Gaussian Elimination with Partial Pivoting and
Load Balancing on a Multiprocessor*

Eleanor Chu
Alan George

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
CS-85-48

December 1985

* Research supported in part by Canadian Natural Sclences and Engineering Research Council grant A8111, by the Applied Mathematical Sciences Research Pro-
gram, Office of Energy Research, U.S. Department of Energy under contract DE-AC05-840R21400 with Martin Marietta Energy Systems Inc., and by the U.S. Air
Force Office of Sclentific Research under contract AFOSR-ISSA-85-00083,

Gaussian Elimination with Partial Pivoting and
Load Balancing on a Multiprocessor*

FEleanor Chu

Alan George

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT

A row-oriented implementation of Gaussian elimination with partial
pivoting on a local-memory multiprocessor is described. In the absence
of pivoting, the initial data loading of the node processors leads to a
balanced computation. However, if interchanges occur, the
computational loads on the processors may become unbalanced, leading
to inefficiency. A simple load balancing scheme is described which is
inexpensive and which maintains computational balance in the presence
of pivoting. Using some reasonable assumptions about the probability of
pivoting occurring, an analysis of the communication costs of the
algorithm is developed, along with an analysis of the computation
performed in each node processor. This model is then used to derive the
expected speed-up of the algorithm. Finally, experiments using a
multiprocessor simulator are presented in order to demonstrate the
extent to which the analytical model predicts the simulator results.

*Research supported in part by Canadian Natural Sciences and Engineering Research Council under grant
A8111, by the Applied Mathematical Sciences Research Program, Office of Energy Research, U.S. Depart-
ment of Energy under contract DE-AC05-840R21400 with Martin Marietta Energy Systems Inc., and by
the U.S. Air Force Office of Scientific Research under contract AFOSR-ISSA-85-00083.

Table of Contents

JR 0§73 o Yo 10 1ol 3 T 3 o NN 1
o The AIGOTItRIN oot eeettee sttt e e ern e e e sennsnnesannannsennsnnnssnnes 2
HOST PrOCESS .cueeiiiiiiiiiieeireeiiiieterteientteeetneeneensteessansonsenseassnnsenssnssnnsenssessesnnseneens 5
INOAE PrOCESS .cuieiieeieiiiiiieecetirierir et ieeateeetenettnstaneanessasasssnsessssssnnsensonsnssnssensennes 6
. Implementation ISSUEScccoiiiiiiiiiiiiiiiiieeeeeerrccer e s e e e se s e ee e annes 7
. Performance ANAlYSiS ...ttt erteseeeseeeneeseocssrenssnsssannesennaens 9
4.1 Communication Message Complexitycccccomrrereiiiiiiiveienninrereeennnnne. 10
4.2 CommuNICALION VOIUINIE ...ueieeiiiiiieiiieeeeeeeeeeeeeeeeeneeeerassneensressnsenssnnsnnns 13
4.3 Estimation of Efficiency ...t ccerennen e 15
. Numerical EXPerimentsccccoiieiiiereeiiireiiieeiiieetinierineieressernseresssessessensesnns 17
e REFEIEICES couinieieiiiiii et ettt seestnessnsssesensansenssansensenssnssnsnnsnnseneennes 23
. Appendix A: Control DIagramscccccceeririreenciereenieereneeneeeeenereerseeeessneeen 25

. Appendix B: Program LiStingccccooiviveeiiiiiiiiiiieeccceeeeccesneneescceees e 26

1. Introduction

In this paper we present a concurrent algorithm for solving dense linear systems of
equations on a local-memory multiprocessor. The algorithm is based on Gaussian
elimination with partial pivoting, and relies significantly upon previous work by Geist
[3]. Thus, this paper can be regarded as a natural sequel to that article, and we
assume that the reader is familiar with the arguments and results found there.

Briefly, Geist presents arguments to support implementing Gaussian elimination
with partial pivoting in a row-oriented manner. That is, the rows of the matrix are
distributed to each node processor, and the computation is performed row by row.
Other alternatives include distributing the matrix by columns or by sub-matrices. A
major argument in support of the row-oriented scheme is that it allows the efficient
implementation of the triangular solution phase, an advantage not shared by alternate
schemes.

A disadvantage is that determining the pivot element is difficult, because the rows
are distributed among multiple processors. Geist’s solution involves using the
(otherwise more-or-less idle) host to aid in determining the pivot row, and he is able to
effectively overlap the associated communication cost with the computation.

A potential weakness of Geist’s implementation is that it does not deal with the
possible ‘“‘unbalancing” of the computation that could be caused by an unfortunate
sequence of pivot choices. He provides experimental evidence that suggests that the
cost of this imbalance will normally be low, typically around 10% in utilization and 5%
to 14% in execution time in the factorization phase. However, there are examples
where it is much higher. We discuss this in more detail in section 2.

Our contribution is to show that Geist’s general approach can be modified so that
the node processor loads remain balanced, irrespective of the pivot sequence chosen. In
addition, we have devoted considerable effort to the design of the software, and our
implementation exhibits a high degree of modularity. A control diagram and a listing of
the code are included in Appendix A and Appendix B respectively.

Finally, using some reasonable assumptions about the probability of pivoting
occurring, a model for the communication costs of the algorithm is developed, along
with an analysis of the computation performed in each node processor. This model is
then used to derive the expected speed-up of the algorithem. Experiments using a
multiprocessor simulator are presented in order to demonstrate the extent to which
the analytical model predicts the simulator results.

Although the numerical experiments discussed in this paper were conducted on a
simulator for a parallel machine based on the hypercube topology, our algorithm
neither exploits nor depends on this particular interconnection. The proposed algorithm

_92 -

and its analysis can be applied to any multiprocessor system whose processing nodes
can synchronize and communicate with each other, and with the host, via a message
passing scheme. Two message-passing primitives, send and awart, are assumed to be
available.

2. The Algorithm

We consider the problem of solving systems of linear equations on a local-memory
multiprocessor having p processing nodes, where p is assumed to be much less than n,
the order of the system. The algorithm is based on a row variant of Gaussian
elimination with partial pivoting. We denote the system to be solved by

Az =0

A serial version of the algorithm (in pseudo code) is given on page 3.

During the procedure, the coefficient matrix A is overwritten by the triangular
factors, and at the end of the execution of the algorithm the right hand side b contains
the solution.

As usual with parallel algorithms, we would like to achieve a balanced distribution
of work load and a low volume of data movement and communication. In addition, we
would like our software implementation to have a flexible and convenient calling
sequence and a modular design.

A uniform work load distribution and a low communication cost contribute
directly to the speed-up, which is the ultimate goal of a concurrent algorithm.
However, a flexible calling sequence and a modular design are also very important.
Ideally, a parallel algorithm for solving a class of problems should be as easy and as
flexible to use as its serial counterpart, and any complication in its implementation
should, to the extent possible, be made transparent to the user. More on various
implementation issues will be discussed in section 3.

