Using definite clauses and integrity
constraints as the basis for a theory
formation approach to diagnostic reasoning

Randy Goebel
Koichi Furukawa
David Poole

Research Report CS-85-50
December 1985

Revised March 1986

Using definite clauses and integrity constraints as the basis for
a theory formation approach to diagnostic reasoning

Randy Goebelf
Koichi Furukawai

David Poolef
1 Logic Programming and AI Group 1 First Laboratory
Department of Computer Science Institute for New Generation Computing
University of Waterloo 21F, Mita Kokusai Bldg, Minato-Ku
Waterloo, CANADA N2L 3G1 Tokyo, 108 JAPAN

Abstract

If one desires that an automatic theory formation program detect inconsistency
in a set of hypotheses, the Horn clause logic of Prolog is unsuitable as no contradic-
tion is derivable. Full first order logic provides a suitably expressive alternative,
but then requires a full first order theorem-prover as the basic theory construction
mechanism. Here we present an alternative for augmenting definite clauses with
the power to express potentially inconsistent scientific theories. The alternative is
based on a partitioning of definite clauses into two categories: ordinary assertions,
and integrity constraints. This classification provides the basis for a simple theory
formation program. We here describe such a theory formation system based on
Prolog, and show how it provides an interesting reformulation of rule-based diag-
nosis systems like MYCIN.

1. Introduction

In general, the automatic formation of scientific theories seems to require for-
malization in a language in which it is possible to derive the negation of a formula
[Poole86b]. This is because we are interested in systems that deduce contradictions
to reject inconsistent theories, rather than those that reject theories by being told of
an inconsistency with respect to a complete description of the intended interpreta-
tion. The latter view of theory formation is appropriate when considering the prob-
lem of synthesising logic programs from example facts [Shapiro82]. The former,
however, requires that the system detect inconsistent theories syntactically, if possi-
ble, and maintain a consistent theory of a partial description of the intended
interpretation.

Horn clause logic, in particular the definite clause subset comprising Prolog
assertions, is not capable of expressing that some formula f is not true. Further-
more, Prolog’s proof procedure is incapable of deriving that negation of a formula,
except by negation-as-failure [Clark78].

-2 —

As a representation language for expressing formulas from which theories can
be formed, Prolog’s definite clauses are unsuitable, as every set of definite clauses
is consistent. Poole et al. [Poole86b] have demonstrated a program called Theorist
that shows how first order logic can provide the foundation for defining a system
for automated theory formation. That program uses full first order logic, and
requires a full first order theorem-prover as the basic reasoning mechanism
(cf. [Umrigar85]).

Here we present an alternative for augmenting definite clauses with the power
to express potentially inconsistent scientific theories. Our motivation is to investi-
gate the problem solving power of a system that is simpler than Theorist, but that
uses the same idea of deduction-based theory formation. The alternative is an
extension to the definite clause assertion language of Prolog, and is based on a par-
titioning of definite clauses into two categories: ordinary assertions, and integrity
constraints. This classification provides the basis for the development of a simple
theory formation program based on Prolog.

In section 2 we summarize the method for defining a theory formation pro-
gram in terms of a representation and reasoning system based on first order logic.
Section 3 describes a partitioning of definite clause knowledge bases that creates a
distinction between tacit and necessary assertions. The concept of necessary asser-
tion is based on the integrity constraints used in logic data bases (e.g., [Kohli83,
Miyachi84, Goebel85a, Goebel85b) These necessary assertions provide the basis for
accepting some collections of formulas as consistent and rejecting others as incon-
sistent. This, in turn, provides the necessary expressive power to specify a theory
formation program like Theorist, but based on a simpler deductive mechanism.
This version of Theorist is called Theorist-S. In section 4, Theorist-S is used to
specify a simple rule-based diagnosis system. A comparison with MYCIN shows
how MYCIN’s rules can be viewed as Theorist-S assertions. While other versions
of Prolog in MYCIN have already been described (e.g., [HammondS82]), our expla-
nation differs in that we demonstrate how the rules of MYCIN incorporate both
object and meta level logical assertions, and that the separation of these kinds of
information is useful in developing new diagnosis systems based on theory forma-
tion. In addition, we show how the separated object and meta level MYCIN rule
knowledge can be automatically reconstructed by using the partial evaluation tech-
nique of Takeuchi et al. [Takeuchi85]

Finally, we suggest a method for dealing with a limited form of “certainty fac-
tor,” based on an objective measure that records the numbers of tacit and neces-
sary facts used to explain the observations. We conclude with a list of ways in
which this work should be further pursued.

