A Hierarchical Module Structure for
WUP Programs

Chris Baird

Research Report CS-85-49
December 1985

ABSTRACT

Modular programming, decomposing programs into smaller com-
ponents or modules, is a software engineering technique for managing
the complexity of large software projects. Several imperative program-
ming languages, including Modula-2 and Ada, have incorporated the
concept of the module in their design. Logic programming languages, if
they are to be used for writing large programs, must also provide
features for modular programming.

The work reported here was intended to provide a new system of
organizing Waterloo UNIX} Prolog (WUP) modules which would elim-
inate existing shortcomings. This paper describes a hierarchical module
structure for WUP that is statically derived from the UNIX file struc-
ture. The module structure of a program may also be dynamically con-
ficured by the programmer. This implementation of modules in WUP
is compared to that in other logic programming systems.

t UNIX is a Trademark of Bell Laboratories

Table of Contents

1. INtroduction ...t 3
2. Modular Programmingccccccoovimiiiiiiiiiiiiiiiiee e 3
3. Modules in WUP ..t 4
3.1. WUP 1.4 vs. WUP 2.0 ...t 4
8.2, COMPIING ..o e 7
3.3. Dynamic Structuring of Modulescccoccoiiiiiiiiini, 10
3.4. Searching for a Predicatec.coiiiii 10
3.5. Special Files ... e 11
3.6. Built-in Predicates ... erer———— 13
3.7, COMPATISOI ...oeeiiiiiiiiiiii ettt eee e e e et e e e eeeenareesesaesans 14

4. Using Modules in WUP ... e 15
. Modules in other Logic Programming Systemscccoeevuvveeeennn. 17
5.1. M-PROLOG ..o 17
5.2. micro-PROLOG ... e, 18
5.3. HIMIKO ..ottt ettt e e et e et e e e e enaeee e e s eeens 19
5.4. Comparisons with WUP ... 20
CONCIUSION ..oiiiiiiii e et eeeeereaeeens 23
ReFeTencCesooooiiiii e 25

1. Introduction

The value of modularity in software has long been recognized. Decomposing
software into modules allows large programs to be organized in such a way as to be
both manageable and intelligible. Monolithic software, a large single module program,
is more difficult to write and to understand once written. Constructs for creating
modules have been implemented in several imperative programming languages such as
CLU [8], Modula [14], and most recently ADA [1]. If logic programming languages are
to be used for large software projects it is essential that they provide features which
support modularity. WUP (Waterloo UNIX Prolog) has, therefore, incorporated the

concept of modular programming into a Prolog programming system.

2. Modular Programming

The basic element of modular program design is the abstraction. Abstraction is
the taking away or leaving out of details. An abstraction is a definition of some
desired behaviour; a module is the realization of that behaviour in a program. The user
of a module is interested only in the abstract concept it represents rather than the
details of the representation. Dealing with abstractions in this way makes it possible to

manage complexity in software development.

Ghezzi and Jazayeri [7] define a number of requirements of the development pro-

cess and development tools used for building large systems.

- the project must be divided among several people, each
working independently

- the system should be built from modules, each independently
designed and implemented, that are re-usable in other contexts

- the system must be easily modifiable - changes to one module
should not effect other modules

- it must be possible to show correctness of the system based on
the correctness of the individual modules

They also identify several important characteristics of the construction and use of
modules which support the above objectives. Each module should correspond to either

a procedural abstraction, i.e., a mapping from a set of input data to a set of output

-4 -

data, or a data abstraction, i.e., an implementation of a data type comprising the
specification of a set of data objects and the operations which manipulate them. These
operations should be the only means of accessing the data objects. Therefore, a
module interface should explicitly state which entities are exported from and imported
to the module. Restricting knowledge about the implementation of an abstraction, or
information hiding, by means of well defined interfaces simplifies the interactions and

enhances the independence of program modules.

To preserve the concept of abstraction module independence is a necessity. The
success of software projects depends, in large part, on this independence. Lack of
module independence, leading to subtle interactions between modules, can create prob-
lems in all phases of software development from design and implementation, through
testing and maintenance. The increase in complexity of software, resulting from

module interaction, can make it unmanageable.

