Gracefully adding negation and
disjunction to Prolog

bDavid L Poole
Randy Goebel

Research Report CS-85-51
December 1985

Revised March 1986

Gracefully adding negation and disjunction to Prolog

David L Poole
Randy Goebel

Logic Programming and Artificial Intelligence Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Abstract

We show how one can add negation and disjunction to Prolog, with the pro-
perty that there is no overhead in run time if we do not use the negation, and we
only pay for the negation when we actually use it. The extension is based on
Loveland’s MESON proof procedure, which requires that a negative ancestor
search and availability of contrapostive forms of formulae be added to Prolog. We
identify a property of literals that can be statically determined, in order to avoid
using the full generality of the full clausal proof procedure when not required.

1. Introduction

There are two reasons for wanting to add negation to Prolog. The first is a
desire to express incomplete knowledge of some domain. For example we may
know that someone’s professor is either David or Robin, but we don’t know which.
The second is that we may want our system to have predictive power [Poole86].
That is, we desire a system that maintains a consistent refutable theory which
should have predictive power. This requires an ability to demonstrate incon-
sistency, or to derive a contradiction.

In Poole et al. [Poole86] we exploit a general method of adding negation and
disjunction to Prolog. This is the known technique of using the contrapositives of all
formulae and searching back up the relevant “and” branches of the resolution
proof tree for the complement of each newly generated subgoal [Umrigar85, Love-
land78].

There is a folklore that Horn clauses can be made efficient, but if we add
negation, then we get to a full resolution system [Robinson65] which are inherently
inefficient. When constructing a system for diagnosing faults (based on DART
[Genesereth85]) in electrical circuits, we found that much of the knowledge could
be specified as Prolog assertions, and didn’t require the ancestor search or all con-
trapositive forms. It then occured to us that there were classes of formulae which
could be detected before search time, which could be expressed as Prolog asser-
tions, and so gain the corresponding efficiency. Here we attempt to characterise
such classes. It is intended that one would be able to add clauses to a collection of
assertions and let the system automatically detect where Horn-clause-like (although

-2 —

the class is larger then just Horn clauses) implementation strategies can be used.
Note that we need not restrict ourselve to clausal systems, as one of us has previ-
ously shown how to transform clausal theorem-provers into non-clausal theorem-
provers [Poole84].

The goal here is to determine when the general procedure is unnecessary, so
that the overhead of using the contrapositive formulae and searching back up the
proof tree is, when possible, avoided. We do this by defining a syntactic classifica-
tion of atomic symbols in a general clause which allows us to statically determine
subgoals for which the use of contrapositives or the ancestor search is unnecessary.
This class is larger than that of definite clauses. Of course a corollary is that if a
subsystem is definite, then it can be implemented as Prolog. We thus pay for the
extra cost for using true negation only when necessary and only in the cases where
it will make a difference.

Notice that adding negation to Prolog is equivalent to adding disjunction, as
avb is equivalent to a «— —b.

2. Syntax

Here we present a syntax that will incorporate normal clause form and
Prolog’s definite clauses as special cases. We first define an atomic symbol to be as
in Prolog. A literal is an atom or the negation of an atom. The negation of a is
written —a. A clause has the form

Lyv - vhge=Lgiqn - aLy;

where L; is a literal. If k=1 and all of the literals are atoms then this is a definite

clause, as in Prolog. If k=n then we have the normal definition of a clause
[Chang73, Robinson79].

We assume the commutativity and associativity of conjunction and disjunction.
Semantically, the order of the literals in the left and right parts of a clause is
irrelevant. Note that in a particular proof procedure the order may affect the effi-
ciency or the completeness, and so it may be appropriate to modify the search stra-
tegy for the particular problem.

As in Prolog we have the notion of a query. The query
2Lan - - ALy,

is defined to mean, add to the current set of clauses C the clause
2e—Lin - ALy;

where “?”’ is a new atom, then ask the question, “is ? a logical consequence of the
given clauses.”

3. Semantics

The interpretation of the set of clauses C is the normal model-theoretic seman-
tics, viz.

P true false true false

o true true false | false
=P false true false true
P AQ true false | false | false
PvQ true true true false
P<+—Q true Jfalse true true

An answer yes means that ? is a logical consequence of the clause set C.
That is, ? is true in every model of C .