—3 -

2. Using deduction to build scientific theories

Our definition of “scientific theory” derives from Poole et al. [Poole86b],
which is based on Popper’s logic of scientific discovery [Popper58]. Like Theorist,
the framework of Theorist-S consists of the basic components shown in fig. 1.

possiblie
“hypotheses

l |
l__l_t.h.e.m:y 3
theary 2

facts | | theory 1 [~ |observations

Figure 1 Framework of Theorist and Theorist-S

The knowledge of the system is represented as a set of formulas of a logical
language, say L, which is divided into four categories. The facts are a set of formu-
las of L that have the user’s intended problem domain as a model. The possible
hypotheses are a set of formulas of L, instances of which may be required to aug-
ment the facts in order to explain the observations — another set of formulas of L
representing domain observations for which an explanation is desired. The relation
I denotes the provability relation for the logic of language L. A scientific theory T
(e.g., T1, T2, T3 in fig. 1) is an explanation for a set of observations O if and only
if V¢ €T, ¢t is an instance of 4, where 4 € possible hypotheses, and

T| JFacts -0 (1)
Vi el, T Facts bf—e. (2)
Intuitively, 7 is a set of consistent hypotheses that, together with the facts, support

the deduction of the observations.

As has been elsewhere suggested (e.g., [Meltzer73]), Theorist uses deduction
to attempt to show the consistency of a set of formulas augmented with unverified
hypotheses. If this consistency is established and the set of formulas can be shown
to derive the observations, that set of consistent hypotheses is called a theory that

explains the observations.

The word “attempt’ is most important here, for if the language L has as least
the expressive power of first order predicate language with dyadic predicate sym-
bols then the relationship described by formula (2) cannot, in general, be effec-
tively determined. Furthermore, the proof procedure denoted by the symbol E
must be complete so that, in cases when the relationship is determined, one can
conclude the consistency of the hypothesis in question. Note that appealing to an
oracle with complete knowledge of the intended interpretation does not make
theory formation decidable. For example, without heuristic control, Shapiro’s
model inference system is undecidable because it has a step requiring the proof of an
arbitrary formula [Shapiro81, Shapiro82].

These theoretical difficulties not withstanding, Poole et al. argue that the
Theorist framework should be considered as a unifying framework for various rea-
soning paradigms used in artificial intelligence research. For example, default rea-
soning and diagnostic reasoning can be simply reformulated in the Theorist frame-
work [Poole86a]. The potential value of Theorist is based on identifying classes of
theories which can be effectively formed, and which can be applied to interesting
problem domains. For example, Reiter speculates that most diagnosis problems are
propositional hence the consistency computation is effective.

Note that Theorist does not suggest any particular method for selecting
hypotheses to augment the current facts or suggest any method for dynamically
inducing relevant hypotheses. However, is does provide a logic programming sys-
tem in which various strategies for automatic theory formation can be investigated
and developed.

3. Falsifiability and the expressive power of L

A final qualification on the expressive power of L must be made, in order that
theories being formed are falsifiable. This requirement is based on Popper’s thesis
that a scientific theory must not only be consistent, but must be potentially falsifi-
able, in order to be able to distinguish between all subsequent observations that
might be made (e.g., see [Popper58], pps. 91-92). In the Theorist program of
Poole et al., the property of falsifiability is viewed as the ability to deduce the nega-
tion of observed facts, e.g., an observation o will falsify a theory T | jFacts if
T | JFacts -—o. The necessary expressive power is obtained by choosing L as a full
first order predicate language, in which case the proof procedure named as F is a
complete first order predicate calculus theorem-prover.

The prototype implementation of Theorist reported in [Poole86b] chose L to
be the full clausal form of the first order predicate calculus language, and imple-
ments F in Prolog, according to Loveland’s MESON procedure [Umrigar85, Love-
land78] Our simplified version of Theorist, called Theorist-S, is strictly weaker than
Theorist, but does not require the implementation of a full clausal theorem-prover
for . In addition, the representation language L of Theorist-S is based on a sim-
ple extension of definite clauses, rather than the full clausal form of first order

+personal communication

predicate calculus.