Modular programming techniques should serve the same purpose in logic program-
ming as in von Neumann programming and provide the same benefits. It seems reason-
able that, as a first step towards modular programming in Prolog, the constructs for
implementing abstractions can be simply adopted from imperative languages. Logic
programming is, however, different than von Neumann programming. Whether or not
the practice of modular programming should or needs to be copied in total without

alteration will be discovered only through experience.
3. Modules in WUP

3.1. WUP 1.4 vs. WUP 2.0

In the previous version of WUP a UNIX directory was considered to be a module
and could contain any number of files and sub-directories. Clauses for different predi-
cates were kept in separate files and the file name was required to be the same as the

predicate name. Source files could be kept in any number of sub-directories to any

-5 -

depth under the main directory. These files could be compiled separately or all at once
by using the name of the main directory. The resulting pure code was stored in files
under a single sub-directory .db of the main directory. For each source file, a sub-
directory, with the same name, would be created under ‘directory .db. Each sub-
directory would, in turn, contain separate pure code files for all predicate with the
corresponding name, each file having the arity of the predicate as its name. Figure 3.1

illustrates the structure of a WUP 1.4 module.

This system allowed easy retrieval of the pure code by simply building the UNIX
file pathname from the predicate name and its arity. However it was extremely costly
in terms of storage space and cumbersome in terms of the number of separate files that
had to be maintained. There was no mechanism for statically organizing individual
modules into larger program units. A module was included in a program by importing
it, which simply added the module to the end of a list of previously imported modules.
The organizational information that programmers often provided by distributing
source files among several sub-directories of a module directory was lost when the pro-
gram was compiled and collapsed into one pure code unit. The work reported here was
intended to provide a new system of organizing WUP modules which would eliminate

these shortcomings.

The new system provides a more flexible and more general implementation of the
WUP module concept by using the UNIX hierarchical file structure to build an

equivalent module structure.

Wirth [14] states that the essence of programming is finding the right, or at least
an appropriate, structure for the program. A hierarchical structure is an effective
means of program organization reflecting the top-down design techniques of structured
programming methodology. Top-down design is the hierarchical analysis of a problem
by breaking it into smaller parts, each conceptually subordinate to the one above it.

The principle being applied is that of abstraction. At each level certain tasks are

Dirl

I
Filel Di1I'2 File2 .init .db .export

I I I I
I'ile3 Filea Dir3 Filel1 F i|1e2 Fil|e3 Fille4 F ille5
File5 2 3 3 2 2 4
Source Files Pure Code

Figure 3.1 WUP 1.4 Module - File Structure

represented by an abstraction which ignores the details that are not necessary at this
level. The abstraction is expanded at some lower level. A hierarchical organization
clearly shows the precedence and dependence relations between the program com-

ponents becoming itself an integral part of the program documentation.

A module, in general terms, should constitute the smallest separately compilable
unit of a program. Therefore, in WUP 2.0 each source file has been made into a
separate module as opposed to only directories as modules in the old system. A source
file may now contain any number of different predicates, with the restriction that all
clauses for the same predicate must be grouped together. For example, if a file con-
tained the predicates p and q the clauses for p and q could not be intermixed. The file
p <- q; g; p; is invalid, since q divides the two clauses of the predicate p, and will pro-
duce an error message indicating a duplicate predicate name, p. It should be written as
p <- q; p; q;. Predicates with the same name but different arity, can be considered to
be different predicates and need not appear together. The file p(X); q; p(X Y); is
valid. This restriction is necessary for the compilation phase, as will be explained later.
Associated with each file are the special files .db, .dict, .export, .lock, and .init each
prefixed with the file name. The special files for the source file test would, for example,

be named test.db, test.dict, etc.

-7 -

The value of modules is, as mentioned, that they can be combined to form larger
program units. This is accomplished by making each UNIX directory a super-module to
all modules (i. e. files and sub-directories) contained within it. A super-module is a
means of grouping a number of related modules into a single unit which can then be
treated as one module. In this way a hierarchical module structure is created stati-
cally, by the programmer, through the UNIX file structure. Figure 3.2 shows an exam-
ple of the organization of a number of Unix directories and files. Each file in the tree is
a separate module and each directory a super-module combining all modules below it
into a single module. The directory Dirl is a super-module containing the modules
Filel, File2, which are source files, and the directory Dir2. Dir2 is a super-module
consisting of the modules File3, File4, and Dir3. Dir3 is a super-module consisting of
the module Files. It is important to note that, except for certain built-in predicates,
WUP 2.0 treats modules and super-modules in the same manner. This entire structure
can now be referred to as a single module under the name Dirl. At the same time
each element in the tree can b.e referred to individually as a separate module. The user

organizes his program modules simply by organizing the files under UNIX directories.

Associated with each directory are the special files .export, .lock, .order, and
Jnit. 1 These files ixust reside in the first level under the directory and are not pre-
fixed by any name. In the example, the file Filel.init applies to the module Filel

while the files .init and .export , at the same level, apply to the super-module Dirl.

