and are terminated by a cell whose number is greater than any cell in the grid.
Each cell within the hash table contains a list of intersecting rectangles. See Fig.
2.

The first step in processing a query (z,y) is to determine the cell number p
that contains (z,y). Assuming the lower-left corner of the query space has coor-
dinates (0,0), the formula for p is

Zy
<)

V4
where {Ww is the number of cells spanning the query region in the horizontal

direction. The hash table is searched for cell p by examining the chain emanat-

T

W+

p=

Y
H

ing from bucket pmodm. If cell p is not on the chain, the query point cannot be
contained within any of the rectangles. If cell p is on the chain, the rectangles
intersecting the cell are searched in the straightforward manner for containment

of the query.

The success of this technique depends upon the size of the hash table m and
the cell dimensions H and W. In Section 2 it is demonstrated that the average
number of comparisons to search a chain for a cell is less than 3. Section 3
demonstrates how to choose H and W so that the expected number of comparis-
ons required to search a cell is less than 5+4-¢ and that the number of cells in the
hash table is O(n+na?/e%). Section 4 describes the process of initializing the data
tIncreasing the query region decreases the probability of containment within a rectangle

when the query points are distributed uniformly throughout the region. This problem is
remedied in the final section.
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Figure 1. A regular grid of cells is placed over the query region con-
taining rectangles a,b,c,d,e,f. Cells have height 7 and width W and
are numbered from left-to-right, top-to-bottom starting at 0.

structure.

2. Searching for a Cell

The process of searching for cell p in the hash table consists of computing
the bucket of the hash table pmodm where m is the size of the table. The chain
emanating from this bucket is searched linearly for p. As the chain is terminated
by a cell numbered larger than any in the query region and is ordered by increas-
ing cell number, the search may terminate once a cell on the chain whose number
is larger than p is encountered. To reduce the number of comparisons when
moving from one cell to the next during the search, p is compared for equality
with cells on the chain only after finding the first cell numbered larger than p.
The previous cell on the chain is then checked for equality. With this technique,

a search for the kth cell on the chain uses k42 comparisons.

Let the size of the hash table, m, be the number of non-empty cells. It will
be shown that the expected time to search for a cell is maximized when every
chain contains a single non-empty cell (that is, chains have a length of 2). There-

fore, the number of comparisons for a successful search is 3.
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Figure 2. The hash table representing the rectangles and grid struc-
ture depicted in Fig. 1. The number of entries in the table, m=14,
corresponds to the number of non-empty cells. Each cell contains the
cell number along with a list of intersecting rectangles. Chains are
ordered by cell number and are terminated by a cell numbered larger

than any within the query region.

An unsuccessful search uses no more than 1 plus the length of the chain
comparisons. When each chain has length 2, the maximum number of comparis-
ons is 3. Therefore, the expected number of comparisons of either search type is
less than 3.

Lemma: The expected number of comparisons to search for a cell is maximized
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when the chains have length 2.

Proof: Let k; be the number of non-empty cells that hash to bucket ¢ and I; be
the number of empty cells that hash to bucket 1.

A condition for the expected number of comparisons to be maximized at bucket ¢
is that all searches for empty cells examine the entire chain of non-empty cells at
bucket ¢. Summed over all [; empty cells, this results in a total of (k;+2)!; com-

parisons. The number of comparisons to find the j* cell on a chain is j+2.
k

Summed over all the successful searches in the chain, 5‘_:( J+2) comparisons will
jml

be made.

One consequence of using the division method as a hash function is that k;+!; is
a constant for any ¢, regardless of k;. If k; were increased by 1, then the total
number of comparisons over all searches of the chain would increase by ;. Sup-
pose that 2 buckets ¢ and s have k;+l; = k;+!;, and that a non-empty cell in
bucket j becomes empty and an empty cell in bucket ¢ becomes non-empty. The
total number of comparisons over both changes by l;—(l;—1). Thus, the number
of comparisons over all searches in both buckets may be increased as long as
chain ¢ is shorter than j.