4. Definite clauses as integrity constraints

If we select the definite clause subset of the first order predicate logic as our
representation language L of Theorist-S, we face an immediate problem. Every set
of definite clauses is consistent, and therefore any hypothesis in the form of a new
definite clause can be added to an existing clause set without affecting that set’s
consistency. In fact, with L chosen as the set of definite clauses, the initial facts F
can be merely augmented with the observations O to create a consistent theory
F | JO that explains those observations.

Required here is some method for denying ‘“‘theory membership” to certain
hypotheses. In other words we require some extension to L, together with the
related semantic and proof theoretic extensions, that allows one to express a fact
that may be inconsistent with a number of potential hypotheses. Here the notion of
integrity constraint is appropriate, especially as used by Miyachi et al [Miyachi84].
and Goebel [Goebel85a, Goebel85b]. These authors extend the usual definition of
a definite clause database by classifying certain clauses as integrity constraints, and
then using those constraints to verify the consistency of new assertions at database
update time. This use of constraints is similar to that of Kohli and Minker who
show how integrity constraints can be dynamically used to prune the search space
of an SLD proof procedure [Kohli83].

This notion of integrity constraint is particularly attractive because it is so sim-
ple. First, a subset of database clauses is syntactically distinguished as integrity
constraints. For example, since it is common to write definite clauses in the form

<consequent >C<antecedent > 3)
we might distinguish constraints by writing them as
<antecedent >D<consequent >. (4)

Though the logical semantics of schemata (3) and (4) are identical we can use the
syntactic distinction to identify formulas of the form (4) as assertability conditions
as new assertions. In other words, given a database KB and a new assertion «, all
consequents of formulas of the form (4) whose antecedents unify with o define a
conjunction whose derivability determines «’s assertability. For example, one could
not assert “has (Ohki ,cold)” if the constraint “Vx has (x ,cold)Dhas (x ,sneezing)”’
was asserted and “has (Ohki ,sneezing)’ was not derivable in the current KB.

In the theory formation framework, integrity constraints such as these provide
a simple method for denying theory membership to a hypothesis. The consistency
of a theory will be constrained by the user’s specification of integrity constraints.

5. Diagnosis as theory formation

The problem of diagnosing malfunctions in a complex system can be viewed as
a special case of automatic theory formation (e.g., [Pople77, BrownS82,
Genesereth85]). For example, the medical diagnosis problem can be formulated as
the problem of determining which of a number of possible diseases ‘“‘best” account
for a set of observed symptoms. In terms of theory formation, the facts comprise
statements that represent relationships between diseases and their symptoms, and
possible hypotheses include all those diseases that are acceptable as explanations for
a given set of symptoms.

5.1. A simple diagnosis system based on Theorist-S

The facts of Theorist-S are specified as a collection of simple formulas of the
form

disease >D<symptoms >.

In the diagnosis system described here, relationships between diseases and symp-
toms are further classified as “tacit” or “necessary’” in order to distinguish symp-
toms which may appear and those which must appear. These necessary relation-
ships are treated as the integrity constraints which constrain the admissible
hypotheses. For example, the formulas of fig. 2 represent naive knowledge about
the symptoms of several common afflictions.

. Vx has(x, cold) D has(x, sneezing)
. Vx has(x, cold) D has(x, coughing)
. Vx has(x, cold) O has(x, runny-nose)*

W N =

. Vx has(x, hayfever) D has(x, runny-nose)
. Vx has(x, hayfever) D has(x, sneezing)
. Vx has(x, hayfever) D has(x, watery-eyes)*

N A

7. Vx has(x, influenza) D has(x, diarrheoa)
8. Vx has(x, influenza) > has(x, headache)
9. Vx has(x, influenza) D has(x, fever)*

10. Vx has(x, cold)

11. Vx has(x, hayfever)
12. Vx has(x, influenza)

Figure 2 Theorist-S naive diagnosis knowledge base

-7 —

The asterisks distinguish integrity constraints, which are facts that describe “neces-
sary”’ symptoms of the disease. Note that necessary symptoms are not pathog-
nomonic (cf. [Pople77]) because they are not sufficient conditions for diagnosing
the affliction in question. Intuitively, the facts of fig. 2 assert that you may cough
if you have a cold, but that you will certainly have a runny-nose.