3.2. Compiling

All WUP modules, including super-modules, can be separately compiled into pure
code. When a super module is compiled all modules subordinate to it will be compiled.
Modules which are source files are only recompiled if they have been altered since the

last compilation. When a source file module is compiled the corresponding files .db,

1 The files .db and .dict are needed only for the compiling of source code and therefore do not apply
to a directory.

Dir1

|
Filel Filel.init Dir2 File2 .init .export

I I I
File3 File4 Dir3 .init
File5
Figure 3.2 WUP 2.0 Modules - File Structure

containing the pure code, and .dict, containing information concerning .db, will be
created. The file .diet will contain a clause, for each predicate in the source file, of the
form dict(name,narg,ncloffset) where name is the predicate name, narg the
number of arguments or arity, nel the number of clauses, and offset the offset in bytes
of the corresponding pure code from the start of the .db file. This provides the infor-

mation necessary for retrieval of the pure code.

As each predicate is read from the source file the pure code is generated and writ-
ten to the .db file and a dictionary clause is created. If a syntax error is detected in the
source code, pure code generation will cease, however the remainder of the source file
will be checked for further syntax errors. When all errors have been reported, the user
will be asked to edit the source file. Since any part of the file may be altered during
editing, the entire file will be recompiled. If the file is not edited, WUP will terminate
and no pure code file will be created. After compilation, one copy of the dictionary will
be written into the .dict file and one copy will be retained internally to be used in
accessing the .db file. If the file is not being compiled (i.e., either when the -n option is

specified or the module is imported) then the .dict file will be read into memory.

To retrieve the clauses of a predicate, the offset from the dict entry is used to skip
to the location of the first clause in the pure code file, and the number of clauses speci-

fied by ncl are read from the file. Without the restriction that all clauses for a single

g

predicate appear together in a source file the pure code for these clauses could be scat-
tered throughout the pure code file, making the retrieval process unnecessarily compli-

cated.

Each module in WUP is given an internal alias which is used in referencing it. The
root module, used on the WUP command line, will be given the alias usr. If the root
is a super-module, then for all modules contained in it, the file or directory name will
be used as the alias. The built-in predicate library will display the module structure of
the program, showing the module alias followed by the UNIX pathname of the file or
directory, with modules indented to indicate the hierarchical relationships. The alias of
each super-module will be followed by a '/’ to high-light the fact that it is a directory
and not a source file. Figure 3.3 shows the result of executing library when Dirl from
Figure 3.2 is the usr module. Each module should be given a unique alias, otherwise a

warning, indicating duplicate module aliases, will be issued.

usr/ (/u/cdbaird/Dirl)
Filel (/u/cdbaird/Dirl/Filel)
Dir2/(/u/cdbaird/Dirl/Dir2)
/u/cdbaird/Dirl/Dir2/File3
File4 (/u/cdbaird/Dirl/Dir2/File4
Dir3/(/u/cdbaird/Dirl/Dir2/Dir3)
File5 (/u/cdbaird/Dirl/Dir2/Dir3/File5)
File2 (/u/cdbaird/Dirl/File2)
imp1 (/u/edbaird/File6)
imp2 (/u/cdbaird/File7)
man {/u/prolog/manlib/man)
std (/u/prolog/stdlib/std
sys (/u/prolog/syslib/sys

Figure 3.3 WUP Library

File3

3.3. Dynamic Structuring of Modules

The previous version of WUP allowed modules to be added to a program library
dynamically by means of the built-in predicate import. When the predicate
import(Alias Pathname) was executed the module corresponding to the given Unix

pathname was inserted into the list of library modules just before the system modules.

This predicate has been retained and a new version added that permits modules to
be inserted anywhere in the module hierarchy by specifying the parent module of the
imported module. When the predicate import(Parent Alias Pathname) is executed
the module corresponding to the given Unix pathname will be inserted in the tree strue-
ture at the end of the list of modules subordinate to the given parent module. In order
to maintain the distinction between super and subordinate modules, only super-modules
may be specified as a parent module. Specifying a source file module as parent will
result in an error message. In Figure 3.3 two modules have been imported, impl using
the predicate import(usr impl /u/cdbaird/File6) and imp2 using the predicate
import(imp2 /u/cdbaird/File7).

Any module, including super-modules, may be imported in this way. The import

predicate gives the user complete control over the structuring of his program modules.