It is desirable to separate the algorithm into two parts, namely the factorization
phase, and the solution of the triangular systems derived during the factorization. It is
often necessary to solve numerous systems of equations which differ only in their right
hand sides. With these two phases designed as independent software modules, one
need factor the matrix only once in order to solve these systems. The algorithm
proposed in this article retains this important feature while maintaining parallelism
and work load balance in both phases.

for k :=1ton—1do /* numerical factorization phase */
begin
pivot = k

for 7 := k+1 to n do
if Iaik I > |akk| then p'i’uot =

if pivot#k then /* interchange row k and row pivot */
for j:=1ton do

begin
temp = ay;
Ay = CQpiyot,j
Apiyot,j = temp
end
permy, = pivol

for ¢ := k+1 to n do
begin
Qi = G}/
for j ;= k+1 to n do
Qjj 2= Q=i * Oy
end
end

Permute b according to perm.

for k :==1ton—1do /* forward substitution */
for i == k+1 ton do |
by = bj—by *ay

for k :==n to 1 do /* backward substitution */
begin
b = by /akk

forz := 1 to k—1 do
b; 1= b;—bp *ay
end

We assume in the sequel that the coefficient matrix is read in or generated by the
host process. Since there is no globally shared memory, the data must be distributed
among the processing nodes in some way, typically either by rows or by columns. In
either case, there is a decision to be made concerning the way in which the rows or
columns are mapped onto the processors. For example, block-mapping may be used,
where the first n/p rows (or columns) are assigned to processor 1, the next n/p rows
(or columns) are assigned to processor 2, and so on. Alternatively, wrap-mapping may
be used, where consecutive rows (or columns) are assigned to consecutive processors,
with assignment "wrapping around"” to processor 1 after a row (or column) is assigned
to processor p.

To reiterate, there are two issues: whether the data is distributed by rows or
columns, and the way in which the rows (or columns) are mapped onto the processors.

Discussion about various mapping strategies can be found in [1,4,5,6]. In the case
of column-oriented Cholesky decomposition or column-oriented Gaussian elimination
with partial pivoting, the work load distribution is statically determined by the initial
data mapping. It was found in [1,4,6] that either wrap-mapping or reflection mapping
is quite effective in this context. Since a distribution of the triangular factors by rows
is much more desirable in connection with parallel triangular solution, a row-oriented
algorithm was proposed in [3] for Gaussian elimination with partial pivoting on a
hypercube multiprocessor. However, with the pivot row dynamically chosen during the
factorization process, the work load distribution is no longer dictated by the initial
data mapping.

For example, irrespective of the way in which the rows are mapped onto the
processors, it is possible that the first n/p pivot rows are chosen from the same
processor, after which it would remain idle until the factorization was completed. In
the worst case, the permutation in effect can turn an initial wrap-mapping into a
block-mapping, which can lead to a 50% increase in execution time [3].

Of course in general this is unlikely to occur in practice. Instead, as Geist argues,
it is more likely that the pivots will be selected more or less evenly from all of the
processors, and the work load will therefore remain roughly balanced. According to
the performance results reported in [3] for some random matrices, the penalty of an
unbalanced work load caused by the pivoting process appears to be 10% in the average
utilization, and the increase in execution time with random pivoting was observed to
be in the range of 5—14% in the factorization phase, and somewhat more if the
solution phase is included.

- 5-—

The algorithm proposed in this article eliminates this penalty by dynamically
balancing the load. It does so by explicitly performing the row interchanges so that
each processor node retains approximately the same number of uneliminated rows. We
shall see that the modest amount of communication involved in performing the
interchanges can be done in such a way that it does not affect the overall execution

time very much.

In designing the parallel algorithm, there is also a decision to be made concerning
how much communication in addition to data allocation the host should handle.
Besides the consideration that the host can only send or receive messages sequentially,
we also note that on some machines, the host-to-node communication is much slower
than the node-to-node communication. In the algorithm we propose in this article,
besides initial data loading we have involved the host only in the process of
determining the pivot row for each elimination stage. There is sufficient parallelism in
the work done by the host and other nodes at that point to make this a reasonable
strategy.

The algorithm is given below in a form which describes the functions of the host
and the node processes, but leaves the issue of how to accomplish them to section 3,
where we will discuss some implementation details.

Host Process
Instialization
1. Compose and broadcast the mapping information to all nodes.

2. Distribute the rows of the coefficient matrix to the nodes according to the
chosen mapping scheme.

Factorization
Repeat the following steps for each elimination stage:

1. Receive one pivot candidate from each active node.

2. Determine the pivot row and inform all active nodes of its number.
Triangular solutvon

1. Permute the right hand side according to the pivoting sequence.

2. Broadcast the permuted right hand side to all nodes.

3. Receive the solution element-by-element from the nodes.

Node Process

Instralization
1. Receive the mapping information from the host.
2. Receive its share of rows from the host.
3. Determine the maximum absolute value of the first column among the rows it

receives, and send this value and its row number to the host.

Factorization (k-th step)

1.
2.

6.

Wait for the pivot row number from the host.

If the pivot row is in this processor, immediately broadcast the pivot row to
all active nodes.

Check whether the kth row and the pivot row are the same. If they are
different but are both located in this node, interchange them (without
communication cost). If either the k-th row or the pivot row is located in
this node, interchange them via message passing. In any case, at most two
nodes are involved in the interchange.

Check whether any rows remain to be modified. If so, wait to receive the
pivot row. (Otherwise, become inactive until triangular solution phase
begins.)

After receiving the pivot row, compute the multiplier and update the
elements in the following column (i.e., column k+41). Send the element of
maximum absolute value in this column to the host as pivot candidate for the
next stage of elimination.

Modify the remaining rows.

Triangular solution

1.
2.

Wait for the permuted right hand side.

The node process which has the first row of the triangular matrices will
immediately broadcast the first element of the right hand side, which is the
first element in the solution of the lower triangular system, to every node
which requires it in order to modify its share of elements in the right hand
side. Therefore, during the kth stage of forward substitution, the node
process which has the kth row of data will broadcast the kth element in the
modified right hand side to all active nodes. The right hand side will then be
modified by all active nodes concurrently. This is repeated until the forward
substitution is completed.

7

3. The node process which has the last row of triangular matrices will initiate
the backward substitution by computing the last element of the solution and
broadcast it to all active nodes. Similarly, during the k-th stage of backward
substitution, the node process which has the (n—k+1)—st row will compute
the (n—k-+1)—st element of the solution and broadcast it to all active nodes.
The right hand side will then be modified by all active nodes concurrently.
The node process which computes the solution at each stage will also send
the element back to the host before proceeding with the next stage. This is
repeated until the first element of the solution is computed and sent back to
host.

Note that in the algorithm above, the transformations to each row must be
carried out sequentially. That is, row k is modified by rows 1, 2, 3, ..., and £—1 in
strict order. Fortunately, this still allows sufficient parallelism, and the
synchronization thus imposed guarantees that row k& must have been received by all
nodes before the pivot row for stage k+1 can be determined.

Also note that at the end of the numerical factorization, each node process will
have the rows of the triangular factors of a permuted form of A ready for the solution
phase, and the matrix A in the host need not be overwritten by the factors.

Although the above algorithm is described for solving a single system, to solve
many systems with the same coefficient matrix and a different right hand side, one
would need only to repeat the triangular solution phases of the host and node processes
for each right hand side.

3. Implementation Issues

In our implementation, we do not exploit the hypercube topology imitated by the
simulator. Although the communication cost might not be optimal for the hypercube
simulator, this approach will allow our code to be potentially portable to other local-
memory multiprocessors which support host-to-node and node-to-node communication
in some other way.

Two message-passing primitives, send and awazrt, are assumed to be available. For
consistency with Geist[3], and the simulator we used, we assume that execution of a
send does not cause the sending process to wait (e.g., for a reply); execution of its
program continues as soon as the message leaves the sending node. Execution of an
awast, however, blocks further execution of the receiving process until the message is
received.