Note that tacit and necessary assertions are distinguished in that assertions
with an asterisk always imply their consequences while the tacit assertions do not.
One possible interpretation is that the meaning of “>” is modified by “*”; intui-
tively, the computational interpretation is that “*”’ assertions must be verified while
others need not be. This distinction can be used, for example, as a heuristic to dis-
tinguish preferred theories. Another view is that only the “*’” assertions are facts,
and that all others are default assumptions. This view, which combines defaults

and diagnosis, is elaborated elsewhere [Poole86a].

Hypotheses are written as universally quantified statements, for example as in
formulas 10, 11 and 12 of fig. 2. Instances of the these hypotheses will be used to
form an explanation of some observed symptoms, for example with x=Fred, the
hypothesis instance has (Fred ,hayfever) might explain Fred’s watery-eyes and
runny-nose.

The algorithm for computing an explanation of the observed symptoms is
based on Prolog’s depth-first backtracking algorithm for SLD resolution [Lloyd&84].
In general, one views the facts and hypotheses as a pure Prolog program and the
list of observed symptoms as the query to be derived. For example, Theorist-S will
explain Ohki’s runny nose and sneezing if the facts and possible hypotheses in
fig. 2 are viewed as a pure Prolog program and we pose the query

?has (Ohki ,runny —nose)Ahas (Ohki ,sneezing) (5)

When an instance of a possible hypothesis is used in a branch of the SLD proof tree
for the goal (5), that instance is recorded as part of the explanation for the
observed symptoms. An explanation for a set of symptoms is the union of the
instances of possible hypotheses that where used in an SLD derivation of the symp-
toms. This strategy is the same one suggested by Shapiro [Shapiro82, p. 160], and
used by Finger and Genesereth’s RESIDUE system [Finger85] For example, fig. 3
is a diagram of the SLD proof tree for the goal (5), using the facts and possible
hypotheses given in fig. 2. We can extract the four possible theories or explana-
tions from the complete SLD tree; there is one for each successful SLD branch:

I: {has(Ohki, cold)}

II: {has(Ohki, cold), has(Ohki, hay-fever)}
III: {has(Ohki, hay-fever), has(Ohki, cold)}
IV: {has(Ohki, hay-fever)}

Each of the above explanations, together with the facts, support the derivation of
the observed symptoms. However, we have not yet tested the consistency of the
explanations. In Theorist-S the constraints (indicated by * in fig. 2) specify those
symptoms that must be present in order to consistently assume the possible
hypothesis. For example, the assertion

7Thas(0. ranny-nose) & has(0. sneexing)
/3 /*\

has(0.coid) & has(O.sneezing) has{0.hayfever) & hes(O.sneezing)

l l

10 i1

| |

has({0 sneezmg) has(0.sneezng)
1/\5 l/\s
has(tl).cold) hns(O.hltyfcver)‘ hns(O'.cold) has{0.haytever)
hypoth ‘ fx,{ 10 rmTun
a a a a

Figure 3 SLD proof tree for Theorist-S diagnosis

Vx has (x ,cold)Dhas (x ,runny —nose)*

declares that has (o, cold) and —has (c«, runny —nose) are incompatible for any indi-
vidual .. In other words, the possible hypothesis has (o, cold) is acceptable only if
it can be verified that has (o, runny —nose).

In the current Theorist-S prototype, new instances of possible hypotheses are
verified as consistent as they arise in the SLD proof tree. For example, when the
possible hypothesis instance has (Ohki , hay —fever) is first considered at the point
labeled (*) in fig. 3, all relevant constraints are accumulated using the algorithm
specified by Miyachi et al. and Goebel. The only relevant constraint here is given
by assertion (6) in fig. 2, which requires that the observation
has (Ohki , water —eyes) be verified. If the needed observation is not contained in
the original list of observations, Theorist-S consults the user by interactively asking
the question “Does Ohki have watery eyes?” If the response is ‘“‘yes,” the
hypothesis instance is verified, and the SLD derivation continues. If the response is
anything other than “yes,” Theorist-S assumes the answer is “no” and rejects the
hypothesis instance as inconsistent with the observations. Note that the answer
“unknown” is not possible — Theorist-S assumes that the user can either answer
the question or perform some experiment that will decide what the answer is. As
noted by others (e.g., [Shapiro81), this interaction corresponds to conducting an
experiment.