3.4. Searching for a Predicate

When a predicate is called a search must be made for the corresponding pure code
(see Appendix A). Searching may be done in one of two modes: via a normal call,
which causes the entire library to be searched, or via the prove predicate, which res-
tricts the search to a specific module. For each module, corresponding to a source file,
WUP maintains an internal database, an external database (i.e. the .db file) and an
auxiliary database into which clauses may be asserted during execution of a program.
Although a super-module has no internal or external database it may have an auxili-

ary database. When a predicate is called for the first time, its clauses are loaded from

the external database into the internal database. Searching a module for a predicate
involves first checking the auxiliary and internal databases then, if an entry for that

 predicate exists in the module’s dictionary, retrieving it from the external database.

A general search for a predicate will systematically search the entire program
library for the first instance of the predicate. The library is searched in an ascending
breadth first manner starting with the module in which the call is made (see Appendix
A). All sibling modules are organized into circular lists and the elements of the list are
searched in the order shown by fhe library command. The usr module, all modules
imported without a parent, and the system modules man, std, and sys exist as siblings
at the highest level of the hierarchy. When a super-module is searched, since it com-
bines all modules below it in the hierarchy into a single module, all its subordinate
modules will also be searched in a breadth first manner. As an example consider the
library shown in Figure 3.3. If a call is made in module File4, the library will be
searched in the following order: File4, Dir3, File5, File3, Dir2, File2, impl, Filel, usr,
imp2, man, std, sys.

A specific search occurs when the predicate prove(Module Predicate) is exe-
cuted with the first argument bound to some existing module. Only the given module
will be searched for the predicate and no other part of the library. When the given
module is a super-module, again, all modules subordinate to it will also be searched
breadth first. In the example, if module Dir2 were specified, the following search occurs:
Dir2, File3, File4, Dir3, File5. If module File5 were specified then only File5 would be

searched.

3.5. Special Files

During compilation WUP will ignore any file containing a period in its name. Cer-
tain files, as noted previously, are recognized by WUP as special files. The files .db and
.dict are maintained by WUP, while all others are maintained by the user. When one

of these files is associated with a super-module it will apply to all its subordinate

modules. This follows from the concept that a super-module combines all its subordi-

nate modules into one module.

As an example, consider a file .Jlock at the first level of Dir2. This will have the
effect of locking the modules Dir2, File3, File4, Dir3, and File5. Similarly a .export file
under Dir2 will specify the predicates that are exported from all modules subordinate
to module Dir2. Suppose module File3 contains predicates P and Q, and that P is
exported by Dir2. A call to Q from module Filel will fail, however a call to Q from
module File4 will succeed since Q is not hidden from this module. In order to hide
predicate Q from module File4, an export list must exist for module File3 which does
not include Q. Note that when a call is made from a subordinate module the auxiliary
database of its super-module will be searched for the predicate without reference to the
export list of the super-module. Also, if a predicate is exported by a super-module then,
unless it is in the auxiliary database of the super-module,it must also be exported either
implicitly or explicitly by some subordinate module in order to be visible outside the
super-module. A predicate is implicitly exported when no export list exists and all

predicates in the module are exported.

The file .order is used to specify the ordering of files when creating a listing of a
program using the built-in predicate make_list and is relevant only for super-modules.
It contains clauses of the form order(alias) where alias is the module alias of the file.
If the alias refers to a super-module, then the corresponding directory should contain
its own .order file specifying the modules contained in it that are to be listed. For
example, to make a program listing of all files under Dir2 (Figure 3.2) the .order file

should contain the following clauses :

order(Filed
order(Dir3);

?

order?FilelS;;

Dir3 should contain a .order file with the clause order(File5). Make_list will create a

listing file containing the three source files, File3, File4, and File5, in that order, each
preceded by its alias, full UNIX pathname, and a list of its exported predicates. In
addition, the alias, UNIX pathname, and export list of each super-module, in this case

Dir2 and Dir3, will precede and follow the listing of its component source files.

3.6. Built-in Predicates

As a result of the changes in the structure of WUP programs a number of changes
were necessary to some of the built-in predicates and the behaviour of others required
clarification.

All the predicates that deal with editing and compiling single predicate source files
are now no longer valid. In keeping with the concepts of modular programming, the
entire module should be regarded as the unit that is being altered rather than an indivi-
dual predicate, therefore only modules may be specified in edit and compile commands.
The predicate re, used for recompiling such source files, has been deleted. The predi-
cate compile can be used for compiling any module. The predicates vi, ed, vic, ede
now take only one argument, a module which corresponds to a source file. Compile
will check the time stamp on the file against its pure code file and only compile those
files that have been altered since the last compilation. When a module is recompiled
the main database will be cleared. Vic and edc call compile to recompile the file

after it has been edited.