8 —

Our algorithm involves identical programs for each node process. However, the
portion of the code actually executed by different nodes is not necessarily identical.

With the help of a dynamic load balancing scheme, the work load distribution of
our algorithm is not affected to an appreciable degree by the pivoting process. We
therefore adopted the wrap-mapping scheme in our implementation, which had been
shown to be effective in yielding high nodal utilization for column oriented algorithms
in [1,4,5].

The row-to-node mapping is contained in an array in our implementation, and is
therefore a “parameter” in the code. By allowing each node to store the data mapping
information, our implementation can be conveniently used with any row mapping
scheme. Although the performance results do depend on the particular mapping
scheme, our algorithm and the programming logic are both independent of the mapping
scheme being used. This approach not only makes the program easier to understand
but also allows one to experiment with different mapping schemes by simply calling a
different procedure to compose the map.

Since the development and maintenance of parallel numerical software is unlikely
to be easier than its serial counterpart, the importance of a good software design
remains. Although a modular design usually entails the overhead of more procedure
calls, the tradeoff in execution time is worthwhile since such software is easier to
understand and to maintain.

The program running on each individual processor is essentially a piece of serial
code interleaved with message passing primitives. In particular, the computing done on
each node is essentially the basic operations of numerical linear algebra including dot
products, elementary vector operations, vector copy and swap, vector norms, vector
scaling, and the determination of the index of the vector component of largest
magnitude. These basic operations have been implemented as low level subprograms in
a package called the BLAS (Basic Linear Algebra Subprograms) [7], and have been used
in the implementation of LINPACK |[2], a widely used package for solving dense linear
algebra problems. We have converted some of the routines in the BLAS to C programs
and used them in our implementation of a number of parallel linear algebra algorithms
including the one described in this article.

4. Performance Analysis

We begin our analysis by identifying and relating various common performance
measurements. As usual, our primary objective is to attain maximum speed-up. That
is, given a p-processor machine, we would like to solve our problem in time that is as
close as possible to a factor of p less than that needed to solve the same problem on a
single processor version of the machine, using the best serial algorithm available. We
assume that the single processor machine has adequate memory, presumably much
more than that available to a single processor in the multiple processor configuration.
We also assume that all processors in the machine have the same execution speed.

We adopt the following notation.

T,: execution time of the best serial program.

T: execution time of the paralle]l program running on p nodes.

T,: the average computation time of a node process.

T,: the average time spent by a node process in sending/receiving messages.
T;: the average idle time of a node process.

We note that

T =T, +T, + T, (4.1)
and
T,
T>271, 2 ry (4.2)

We shall assess an implementation of a parallel algorithm by its efficzency,
speedup, average nodal utilization, and parallel overhead, where

d Te 4.3
up = — }
speedup n (4.3)
. . d
ef ficiency = speedup on p nodes (4.4)
p
nodal utilization = busy time of aTnode processor (4.5)
i nodal utilization of node k
e . k=1
average nodal utilization = (4.6)

p

T, + T,
B T
_ L
T
parallel overhead = average nodal utilization — efficiency (4.7)
— Ta + Tc - Ts/p
o T
It is now clear that
.« . TS
speedup = p and efficiency =1 iff T, = ?— ,and T, =T; = 0.

average nodal utilization = 100% <ff T, =O0.

Therefore, a parallel program with high average nodal utilization does not necessarily
have high speed-up. When a node processor is busy, it is either doing arithmetic
computation or sending/receiving data. The idle time of a node processor can be
caused by an unbalanced workload and/or by the transmission delays in passing
messages. In particular, with the hypercube-like topology, messages tend to traverse
different paths of different length and so exhibit varied latencies. We note that the
computation and data communication on any individual processor must be carried out
sequentially, and the execution time of a parallel program is determined by the process
that finishes last.

We shall provide an analytical performance model for the algorithm we proposed
in section 2. Comparison will then be made with the actual performance of the
program running on a hypercube simulator.

4.1 Communication Message Complexity

We first derive the maximum, minimum and average number of messages sent and
received by an individual processor during the phases of numerical factorization and
triangular solutions. For concreteness, we consider solving a system of order n on a
multiprocessor of p nodes, where p < n. For convenience, we assume that n is an
integral multiple of p.

For the wrap-mapping scheme we have chosen to employ, each node processor will
be allocated n/p rows of the coefficient matrix A, which are to be overwritten by the
corresponding rows of the triangular factors of a permuted form of A. The map is
composed in the host and sent to each node processor. Therefore, the number of
messages sent by the host and received by each node processor for this purpose is given

- 11 -

by
HostSendy =n + p (4.8)
NodeRecvy = % +1 (4.9)

During the process of numerical factorization, each pivot row must be broadcast
to every node that needs to transform its remaining rows. Therefore, each row ¢ with
1 <n-—p will be sent to p nodes including itself, and each row ¢ with
it =n—p+k,1 <k <p will be sent to p —k nodes. (In order to keep our code simple
and easy to understand, nodes actually do send rows to themselves. There appears to
be little loss in efficiencyv by doing so.) Since every node processor has n/p rows with
exactly one row belonging to the last p rows of the matrix, we have

=1
P

Xp < NodeSendp;,_popy < [ﬁ- -1
p

Xp+p—1
That is
n —p < NodeSendp;y_royy <0 — 1, (4.10)
with
1 .
average = —Xi (n—p+i-—1)
P i
~n — -E—
2
and
n —p < NodeRecvpiy_poyy < — 1, with an average =~ n — 2 (4.11)

2

With the dynamic load balancing scheme, we have to account for the possible
communication cost of permuting rows residing in two different nodes. If we assume
that this is necessary at every elimination stage, then in the worst case we have

=z < NodeSend,y,, < n — 1, with an average = LRLCE (4.12)
4 2 2p

and
i;— < NodeRecvyery, = n — 1, with an average = -Z— + -2% (4.13)

In addition, all node processors will be participating in the process of determining the
pivot row at each elimination stage. Each node processor will send its pivot candidate

~12 -

to the host NodeSend,,,. times, and will be informed by the host of the pivot row
number NodeRecvg,,.; times, where

n —p + 1 < NodeSendy, ey < n — 1, with an average ~n — % (4.14)
n —p + 1 < NodeRecvg ey < — 1, with an average =n — -[21 (4.15)
HostRecUggpee; = (n—p)Xp + i g (4.16)
=2
— (n—p)Xp + Lp—1)>2<(p +2)
= np ——;-p2+%p—1
HostSendgee; = (n—p)Xp + f]j (4.17)
i=2
— (n—p)xp + 2=LX(+2)

2

1 1
=nmp —op'+op -1

Combining equations (4.8) to (4.17), the total number of messages sent and received by
the host and each node processor during the factorization phase is

1 1
HostSend ey = (n +p) + |np — -é-pz + 5P~ 1 (4.18)
1, 3
= —=p?+2p—1
np +n 2p + 2[)
1, 1
HostRecv e = np — Y4 + 5P~ 1 (4.19)
2n + —Z— —2p + 1 < NodeSend yy < 3n — 3 (4.20)
o2 + 2% —2p + 2 < NodeRecupy <3n 4 — — 2 (4.21)
p

The host then initiates the triangular solution phase on the node processors by
sending them the permuted right hand side ?), which is sent to each node as a whole,
because the saving in sending p messages of n real numbers each instead of n messages
of one real number each could be significant when p << n. During the process of
forward and backward substitutions, each computed element of the solution must be

~ 13 -

sent to each node process which needs to modify the remaining elements in the right
hand side. The final solution is then sent back to the host. We thus have

ox [— 1|xp + = < NodeSend,,, <2X{|—~ —1|xp +p —1}+ =
p p p p
That is
n n
2n + ' 2p < NodeSend,yy,, <2n + — — 2 (4.22)
4
2n — 2p + 1 < NodeRecvy,,, < 2n — 1 (4.23)
HostSend,,),, = p (4.24)
HostRecvgy,, = n (4.25)

From equations (4.10) to (4.15), (4.22) and (4.23), we obtain the average number of
messages sent and received by each node processor, as shown below.

