Making "Clausal"Theorem Provers
"Non-Clausal"

David L Poole

Research Report CS-85-52

December 1985

Making ‘““Clausal’ Theorem Provers ‘‘Non-Clausal”

Dawvid L Poole

Logic Programming and Artificial Intelligence Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

ABSTRACT

There has recently been a number of papers which extend ‘‘clausal”
theorem proving systems into ‘‘non-clausal’”’ theorem proving systems.
Most of these use the justification that the non clausal form eliminates
redundancy by not multiplying out subterms. This paper presents the
fallacy of such justification by presenting a way to convert to clause
form without multiplying out subterms. It also shows how to generate a
non-clausal extension to your favourite clausal theorem prover.

This paper originally appeared in Proceedings of the fifth conference of the Canadian
Society for Computational Studies of Intelligence (CSCSI/SCEIO), University of
Western Ontario, London, Ontario, May 1984, pp. 124-125.

2 David Poole

1. Introduction

Recently there has been a number of papers which give non-clausal extensions to
clausal deduction systems. For example, the extension of resolution to non-clausal
form (Manna and Waldinger[80], Murray[82]); the extension of Kowalski[75]’s connec-
tion graph proof procedure to non-clausal form (Stickel[82]); and the extension of
Andrews|76]’ matings to non-clausal form (Andrews[81]).

One of the major disadvantages attributed to clausal form is the need to multiply
out subterms. This paper shows that this disadvantage can be overcome by choosing a
different algorithm to convert to clause form.

2. Converting to Clausal form - Propositional Case

In this section we will show how to transform a wff in negation normal form, NNF
(Andrews(81]) into conjunctive normal form, CNF' (or equivalently use Murray[82]’s
notion of polarity and ignore all explicit negations).

Assume f is a formula in negation normal form (Skolemised, with equivalence and
implication expanded out and negations moved in).

If f contains something of the form

(av(Bn))

then it is not in conjunctive normal form and the usual way to convert to conjunctive
normal form is to multiply out subterms, viz:

((evB)n(evy))

Thus forming two copies of the subformula o. This causes a problem in theorem prov-
ing systems, as a large number of such transformations produces an exponential growth
of subterms.

We instead form f° which is f with (ov(BAY g) replaced by (owp) where p is a
unique atom (not appearing in f). Then form f'=f"A(=pVB)A(=pVY)
Theorem: Repeated use of this transformation from f to f' (assuming associativity
and distributivity of A and v) will convert a formula from NNF to CNF.

Proof: (1) the only way a NNF formula will not be in CNF is if it has a subex-
pression of the form (ov(BA7)) in which case the transformation can be repeated.

(2) the number of A’s within the scope of v’s is reduced by (at least) one each
time, thus repeated use of the transformation will terminate.

Theorem: There is no multiplication of subterms in this conversion.

Proof: This is shown by noting that there is only one occurrence of each of o,
and 7 in the resulting formula. The repeated p is only an atom and has no struc-
ture.

$ If you would rather convert to disjunctive normal form then read the dual of the paper (swap A and V;
swap true and false; and read valid for unsatis fiable).

Making ‘“Clausal”” Theorem Provers ‘‘Non-clausal ”’ 3

Theorem (Correctness): This transformation preserves the unsatisfiability of the
resulting formula.

Proof follows directly from the following Lemma.
Lemma: f is satisfiable if and only if f/ is satisfiable.

Proof:

1. (Only if Case) - Suppose f is satisfied by interpretation I. We can assume,
without loss of generality, that the denotation of p does not occur in the domain
of I. If it does then it can be removed, creating an interpretation still satisfying f.

There are two cases to consider:

a) (BAY) is true in I In this case make I'=IU{p}. I’ satisfies f° as none of the
truth values have changed. (We have substituted a true value for a true value).
I' satisfies (OA7Y) so it satisfies ((—~ pVvB)A(= pv7y) so I' satisfies f’

b) (BA7) is false in I. In this case make I'=IU{~p}. Then I’ satisfies f° as none
of the truth values has changed. —p is true in I’ so (- pVvB)A(=pVv7)) is true in
I', so I' satisfies f'. ‘

2. (If Case) - Suppose f’is satisfied by interpretation I'. Then in particular both
£ and ((=~ pvB)A(=pv~y)) are true in I'. There are two cases to consider:

a) p is true in I'. Then as ((=pvB)A(=pVv7)) is true in I, (B and) must be true
in I', so f is true in I’ as none of the truth values have changed.

b) p is false in I'. In this case f must be true in I’ as replacing something that
was false in a conjunction or a disjunction cannot make the conjunction or dis-
junction false when it was previously true. Note that there are no negations to be
considered, as all negations are moved in, and p does not involve a negation in f.

