Setting Tables and
Illustrations with Style

Richard J. Beach

CS 85-45

1985



Setting Tables and
Illustrations with Style

Richard J. Beach

A thesis

presented to the University of Waterloo
in fulfillment of the

thesis requirements for the degree of
Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, 1985

© Richard J. Beach 1985



Setting Tables and
Illustrations with Style

Abstract

This thesis addresses the problem of formatting complex documents with
electronic tools. In particular, the two problems of incorporating illustrations
and laying out tables are treated in depth. The notion of style, a way of
maintaining consistency in a document, runs throughout the thesis. It helps
manage the complexities of formatting both illustrations and tables. The thesis
reviews the history of document composition systems, including early computer
typesetting systems, document compilers, and integrated document composition
systems. The concept of graphical style is introduced to extend the more
traditional notion of document style to illustrations. The observation that
graphical style does not adequately deal with the layout problem for illustrations
leads to the investigation of a more concentrated layout problem for the special
case of table formatting. A grid system is used to describe the table layout
arrangement and a constraint solver provides the general layout engine for
formatting tables as well as the basis for future interactive table design tools.
Further research based on the style and table formatting models can be extended
to mathematical typesetting and full page layout. A glossary of typesetting terms
and an index to the thesis are provided to help the reader deal with the
typographic terminology used in the thesis.



Contents

Abstract iv
Table of Figures ix
- Acknowledgements xi
1 Introduction 1-1
1.1 Overview 1-1
1.2 What is a document? 1-2
1.3 Personal Reflections on Document Production 1-5
1.4 The Concept of Document Style 1-9
1.5 Roadmap to the Thesis 1-10
2 Document Composition 2-1
2.1 Traditional Document Production Techniques 2-1
2.1.1 How do books gei produced? 2-2
2.1.2 Roles involved in producing a book 2-6
2.2 The Concept of Style 2-14
2.2.1 Style as a Series of Design Choices 2-15
2.2.2 What Do Styles Affect? 2-17
2.2.3 Styles for Specific Media 2-18
2.3 Early Typesetting Systems 2-19



2.4 Document Compilers 2-22
24.1 troff 2-24
24.2 Scribe 2-29
243 TgX 2-30
2.5 Integrated Composition Systems 2-32
2.5.1 Etude 2-34
2.5.2 Janus 2-35
2.5.3 Xerox Star 2-36
2.5.4 Xerox PARC Research 2-37
2.5.5 WYSIWYG — oris it? 2-38
2.6 Document Content Models and Views of Documents 2-39
3 Graphical Style 3-1
3.1 Producing High Quality Hllustrations 3-1
3.1.1 Text Book [llustrations 3-2
3.2 Previous Work 3-5
3.3 The TiogaArtwork Prototype 3-6
3.3.1 Tioga Document Model 3-7
3.3.2 Artwork Class Nodes 3-9
3.3.3 Geometric Representation of Illustrations 3-12
3.3.4 Graphical Style Attributes 3-15
3.3.5 TiogaArtwork Rendering Algorithms 3-16
3.4 Results 3-18
4 Tabular Composition 4-1
4.1 What is a table? 4-1
4.2 Early Table Formatting Systems 4-3
4.3 Typographic Requirements for Tables 4-5
4.3.1 Tables are Two-Dimensional 4-5
4.3.2 Typographic Treatment 4-7
4.3.3 Large Tables are Awkward 4-13

Vi



4.4 Previous Approaches to Table Formatting 4-16
4.4.1 The Typewriter Tab Stop Model 4-16
4.4.2 tbl Preprocessor 4-17
443 TpX 4-19
444 TABLE 4-19
5 A New Framework for Tabular Compesition by Computer 5-1
5.1 The Interactive Table Formatting Problem 5-1
5.1.1 What do we need to do? 5-1
5.1.2 How are we going to do it? 5-3
5.2 The Complexity of Table Formatting 5-3
5.2.1 RANDOM PACK 5-4
5.2.2 STUB PACK 5-6
5.2.3 GRID PACK 3-8
5.3 Table Document Structure 5-9
5.3.1 Table Entry Representation 5-9
5.3.2 Table Arrangement 5-11
5.3.3 Grid Structure 5-13
5.3.4 Graphic Arts References to Grid Systems 5-14
5.3.5 Style Atrributes for Tables 5-16
5.3.6 Text within Table Entries 5-19
5.4 Implementation of Table Grid Structure 5-20
5.4.1 External Representation of a Table in a Tioga Document 5-20
5.4.2 Corner Stitching Data Structure 5-24
5.4.3 Overlapping Planes 5-28
5.4.4 Grid Algorithms 5-30

vii



s i

5.5 Table Layout via Constraints 5-35
5.5.1 Constraint Systems 5-35
5.5.2 The Complexity of Linear Constraint Solvers 5-37
5.5.3 The Constraint Table Layout Problem 5-37
5.5.4 Handling Large Tables 5-43
5.5.5 The Layout Algorithm 5-44
5.6 Conclusions 5-45
6 Future Directions 6-1
6.1 Document Model 6-1
6.2 Graphical Style 6-2
6.3 Table Formatter Implementation 6-2
6.4 Table Formatting Algorithms 6-3
6.5 User Interface Design 6-4
6.6 Expert Style Rules 6-5 |
Glossary G-1
References R-1
Index I-1

vili



Figures

2 Document Composition 2-1
Figure 2-1. Traditional Graphic Arts Processes 2-3
Figure 2-2. A Hypothetical Publishing Process 2-7
Figure 2-3. Typographic Style Sheet 2-15
Figure 2-4. Cleverness Required to Master TpX 2-33
3 Graphical Style 3-1
Figure 3-1. Trapezoidal Rule Figure 3-3
Figure 3-2. The Tioga Document Structure 3-8
Figure 3-3. Hierarchical Illustration Structure 3-11
Figure 3-4. Sketch of the Illustration 3-13
Figure 3-5. Geometric Representation 3-14
Figure 3-6. Trapezoidal Rule Slide 3-20
Figure 3-7. Graphical Style Sheets 3-21
4 Tabular Composition 4-1
Figure 4-1. The Two-Dimensional Structure of a Table 4-6
Figure 4-2. Vertical Alignment within a Column 4-8