AvgSendpogeree =~ 2.5n + 0.5-2— —-p (4.26)
AvgReCUngep = 2.5m + 1.5—3— —p (4.27)
AvgSend, gooory = 20 + % —p —1 (4.28)
AvgRecv, pgesory = 2n — p (4.29)

4.2 Communication Volume

The communication volume is determined by the number of messages, the size of
each message, and the path length traversed by each message. We now give the type
and the average size of each message as below. ‘

~ 14 —

message type average size
Map n integers
Row of A n reals
Local max 1 real
Pivot row number 1 integer
Pivot row n /2 reals
Row permuted n reals
Right hand side n reals
Solution component 1 real

The hypercube simulator was run on a DEC VAX 11/780, where the size of an
integer is 2 bytes, and the size of a single-precision floating point number is 4 bytes.

The average communication volume of each node process, assuming a path length of

one, is given below in bytes.

From (4.10), (4.12) and (4.14), we obtain

~ P 7 7 n
AvgSndVol,ogep = 4X|[n — Y X'2— + 4X Y + 2 Xn
+ 4X|n — —g- X1
n2
=~ 4n2+27——np + 4n — 2p
From (4.9), (4.11), (4.13) and (4.15), we obtain
n D n
A'UgRCUVOZnodefct ~ 4><'p—><n + 2X1Xn + 4X|n — E X?
n n p
AX|— + = 2x |n — = |X1
+X2+2an+Xn 2><

2
~ 4n2+6n7—np+4n—p

From (4.28), we obtain

AvgSndVol, gesory, = 4X|2n + % —p —1}IX1

(4.30)

(4.31)

(4.32)

- 15 -

U

8n + 42> —4p — 4
P

From (4.29), we obtain

AvgRevVol, geoory = 4X(2n — p) X1 + 4X1Xn (4.33)

2

12n — 4p

4.3 Estimation of Efficiency

Our aim is to provide an analytical performance model for the parallel program

running on the hypercube simulator. From equations (4.1) to (4.7), we see that the

speed-up, efficiency, average nodal utilization, and the parallel overhead can all be

determined given T,, the execution time of the best serial program, T,, the average

node computation time, T,, the average node communication time, and T}, the average

node idle time. Our task is therefore to provide estimates for Ty, T,, T,, and T;. Since

the performance model is for a parallel program running on a hypercube simulator, the

following simulator characteristics reported in [4] are noted in modelling and

interpreting the performance results.

a)

b)

d)

The hypercube simulator supports only one process per processor. We therefore
make no distinction between process and processor in our model.

The run time reported by the simulator is a count of the number of VAX
assembler-level instructions executed by the user code.

Since the hypercube connection is not complete, message passing between some
pairs of nodes is accomplished by routing messages through a sequence of
intermediate nodes. Although the arrival time of a message at the destination
node is approximated in the simulator by imposing a transmission delay on each
message that is proportional to the message path length and the length of the
message (in bytes), the cost of interrupting each of the intermediate nodes and the
cost of relaying the messages by each intermediate node are both ignored by the
simulator.

The send and await message passing primitives provided by the simulator are
each counted as one instruction only, as is any subroutine call to the C library.

The simulator allows the user to specify a desired ratio of communication time to
computation time. A ratio of 1.0 means that a floating-point number can be
transmitted between adjacent nodes in about the time required for one floating-
point arithmetic operation by a node processor. '

- 16 —

f) The simulator assumes that passing a message between the host and any node
costs the same as passing the same message between an arbitrary pair of adjacent
nodes.

Our analysis involves estimates in units of additive and multiplicative floating-
point operations. For Gaussian elimination with partial pivoting together with the
triangular solution, we approximate the total additive and multiplicative operations by

2 3
T, = §n3 + 5”2 (4.34)
and
TS
T, =~ _1-7— (4.35)

According to simulator characteristic d) above, the average communication time,
T., can be approximated by the sum of the average number of send’s and recetve’s
performed by an individual node in the factorization and triangular solution phase.
From equations (4.26) to (4.29), we have

T, ~ 9n +3— —4p — 1 (4.36)
p

In approximating the average idle time, T;, we shall assume a perfect load
balancing and estimate 7; by the transmission delays only. Since each node processor
must receive its share of data before the computation can begin, the initial delay due
to data loading is taken into account in our model. During the course of computation,
we assume that whenever the data is needed the first byte of the data message has just
arrived at the destination. The latter assumption implies that the delay time will be as
long as having the rest of the data transmitted between two adjacent nodes.

According to simulator characteristics e) and f) above, if we let o denote the ratio
of communication time to computation time, and recalling that one floating point
number is 4 bytes on a VAX 11/780, we have

~17 -

2
T, = —X|4n? + AUchvVOlnodefct_ilZ__ + AvgRcvVol,, gesotv (4.37)

2
z-zl—x 8n2+2-7l——np+16n—5p]
p

2
2n2+n_

=
X o

We can now estimate the analytical effictency as shown below.

Ts
analytical efficiency = T +£ T (4.38)
a ¢ i
2n3 3n?
~ 3p 2p
3 2 2
20 L3 4 on 4 3™ 4 oax|on? + 2
3p 2p p 2p
4n + 9

o> .
in + 120p + 30+ 9" ifa>1 and p >1

In particular, taking o = 1 we have

—_ n + 9
4n + 12p + 12 °

analytical efficrency,_ 4.39
a=1

We note that if p=1, then o is effectively zero, and the O(n) average communication
time, T,, cannot be ignored. Thus, we have
4n? + 9n

analytical efficiency,_, = 4.40
P=L T 4n? 4 9n + 72 (4.40)

5. Numerical Experiments
Our numerical experiments were designed to demonstrate
1. the effectiveness of the implemented load balancing scheme,

2. the extent to which the actual logical communication count reported by the
simulator is predicted by the message complexity approximations we derived in
section 4.1,

~ 18 —

3. how the actual performance of the parallel program on the hypercube simulator
corresponds to the analytical efficiency derived in section 4.

Our experiments were performed on a VAX 11/780 running a binary hypercube
simulator written by T.H. Dunigan of the Oak Ridge National Laboratory. The run
time reported is a count of the number of VAX assembler-level instructions executed
by the user code. We have used 1.0 as the ratio of communication time to computation
time in all our experiments. For further details about the simulator, and background
information about hypercube multiprocessors, see [4].

Table 1 shows the performance results from two implementations of the dynamic
load balancing scheme for the numerical factorization phase. Strategy 1 can be viewed
as a straightforward implementation of the serial algorithm described in section 2 for a
parallel machine. That is, the interchange of rows resulting from the pivoting process
is made before each elimination stage begins. Strategy 2 allows the pivot row to be
broadcast before the interchange is actually made. By exploiting the fact that
messages do not have to be received in the same order as they arrive at the
destination, strategy 2 can be implemented with clean logic. Our experimental results
in Table 1 show that the average nodal utilization is increased by up to 9% and the
execution time is decreased by as much as 12.5% when strategy 2 is adopted. In the
following tables, ‘migrations’ indicate the number of row interchanges between
different nodes.