-9 —

For the example query (5) above, this hypothesis verification technique would
reject explanations I, II, and IV, assuming that the user answered ‘“no” to the ques-
tion about Ohki’s watery eyes. Therefore the explanation that Ohki has a cold is
the only explanation.

It is important to realize that this incremental verification of hypothesis con-
sistency is, in general, inadequate. As the incremental approach is inherently
sequential, it is sensitive to the order in which observations are explained. For
example, consider the following example knowledge base:

1. A*
2. B*
3. AD—B

If we attempt to explain A AB, we first assume A using 1, and since there are no
axioms to disprove A, we conclude it is consistent. Then, while assuming A, we
are further to required to assume B using 2. However, in this case, the previous
assumption A allows the consistency test ? =B to succeed, which contradicts our
assumption of B and prevents us from constructing a consistent explanation. How-
ever, an explanation of B AA is possible: the initial assumption of B using 2 is con-
sistent and there is no clause whose head matches A, so we conclude the second
necessary assumption is consistent as well. This gives the theory A,B as explana-
tion, which is inconsistent. In Theorist proper [Poole86b], the first order clausal
theorem prover has avaliable the contrapositive forms of all clauses. Its proof pro-
cedure can use the contrapositive of 3 in order to verify the inconsistency at the
first opportunity, i.e., when A is first assumed.

5.2. Expert rules versus medical knowledge

On the surface, the knowledge encoded in rule-based expert systems like
MYCIN appear to be wrong way around, i.e., they have the form

symptoms D disease (6)
while Theorist and Theorist-S rules have the form
disease D symptoms (7

However, the knowledge embedded in MYCIN rules have the form of schema (7),
as can be seen by viewing schema (6) as a meta rule that says ““if you observe symp-
toms, then you should consider the hypothesis disease.”” This meta language expres-
sion embeds rules of the form (7) into a control framework that simplifies the
description and implementation of the MYCIN production rule interpreter, at the
expense of complicating the expression of knowledge about the relationship between
diseases and symptoms.

The view that MYCIN combines meta and object level knowledge in its rules
is further supported by noting that MYCIN is claimed to be a backward reasoning
system [Buchanan84, p. 71ff.] — in fact the rule interpreter for MYCIN does back-
ward reasoning on rules of the form given in schema (6), which amounts to forward
reasoning on rules of the form given in schema (7).

—10 —

The advantage of expressing rules in the form suggested by schema (7), is that
there is no a priori requirement for any “expert’ level control knowledge to be com-
bined with the basic statement of relationships amongst symptoms and diseases.
The theory formation procedure works on the object level knowledge expressed in
the natural way (i.e., disecases causes symptoms). This has the following conse-
quences. First, this rule form completely decouples expert experience about how to
use rules, and the rules themselves. Expert knowledge like “if symptom A is
observed then disease B is likely” is now viewed as a meta language assertion about
the usefulness (or, in some cases, statistical appropriateness) of the object level rule
(cf. [BowenS85)).

This detachment of meta and object level knowledge provides for the expres-
sion of general as well as specific meta level reasoning strategies. As Sterling sug-
gests [Sterling84], the meta level is the appropriate level for specifying problem solv-
ing strategies. In fact, the rules of MYCIN are really ground facts of the logical
meta language; the general predicates of the meta level axiomatization of Theorist
provide an example of the concepts that should be used to express meta level
knowledge or problem-solving strategies, e.g., the concepts of fact, hypothesis, expla-
nation, constraint, and consistent.

Second, the meta and object decoupling means that general purpose inter-
preters like Theorist-S are potentially less efficient than an equivalent MY CIN-like
interpreter and rule knowledge base combination. In fact the Theorist-S system
uses Prolog to interpret the definition of Theorist-S, which then interprets the object
level assertions of a Theorist-S application. This disadvantage, however, obviates
the need for different kinds of rules (cf. MYCIN’s antecedent rule [Buchanan84}).
For example, Theorist-S’s facts and constraints are syntactically identical — they
are distinguished by the problem-solving strategy specified at the meta level.