A .order file, specifying the files to be listed with the make_list command, can
only be associated with a directory, or super-module. Consequently the predicates
make_order, consult_order and retract_order take only super-modules as argu-
ments. When make_list is given a super-module as argument a .order file must exist
under the specified directory. Make_list can also be used to produce a listing of any

individual source file.

The predicates for listing the clauses in a module, list_main and list_aux, when
applied to a super-module will not list the predicates in the subordinate modules. This
i1s an exception to the rule that all modules are treated equally. List_aux will list the
clauses in the auxiliary database of the super-module while list_main will have no
effect since a super-module has no main database. The predicates clear_main,

clear_aux and show will operate in the same fashion.

Assert and retract or delax can be used for adding or removing clauses from the
auxiliary database of any module. Retract and delax will not search the subordinate
modules of a super-module for a clause. Retrieve, which searches a module for a
given predicate, will however, when applied to a super-module, search the subordinate

modules as well.

3.7. Comparison

A test program was run under both the new and old versions of WUP to provide a
comparison of the two in terms of storage space and execution speed. The program
chosen for the test was Debugger, a relatively large system designed to discover bugs in

Prolog programs. In both versions it consists of several modules.

The overall saving of storage, including the system libraries, was dramatic as Fig-
ure 3.4 illustrates. The figures shown include both the source code and compiled code.
Approximately two thirds less disk space was used under the new version of WUP. The
debugger program itself was only slightly more than one fifth the size of the old ver-

sion.

Informal testing of the execution of the two versions showed no noticeable differ-
ence in the performance. The execution speed in LIPS (logical inferences per second),

found using the WUP built-in predicate time, was roughly equal.

WUP 1.4 WUP 2.0
debugger 390 85
manlib 291 289
stdlib 298 99
syslib 356 33
total 1335 506

Figure 3.4 Disk Usage (kbytes)

4. Using Modules in WUP

DeRemer and Kron [4] make a distinction between programming in the large and
programming in the small. Programming in the small refers to programs that are sim-
ple enough to be completed by one person and contained in a single module. Program-
ming in the large involves the structuring of large collections of modules. Many of the
programs written by WUP users fall into the former category. When programming in
the small, users can simply ignore the modular features of WUP. Programs can be con-
tained in single files, which the liser need not relate in any way to the concept of a
module. This will make programming easier for naive users than in the previous ver-
sion of WUP since they need no longer concern themselves with modules or deal with
programs spread over numerous files and directories. It resembles more closely the for-
mat of the programs they may be used to writing in other languages and hence may be

less confusing.

When programming in the large, users should keep the following guidelines in
mind. A module should contain only related predicates which implement a single pro-
gram task corresponding to a procedural or data abstraction and should be limited to
perhaps a dozen predicates and one or two pages of code, for efficiency as well as to
reduce the complexity of the program. Any module larger than this can probably be

divided into a number of smaller tasks.

The structuring of modules into programs is achieved through the organization of
source files among Unix directories. The corresponding WUP library will be automati-
cally constructed. As programs become larger and more complex, using modules from
several sources or written by several programmers, the program library can be dynami-
cally configured using the import predicate. There is a natural progression, reflecting
increasing program complexity, from single module programs, to statically structured

libraries of modules, and finally dynamically structured libraries.

Every module, including super-modules, should have an export list containing as
few predicates as possible. If a module implements a procedural abstraction, then only
a single predicate representing the procedure call should be exported. If a module
implements a data abstraction, then only those predicates representing the operations
on the data type should be exported. In both cases any other subordinate predicates
used in the definitions remain hidden. The default of exporting all the predicates in a
module should not be used except in the case where a module is a collection or library
of commonly used routines such as the WUP sys and std libraries . By explicitly speci-
fying each module interface in this way, the user gains the advantages of information
hiding.

Using export lists and limiting the number of predicates in a module can increase
the efficiency of WUP programs by reducing the search time for finding predicates.
Most calls should be made to predicates within the same module as the call. Each such
call causes a linear search to be made of a list of the predicates in the module. When a
call is made to a predicate outside the module, the export lists of other modules are
searched until the predicate is found. If a module has no export iist, then the entire list
of predicates in the module must be searched, thereby increasing the search time which

in large programs could be significant.