Table 1
Factorization Phase
Strategy 1 Strategy 2
n p migrations time utilization sp_up time utilization sp_up
64 4 49 383012 85% 2.9 365508 89% 3.0
128 4 90 2391259 92% 3.5 2313673 95% 3.6
128 8 112 1462134 82% 5.7 1357387 88% 6.1
128 16 122 1153358 60% 7.2 1009124 69% 8.2

Table 2 compares the results from performing Gaussian elimination with partial
pivoting on randomly generated matrices and diagonally dominant matrices. Since row
interchanges will not occur in the latter case, the difference in their respective
performance indicates the effectiveness of our dynamic load balancing scheme. From
the experimental results presented in Table 2, we see that the execution time is

- 19 —

increased only 19, and the average nodal utilization is not affected at all for n = 128
with p =4 and p = 8. Since the interchange of rows actually happens 90 and 112
times respectively on the randomly generated matrices for these two cases, the
dynamic load balancing scheme appears to be very effective. We note that the
utilization results reported in [3, Fig.3] for these two cases are approximately 87% and
79%. It was also reported in [3] that random pivoting appeared to cause utilization
10% lower and execution time 5—14% longer than the diagonally dominant case.

Table 2
Factorization Phase
Random Matrices Diagonally Dominant Matrices
n P migrations time utilization sp_up time utilization sp_up
64 1 0 1147491 99% 0.96 1111102 99% 0.94
64 4 49 365508 89% 3.0 350439 91% 3.0
128 1 0 8372077 99% 0.99 8226315 99% 0.97
128 4 90 2313673 95% 3.6 2282619 95% 3.5
128 8 112 1357387 88% 6.1 1338271 88% 6.0
128 16 122 1009124 69% 8.2 944246 73% 8.5

Table 3 compares the experimental results of performing factorization alone
against the results including the triangular solution phase. The reported average nodal
utilization for each test problem indicates that high parallelism is effectively
maintained in both phases. Since the amount of arithmetic computation performed on
each node for forward/backward substitution is O(n?/p), its effect on masking
communication is less compared to the O(ns/p) computation performed in the
factorization phase, the lower overall speed-up is expected. For the four test problems,
the percentage of run time dedicated to the solution phase varies from 9.6% for
n =128, p =4, with n/p = 32 to 17% for n = 128, p = 16, with n/p = 8.

- 920 —

Table 3
Factorization Factorization + Solve
n P migrations time utilization sp_up time utilization sp_up
64 4 49 365508 89% 3.0 435974 91% 2.7
128 4 90 2313673 95% 3.6 2559283 96% 3.3
128 8 112 1357387 88% 6.1 1575928 89% 5.4
128 16 122 1009124 69% 8.2 1217544 72% 7.0

Table 4 and Table 5 compare the performance of our row-oriented algorithm with
the performance of a column-oriented algorithm, which we have implemented to
perform Gaussian elimination with partial pivoting on a local-memory multiprocessor in
the same spirit as the column-oriented sparse Cholesky algorithm described in [5]. In
either case, the speed-up is measured using the same serial program. The experimental
results presented in Table 4 indicate that by incorporating the load balancing scheme,
the row-oriented algorithm has achieved higher speed-up than the column-oriented
algorithm in the factorization phase. Note that the apparently higher utilization of the
column-oriented algorithm does not result in higher speed-up. As noted earlier, high
utilization is not a sufficent condition for high speed-up.

Table 4
Factorization Phase

Row-oriented Algorithm Column-oriented Algorithm

n p | migrations time utilization sp_up time utilization sp_up
64 4 49 365508 89% 3.0 400512 96% 2.8
128 4 90 2313673 95% 3.6 2521241 98% 3.3
128 8 112 1357387 88% 6.1 1478066 95% 5.6
128 16 122 1009124 69% 8.2 1007964 85% 8.2

Table 5 compares the performance of the row-oriented algorithm and the column-
oriented algorithm including the triangular solution phase. We note that in order to
carry out the forward/backward substitution in parallel while retaining the
factorization phase and the triangular solution phase as two independent tasks, the
rows of the triangular factors need to be distributed among the nodes at the end of the

~921 —

column-oriented factorization algorithm. The results presented in Table 5 show that
the need to redistribute data before starting the solution phase makes the column-
oriented algorithm less desirable in both speed-up and average nodal utilization.

Table 5
Factorization 4+ Solve

Row-oriented Algorithm Column-oriented Algorithm

n p | migrations time utilization sp_up time utilization sp_up
64 4 49 435974 91% 2.7 536138 75% 2.2
128 4 90 2559283 96% 3.3 2989983 83% 2.8
128 8 112 1575928 89% 5.4 1933489 72% 4.4
128 16 122 1217544 72% 7.0 1501243 56% 5.6

Table 6 compares the average logical communication count obtained from
numerical experiments using random matrices against the formulae for AvgSend,, 4
and AvgSend, geson, derived in section 4, i.e., equations (4.26) and (4.28). Since
interchange of rows was assumed to be always necessary in our model, and the
maximum number of interchanges for an individual node was obtained from the worst
case analysis, the analytical approximation is expected to be an upper bound for all
cases. Our experimental results in table 6 appear to verify our expectation. We note
that the overestimation is within 10% in all cases reported in Table 6.

—99 _

Table 6
Factorization + Solve
n p n /p AvgSend Measured
nodefct+nodesolv | average count

16 2 8 79 73

20 2 10 100 95

30 3 10 143 136

40 4 10 186 175

50 5 10 229 213
100 10 10 444 405

32 2 16 163 149

40 2 20 205 191

60 2 30 310 296

64 2 32 331 312

80 2 40 415 391
100 2 50 520 493

Table 7 compares the analytical efficiency given by equation (4.39) for
p>1, a=1 and equation (4.40) for p =1 against the actual efficiency from numerical
experiments on random matrices of different order on different number of processors.
The analytical efficiency appears to closely approximate the simulator effictency
when p <<n /p.

- 93—

Table 7

Factorization + Solve

n p n/p | Analytical efficiency | Measured efficiency

16 2 8 0.73 0.51
128 16 8 0.73 0.44
20 2 10 0.77 0.59
30 3 10 0.77 0.60
40 4 10 0.77 0.60
50 5 10 0.77 0.61
100 10 10 0.77 0.62
32 2 16 0.84 0.76
64 4 16 0.84 0.68
128 8 16 0.84 0.68
40 2 20 0.86 0.80
50 2 25 0.90 0.86
64 2 32 091 0.89
128 4 32 0.91 0.83
80 2 40 0.92 0.92
100 2 50 0.94 0.94
10 1 10 0.87 0.58
64 1 64 0.99 0.90
128 1 128 1.00 0.95

8. References

1] G. J. DAvis, “Column LU factorization with pivoting on a hypercube
multiprocessor’”’, Technical Report 6219, Mathematical Sciences Section, Oak
Ridge National Laboratory, Oak Ridge, Tennessee 37831 (1985).

[2] J. J. DONGARRA, C. B. MOLER, J. R. BUNCH, AND G. W. STEWART, LINPACK
users’ guide, SIAM, Philadelphia (1980).

[3] G. A. GEIST, “Efficient parallel LU factorization with pivoting on a hypercube
multiprocessor’”’, Technical Report ORNL-6211, Mathematical Sciences Section,
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (1985).