5.3. Using partial evaluation to combine methods and knowledge

The potential inefficiency of the multi-level interpretation of Theorist-S (and
all systems with similar structure) can be addressed in at least two ways. One is to
construct an efficient meta level interpreter directly in a procedural language. This
amounts to compilation of the meta level problem-solving strategy, which makes
that strategy more efficient but more difficult to understand and modify. Since this
alternative negates one of the claimed advantages of the decoupling of meta and
object level knowledge, an attractive alternative for improving efficiency is partial
compilation, or partial evaluation [Kahn84, Takeuchi85]. This technique retains
most of the advantages of the meta/object decoupling, while increasing efficiency
for instances of meta interpreter and object knowledge base pairs.

Returning to the claimed difference between rules of the form (6) and (7),
given above, partial evaluation shows the difference to be negligible. For example,
consider the MYCIN rule of fig. 4. This rule asserts that if you have the observa-
tions about gramstain, morphology and metabolism, then you can conclude that the
identity of the organism is bacteriodes. Ignoring the certainty facts for the
moment, we can express the information in the MYCIN rule of fig. 4 as

—-11 —

PREMISE: ($AND
(SAME CNTXT GRAM GRAMNEG)
(SAME CNTXT MORPH ROD)
(SAME CNTXT AIR ANAEROBIC))
ACTION: (CONCLUDE CNTXT IDENTITY BACTEROIDES TALLY .6)

Figure 4 An example MYCIN rule

Vx identity (x , bacteriodes)Dgramstain (x , negative) (8)
Amorphology (x , rod)
Ametabolism (x , anaerobic)

which asserts the relationship between the malfunction and symptoms in the form
suggested by the schema (6) above. The enclosing “‘premise/action” directive can
be viewed as a more general problem-solving strategy at the meta level, e.g.,

Videntity , symptoms establish (identity YC 9)
fact (identity Dsymptoms)

verify (symptoms).

In fact, Takeuchi and Furukawa’s partial evaluation algorithm will take an
appropriate form of (8) and (9) and use a program transformation technique to pro-
duce the rule

establish (identity (x , bacteriodes))Cverify (gramstain (x , negative)
Amorphology (x ,rod)
Ametabolism (x , anaerobic))

which has the same form as the original MYCIN rule of fig. 4.

5.4. Preferring one diagnosis over another

We earlier noted that the ‘*’ annotation on formulas of fig. 2 have at least two
possible interpretations, both of which alter their interpretation as formulas of the
first order predicate calculus. One possible interpretation retains the view of all
rules as Theorist-S facts, and interprets unmarked formulas as those having a lower
probability than those carrying the ‘*’ annotation. The apparent discrepancy
between generalizations which are always true and those which are sometimes true
is then explained by associating a probability value less than one to unmarked for-
mulas. This results in a logic programming system whose formal properties can be
specified in a way similar to Shapiro’s logic programming with uncertainties
[Shapiro83]. Furthermore, the choice of a function or functions for determining

—12 —

probabilistic entailment can be based on Nilsson’s description of probabilistic logic
[Nilsson84].

Another possible interpretation of the ‘*’ annotation treats only the marked for-
mulas as facts and the unmarked formulas as default assumptions. The assump-
tions are viewed as default assertions, any instance of which may be used as an
axiom so long as it is consistent with the current set of observations. For example,
under this interpretation rule (1) of fig. 2 asserts that ‘““one who has a cold can be
assumed to have sneezing, as long as that is consistent with the facts and observa-
tions.” In other words, by treating unmarked formulas as defaults, the universal
generalization normally entailed by a classical first order interpretation is not
required. The formal foundation of this default interpretation is already exploited
in Theorist proper [Poole86b], and is similar to the interpretation of defaults
described in the Residue system of Finger and Genesereth [Finger85].