Users should keep in mind that modules are meant to be independent and re-
usable program units. Each module should be separately implemented and tested. Only
when individual modules have been certified should they be combined. Testing a com-
plete program should involve only the testing of the module interfaces, not the modules

themselves.

Programs written for the old version of WUP may be run on the new version
without alteration. Each predicate file will be taken as a separate module, however the
predicates will still be united in one module under the directory as before. The special
files associated with the directory, .export, .order, .lock, and .init will still be valid and
will produce the same results. However, to gain the space efficiency of WUP 2.0, it is

advisable to reconfigure WUP 1.4 programs.
5. Modules in other Logic Programming Systems

5.1. M-PROLOG

M-PROLOG is a PROLOG system that is based on the concept of modules. An
M-PROLOG program consists of one or more modules with one module designated as
the root or main module. A module consists of a name, an interface specification, a set
of declarations, a set of predicate definitions, and a single goal. The main module is
activated when the program begins and its goal becomes the program goal. Other

modules may be activated and deactivated using built-in predicates.

The module interface specifies the interaction of the module with other program
modules. Specifications can be made regarding the visibility of ali names used in a
module, where a name is any constant including predicate names. A name declared as
local can be used only within the module and, conversely, a name declared as visible
can be used both inside and outside the module. Similarly a name declared as hidden
is not visible outside the module while a global name is. All names are converted to a

internal code by the system. This can be controlled by declaring a name as symbolic

which means that it will not be coded, or as coded. Declaring a name as global will
also leave it uncoded, while names declared as hidden will be coded. The declarations
local and visible have no effect on the coding of names. Suppressing the coding of a
name allows the user to preserve its original form for printing or some similar purpose.
The general specifications all-visible, all-symbolic, and all-global apply to all names

in a module. These will be overridden by any other specifications.

In addition to controlling the visibility of names, one can specify import and
export lists, that apply only to predicates. Both the predicate name and its arity are
needed in the specification. Exporting a predicate makes the predicate name visible
outside the module but not the names used within the predicate definition. To use a
predicate, outside of the module in which it is defined, it must be exported by that
module and imported by the module that uses it. Predicates should be exported rather
than declared as visible, since this forces the system to make checks for its existence
that are otherwise not done. A predicate that is not defined in a module cannot be

exported by it and one that is already defined in a module cannot be imported by it.

5.2. micro-PROLOG

Micro-PROLOG is a Prolog system, designed for micro-computers, which also pro-
vides support for modular programming. The basic structure of a micro-Prolog pro-
gram is a dictionary which lists all constants or names in use in the system. Each con-
stant is represented as a pointer to a dictionary entry. The module structure is built on
this by dividing the dictionary into separate segments. A module consists of a name, a
set of clauses, import and export lists, and a dictionary. Each module is assigned its
own segment of the dictionary when it is loaded. All constants in a module are, by
default, local to it. When the same constant is used in different modules it will be
entered in different segments of the dictionary and each entry will be, in effect, a dif-

ferent entity.

Names are made visible outside of a module by adding them to a module’s import
or export list. A name is made visible to a module when it is imported by that module
and exported by the module in which it is defined. A module cannot export a name
that is already exported by some other module. All file names, module names, and

predicate names must be distinct.

When micro-PROLOG is loaded a system defined root module is made the current
module. The root imports all names exported by all other program modules allowing all
modules to be accessed from the root. The current module can be changed, however,

other modules can only be loaded when the root is the current module.

5.3. HIMIKO

Himiko [6] is a logic programming system that goes the furthest towards realizing
the concepts of modular programming, as stated by Ghezzi and Jazayeri, in a Prolog
based system. It includes constructs for implementing data abstractions in modules as
well as procedural abstractions. There is a strong correlation between the features pro-
vided by Himiko and those in imperative languages designed with abstraction capabili-

ties.

Himiko allows the user to define data types, where a data type is a collection of
terms. Two forms of data type are provided, types and patterns. Types are terms
whose structures are hidden inside a module and that can be accessed only through a
restricted set of operations. Patterns are terms whose structure is visible outside the
module. Types correspond to the data objects defined by an abstract data type and
are represented by functors. A fuﬁctor considered as a data structure is analogous to a
record in other languages, where the functor name equals the record name and each
term in the functor equals a record field. Only the functor name is visible outside the
module, the actual component terms may not be referenced by any other module. For

example a type representing a state in the simulation of some process could be defined

by the functor

state(waiting(<queue>), blocked(<queue>), active(<process>))
where queue and process are also types defined in separate modules.