Figure 4-3. Horizontal Alignment within a Row 4-9



Figure 4-4. Transposing a Table 4-14
Figure 4-5. Tab Stops 4-17

5 A New Framework for Tabular Composition by Computer

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.

Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 5-13.
Figure 5-14.
Figure 5-15.
Figure 5-16.
Figure 5-17.
Figure 5-18.

5-1
An Approximately Optimal Layout 5-6
A Hypothetical Stub Pack 5-7

A Wide Range of Content 5-10

A Table Entry Box 5-11

Hierarchical Tables 5-13

Table with Grid Coordinate System 5-14
Grid Design  5-15

Style Attributes 5-17
Alignment on a Character 5-17

Horizontal Alignment of Folded Table Entries 5-18
Specifying Position within a Column 5-19

A Table with a Grid Coordinate System 5-22

A Table Object in the External Representation 5-23
Corner Stitched Data Structure 5-25

Table Mapped Onto A Grid Data Structure 5-26
Intersecting Rules 5-29

Constraint Variables for a Particular Table Entry 5-38

The Constraints Generated for Figure 5-6 5-41



Acknowledgements

This thesis would not have been begun without the two professors who
created the Computer Graphics Laboratory at the University of Waterloo and
who served as my co-supervisors. When one confronts the decision whether to
pursue a PhD, the opportunities to work with and the encouragement from Dr.
Kellogg S. Booth and Dr. John C. Beatty (not to be confused with each other!):
can not easily be dismissed. The Computer Graphics Laboratory has been a
welcome oasis for Canadian computer graphics research and I have enjoyed
working there.

The research reported in this thesis was performed at the Xerox Palo Alto
Research Center. Xerox has provided exceptional support for this work and has
willingly endured my split loyalties between PARC research and PhD research.
Maureen Stone and Bill Paxton were responsible for my visiting PARC and later
joining the research staff in the [Imaging Sciences Laboratory. Several
organizational changes caused me to work for Bob Ritchie in the Computer
Science Laboratory, where Bob both sheltered me from undue distractions and
periodically scrutinized the distractions | was enjoying. PARC has an
environment with an incredibly cooperative and collaborative group of computer
scientists and the distractions were very tempting. | appreciate my colleagues
who patiently waited for my thesis to be finished so that they could work with
these tools also.

Maureen Stone and [ collaborated on a SIGGRAPH'83 paper that reported
the results of the graphical style research presented in Chapter 3. We both share
a common interest in high-quality illustrations and her work with Griffin styles
evolved independently while [ was still in Waterloo.

Xi



Bill Paxton implemented Tioga. Tioga is a real jewel in the document
composition field and [ cannot spend long enough expressing the wonder | felt
when [ first encountered the Tioga composition system at PARC. [t was true
pleasure to extend his fine implementation and stretch the boundaries of
integrated document composition. Michael Plass designed and implemented the
Tioga typesetter and collaborated on the artwork class properties that proved so
advantageous in the prototypes | developed. Doug Wyatt crafted the graphics
software that serves as the foundation for many of my ideas.

My involvement with the graphic arts and typesetting began in 1974 when
Dr. Morven Gentleman convinced the Mathematics Faculty at Waterloo to
purchase a small (and cheap) Photon Econosetter. | just could not stay away
from experimenting with it when it arrived. Dr. Laurie Rogers, Mark Brader,
and Johann George worked on the initial support software; Johann George, Bill
Ince, and Alex White collaborated on the initial implementation of TYPESET and
its macro packages.

A significant broadening of my appreciation of the graphic arts occurred
‘during 1977 when [ collaborated with George Roth, a graphic designer, and
John North, a conference chairman, to produce the proceedings for the Third
International Conference on Computing in the Humanities (ICCH-3). Over a
very short 7-week period, we took 31 conference paper manuscripts, 18 Waterloo
co-op students, the Photon Econosetter, and some holiday weekends to produce
a hard-bound book in advance of the conference. The manuscripts contained
mathematics, computer programs, French, classical Greek, poetry, illustrations,
and tables. George Roth very cleverly designed the ICCH-3 proceedings with the
considerable discipline required by the limited capabilities of our typesetter and
composition software. That initial collaboration grew into a partnership and a
company, Waterloo Computer Typography, which subsequently produced several
scholarly books and journal articles.

The opportunity of typesetting other people’s books became a chance to
coauthor an introductory computer science text book. Arnie Dyck, Doug
Lawson, and Jim Smith had written a text which [ had typeset. When the
suggestion arose of my collaborating with them on a revision from WATFIV-S to
Pascal, [ jumped at the chance. The authors’ meetings were very interesting
because we had almost total control of the book: graphic design, typography,
digital fonts, mathematical typesetting, illustrations, indexing, paste-up. And we
were being paid for this learning experience! 1 am indebted to Arnie Dyck for
his attention to detail, insistence on quality, and the great fun we enjoyed
teaching together from our book. I marvelled at Doug Lawson for his writing

xii



skills and his tutelage in numerical analysis, which surely helped me pass the
PhD comprehensive exam.