Q.E.D.

3. The Predicate Calculus Case

The predicate calculus conversion is like the propositional calculus case except
that the new atomic formula introduced is of the form P(zy, * * - ,2,) where z;, - * * ,z,
are the free variables in (BA7y) and P is a unique n-place predicate symbol. Let f’ be
created from f in the same way as for the ground (propositional) case.

Theorem: For the predicate calculus case, f is unsatisfiable if and only is f’ is unsa-
tisfiable.

Proof:

Case 1: Suppose f is satisfied by I. Define P(z, ***,2,) to be true in I’ in
exactly those cases for which (8A7) is true in /. Then for each of the values for
the variables z, * * * ,2, the same argument as for the ground case holds. So f'is
satisfied by I' for all values of z, * - - ,2,

Case 2: Suppose f' is satisfied by I’ Then for each value of 2, - - +,z, the ground
argument holds. So f is satisfied by I'.

4 David Poole

Q.E.D.
4. Using the Transformation

4.1. What Has Been Gained?

The gain that occured is that there is only one copy of a in the resulting formula.
If o is a large structure, then once o has been proven false (or resolved away) once
then both 8 and < can be used. In the distributive form, & must be resolved away for
both £ and 7.

If n is the number of A’s in the scope of V’s, then in the transformation here there
are 2n+1 clauses produced. In the traditional transformation there may be 2" clauses
produced. (Consider the case of converting something in disjunctive normal form (two
literals per conjunct) into conjunctive normal form.)

4.2. Making the Transformation Implicit

The disadvantage of such a transformation may be in the cost of creating the new
literals. In this section we show how to avoid creating new literals, and how to avoid
doing the explicit transformation at all. The first approach is to change the deduction
system to make the transformation implicit as a special case. The second is to modify
the preprocessing that has to be carried out before the (unchanged) deduction system
runs.

As an example of the former, consider a resolution-type theorem prover. In the
transformed system, the only atoms that p can unify with are the instances of p expli-
citly created in the transformation. In particular, only three instances of the atom p
appear. If p is ever successfully resolved away then both & and either 8 or <y is resolved
away. If « is resolved away, then instead of leaving the residual literal p, and letting it
resolve with one of the clauses (= pvf) or (= pv~), and producing B or 7y to be resolved
away, the deduction system can be modified to recognise this case and produce 8 or ~
one step earlier. The other case of having resolved away one of 8 or 7, leaves (ovp) as
the only choice to resolve away p. Instead of having p explicit, the theorem prover can
try immediately to resolve away a.

In connection graph proof procedures, the connection graph contains all of the
information about unifications. In particular, after the connection graph is built, the
internal form of the literals is irrelevant. A connection graph builder, instead of creat-
ing the p’s and then adding the two connections, and forgetting about the internal
forms of the p’s, can build the connections without creating the p’s at all.

Making ‘“‘Clausal”” Theorem Provers ‘‘Non-clausal *’ 5

5. Conclusion

This paper demonstrates that one of the advantages that ‘‘non clausal’’ theorem
proving has over ‘‘clausal’’ theorem proving is not that converting to clause form mul-
tiplies out subterms.

In any theorem proving method the only unifications with the introduced atomic
symbol will be those given by the procedure above. Therefore the effect of the connec-
tion can be calculated before any actual deduction, so the above procedure may not
need to be carried out at all.

If you like the idea of non-clausal theorem proving then find your favorite clausal
theorem prover; allow input in non-clausal form; find a way to do the transformation
above implicitly; and you have an extension of the theorem prover to the non-clausal
case.

6. References
Andrews,P.B.[76], ‘‘Refutation by Matings”, IEEE Trans. Comput. C-25. pp 801-807.

Andrews,P.B.[81], “Theorem Proving via General Matings”, Journal A.C.M. Vol 28,
No 2, pp 193-214.

Kowalski,R.[75], ‘A Proof Procedure Using Connection Graphs”, J.A.C.M. Vol 22, No
4, pp 572-595.

Manna,Z. and Waldinger,R.[80], “A Deductive Approach to Program Synthesis”,
A.CMT.O.P.L.A.S. Vol 2, No 1 pp 90-121.

Murray,N.V.[82], “Completely non-clausal theorem proving”, Artificial Intelligence,
Vol 18, No 1, pp 67-85.

Stickel, M.E.[82], “‘A nonclausal connection-graph resolution theorem-proving program”,
AAAI-82, pp 229-233.

	
	
	
	
	
	