—-924 —

[4] G. A. GEIST AND M. T. HEATH, ‘Parallel Cholesky factorization on a hypercube
multiprocessor’”’, Technical Report 6190, Mathematical Sciences Section, Oak
Ridge National Laboratory, Oak Ridge, Tennessee 37831 (1985).

[6] J. A. GEORGE, M. T. HEATH, J. W-H. L1U, AND E. G-Y. NG, ‘‘Sparse Cholesky
factorization on a local-memory multiprocessor’’, Research Report CS-86-02,
Department of Computer Science, University of Waterloo (1986).

[6] M. T. HEATH, ‘Parallel Cholesky factorization in message passing multiprocessor
environments’’, Technical Report ORNL-6150, Mathematical Sciences Section,
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (1985).

[7] C. LAWSON, R. HANSON, D. KINCAID, AND F. KROGH, ‘‘Basic linear algebra
subprograms for Fortran usage’, ACM Trans. Math Software 5, pp. 308-371
(1979).

— 95

7. Appendix A: Control Diagrams

Control Relations of Procedures for Parallel Gaussian Elimination with

Partial Pivoting and Triangular Solutions

TASK
taskO
r-oT -0
| |
gen_A gen_b_row cubeinit strace Hludecomp | 1 Hlusoly 1 etrace
| I
Lo J
proci wrapmap beast_map send_data Hfind_pivot Hsend_pivot
| h
I 1
Nludecomp | 1 Nlusolv SEND send_v, wait_v e
| | ® ® ©

mynode

recvAjs

sendnod@D

migrate

local_max

saxpy

AWAIT,

wait_map

permrow

wait_rhs

— 926 —

recvbjs

r---
|

| sendnod [
: F
L oL

Hlusolve
r—-—--—- Bl
1 I
permb beast_rhs | wait_v I
1 1
L ___ N
r=——---- b
} 1
I SEND]
1 1
| I J
Nlusolv
forsolv backsolv
F
ar-——%=-- Aar-—--—-—-1
1 1 !
mynode__t 1 wait_v i (E sendbbj
11 @I
———— @_J [— d]
re-m- |
|
1 send_v

—97 _

8. Appendix B: Program Listing

/* C Programs Implementing Parallel Gaussian Elimination */
/* with Partial Pivoting, end Forward/Backward Substitution */
/* on a Local-Memory Multiprocessor Simulator */

#include </u/sparspak/simulator/local/intel . h>
#itnclude <stdio.h>
#include <math.h>

#define STACK 10000
#define REAL float /* float: 4 bytes on vaz 11/780 */
#define LONG long /* long: 4 bytes on wvaz 11/780 */
#define SHORT short /* short: 2 bytes on wvaz 11/780 */
#define msg_MAP
#define msg_MITXA
#define msg_lmaz
#define meg_pivot
#define msg_kstyg
#define msg_kpivot
#define meg_rowk
#define msg_rhs
#define msg_fbj
#define msg_bbj
#define msg_soln

R R N T R L

LT

TASK proci();

char *calloc();
double sdot();

int NDIM, NPROC;

— 928 —

TASK
task0()
/* host process: the driver program */

{
extern tnt NDIM, NPROC;

SHORT *map, *perm;
LONG *jbegin;
REAL *Ajs, *b;
int i, mknt;

scanf("%d %d", 8NDIM, 8&NPROC);

Ajs = (REAL *)calloc(NDIM*NDIM+1, sizeof(REAL));
b = (REAL *)calloc(NDIM+1, sizeof(REAL));

perm = (SHORT *)calloc(NDIM+1, sizeof(SHORT));
map = (SHORT *)calloc(NDIM+1, sizeof(SHORT));
jbegin = (LONG *)calloc(NDIM+1, sizeof(LONG));

Jor (i = 1; i <= NDIM; i++)
jbegin[i] = 1 + (i-1)*NDIM;

gen_A{Ajs, NDIM, NDIM);
gen_b_row(Ajs, NDIM, b);
cube_init(1.0);
strace("tfile");
Hludecomp (NPROC, NDIM, map, perm, jbegin, Ajs);
Hlusolv(NDIM, b, perm);
etrace();
1; i <= NDIM-1; i++)
if ((map[i] != map[perm[i]]) mknt++;
printf("migration occurs %d times \n", mknt);

printf("solution is \n");
for (i = 1; i <= NDIM; printf{"Bf\n", b[i++]));

free(Ajs);
free(b);
free(perm);
Jree(map);
free(jbegin);

_ 99 -

Hludecomp(nproc, ndim, map, perm, jbegin, Ajs)
int nproc, ndim;

SHORT map[], perm[];

LONG jbegin[];

REAL Ajs[];

int nrows, p, ¢, j, kstage, kpivot, Ilth;

Jor (p = 0; p < mproc; p++)
tfork(proci, STACK);
nrowe = ndim;
wraepmap (nrows, map, nproc); /* compose the map
lth = nrows + 1;
bcast_map (msg _MAP, nproc, Ilth, map); /* broadcast the map

Ilth = ndim;

send_data(msg_MTXA, map, nrows, lth, Ajs); /* distibute date

lth = ndim;

for (kestage = 1; kstage <= ndim-1,; kstage++) /* determine pivot

{

Hfind_pivot (msg_Ilmaz, nproc, ndim, map, kstage, &kpivot);
Hsend_pivot (msg_pivot, nproc, ndim, map, kstage, kpivot);
perm[kstage] = kpivot;

Hlugolv(ndim, b, perm)
int ndim;

SHORT perm[];

REAL b[];

extern int NPROC;
tnt ¢, lth, bk;
REAL temp;

permb(ndim, b, perm); /* Host permutes right hand side

lth = ndim + 1;

bcast_rhs(msg_rhs, NPROC, lth, b);/* broadcast right hand side

lth = 1;

for (i = 1; i <= ndim; i++) /¥ receive solution element

{

wait_v(msg_soln, &bk, Blith, &Btemp);
b/bk] = temp;

Y/

¥/

*/

*/

*/

*/

*/

~30 -

Hfind_pivot(typ_lmaz, nproc, ndim, map, kstage, pkpivot)
int typ_lmaz, nproc, ndim, kstage, *pkpivot;
SHORT map|[];

int dest, k, rowno, *marker, lth;
REAL pivot, temp;

marker = (int *)calloc(nproc, sizeof(int));
for (k = 0; k < nproc; k++)
marker [k] = 0;
pivot = 0;
Jor (k = kstage, k <= ndim; k++) /* determine pivot row */
dest = map[k];
if (marker [dest] == 0)
lth = 1;
wait_v{(typ_lmaz, Srowno, <h, &temp), /* receive pivot */
if (temp > pivot) /* candidates */
pitvot = temp;
*pkpivot = rowno;

maerker [dest] = 1;

}
}

free(marker);

Hsend_pivot (typ_pivot, nproc, ndim, map, kstage, kpivot)
int typ_pivot, nproc, ndim, kstage, kpivot;

SHORT map[];

{

int dest, k, *marker;
REAL temp;
marker = (int *)calloc(nproc, sizeof(int));

Jor (k = 0; k < mnproc; k++)
marker [k] = 0;

for (k = kstage; k <= ndim; k++) /* inform active nodes of */

{ /¥ pivot row */
dest = map[k];
if (maerker [dest] == 0)
send_v(typ_pivot, dest, kpivot, NULL, &temp);

marker [dest] = 1;

}

free(marker);