Both of these interpretations provide the rudiments of a procedure for prefer-
ring one diagnosis over another. For example, consider the possible diagnoses of
the observations

has (O ,fever)ahas (O ,runny —nose)ahas (O ,cold)

All of the necessary symptoms are observed for the known afflictions so that all of
has (O ,influenza), has (O ,hayfever) and has (O ,cold) are possible diagnoses. If we
confirm the absence of the sneezing, coughing, headache and diarrheoa we would
intuitively prefer the hayfever diagnosis over the others on the basis of volume of
evidence. In probabilistic terms, we want the negative affect of the confirmed
absence of relevant symptoms to make the probability of runny-nose and watery-
eyes to exceed that of the other two entailed symptoms. Similarly for the default
interpretation, where the number of inconsistent default symptoms negatively
impacts the “quality” of the hypothesized diagnoses of cold and influenza.

6. Conclusions

In general, automatic theory formation of the form suggested by the Theorist
system requires that the representation language be able to express potential con-
tradictions. The SLD proof procedure of Prolog is defined only for a language in
which no contradiction is expressible, but a suitable interpretation of integrity con-
straints provides a simple notion of potential contradiction. Theorist-S is a very
simple theory formation system that distinguishes from tacit symptoms to provide a
way of denying theory membership to some possible hypotheses.

Diagnosis systems based on Theorist-S offer a potential advantage in that the
relationship between diseases and symptoms can be expressed in a natural way
independent of any qualifications that indicate how that information should be
used. The simple annotation that provides a binary classification of symptoms can
be exploited with a very simple proof mechanism based on SLD resolution. Furth-
ermore, at least two possible interpretations of the classification both provide the
necessary semantics for preferring one theory over another in an intuitively plausi-
ble way.

—13 —

There are many problems that remain to be investigated, however. There are
know difficulties with any system that uses a resolution proof procedure on clausal
form, e.g., the problem of reverse Skolemization when attempting to establish con-
sistency, and consistency verification requires a complete proof procedure whose
inefficiencies have been explicitly avoided in the standard Prolog implementation of
SLD resolution. Furthermore, it is not yet clear how to generalize either the proba-
bilistic or default interpretation in a way that provides an effective and efficient
method of preferring one diagnosis over another.

Despite these major difficulties, the simplicity of the theory formation pro-
cedure warrants further investigation as it so easily captures the intuition behind the
diagnostic process.

Acknowledgements

Romas Aleliunas and Maarten van Emden suggested numerous improvements
to an earlier draft of this paper. We are grateful to Ehud Shapiro and Jack
Minker, for pointing us to some some relevant work that we had overlooked. This
research was supported by National Sciences and Engineering Research Council of
Canada grant A0894.

References

[Bowen85] K.A Bowen and T. Weinberg (1985), A meta-level extension of Prolog,
IEEE 1985 Symposium on Logic Programming, July 15-18, Boston, Mas-
sachusetts, 48-53.

[Brown82] J.S. Brown, R.R. Burton, and J. de Kleer (1982), Pedagogical, natural
language and knowledge engineering techniques in SOPHIE I, II and
I11, Intelligent Tutoring Systems, J.S. Brown (eds.), Academic Press, New
York, 227-282.

[Buchanan84] B.G. Buchanan and E.H. Shortliffe (1984, eds.), Rule-Based Expert
Systems The MYCIN Experiments of the Stanford Heuristic Programming
Project, Addison-Wesley, Reading, Massachusetts.

[Clark78] K.L. Clark (1978), Negation as failure, Logic and Data Bases, H. Gal-
laire and J. Minker (eds.), Plenum Press, New York, 293-322.

[Finger85] J.J. Finger and M.R. Genesereth (1985), Residue: a deductive approach
to design synthesis, STAN-CS-85-1035, Computer Science Department,
Stanford University, Stanford, California, January.

[Genesereth85] M.R. Genesereth (1985), The use of design descriptions in
automated diagnosis, Qualitative Reasoning about Physical Systems, D.G.
Bobrow (eds.), MIT Press, Cambridge, Massachusetts, 411-436.

[Goebel85a] R.G. Goebel (1985), DLOG: an experimental PROLOG-based data-
base management system, Proceedings of the IFIP Working Conference on
Data Bases in the Humanities and Social Sciences, R.F. Allen (ed.), Para-

—14 —

digm Press, New York, 293-306.