Finally, I must acknowledge Beth Beach, who is a typographer in her own
right, and who made Waterloo Computer Typography the reliable and quality
organization that it is. While we typeset several books together, the deficiencies
we suffered with our tools motivated the research presented here. I hope this
thesis will help make her job easier, both because the research produced some
interesting results and because the thesis is finally finished. Now we can enjoy
life together without the late hours and concentration devoted to writing the
thesis.

Xiii



1
Introduction

1.1 Overview

This thesis addresses the problem of formatting complex documents using
electronic document composition tools. In particular, the two problems of
incorporating high-quality illustrations into documents and of laying out tabular
information will be treated in depth. The research reported in this thesis
concentrates on techniques and tools for producing electronic documents that
will meet the graphic arts standards of quality, both in electronic form and in
subsequent hardcopy form. The notion of style applied to text composition
systems, separating form from content, is extended to both graphical illustrations
and tables.

Document composition systems have supported the inclusion of scanned
illustrations and computer-generated line drawings before, but frequently the
results have lacked the quality expected in a typeset document. This thesis
presents techniques for specifying illustrations within the document manuscript
and for controlling the quality of the resulting artwork by separating form from
content in the specification of illustrations.

Document composition systems have also formatted tabular information
before, but they have often permitted only limited control over the table
formatting parameters and they have imposed restrictions on the possible layouts
for tables. This thesis presents a new framework for controlling the table
formatting process and for interactively designing a table layout. The table
formatting paradigm introduced here can be extended to other two-dimensional

1-1



1 INTRODUCTION ' 1-2

layout problems, such as mathematical notation or complete page makeup.

The notion of style, a way of maintaining consistency, runs throughout the
thesis. [t is the underlying mechanism for managing the complexities of
formatting high-quality illustrations and tables. The use of style both simplifies
the design choices and enhances the disciplined use of high-quality typesetting.

The thesis includes aids to assist the reader in understanding the typographic
subject matter: a glossary of typesetting terms, an index to the thesis, and
plentiful diagrams and illustrations. Glossary terms appear italicized in a
distinctive sans-serif typeface when they first appear in the thesis, such as the
term style in the preceding paragraph.

Prototype implementations of the document formatting tools were developed
in the Cedar programming environment [Teitelman, Cedar] at the Xerox Palo Alto
Research Center. The Tioga editor and typesetter were extended to incorporate
illustrations and tables using the prototypes. The Tioga document model and
style mechanism were extended to accommodate both the graphical and tabular
style requirements. The lessons learned from developing and using these
- prototype systems will be valuable during ongoing research designing a new
integrated document composition environment based on Tioga.

This chapter introduces the notion of a document and particular problems
in document composition that have led to the research reported in the thesis.
The chapter concludes with a brief summary of the material presented in
subsequent_chapters.

1.2 What is a document?

A document communicates information both textually and pictorially. An
author collects, organizes, and presents the information contained in a document.
The document may be intended to inform, to persuade, to argue, or simply to
entertain. This thesis deals with some of the problems of producing and
reproducing documents for effective communication of information.

Historically, documents were handwntten manuscripts reproduced
laboriously by scribes. Many of these early documents were handsomely
illustrated with hand-drawn sketches or images. Early printing processes
required hand-carved printing plates. The invention of movable type enabled
people with less skill to prepare printing plates in less time. Movable type also
created more freedom to correct and change pages. It is worth noting that the



1 INTRODUCTION 1-3

early success of these printing systems depended on meeting the quality
standards set by handwritten and hand-illustrated manuscripts. There has since
been a long history of development in the printing process, with a keen regard
for quality always at the forefront.

The traditional skills of reproducing modern documents are called the
graphic arts. These crafts represent a high standard of quality and readability.
The artistry of letter forms, the inclusion of fine quality photographs and line
drawings, and the uniformity of color when printing many copies of a document
are all testaments to the concern for standards in the graphic arts that have
evolved over many years. Traditional graphic arts processes are labor intensive
and often time consuming. Electronic tools and techniques have already been
introduced into these processes, but the standards and skills remain largely
traditional. We wish to preserve the quality aspects of the graphic arts, while
making the quality more consistent and more accessible through the use of
electronic document composition tools.

Authors assemble the text, illustrations, and reference material for a
document and then compose a manuscript. The graphic arts staff receives the
manuscript and transforms it into a book, report, pamphlet, poster, or newsletter.
The author often works with a manuscript that is very different from the final
printed result. A great deal of trust must be placed in the graphic artists to
produce a document that resembles what the author expects.

The traditional document production process works best when creating a
static and long-lived document. The author must plan ahead to guide the reader
through this static form of the document. Reading aids, like tables of contents,
indices, and cross references between parts of a document, are often necessary to
permit different readers to control their individual reading paths through a large
document.

The most exciting prospect for introducing electronic composition tools is
not in producing traditional documents faster, but rather in producing entirely
new kinds of documents more easily. The author working with draft
manuscripts should be able to see his information in its final form. The all too
common phenomenon of author’s alterations (changes requested by the author
to the typeset galleys supposedly in ‘final” form) is convincing evidence that
authors often do not really comprehend the implications of their manuscripts
until they see them in their final form. This is a costly phenomenon that begs to
be corrected. Electronic tools can help authors produce better draft manuscripts
and thus better (and cheaper) final documents.