~ 31—

Nludecomp (Ajs, map, jbegin, work)
SHORT map [/ ;

LONG jbegin/]/;

REAL Ajs[], work/[];

extern int NDIM, NPROC;

tint ¢, 5, jstrt, k, kpivot, kstg, lth, me, nrows, nzxtrow, rowno;
REAL amaz, pivot, temp;

me = mynode();
recvAjs(Ajs, 8nrows, map, jbegin); /* receive map and data */
kstg = 1; /* Numerical factorization */

while (nrows > 0)

{
lth = NULL;
wait_v(msg_pivot, Bkpivot, <h, 8iemp);

if (map[kpivot] == me)

Jstrt = jbegin[kpivot]| + kstg - 1;
sendnode (msg_rowk, map, kstg, kstg, NDIM-kstg+1, BAjs[jstrit]);

}

migrate(Ajs, jbegin, map, ketg, kpivot, meg_kstg, msg_kpivot,me);

if (map[kstg] == me) nrows--;
if (nrows > 0) /¥ rows remain to be modified */

lth = NDIM;
wait_v(msg_rowk, &k, <h, 8Bwork[1]);

local_maz(Ajs, jbegin, map, kstg, Swork[1], 8Browno, Hamaz, me);
if (kstg <= NDIM-2)

send_v(meg_Ilmaz, HOST, rowno, 1, &amasz);
nxtrow = kstg+1;
for (j = nztrow; j <= NDIM; j++)

if ((map[j] == me) /* modify row j */

jestrt = jbegin[j];
pivot = Ajs[jetrit+kstg-1];
sezpy (BAjs[jstri+kstg+1], Bwork[8], -pivot, NDIM-kstg-1);

}

}

ketg++;

if (kstg == NDIM & map [NDIM] == me)
nrows--; .

_ 392 _

Nlusolv(Ajs, b, map, jbegin)

SHORT map|];

LONG jbegin[];

REAL Ajs(], b[];
int nbhjys;
recvbjs (b, 8nbjs, map); /* receive right hand side */
forsolv(Ajs, jbegin, b, nbjs, map); /* forward substitution */

backsolv(Ajs, jbegin, b, nbjs, map);, /% backward substitution */

~ 33 -

backsolv(Ajs, jbegin, b, nbjs, map) /¥ back substitution in a node *,
int nbjs;
SHORT map[];
LONG jbegin{];
REAL Ajs[], b[];
extern snt NDIM;

int t, J, kstg, lth, me, neztbd;
REAL temp;

me = mynode();

kstg = NDIM;

if (map[1l] == me) nbjs++;

i/ (maep [NDIM] == me) /* start other nodes as soon as possible

b /[NDIM] /= Ajs[jbegin[NDIM/+NDIM-1]; /* compute the last solution
sendbbj(msg_bbj, map, NDIM, NDIM, 1, &b [NDIM]); /* inform nodes *

send_v(msg_soln, HOST, NDIM, 1, &b [NDIM]); /* inform host ?
nbje--;
}
while {(nbjs > 0)
{
Lth = 1;
wait_v(msg_bbj, &j, Glth, Stemp); /* receive solution element
for (i = 1; i <= j-1; i++)
if (map[i] == me) /* modify b[¢] 7
b[i] -= (temp*Ajs/[jbegin[i]+j-1]);
}
kstg--;
if (map[kstg] == me)
{
b[kstg] /= Ajs[jbegin[ketg]+kstg-1]; /* compute solution
if (kstg !I= 1
sendbbj(msg_bbj, map, kestg, kstg, 1, Bblkstg]),/* inform nodes
send_v(msg_soln, HOST, kstg, 1, 8blkstg]); /¥ inform host
nbje--;
}
}

— 34 —

bcast_map(type, nproc, lth, sz) /* broadcast map to nodes */
int type, nproc, lth;
SHORT sz |[];

int i, I
REAL *p;

I = lth*sizeof (SHORT);
Jor (i = 0; i < nproc ; i++)
SEND(i, type, !, sz, NULL, p);

bcast_rhs(type, nproc, Ilth, z) /* broaedcast right hand side */
int type, nproc, lth;
REAL z/[];

int i, 1;
REAL *p;

I = lth*sizeof(REAL);
Jor (i = 0; i < mproc ; i++)
SEND (i, type, I, z, NULL, p);

— 35 —

substitution in a node

*

/

/*
2.
forsolv(Ajs, jbegin, b, nbjs, map) /* forward
int nbjs;
SHORT map (] ;
LONG jbegin[];
REAL Ajs[], b[];
extern int NDIM;
int i, J, kstg, lth, me, neztbh;

REAL temp;

me = mynode();
kstg = 1;
while (nbjs > 0) /* elements in rhs
{
Leh = 1;
wait_v(msg_fbj, &5, <h, Stemp);
nextb = j§ + 1;
for (i = nexztb; i <= NDIM; i++)
{

if (mep[i] == me

bli] -=

/* receive

inform other
kstg,

random matrices

remain to be modified

solution element

/* modify b/[i]

(temp*Ajs[jbegin[i[]+7-1]);

solution

of
Bblkstg]);

nodes
11

*/

kstg++;
if (mepl[kstg] == me)
{
if (kstg != NDIM) /*
sendnode(msg_fbj, map, kstg,
nbjs--;
}
}
}
/*
l} ___
gen_A(z, ncols, mrows) /* generate
int mrows, ncols;
REAL =z[];
{
int i
for (i = 1; i <= mrows®*ncols; i++)
z[i] = (REAL) random()/1028818;

— 36 —

/*
Given a square matriz A of dimension ndim stored in one dimensional
array © row by row, gen_b_row() generates right hand side

b s0 that the system Az = b has a solutiton of all one’s.
*/

gen_b_row(z, ndim, b)
int ndim;

REAL =[], b/[];

{

int ¢, §, frow;

Jor (i = 1; i <= ndim; i++)
{
irow = (i-1)%*ndim;
bfi] = 0;
for (7 = 1; j <= ndim; j++)

zfirow+j]/;

b[i] +

- 37 -

local_maz () scales the pivot column to obtain multipliers and
modifies the first element of remaining rows, send the local
maz to HOST in order to determine the pivot row for next stage

Y/

local_maz(Ajs, jbegin, map, kstg, rowk, prowno, pamazx, me)
int kstg, *prowno, me;

SHORT map [];

LONG jbegin(/[;

REAL Ajs([], *pamaez, rowk/[];

extern int NDIM;
int i, nxtrow, jstrt;
REAL temp, pivot, s;

pivol = rowk/[0];

s = rowk[1];
nzxtrow = ketg + 1;
*pamaz = 0. ;

for (i = nztrow; i <= NDIM; i++)

if (map[i] == me)
{

jetrt = jbegin[i] + kstg - 1; /* element on pivot column */
Ajs[jstrt] /= pivot; /* overwrite A with multiplier */
Ajs[jstrt+1] -= Ajs[jstrt]*s;
temp = (REAL) fabs((double) Ajs[jstrt+1]);
if (temp > *pamaz) /* Jind local maezimum which */
{ /* is candidate for nzt pivot */
*pamaz = temp;
*prowno = {;

— 38 —

migrate(Ajs, jbegin, map, kstg, kpivot, typ_kstg, typ_kpivot, me)
int kestg, kpivot, typ_kstg, typ_kpivot;

SHORT map|[];

LONG jbegin[];

REAL Ajs[];