Another consequence of the hash function is that kg+!{, cells hash to buckets 0
through r—1, and kg+{y—1 cells hash to buckets r through m—1. An argument
similar to that of the previous paragraph can be used to show that when the
number of cells hashing to one bucket differs from the number hashing to
another bucket by 1, then the total search cost over both is maximized when the
number of non-empty cells in the chains differ by at most 1. Since there are as
many non-empty cells as buckets, they must be distributed evenly across the
buckets. Therefore, all chains are of length 2.

Chains of length 2 need no more than 3 comparisons to determine if a cell is
contained. Therefore, the following has been proven.

Theorem: The expected number of comparisons to search for any cell in the
query region is less than 3.
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3. Time and Space Results

3.1. Searching a Cell

The time to search a cell is proportional to the number of intersecting rec-
tangles; as the cell size increases, so does the number of intersecting rectangles
and hence the query time. As the cell size decreases, the query time decreases
but the number of non-empty cells, and hence space, increases. An ideal balance
occurs when each non-empty cell intersects a single rectangle and a rectangle
intersects a single cell. This should occur when the rectangles and cells have the
same size. It is shown below that the desired time and space bounds are achieved
by making the cell dimensions proportional to the average dimensions of the rec-
tangles. Rectangles whose dimensions deviate from the average affect the time
and space performance in an adverse manner. The degradation is measured in
terms of the variation from the mean of the rectangle aspect ratios. The varia-
tions can be made to affect only the space requirements while preserving the time
bounds.

Let rectangle 7 have height h; and width w;. The cell dimensions are set to

H= == (2)

and

W= - (3)

The value of ¢ is determined by €. Define

4> h; Y w;
g=—p (4)
TLE h,-w,
Then it will be shown that
¢ = g+ V25g°+4ge (5)
2¢

achieves the desired query performance.

Let m be the number of non-empty cells intersected by the set of rectangles.
Then
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n | w;
hy 2

mgz

P o 6
Tt (6)
because no rectangle can overlap more than 2 more its height or width in cells
and, in the worst case, no more than one rectangle can intersect a single cell.
Furthermore,

m > o= hewg ™

because rectangles are mutually disjoint. The expected number of rectangles
that intersect a non-empty cell, B, is the number of unique rectangle-cell inter-
sections divided by the number of non-empty cells. B is bounded from above by
the upper bound of m in Eq. (6) divided by the lower bound of m in Eq. (7).
Thus,

n n

n
E h;w;

<1+

(8)

Substituting for H and W,

B< 1+%)-g. (9)

Setting the quantity on the right side of Eq. (9) to 14+¢/5 and solving for ¢ yields
Eq. (5).

Theorem: The size of a cell can be tuned so that the expected number of com-
parisons to search a non-empty cell for a rectangle containing the query point is
less than 5+c¢.

Proof: From the above argument, the expected number of rectangles in a non-
empty cell can be made to be 1+¢/5. Four comparisons are used to test each
rectangle in the cell for containment of the query point; a single comparison is
used to check for termination of the list containing rectangles in the cell.

3.2. Space Requirements

The data structure consists of 3 components: the hash table consisting of
chain pointers, chain nodes consisting of non-empty cells, and lists of rectangles
contained in chain nodes. The size of the first two components is O(m). The
quantity of Eq. (6) is an upper bound on the number of rectangles contained in
all of the cells and is larger than m because non-empty cells contain at least one

rectangle.
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Let C be the amount of storage required by the data structure. Substituting
values for H, W, and ¢ in Eq. (6), one obtains

1
59

25¢°
_9_,_
€

4¢2

C < 4nd —2%+ +1 %+1 (10)

where d>0 is a constant taking into account overhead for pointers and the like.
If e = O(g) then

C = O(n). (11)

Otherwise,
C = o[ﬁ-g—]. (12)