In summary, a clause is false in some interpretation if and only if all of the
Ly, - ,Ly are false, and Ly, - - - ,L, are all true in that interpretation. The
following lemma trivially follows from the semantics:

Lemma 1. We can swap a literal from one side of the “«"" to the other if we
negate it.

For any clause ¢, a contrapositive of ¢ is the clause with exactly one literal on the
left hand side of the “«—,” that results from applying lemma 1 to ¢. Note that if
there are n literals in a clause, there are n contrapositive forms of that clause.

The normal form of a clause ¢ is an equivalent clause without any negation
symbols (i.e., any literal with a not sign, is moved to the other side of the arrow).
Note that any clause has a unique normal form (up to associativity and commuta-
tivity of conjunction and disjunction). For example the clause avb «—car—d has
the contrapositive forms

a<— —bacr—d
b« —nancr—d
—ce—maasmband
d<«——aprmbnac

and the normal form avbvd«—c.

4. The proof procedure

The Prolog proof procedure is augmented to have accessible (1) the contraposi-
tive of each clause in the clause set C, and (2) to search up the relevant proof tree
branch for the negation of the current subgoal. The second modification
corresponds to “reductio ad absurdum’’ or “proof by contradiction.” (See Umrigar
and Pitchumani [Umrigar85] for an example implementation in Prolog.)

We define the negative ancestor rule as “If g is a subgoal which unifies with
the negation of an ancestor, then we can mark g proven.”

The proof procedure becomes: a goal g is proven if (1) there is a contrapositive
form of an input clause that unifies with g, such that all of the literals on the right
hand side of the contrapositive form are proven, or (2) g unifies with an ancestor
literal =g such that all substitutions are consistent. We can express this procedure

% prove (G ,A) is true if and only if Clauses =A DG
prove (G ,A)«—

member (G ,A);
prove (G ,A)«—

clause (G ,B)

neg (G ,GN)

proveall (B ,[GN |A));

% proveall (L ,A) is true iff Clauses =A DL; for each L;€eL
proveall ([],A);
proveall ([G |R],A)«

prove (G ,A)

proveall (R ,A);

% neg (X ,Y) is true if X is the negative of Y, both in their simplest form
neg (not (X),X)+

ne (X ,not(Y));
neg (X ,not (X))«

ne (X ,not(Y));

% clause (H ,B) is true if there is the contrapositive form of an input clause
% such that H is the head, and B is the body.
% in particular, we know Clauses =B DH

Figure 1 Full clausal theorem prover in Prolog

in terms of a Prolog provable relation (cf. [Bowen82, Bowen85]) as in fig. 1. The
following theorem holds for the proof procedure of fig. 1:

Theorem 1. The proof procedure is correct with respect to the above semantics, and
is complete in the sense that if ? is logically entailed by a consistent set of
clauses, then there is a proof for ?.

Proof. (1) Correctness. To prove the correctness, we need to show that each of the
rules above is true with respect to the intended interpretation. The first clause
of the definition of prove is correct as it says, “If GeA then L DA ,” which is
trivially correct. The second clause for prove says “If Clauses =B D>G and
Clauses =A U{— G }oB then Clauses =ADG”, which is true by transitivity of
implication, and by noticing that “if ClausesE=AU{—G}>G then
Clauses EA DG .”

-5 —

(2) Completeness follows directly from the completeness of MESON proof pro-
cedure [Loveland78].

5. Prolog compatible subsystems

Now arises the question that, if we have a set C of general clauses, must we
always have available all contrapositives and search up the tree, or can we stati-
cally determine conditions under which we do not need to do these things? If so, a
portion of our processing can be as efficient as Prolog. In particular, we would like
to pay the extra cost only in proportion to our use of the extra-Prolog features. Of
course, if all of the clauses are indeed definite then we do not require the modifica-
tions. However, we would also like to see if there is some larger class of clauses for
which we do not need to use the contrapositives and search up the tree; i.e., to
determine, if possible, some non-trivial subset of the clause set C for which the
modifications can be ignored.

To do so, first define a literal L to be relevant within a set of clauses if L is
provable within the context of its ancestors. That is L can be proven under the
assumption of =M for ancestors M of L. In other words, we can generate a set A
such that prove (L ,A) can be derived.