Himiko types are equivalent to the concept of the private type in ADA and the
opaque type in Modula, while patterns are non-private types. The details of a private
type are not accessible outside the Ada package or module, in which it is declared.
Variables in other modules may then be declared to be of a private type. Since the
structure of the type is known only within the module in which it is defined, only the
operations defined by the procedures in that module may be used to manipulate objects

of that type. This is also the intent of the Himiko type.

An Himiko module consists of an interface and a realization corresponding to the
ADA specification and body of a package and the definition and implementation of a
module in Modula. The interface specifies the module’s abstract data types and the
relations that are visible outside the module. When a module implements an abstract
data type, these relations correspond to the operations that are defined on the data
type. Within the interface, the arguments of the predicates are written only as types. A
predicate that creates a state in the previous simulation example would be written as
create_state(<<state>). The realization consists of a representation section and a
clause section. In the representation, the structures of the abstract data types are
defined. The clause section contains the logic program. Figure 5.1, taken from [6],
shows an example of a module which implements a state as an abstract data type. An

Himiko program consists of a hierarchy of modules.

5.4. Comparisons with WUP

The primary shortcomings of WUP are that it does not allow complete indepen-
dence of modules and complete specification of module interfaces nor does it provide
constructs for data abstraction. These characteristics adversely effect its value as a

modular programming system.

module state_process_module
interface
type <state>

rel create_state(<state>); ,

get_active_process(<process_id>, <state>);
new_active_process(<process_id>, <state>, <state>);

realization
repr
state(waiting(< queue>),
blocked(< queue>),
active(<process>))
clause ’
create_state(state(waiting(Q1),blocked(Q1),
_ active(self))
<- create_1(Ql)
create_1(Q2);

get_active_process(ID,state(_,_,active(ID}));

—_—T

new_active_process(ID state(W,B,),
state(W,B,active(ID))

end-of-module

Figure 5.1 State_process module

WUP’s module interface is only partly specified by the export list. Access to any
predicate should be by mutual agreement between its creator and its user. MPROLOG
and micro-PROLOG ensure this by requiring both import and export lists. No predi-
cate, defined outside of a module, can be accessed unless it has been imported by that
module and exported by some other module. Requiring import as well as export specif-
ications provides better control over module interaction, an improved internal program
documentation, and the possibility for more extensive checking to be carried out, as is
done in MPROLOG. MPROLOG and micro-PROLOG also allow the user to control
the visibility of names other than predicate names. However, the actual value of this

and the consequences of not having this feature in WUP are not clear.

In both Ada and Modula, the specification of imported elements also indicates
from which module the element comes. While MPOLOG does require this, micro_prolog
does not and, consequently, has the restriction that no predicate may be exported by
more than one module. This eliminates the possibility of redefining predicates except
locally in a single module. The redefinition or overloading of operations is a useful facil-
ity in the creation of abstract data types. Conqeptually similar operations, addition of
complex numbers and addition of integers for example, can be made syntactically simi-

lar, 1.e., use the same predicate name.

WUP allows the redefinition of predicates but in an unrestrained manner. The
scope of an exported predicate is determined only by its position in the program hierar-
chy. This creates the potential for unintentionally redefining a predicate causing prob-
lems similar to the problem in block structured languageé of creating a hole in the
scope of a global variable by re-using the variable name in some inner block. The expli-
citness of the MPROLOG interfaces eliminates the possibility of such errors and also

improves the internal program documentation.

Only Himiko provides constructs for true data abstraction and information hiding.
It allows data types to be defined within a module and their underlying structure to be
concealed from other modules. The other systems allow the implementation of pro-
cedural abstraction but are inadequate for data abstraction. To provide further infor-
mation hiding, the interface and realization components are made distinct, separating
what is hidden from what is visible. In Modula and Ada, these parts can be compiled
separately permitting changes to be made to the implementation without the possibil-
ity of corrupting the interface to the rest of the program.

WUP allows the organization of modules into larger program units to be con-
trolled by the user. MPROLOG and micro-PROLOG have no provision for this. This

gives the WUP programmer direct control over the structure of his program and to

some extent control over its execution. The ordering of modules is similar to the order-

ing of clauses within a program and lets the user provide additional control information
for the system.

Micro-PROLOG allows modules written in assembly language to be included in a
program. MPROLOG is designed to permit modules to be written in other languages
but this feature is not yet implemented. This facility is not incorporated in WUP at all.

8. Conclusion

Improvements have been made to the module system of WUP but it still does not
meet all the criteria of a modular programming system. Abstraction, the basis of the
module, is not fully supported. WUP has taken the simpler view that modules merely

divide the code into smaller segments.