[Goebel85b] R.G. Goebel (1985), A logic-based data model for the machine
representation of knowledge, Ph.D. dissertation, Computer Science
Department, The University of British Columbia, Vancouver, British
Columbia, October, 253 pages.

[Hammond82] P. Hammond (1982), Logic programming for expert systems, DOC
82/4, Department of Computing, Imperial College of Science and Tech-
nology, University of London, March.

[Kahn84] K.M. Kahn and M. Carlsson (1984), The compilation of Prolog pro-
grams without the use of a Prolog compiler, Proceedings of the Interna-
tional Conference on Fifth Generation Computer Systems, November 6-9,
Tokyo, Japan, 348-355.

[Kohli83] M. Kohli and J. Minker (1983), Intelligent control using integrity con-
straints, Proceedings of the National Conference on Artificial Intelligence
(AAAI-83), August 22-26, University of Maryland/George Washington
University, Washinton, D.C., 202-205.

[Lloyd84] J.W. Lloyd (1984), Foundations of logic programming, Springer-Verlag,
New York.

[Loveland78] D.W. Loveland (1978), Automated theorem proving: a logical basis,
North-Holland, Amsterdam, The Netherlands.

[Meltzer73] B. Meltzer (1973), The programming of deduction and induction, Artif-
icial and Human Thinking, A. Elithorn and D. Jones (eds.), Jossey-Bass,
London, England, 19-33.

[Miyachi84] T. Miyachi, S. Kunifuji, H. Kitakami, K. Furukawa, A. Takeuchi,
and H. Yokota (1984), A knowledge assimiliation method for logic
databases, Proceedings of the IEEE International Symposium on Logic Pro-
gramming, February 6-9, Atlantic City, New Jersey, 118-125.

[Nilsson84] N.J. Nilsson (1984), Probabilistic logic, Technical Note 321, Artificial
Intelligence Center, SRI International, Menlo Park, California, Febru-
ary.

[Poole86a] D.L. Poole (1986), Default reasoning and diagnosis as theory forma-
tion, Technical Report CS-86-08, Department of Computer Science,
University of Waterloo, Waterloo, Ontario, March.

[Poole86b] D.L. Poole, R.G. Goebel, and R. Aleliunas (1986), Theorist: a logical
reasoning system for defaults and diagnosis, Knowledge Representation,
N.J. Cercone and G. McCalla (eds.), Springer-Verlag, New York
[invited chapter, submitted September 10, 1985].

[Pople77] H.E. Pople (1977), The formation of composite hypotheses in diagnostic
problem solving: an exercise in synthetic reasoning, Proceedings of the
Fifth International Joint Conference on Artificial Intelligence, August
22-25, Cambridge, Massachusetts, 1030-1037.

[Popper58] K.R. Popper (1958), The Logic of Scientific Discovery, Harper & Row,
New York.

[Shapiro83] E. Shapiro (1983), Logic programs with uncertainties: a tool for imple-
menting rule-based systems, Proceedings of [JCAI-83, August 8-12,

—15 —

Karlsruhe, Germany, 529-532.

[Shapiro81] E.Y. Shapiro (1981), An algorithm that infers theories from facts,
Proceedings of the Seventh International Joint Conference on Artificial Intel-
ligence, August 24-28, The University of British Columbia, Vancouver,
British Columbia, 446-451.

[Shapiro82] E. Y. Shapiro (1982), Algorithmic program debugging, MIT Press, Cam-
bridge, Massachusetts.

[Sterling84] L. Sterling (1984), Logical levels of problem solving, Proceedings of the
Second International Logic Programming Conference, July 2-6, Uppsala
University, Uppsala, Sweden, 231-242.

[Takeuchi85] A. Takeuchi and Koichi Furukawa (1985), Partial evaluation of Pro-
log programs and its application to meta programming, Technical report
TR-126, Institute for New Generation Computer Technology, Tokyo,
Japan, September [to appear in Lecture Notes in Computer Science,
Springer].

[Umrigar85] Z.D. Umrigar and V. Pitchumani (1985), An experiment in program-
ming with full first-order logic, IEEE 1985 Symposium on Logic Program-
ming, July 15-18, Boston, Massachusetts, 40-47.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