It can be shown that 4m’_ax{h,-,w,-} is an upper bound on g. A less pessimistic
bound that provides some intuition on the behavior of g is given below. Let
p; = min{h;,w;}/max{h;,w;} (13)
be the aspect ratio of rectangle ¢+ and
d; = max{h;,w;}. (14)
Then p;d? = h;w;. Let p = miin{p,-}. The quantity p represents the aspect ratio

of the rectangle that deviates most greatly from a square. Note that p <1.
Then

n n
4 hi w;
o k2w (15)
pn’E(d?)
where E(d) is the expected value of the d;. Finally, let
B = min{H W} /max{H W}. (16)

In words, 8 is the aspect ratio of the cells which, in some sense, represents the
average of the n rectangles. Note that 8 < 1. Then,

YhYw = fmax(HLW?
< Bn®E(d). (a7)
Since E(d)? < E(d?),
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gs.“%ﬂy (18)

In words, o is the aspect ratio of the “average’” rectangle divided by the
aspect ratio of the rectangle that deviates the most from a square. The value of
a is bounded from above by 1/p; for rectangles of bounded aspect ratio a could
be considered a constant. S8 moderates the value of 1/p, in the sense that as the

set of rectangles approaches a uniform aspect ratio, @ approaches 1.

The following has been proven:
Theorem: The storage required for the data structure is O(n+na?/e%).

4. Pre-processing Time

A naive method of initializing the data structure is, for each rectangle,
update or insert the intersecting cell in the hash table to include the new rectan-
gle. In the worst case, every cell found to intersect the rectangle might not yet
be in the hash table and have to be placed at the end of a chain consisting of all
cells intersected so far. This results in an algorithm quadratic in the size of the
data structure. A more clever algorithm visits each non-empty cell once and in
an order that allows it to be inserted at the head of a chain. This results in an
algorithm that is linear in the size of the data structure once the appropriate cell
ordering has been found.

As the chains are ordered by increasing cell number, an efficient sequence in
which to consider the non-empty cells is by decreasing cell number. Inserting a
new cell in the hash table is a constant time operation since it would always be
placed at the beginning of a chain.

So that every cell is considered only once, it is important that every rectan-
gle be known that intersects a cell under consideration. To accomplish this, the
rectangles are first sorted in decreasing cell number order by the cell containing
the upper-right corner of the rectangle and placed in a list L. Moving from the
top of the query region to the bottom, rows of cells are examined for intersecting
rectangles in a sweep-line fashion. Cells within a particular row are examined
from right to left.

In addition to L, another list of rectangles R is maintained that intersects
the current row of cells. Rectangles on R are in decreasing order of the z coor-
dinate of their right edges. See Fig. 3. It is a straightforward matter to scan R
and produce all the rectangles that intersect the cells in the row in decreasing cell
number order. The details are omitted. Once all the rectangles in a cell have
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been determined, the cell is placed on the start of the chain emanating from the
bucket whose address is the hashed cell number. Over a single row, this process
takes time linear in the number of rectangle-cell intersections in the row. Over
all the rows, this process takes time linear in the number of cell-rectangle inter-
sections in the entire query space.

Figure 3. The list R contains the names of the rectangles intersecting
a row of cells and is ordered from right-to-left by the right edges of the
intersecting rectangles. For the row depicted above, R=a,f,b,c. The
list L contains the names of all the rectangles in the query region and is
ordered from right-to-left and top-to-bottom by the rectangle upper-
right corners. L=a,b,c,f,e,d for the situation depicted in Fig. 1.

Once the cells in the current row have been placed in the hash table, a new
list R’ is created for the row below. Some rectangles from the current row are no
longer present and additional rectangles need to be inserted. R' is constructed
from R, in place, using a merge-like pass over R and L. See Fig. 4. Each rec-
tangle is considered for inclusion in or deletion from a row list R over all inter-
secting cells. Over all the merge steps, this takes time linear in the number of
cell-rectangle intersections in the entire query space.