I INTRODUCTION 1-4

Engelbart’s vision of electronic tools to augment human intellect, published
in 1968 [Engelbart, NLS], contained many elements only now becoming standard in
current document preparation systems. His work was based on a timesharing
computer with each user (sometimes several participants in an electronic
conference) viewing a document on graphic displays and interacting with
two-handed input (a five-key handset, a keyboard, and the original mouse
pointing device) [Engelbart, Terminals]. Engelbart’s on-line document system NLS
first introduced structured files. These files represented a document as a
hierarchy of information statements with cross reference links among related
statements. NI.S documents could contain both text and simple line drawing
graphics. The reader of an NL.S document guided his own exploration of the
document by selecting the content of interest, which of the cross references to be
followed, the formatting parameters that would apply to the display, the levels of
the hierarchy to be made visible, and the amount of each statement to be
displayed.

Later, the Hypertext [Carmody, Hypertext] and Xanadu [Nelson, Xanadu] projects
evolved similar systems that organized document content in a structured fashion

- and used graphic displays to present the document.

Electronic documents need not be restricted to presenting static information
as are documents printed in hardcopy form. The potential exists for electronic
documents to react to the specific reader, perhaps by choosing parts of the
document based on the reader’s experience or interests, or by connecting a
dynamic document to a database and extracting the most recent information
available.

Nevertheless, the presentation of information through electronic composition
tools must strive to meet the reader’s expectations for readability, quality
typography, illustration, and organization that have been established by the
graphic arts community. The challenge to electronic documents is effectively
presenting (in a timely fashion) a wide range of material that includes textual
statements (possibly in foreign languages), notation such as mathematical or
chemical formulae, tabular presentation of information, photographs, line
drawings (possibly with shaded and colored elements), and more.



v s s T

I INTRODUCTION 1-5

1.3 Personal Reflections on Document Production

The author of this thesis has composed several scholarly books and journal
articles through a typesetting company, Waterloo Computer Typography
(WATTYPE), founded in partnership with a graphic designer. This experience
involved the development and application of electronic composition tools for
preparing and typesetting scholarly manuscripts for publishers who insisted on
traditional graphic arts standards. Despite the benefits of those composition
tools, many deficiencies in the tools and a multitude of production difficulties
due to a lack of integration among the tools had to be circumvented. Those
difficulties have helped to focus the author’s current research into illustration
and table formatting problems.

A sequence of three introductory texts for computer science, typeset by
WATTYPE, demonstrates the benefits of storing and editing the manuscript with
electronic tools. The first book was based on the WATFIV-S programming
language [Dyck. WATFIV-S]. The manuscript was created by the authors using a
text formatting processor that could only produce draft copies on a line printer.
When the book was contracted for publication, the computer files were
translated, using automated text processing tools, into formatting commands for a
typesetting system [Beach. Typeset]. Later, two variations of this book were
developed for PASCAL [Dyck, PASCAL] and FORTRAN77 [Dyck, FORTRAN77]. In
each case, the manuscript files were methodically reviewed and edited to produce
the preliminary version of the next book. Much of the material, especially the
mathematical presentations and algorithms, remained unchanged and could be
used without modification. Completely new sets of computer programs for each
programming language were incorporated from the computer files used to
compile and test the programs. A robust file system and archiving tools
available on the host timesharing system made the job of managing all of these
manuscripts and changes practical.

Editorial consistency within a document was achieved more easily using
electronic tools than by manual proofreading. Checking words in a foreign
language lexicon for a Chaucer bibliography [Peck, Chaucer] or checking the
citations of figure captions for heavily illustrated text books were easily
accomplished through the facilities of word processing or text editing programs
by making global edits. The organization of documents into chapters, sections,
paragraphs, tables, figure captions, and reference citations was regulated by
defining standard formatting tags or commands within the computer manuscript
files. Families of documents, such as the sequence of three text books or all of



1 INTRODUCTION 1-6

the articles in a conference proceedings [Lusignan, ICCH3], shared a common
design and layout by using the same composition tools with the same design
parameters. With sufficient care and foresight, the resulting documents have
significantly greater editorial consistency yet meet the same quality standards of
traditional methods.

The accurate presentation of computer programs and computer generated
data through electronic composition tools has seen a significant improvement
over traditional graphic arts techniques. Manual transcription of data and the
misinterpretation of the unusual appearance of computer programs leads to
inevitable errors when using traditional methods. WATTYPE contracted to typeset
an APL. manual {-, APL/66] because the authors refused to proofread the APL
notation if it was manually transcribed from their draft manuscript that had been
prepared on a computer line printer. Other authors in private conversations
have related problems with publishing their programs and data. Typographers
are experienced in transforming typewritten manuscripts into typeset books, but
not in reproducing the line printer output from computers. Monospaced fonts,
typical of the fixed pitch characters on computer output devices, are rarely used
in traditional typesetting. Typographers often substitute other fonts and treat the
material as they would typewritten manuscripts. Authors of computer science
texts did not appreciate the unexpected changes made to their programs, which
of course invalidated them as computer programs.