{
extern stnt NDIM;
int k, lth;
if (kstg != kpivot) /* row interchange occurs ¥/
if (mapl[kstg] == me & map[kpivol] == me
permrow(8Ajs [jbegin[kstg]], BAjs[jbegin[kpivot]], NDIM);
else if (map[kstg] == me
lth = NDIM;
send_v(typ_kpivot, map[kpivot], kpivot, lth,BAjs[jbegin[kstg]])
wait_v(typ_kstg, &k, <h, BAjs[jbegin[kstg]]);
else if (map[kpivot] == me)
lth = NDIM;
send_v(typ_kstg, map[kstg], kstg, lth,8Ajs[jbegin[kpivot]]);
wait_v(typ_kpivot, 8k, 8lth, BAjs[jbegin[kpivot]]);
}
}
}
/*
N

permb(ndim, b, perm) /* permute right hand side according to perm */
int ndim;

SHORT perm[];

REAL b[];

int 1, k;
REAL pivot;

for (k = 1; k < ndim; k++)

{
i = perm([k];
Ef (i 1=k)
pivot = b[i];
b/i] = b[k];
b[k] = pivot;
}
}

-39 —

permrow(rowk, rowi, lth) /* swap row i aend row k on the same node */
int Lth;
REAL rowk[], rowi[];

int §;
REAL *pk, *pi, temp;

pk = rowk;
pt = rowt;
Jor (i = 1; i <= lth; i++)
{
temp = *pi;

TASK
proci () /* driver of a node process */

eztern int NDIM, NPROC;

int nrows;

SHORT *map;

LONG *jbegin;

REAL *Ajs, *work, *b;

nrows = NDIM/NPROC + 1;

map = (SHORT *)calloc(NDIM+1, sizeof(SHORT));
jbegin = (LONG *)calloc(NDIM+1, sizeof(LONG));
Aje = (REAL *)calloc(NDIM*nrows+1, sizeof(REAL));
work = (REAL *)calloc(NDIM+1, sizeof(REAL));

b = (REAL *)calloc(NDIM+1, sizeof(REAL));

Nludecomp (Ajs, mep, jbegin, work);
Nlusolv(Ajs, b, map, jbegin);

free(b);
Sfree(work);
free(Ajs);
Jree(jbegin);
free(map);

— 40 —

recvAjs(Ajs, nrows, map, jbegin) /* receive map and data from host */
int *nrows;
SHORT map/[];
LONG jbegin[];
REAL Ajs|];
{
extern int NDIM;
int i, 3, k, lth, me, nr, rowno;
REAL *pAj, amazx, temp;
me = mynode();
lth = NDIM + 1;
wait_map(msg_MAP, <h, map);
Jor (j = 0; j <= NDIM; j++) /* initialize jbegin */
jbegin[j] = 0;
nr = 0;
for (j = 1; j <= NDIM; j++)
if (map[j] == me) nr++;
nrows = nr; / number of rows I am to receive */
amazx = 0.0;
pAj = BAjs[1];
Jor (k = 1; k <= nr; k++) /* receive nr rows */
{
ith = NDIM;
wait_v{mesg_MIXA, 8j, <h, pAj);
temp = (REAL) fabs((double) *pAj);
if (temp > amaz) /* determine local mezimum in first column *,

amazr = temp;
rowno = j,;
jbegin[j] =
pAj += Llth;
send_v(msg_Ilmaz, HOST,

1 + (k-1)*Lth;

rowno, 1, &amaz); /* send pivot candidate *

/¥ to host *,

—- 41 -

recvbjs(b, pnbjs, map) /* receive permuted right hand side from host *,
int *pnbjs;

SHORT map [];

REAL b/[];

extern int NDIM;

int i, k, me, nb, lth;
REAL *pbyj;

lth = NDIM+1;
wait_rhs(msg_rhs, <h, b);

me = mynode();
nb = 0;
Jor (j = 1; §j <= NDIM; j++)
if (map[j] == me) nb++;
pnbje = nb; / number of bj’'s I should own */

if (map[1l] == me) /* broadcast first solution element to nodes *,

(*pnbjse)--;
sendnode (meg_Jfbj, mep, 1, 1, 1, &b[1]);

}
}
/*
l} """""""""""""""""""""""""""""""""""""""
sazpy(z, y, 8, Ith)
int lth;

REAL z[], y][], s
REAL *pz, *py;

pr = z;

py = ;

for (; lth > 0; lth--, pz++, py++)
prx 4= s(*py);

_ 49 —

send_data(type, map, num_vecs, lth, z)
int type, num_vecs, Ilth;
SHORT map[];

REAL z[];
int j, proc;
REAL “*pzx;
pr = 8z [1]; /* broadcat date to nodes according to map */
for (j = 1; j <= num_vecs; j++)

proc = map[j];
send_v(type, proc, j, lth, pz);
pr += lth;

sendnode (msg_type, map, proc, colno, lth, vj)
int mesg_type, proc, colno, lth;

SHORT map|[];

REAL vj[];

extern int NDIM, NPROC;

int dest, i, k, nztcol, *marker;

marker (int *)calloc(NPROC, sizeof(int));

for (k = 0; k < NPROC; k++)
marker [kK] = 0;

nzxtcol = proc + 1;
for (k = nztcol; k <= NDIM; k++)

{
dest = map[k];
if (marker [dest] == 0)

send_v(msg_type, dest, colno, lth, vj);
marker [dest] = 1;

}

free(marker};

- 43 —

send_v(type, dest, colno, vith, z)
int type, dest, colmno, vith;
REAL z[];

tnt lth;

lth = vith*sizeof(REAL);
SEND(dest, type, sizeof(int), 8Bcolno, lth, z);

sendbbj(msg_type, map, proc, kstg, lth, vj)
int msg_type, proc, kstg, lth;

SHORT map|[];

REAL vj/[];

extern tnt NPROC;

int dest, {, k, *marker;

marker (int *)calloc(NPROC, sizeof(int)};

for (k = 0; k < NPROC; k++)
marker [k] = 0;

for (k = 1; k <= kstg-1; k++)

{
dest = map[k];
if (marker [dest | == 0)
send_v(msg_type, dest, kstg, lth, vj);
marker [dest] = 1;
}
}
free(marker);
}
/*
2.

wait_map (type, lth, sz)
tnt type, *lth;
SHORT sz[];

int bufeitze, I;
REAL *p;

| = NULL;

bufeize = (*lth)*sizeof(SHORT);
AWAIT (type, &bufsize, sz, &I, p);
*Ith = bufsize/sizeof(SHORT);

— 44 —

Ith, =z)

»

wait_rhs(type
int type, *lt
REAL =/];

=

int bufsize, [;
REAL *p;

| = NULL;
bufsize = (*lth)*sizeof(REAL);
AWAIT(type, &bufsize, z, &I, p);
*Ith = bufsize/sizeof(REAL);

wait_v(type, colno, z_lth, =z)
int type, *colno, *z_1lth;
REAL z[];

int {lth, lth;
lth = (*z_lth)*sizeof (REAL);
ilth = sizeof(int);

AWAIT (type, Bilth, colno, <h, z);
*z_lth = lth/sizeof(REAL);

wrapmap(ncols_or_nrows, map, nrpoc) sets up the column or row
to processor map function in a wrap eround manner.
*/

wrapmap (ncols_or_nrows, map, nproc)
int ncols_or_nrows, nproc;
SHORT map|[];

int

Jor (i = 1; i <= ncols_or_nrows; i++)
map[i] = (i-1) % nproc;

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