Theorem: The hash table can be initialized in O(nlogn + no?/e%) time.

Proof: The hash table is first initialized so that every chain contains a single
cell whose number is greater than any cell in the query region. This takes time
linear in the space of the data structure. The rectangles are sorted in O(nlogn)
time. The number of cell-rectangle intersections can be determined by consider-
ing every non-empty cell to intersect one rectangle only. An upper bound on this
number is the quantity on the right side of Eq. (6). It was shown in Section 3
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Figure 4. The list R’ of rectangles intersecting the current row of cells
depicted above is obtained from a merge-like operation on lists L and R
from the previous row depicted in Fig. 3. R'=a,f,e,d,c.

that this quantity is O(n+na?/e?).

8. Discussion

Recall from Section 2 that the original query region has been expanded to
ZyXZ, so that all cells fit within the region. By choosing a suitable value for ¢
in Egs. (2) and (3), the grid can be made to fit exactly within the original query
region. Note that ¢ need not be more than twice its original value, so that the
number of non-empty cells, and hence space requirements, are not increased by
more than a factor of 4.

The analyses of time and space requirements is rather pessimistic. On one
hand, the query time for a cell given in Eq. (9) assumes that exactly one rectan-
gle intersects any non-empty cell; on the other hand it also assumes that rectan-
gles are packed in as tightly as possible with no gaps between. Alone, either is
possible. Together, unless all rectangles have the same dimensions as a cell, they
are not. The estimate of the time is used to determine ¢ which ensures the
desired query time €. If the estimate were more accurate, ¢ could be decreased

resulting in a more realistic bound on the space requirements.

There is no need for both W and H to have the same form. A reasonable
approach is to solve the time estimate for H in terms of W and ¢, then minimize
the equation representing the space estimate with respect to W. Replacing W in
the time estimate and back-solving yields H. Attempts to do so have resulted in
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complex formulas that appear to lack intuitive meaning.

The technique described performs well for a special case of the general hit
detection problem. The data structure and algorithms can be extended to handle
multi-dimensional rectangles, as well as the non-disjoint and dynamic cases.
However, the time and space results of the previous sections do not follow and it
appears that analysis for these extensions is difficult.

5.1. Dimensions 3 and Above

For k dimensions, determination of ¢ becomes a matter of solving a k
order polynomial in ¢. The resulting equation expressing the space requirement
appears to become too complex to obtain a meaningful upper bound. A reason-
able conjecture is that the space bound might be on the order of na'/e¥ where o
is some function of the aspect ratios of the rectangular polyhedra.

5.2. Non-disjoint Rectangles

The data structure and associated algorithms correctly handle non-disjoint
rectangles. However, the analysis of Section 3 relies heavily upon the fact that
they are disjoint. In the worst case, all the rectangles could be identical and
intersect only a portion of exactly 4 cells. It is reasonable to expect that extra
time must be taken to report all the intersections of a query point. However,
queries in these 4 cells take O(n) time independent of the query point. A possible
approach to this problem would be to incorporate the percentage of area that
rectangles overlap into the cell size determination.

5.3. Dynamic Sets of Rectangles

The dimensions of the rectangles are necessary to determine the appropriate
cell size. It is straightforward to insert and delete rectangles from the data struc-
ture. Such operations may cause either or both of the time and space bounds to
be exceeded. With a fixed cell size, the bound on the average query time will not
be exceeded if the average rectangle dimension increases. However, the space
bound could be exceeded. Conversely, the bound on space will not be exceeded if
the average rectangle dimension decreases. However, the average query time
bound may be exceeded. One would not expect either figure to be affected radi-
cally with small changes in the average rectangle, especially considering the pes-
simistic nature of the preceding analysis. If the number of rectangles in a cell
exceeds a predefined maximum due to insertions, 1t is possible to split the cells in
half in the z or y direction and perform a rehash as described in [4]. The aver-

age performance of the query algorithm could then be guaranteed.
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