One example concerns quoted strings in programs being treated as
quotations. Many style books demand that the quotation be set off by matching
open- and close-quote marks and further indicate that quotations may have their
punctuation moved inside the quote marks and otherwise changed for clarity [van
Leunen, Handbook, p 60). Computer programs require extremely precise placement
of punctuation outside the quotation marks, and the computer character set often
does not distinguish between open- and close-quote marks. Authors who use
electronic compositions tools can control the interpretation of unusual material,
like computer programs, to ensure the accuracy and consistency of the published
form.

One aspect of electronic composition that remains difficult is formatting
complex mathematical notation. Tools like eqn and TgX provide abstract
languages for an author to describe mathematical notation. These tools require
converting the notation into a complicated syntax, especially complicated when
nonstandard mathematical notation is involved. While automated syntax
checkers do exist, correcting mathematical notation typically requires typesetting
proof copies, marking corrections, and making revisions. There are few



1 INTRODUCTION 1-7

interactive ‘what you see is what you get’ (wysiwyG) editing tools for composing
mathematical notation.

Few systems understand mathematical concepts to help authors avoid errors.
While the lack of understanding permits notational schemes like eqn to be
quite flexible, accommodating new notation is a major frustration in these
systems. Authors frequently invent new notation to serve their purposes,
especially in Engineering disciplines, or they make heavy use of notation that is
not well supported by the mathematical composition tools. For example, the
matrix algebra notation in a sparse matrix text {George & Liu, Sparse Matrices]
stretched the capabilities of an eqn-like formatter to compose square matrices
and align rows across matrix equations. More flexible notation schemes designed
to accommodate authors who create new notations are needed. Incorporating
support from a symbolic algebra package for checking the mathematical notation,
analogous to spelling and diction analysis tools, would provide a better
mathematical composition environment.

Most composition systems treat mathematical notation separately from
normal text. Thus one cannot freely use mathematical notation in all parts of a
document, even though mathematical notation is quite natural in chapter or
section headings of technical documents. When the text of the heading in the
sparse matrix book was automatically duplicated for use as a running head, the
running head did not format correctly because the text fonts were different.
Similarly, mathematical notation cannot be easily used in figure captions where
the size of type is different, in the table of contents where headings have been
automatically copied from chapter or section headings, or in index entries where
phrases have been automatically collected from throughout the manuscript. A
more integrated document content model for objects like text, mathematical
notation, and illustrations would help to solve the problem of reusing the same
material consistently in different contexts.

Tables of information are also awkward to compose. Each table in the
documents composed by WATTYPE staff tended to be treated as a separate design
problem, requiring special coding for each one. Table formatting tools are less
well developed than text formatting tools, with many special table formatting
features not possible or not provided. The content of table entries may be
restricted, so that mathematical notation or illustrations may not be acceptable as
table entries. Because tables are treated differently than text or mathematical
notation, it may be awkward to use the same document style for tables as for the
textual parts of a document. Simple tables, especially spreadsheets or tables of
computed numeric data, are frequently formatted by special purpose programs,



2

1 INTRODUCTION 1-8

making it difficult to incorporate such tables within the body of an editable
document.

[llustrations remain outside the mainstream of document formatting. The
illustration packages currently available either produce results crude by graphic
arts standards, or are limited in the range of artwork they produce.  Almost all
the illustrations for books produced by WATTYPE were drawn by draftsmen at a
larger scale and reduced to improve the quality of the reproduction. This lead
to several difficulties with inconsistent line thicknesses, varying typefaces for
labels and captions, and differences among a set of similar drawings.

Formatting large documents into pages is another difficulty with electronic
composition tools. Because text books contain hundreds of pages, automated
pagination techniques are desirable. Unfortunately, in complicated situations,
the current algorithms are likely to create unpleasant and unacceptable results,
especially in placing figures and footnotes. Each special case has to be handled
by manually coding special formatting instructions on how to properly break the
page. Of course, each time the document changes, these instructions also have
to be changed, and consequently, pagination is left until the very last moment.

A contributing factor to the pagination problem is the cost of formatting an
entire document all at once. Some systems are noninteractive and the processing

- is actually run a batch at a time, typically one batch for each chapter. Multiple

runs are needed when the document contains cross references between chapters
in order to get the page numbers correct, when parts are automatically numbered
in order to get the sequencing correct, and when index entries are automatically
collected in order to get the page references correct. These formatting cycles
often involve reprocessing a lot of the document that has not changed, thereby
wasting resources, increasing costs, and introducing delays.

Another implication, even with interactive systems, is the ‘pregnant pause’
syndrome, where reproduction-quality output is delayed until the moment when
everything has been completely and finally formatted. Though WATTYPE had
provided publishers with several drafts, each of which appeared much like the
final result, none of the pages could be considered final pages. Publishers gain
confidence when they see final pages coming out of the production pipeline.
With the pregnant pause syndrome there are no final pages until the last minute.
This places considerable faith and stress on the composition system to handle the
surge of demand to output a complete document. Several failures in the
computer hardware, operating system, storage system, communications system,
and typesetter delayed book projects for WATTYPE. Furthermore, last minute
touch-ups were always necessary to correct overlooked mistakes or to include



1 INTRODUCTION 1-9

artwork not produced with the system, and these must be handled outside the
normal production cycle.

These difficulties, experienced first-hand by the author, lead to a concern
for developing incremental and integrated electronic document composition tools.
The research reported in this thesis is directed towards an interactive ‘what you
see 1s what you get’ environment that supports a variety of document content
and produces the high-quality results expected by graphic arts standards.