Now consider the cases where we actually need to search up the tree from a
goal g to find an ancestor unifying with —g. All of the three following conditions
below must hold, for the ancestor search to be useful:

1. —g is relevant;
2. —g is askable (i.e., can be generated as a subgoal) and
3. within a subproof of — g we can generate a subgoal of g.

If one of the above conditions cannot occur, then we do not need to consider
searching for a negated ancestor of g.

The second concern is with conditions under which we need to form the contra-
positive of a rule so that L is on the left hand side. This is required when:

1. L is askable and
2. L is relevant

If one of the conditions 1 or 2 cannot be the case, then we do not need the contra-
positive forms. Of course the first case is uninteresting as if L is never asked the
contrapositive will never be used.

Now the idea is to describe a way to statically determine, for some set of
literals, that the contrapositive or the searching for a negated ancestor is unneces-
sary.

-6 —

5.1. Statically determined classes of predicates

We define weaker notions of relevant and askable which can be computed at
compile time, namely potentially relevant and potentially askable. If some goal is
neither potentially relevant nor potentially askable, we do not need contrapositive
forms where that literal is on the left hand side. We need only do an ancesor
search if both it and it’s negation are potentially relevant and potentially askable.

Potentially askable is a relation on signed predicate symbols and sets of signed
predicate symbols. If L is a literal, the signed predicate symbol corresponding to L
has the same sign as L and the predicate symbol of the atom composing L. Intui-
tively, the signed predicate symbol of L is obtained by stripping the arguments
from the atom in L. Potentially relevant is a property of signed predicate symbols.

Potentially askable is defined as:

(1) ?, exported symbols or signed predicate symbols are potentially askable rela-
tive to {} (see discussion of section 5 for explanation of exported symbols);

(2) if p is potentially askable relative to S, and L is a literal corresponding to p,
and L<«—Lqan' - aAL; is the contrapositive of a clause, then each p;
corresponding to L; such that p; ¢S is potentially askable relative to {p }US .

Potentially relevant is defined as:

(1) if p is potentially askable relative to § and —p&S then p is potentially
relevant;

(2) if L«—La ' - aALg is the contrapositive of a clause such that L corresponds to
p , and if the p; corresponding to the L; are potentially relevant, then sois p.

Theorem: if L is relevant and askable, then its corresponding signed literal is poten-
tially relevant and potentially askable.

Proof: assume L is relevant and askable. Consider the proof tree containing L.
Transform this into a tree containing the signed predicated corresponding to the
literals in the proof tree. Remove all paths in the tree which form cycles (i.e., if
there is a p as an ancestor of p, then remove that branch and all associated sub-
trees). This tree then shows that p is potentially askable and potentially relevant.

Corollary: Only if a literal is potentially relevant and potentially askable do we
need consider contrapositives of rules with it on the left hand side.

Corrolary: We need only search ancestors for negated literals if both the literal and
its negation are both potentially askable and potentially relevant.

Proposition: Given a set of definite clauses, the determination of potentially
relevant and potentialy askable is adequate to show that we need only consider the
normal Prolog search tree (i.e. we need never consider other contrapositive forms,
or need to do an ancestor search).

Proof: the negative of a predicate symbol is never potentially askable. This is
because given a subgoal which is a negative atom, we always produce one more
subgoal which is a negative atom. All ancestors are negative so the negative ances-
tor rule never works, and we never have one potentially provable. The procedure
terminates as there are only a finite number of signed predicates to consider.

6. Implementation

The properties potentially relevant and potentially provable are decidable and
can be computed at input time. We need only consider is what elements are poten-
tially askable relative to {}. There are three possibilities, depending on how much
we know about potential queries:

1. If we know what forms a query may take, then we only need make the
corresponding signed predictes potentially askable relative to {}, and deriving
all other potentially askable things from this.

2. If we have a module system with restricted exports, we can make the syntactic
restrictions for each module and make the classes local to each module. By res-
tricting the exports from each module, we can then make the elements of the
export list initially askable relative to {}. As all calls inside the module are
assumed to be local, we need not worry about negative calls outside the
module.