The problems of excessive storage requirements and the proliferation of files in
WUP 1.4 have been eliminated. Any number of different predicates may now be written
in the same file and each file constitutes a program module. The compiled or pure code
now consumes only a fraction of the disk space it did previously. Users are now able to
structure program modules in a meaningful way through a very simple mechanism. A
hierarchical structure is automatically created directly from the Unix file structure.
Modules can be inserted into this structure dynamically using an extended import

predicate which specifies the parent module of the imported module.

WUP fails to provide adequate mechanisms for data abstraction, information hid-
ing and, as a result, module independence. Module independence preserves the abstrac-
tion and guarantees the function of the module. By default, there should be no interac-
tion between modules in a program, unless it has been explicitly defined. This ensures
the complete independence of modules and requires the user to define, in detail, all

interactions that can occur. Poor interfaces lead to the production of incompatible

components.

WUP could be extended by allowing the use of modules written in other program-
ming languages to be included in a WUP program. Many of the built-in predicates are
written as C functions so perhaps a generalization of this mechanism could be used.

The existence of these predicates is evidence of the usefulness, if not the necessity, of

such modules.

References

[1]
2]
(8]
[4]
[5]
[6]

[7]

8]
[9]

[10]
[11]
[12]
[13]

[14]
[15]

Barnes J.G.P., Programming in Ada, Addison-Wesley Publishing Company 1984
Cheng M. H.M., Design and Implementation of the Waterloo Uniz Prolog Environ-
ment, Research Report CS-84-47, Dept. of Computer Science, University of Water-
loo 1984 :

Clark K.L., Ennals J.R., McCabe F.G., A micro-PROLOG Primer, Logic Program-
ming Associates Ltd., London, England 1982

Clark K.L., McCabe F.G., micro-PROLOG 3.0 Programmer’s Reference Manual,
Logic Programming Associates Ltd., London, England 1983

DeRemer F., Kron H.,Programming-in-the-Large vs. Programming-in-the-Small,
IEEE Transactions on Software Engineering SE-2 (June 76) pp. 80-86

Furukawa K., Nakajima R., Yonezawa A., Modularization and Abstraction in
Logic Programming, New Generation Computing 1(2) pp. 169-178, Institute for
New Generation Computer Technology 1983

Ghezzi C., Jazayeri M., Programming Language Concepts, John Wiley and Sons,
Inc. 1982

Kowalski R., Logic for Problem Solving, North-Holland 1979

Liskov B., Zilles S., Programming with Abstract Data Types, SIGPLAN Notices
9(4) (April 1974) pp. 50-59

Liskov B., Snyder A., Atkinson R., Scaffert C., Abstraction Mechanisms in CLU,
Communications of the ACM 20(8) (August 1977) pp. 564-576

MPROLOG Language Reference Manual Release 1.5, Logicware Inc. 1984

van Emden M.H., Goebel R., Waterloo Uniz Prolog User’s Manual Version 1.2,

Logic Programming and Artificial Intelligence Group, Dept. of Computer Science,
University of Waterloo 1984

Wiener R., Sincovec R., Software Engineering with Modula and Ada, John Wiley
and Sons, Inc. 1894

Wirth N., Programming in Modula-2, Springer Verlag 1983

Wulf W.A., Shaw M., Global Variables Considered Harm ful, SIGPLAN Notices
8(2) (Feb. 1973) pp. 80-86

Appendix A - Search Algorithm

PROCEDURE search_proc(module, predicate, VAR pure_code)

BEGIN
search_parent(module, predicate, pure_code)
IF NOT search_specific THEN
WHILE (module <> NULL) AND (pure_code = NULL) DO
BEGIN
module := module.next
search_children(module, predicate, pure_code)
IF pure_code = NULL THEN
BEGIN
module := module.parent
search(module, predicate, pure_code)
END
END
END {search_proc}

PROCEDURE search_parent(module, predicate, VAR pure_code)

BEGIN
search(module, predicate, pure_code)
IF pure_code = NULL THEN
search_children(module.child, predicate, pure_code)
END {search_parent}

PROCEDURE search_children(module, predicate, VAR pure_code)
BEGIN

start := module
WHILE (pure_code = NULL) AND NOT (finish) DO
BEGIN
IF module.child <> NULL THEN
search_parent(module, predicate, pure_code)
ELSE
search(module, predicate, pure_code)
IF pure_code = NULL THEN
module := module.next
IF (module = start) then finish := TRUE
END
END {search_children}

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