1.4 The Concept of Document Style

Electronic aids for document production have contributed to the concept of
document style. A crucial insight is the notion of separating form from content
in a document, made explicit in document compilers like Scribe [Reid, Scribe
thesis] and implicit in many earlier macro packages like the -ms package [Lesk,
-ms] for troff. Style deals with issues of form: appearance, aesthetics, and
_ understandability of document content. Generally styles have expressed how
text is formatted, the typography of text:

“The practice of typography, if it be followed faithfully, is hard work — full
of detail, full of petty restrictions, full of drudgery, and not greatly rewarded
as men now count rewards. There are times when we need to bring to it all
the history and art and feeling that we have, to make it bearable. But in the
light of history, and of art, and of knowledge, and of man’s achievement, it is
as interesting a work as exists — a broad and humanizing employment which
can indeed be followed merely as a trade, but which if perfected into an art,
or even broadened into a profession, will perpetually open new horizons to
our eyes and new opportunities to our hands.” [Updike, Printing Types, quoted in
[Williamson, Book Design, p 4]]

Electronic composition systems have been more concerned with simple
typography [Beach, Computerized Typesetting] and less concerned with higher levels
of style that apply to nontextual components, such as pages, illustrations and
tables [Furuta, Survey]. On the surface, it appears that specifying a style is easy.

“To lay down rules of style would be easy enough — we need only consider
how things were done yesterday, or how they are done today, or how we
prefer to do them ourselves, and to elevate these practices or preferences to
the status of dogma.” [Williamson. Book Design, p 2]

For most people who prepare documents, many decisions are



1 INTRODUCTION 1-10

institutionalized and thus already made for them. When one must create a
document style with the rigorous detail demanded by a document compiler or
macro package, the quantity of detail is enormous. Some publishers provide
style manuals with hundreds of pages that capture this detail [—, The Chicago
Manual of Style, 1982]. Other publishers have felt threatened by revealing the style
details to those creating document composition tools [Johnson, JACM style] or they
can only provide sufficient detail after several iterations of critiquing samples
[Bell, Sc.Am. illustration]. Document style appears to be an area that might benefit
from the application of expert systems techniques to capture style rules. For
now, because we do not understand very well how or why things are done, we
must fall back on replicating how documents were formatted in the past.

1.5 Roadmap to the Thesis

The rest of this thesis reviews the state of electronic tools for document
composition and details solutions to some of the difficult problems in handling
illustrations and tables.

Chapter 2, Document Composition, presents a survey of the traditional
graphic arts process for producing a document. This includes a review of how
books get published and the roles of the people involved in producing a book.
Typesetting systems, including early computer typesetting systems, document
compilers, and integrated document composition systems are reviewed for their
handling of document style, illustrations, and tables. A survey of existing
document models highlights the need for more structured models to integrate
various kinds of document content.

Chapter 3, Graphical Style, extends the style mechanism to illustrations.
The same ‘form versus content’ separation so successfully applied to textual
objects is applied to graphical objects. A prototype implementation demonstrates
the effectiveness of graphical style in achieving this separation and consistency in
illustrations. Graphical style is revealed to be insufficient because it does not
deal adequately with layout. The observation that specifying positioning
constraints within illustrations would help control the layout leads to the
consideration of a concentrated layout problem of formatting tables as a
constraint satisfaction problem.

Chapter 4, Tabular Composition, examines the problems and difficulties in
formatting tables. The earliest computer-typesetting programs were for preparing
numeric tables but their approaches were simplistic and limited. A survey of the



I INTRODUCTION 1-11

typographic features required for formatting tables leads to an examination of
current table formatting capabilities available in document composition systems.

Chapter 5, A New Framework for Tabular Composition, introduces the use of
grid systems and mathematical constraint solvers to the table formatting problem.
A review of grid systems and their application to table layout provides the basis
for incorporating many typographic features into a document structure suitable
for tables. The constraint solver provides the general layout engine for
formatting tables as well as the basis for an interactive table design tool. A
prototype table formatter demonstrates the capabilities for handling complex
tables.

Chapter 6, Future Directions, discusses several research problems that evolve
from the graphical style and table formatting work reported in Chapters 3 and 5.

The Glossary explains terms used by typographic specialists. The glossary
assumes the reader has a computer science background, and thus does not
include common terms from computer science. Terms that appear in the
glossary are identified in the thesis by use of a distinctive italic typeface.

An extensive list of References is provided for more detailed reading about
typography, document composition systems, and graphic design.



2
Document Composition

This chapter surveys existing techniques for producing documents, beginning
with the traditional graphic arts process for turning a manuscript into a finished
book. The chapter investigates the concept of document style that arises from
the graphic design discipline and which pervades modern electronic composition
systems. The use of computers and electronics in document composition is
surveyed next, first examining the early typesetting systems, then document
compilers such as troff, Scribe, and TgX, and finally integrated document
composition systems such as Etude, Janus, and the Xerox Star. The survey of
document composition techniques concludes with a discussion of several issues
concerning the structure of information in documents and a description of some
models of structured documents.

2.1 Traditional Document Production Techniques

Researchers make substantial use of books and journals in their everyday
work. However, few people understand how those documents are produced.
Only when they decide to write their own book or to edit a scholarly journal do
they become involved in the mysterious world of the graphic arts. This survey is
intended to help the reader to understand document production, to appreciate
the many diverse roles and skills necessary, and to realize the vast number of
details and decisions involved in producing high-quality documents.