3. The other possibility is to consider each possible call that can be given the sys-
tem. That is make every signed predicate symbol potentially askable relative to
{}. This is not as bad as it may seem, as if some signed predicate has been con-
sidered askable relative to anything then we have no need to reconsider it as
askable relative to the empty set. We can also stop attemtps to prove potential
askability if we have found a subgoal which has already been proven to be
potentially relevant.

7. Compiling Into Prolog

The way we have used this is to compile the clauses into Horn clauses. This is
done as follows:

If some atom, L, and its negation are both potentially askable and potentially
relevant, then we replace it with pr(L ,A) and its negation with pr(n(L),A), and
make the first rule in the definition of L and n(L),

pr (L ,A)«—member (n(L),A);
pr(n(L),A)<«—nember (L ,A);

We then create contrapositives of all rules such that only potentially askable and
provable predicates appear on the left hand side of the rule. Those rules with a pr
on the left hand side and the right hand side must add the head element to the
ancestor list on the right hand side. For example the clause h «— ¢, where b, =k, ¢
and —¢ are potentially askable and provable becomes

pr(h ,A)«pr(t,[h|A]);
pr(n(t),A)pr(n(h),[n(t)|A]);

8. Example

Consider the following set of clauses (with all arguments removed); note there
is a recursive call between ¢, —e and g.

a<—bnc;
avb+—d;
cve+—f;
mg—e;
g+—c;
85
f—h;
h;
d;
The following are both potentially askable and potentially relevant: a, —a, b, =b,
c,d, e, f, g, h. Therefore we need only check the contrapositive and ancestors
of a and b. Note that all but the first two clauses can be implemented as Prolog
clauses, even though they are not.

9, Conclusion

We have shown a general method for adding true negation and disjunction to
a Horn Clause language. We have given a method for statically determining cases
for which we do not need to use the extra machinery and can compute answers
with the same machinery as for Horn Clause logic.

This technique is currently being implemented in the Theorist system
[Poole86], which requires negation to prove that theories are inconsistent.

Acknowledgements

This research was supported by National Sciences and Engineering Research
Council of Canada grant A0894.

References

[Bowen82] K. Bowen and R.A. Kowalski (1982), Amalgamating language and
metalanguage in logic programming, Logic Programming, A.P.1.C. Stu-
dies in Data Processing 16, K.L. Clark and S.-A. Tarnlund (eds.),
Academic Press, New York, 153-172.

[Bowen85] K.A Bowen and T. Weinberg (1985), A meta-level extension of Prolog,
IEEE 1985 Symposium on Logic Programming, July 15-18, Boston, Mas-
sachusetts, 48-53.

[Chang73] C.L. Chang and R.C.T. Lee (1973), Symbolic Logic and Mechanical

—9

Theorem Proving, Academic Press, New York.

[Genesereth85] M.R. Genesereth (1985), The use of design descriptions in
automated diagnosis, Qualitative Reasoning about Physical Systems, D.G.
Bobrow (eds.), MIT Press, Cambridge, Massachusetts, 411-436.

[Loveland78] D.W. Loveland (1978), Automated theorem proving: a logical basis,
North-Holland, Amsterdam, The Netherlands.

[Poole84] D. Poole (1984), Making “clausal” theorem provers “non-clausal”,
Proceedings of the Fifth Biennal Conference of the Canadian Society for the
Computational Studies of Intelligence, May 15-17, University of Western
Ontario, London, Ontario, 124-126.

[Poole86] D.L. Poole, R.G. Goebel, and R. Aleliunas (1986), Theorist: a logical
reasoning system for defaults and diagnosis, Knowledge Representation,
N.J. Cercone and G. McCalla (eds.), Springer-Verlag, New York
[invited chapter, submitted September 10, 1985].

[Robinson65] J.A. Robinson (1965), A machine-oriented logic based on the resolu-
tion principle, ACM Journal 12(1), 23-41.

[Robinson79] J.A. Robinson (1979), Logic: Form and Function, Artificial Intelli-
gence Series 6, Elsevier North Holland, New York.

[Umrigar85] Z.D. Umrigar and V. Pitchumani (1985), An experiment in program-
ming with full first-order logic, IEEE 1985 Symposium on Logic Program-
ming, July 15-18, Boston, Massachusetts, 40-47.

	
	
	
	
	
	
	
	
	
	