2-1



2 DOCUMENT COMPOSITION 2-2

2.1.1 How do books get produced?

An interesting review of how books are produced is contained in the
anthology One Book/Five Ways [AAUP, One Book/Five Ways]. This reports on a
comparative publishing experiment in which five university presses prepared the
same book for publication: the University of Chicago Press, the MIT Press, the
University of North Carolina Press, the University of Texas Press, and the
University of Toronto Press.

The procedures used in each press were remarkably common. Although the
approaches varied somewhat, all involved the stages of acquisition, market and
preliminary cost estimation, editorial revision, design, production, sales, and
promotion. Each press documented their procedures, their forms, and the
guidelines they applied to the various processes. One Book/Five Ways contains
a rich collection of raw material for anyone interested in the publishing process.

In particular, the report includes the style guidelines from each of the
presses. These guidelines establish the publisher’s house style, and govern
-editorial, graphic design, illustration, composition, and typesetting decisions.
Perhaps the most well-known style guideline for scholarly documents is The
Chicago Manual of Style, which was referenced by several presses in this
experiment, although most have their own refinements and special instructions.

An important feature of the traditional book production process is the
parallelism achieved through several groups working on distinct aspects of a
book. When a manuscript arrives at the press for consideration, it is quickly
copied and sent out for two or more independent reviews to decide whether to
publish the work. Once the decision to publish is made and the completed
manuscript arrives from the author, copies are sent simultaneously to (1) the
production editor, who establishes a job docket to track all of the subsequent
stages of the publication, (2) the copy editor, who makes editorial revisions, and
(3) the graphic designer, who designs the book and its illustrations. This
parallelism is shown in Figure 2-1 for a simplified and hypothetical publication
process.



2 DOCUMENT COMPOSITION 23

Production
Editor
| 5000000000000000000000 :7 | 300000000000000000000; TR 5030000000000000000005 TN - .00 s nshttsassasts
Author's [ Copy Editor Composition
Manuscript f; -— — N Assembly
: Printing

Graphic-

Design Hustration

Figure 2-1. TRADITIONAL GRAPHIC ARTS PROCESSES involve considerable paratlelism in the
procedures for publishing a manuscript. The author’s manuscript is copied and sent to the
production editor, the copy editor, and the design/illustration departinent. Edited pages are
typeset by the composition staff who are guided by the design of the document. The typeset
manuscript and the illustrations are then assembled into pages in preparation for printing.

Other parts of the document publication process also involve parallelism. If
the book is to have a jacket or cover illustration, that illustration is undertaken
while the insides of the book are prepared. The table of contents and Library of
Congress submission forms are prepared as soon as the book enters production
to ensure that the imprint page and the front matter of the book are ready for
printing.

The index is often on the critical path near the end of the document
production cycle. Since index entries must have the correct page numbers, the
index can not be fully completed until all of the pages have been assembled.
Typically the index entries are compiled in parallel with the book composition.
After the page numbers are assigned on the reproduction pages (or page
repros) the index manuscript is completed in parallel with the final proofreading
of the book pages.

Even with the use of electronic composition tools, preparation of back
matter is on the critical path and inconsistent page numbering occasionally
results. Such problems appear in the appendices of the second edition of
Newman and Sproull’s Principles of Interactive Computer Graphics



s |

2 DOCUMENT COMPOSITION 2-4

[Newman&Sproull, Computer Graphics], in which the reference citations all refer to a
preliminary draft version, because the authors forgot to make ‘one last revision
pass’ over the reference citations in the appendices. The second edition was
typeset by the authors using facilities at Xerox PARC because they could
complete revisions up to the last minute and control the accuracy of computer
programs contained in the text. In a normal production process, there are more
people checking things and hence less chance of oversights, such as what actually
happened in the appendices.

An area of great concern to the publisher is administration of the
production process. Publishers usually have several projects underway at the
same time because of the delays involving revisions and approvals from the
author of a single project. The production editor controls the document
publication process for the publisher, determining time and cost estimates for the
publication, selecting and contracting with suppliers, tracking the parallel stages
of the composition process, and keeping records of deadlines and expenses. In a
journal publishing situation, the problem is compounded by the dual pressures
of multiple authors and frequent publication deadlines for each issue.

These process control functions are the most important contributions of
publishers. Some publishing companies employ little more than production and
marketing editors in house, subcontracting most of the skilled jobs such as copy
editing, design, illustration, composition, printing. In the electronic publishing or
self-publishing process, these subcontracted jobs are performed by the
manuscript author and electronic document production tools will have to handle
them successfully.

The traditional document production process in the graphic arts routinely
accommodates difficult manuscripts. Typically tables, mathematical notation,
illustrations, and page layout are aspects of document production that are
considered difficult by traditional publishers. The following sections discuss how
each one of these areas was handled in the comparative publishing experiment.

Tables

There were only a small number of tables in the One Book/Five Ways
experiment, but they were always treated separately from the main body of text.
Many publishers rely on the skill of the compositor or typesetter to handle
tables:



2 DOCUMENT COMPOSITION 2-5

“A good composing room can translate almost any tabular copy in a reasonably
clear and presentable example of tabular composition.” [Williamson, Book Design,
p 160}

The Chicago Manual of Style provides authors with the “dos and don’ts” for
preparing tables in manuscripts. In particular, authors are expected to prepare
tables on separate pages because the tables will be composed separately from the
text. There are some cautions also. For instance, the University of Chicago
Press no longer prefers vertical rules in tables because Monotype composition
(using molten metal casting of individual letters), which could insert a vertical
rule easily, i1s no longer economical. With phototypesetter composition, vertical
rules are difficult and expensive:

“In line with a nearly universal trend among scholarly and commercial
publishers, the University of Chicago Press has given up vertical rules as a
standard feature of tables in the books and journals that it publishes. The
handwork necessitated by including vertical rules is costly no matter what
mode of composition is used, and in the Press’s view the expense of it can no
longer be justified by the additional refinement it brings.” [—, The Chicago
Manual of Style, 1982, p 325-326]

Mathematics

Although there were no mathematics in this experiment, publishers treat
mathematical notation very differently than textual material. Kernighan and
Cherry note this difficulty in their paper on computer typesetting of mathematics
[Kernighan&Cherry, eqn] where they quote the following from The Chicago Manual
of Sple:

“Mathematics is known in the trade as difficult, or penalty, copy because it is
slower, more difficult and more expensive to set in type than any other kind
of copy normally occurring in books and journals.” [—, A Manual of Style, 1969,
p 295]

Some publishers specialize in mathematical and scientific documents. They
utilize both skilled copy editors and special suppliers to handle the difficult
mathematical material. Other North American publishers send mathematics copy
to the Far East, where hot metal composition provides the quality and cheap
labor rates reduce the cost.



2 DOCUMENT COMPOSITION 2-6

[llustrations

The treatment of illustrations varied widely in the publishing experiment
described in One Book/Five Ways. In one instance, a publisher chose to have
an artist prepare line drawings rather than include halftone photographs because
there were no convenient local suppliers to create halftone screens for the
photographs. In contrast, another publisher planned photographs for the
opening page of each chapter as well as for most of the illustrations. Generally,
illustrations are prepared separately while the book is being copy-edited, and are
then manually assembled onto the completed pages.

Page Layout

Examining the book design and page layout used by most publishers reveals
mainly the results rather than the design process itself. Page dummies and
sample pages are the usual products of the design process. Page dummies are
sketches of the page layouts prepared by the graphic designer for approval.
‘Sample pages are pages typeset and assembled by the composition supplier.

Both techniques may require several iterations between designer, supplier, and
publisher to make certain that the publisher is satisfied and that all the style
guidehnes are followed. Unfortunately, such an iterative design process generally
means that the publisher’s guidelines have never been completely specified,
frustrating those attempting to become a supplier with new technology.

2.1.2 Roles involved in producing a book

The document production process is complex. To help understand the
process better, this section examines the individual roles of people involved in
producing a published document. Anthropomorphism, or the attribution of
human behavior to some problem, has proven beneficial in making complex
parallel processes more easily understood [Dyment, Corkscrew] [Booth&Gentleman,
Anthropomorphism]. An interactive paint program [Beach, Paing] was implemented
using multiple processes, where anthropomorphism served to clarify and simplify
the relationships of the paralle! processes. Through cataloguing the roles
involved in document production, the structure of the problem becomes
apparent as a set of integrated processes.



2 DOCUMENT COMPOSITION 2.7

Author EE

Typist

Acquisition Editor

Market Reviewer

Technical Reviewer

Production Editor
Copy Editor

Indexer

Graphic Designer

litlustrator

Compositor

Paste-up Artist

Camera Operator

Printer
Binder

Figure 2-2. A HYPOTHETICAL PUBLISHING PROCESS indicating the roles and their interactions at
various stages. The horizontal axis represents elapsed time and the thin vertical lines join
activities that begin or end at the same time. Delays or inactivity are not shown, but may exist
at many places in the process.

(Aside: An example of the lack of integration in electronic tools occurred
when preparing Figure 2-2. There are 15 text labels and the first version of the
illustration contained two spelling mistakes. Because the illustration was
prepared with a separate illustration tool and was not integrated with the
document, the spelling tool used on the text of this chapter was unable to find
the mistakes in the illustration.)

An important thing to remember while reading this categorization of roles is
that the descriptions relate to activities and not people. Sometimes people may
fill several roles at once, such as an author who types and composes the
manuscript, or a graphic designer who does the layout, illustration, and paste-up.
The use of document composition tools in universities and research labs has
tended to encourage (or force) authors to take on multiple roles. From this
experience, people may falsely conclude that each job looks easier than it is,
especially when they are not aware of what they are doing wrong. Concentrating
on each role separately helps us to understand the process and to realize the
skills necessary to accomplish all aspects of that specialist’s job.



2 DOCUMENT COMPOSITION 2-8

e Author of the manuscript

The author creates the original manuscript. Generally, the manuscript is
textual material, although for some subject areas there will be vast quantities of
mathematical notation, computer programs, tables, line drawings, or photographs.
The author may produce several draft manuscripts with the assistance of a typist.
Some authors now do their own typing with word processors or text editors.
Sophisticated editorial tools, such as the diction and writing style analysis tools
offered in the UNIX Writer's Workbench [Cherry, Writing Tools] [Macdonald, Writer's
Workbench] and in other commercial editing systems [Alexander, Editor Aids], may be
used by an author to improve the quality of the writing.

A draft manuscript is submitted by an author to an acquisition editor or
journal editor for consideration. After a favorable publishing decision, the
author completes the manuscript and adds front matter that may include a
preface, an introduction, acknowledgements, etc. If the document is to be
indexed or have other reference material, the author may need to prepare this
material also. The completed manuscript is sent to the production editor, who
begins the publication process. Some publishers will now accept manuscript

submission in electronic form, such as word processor diskettes or magnetic tape.

The author may be involved in reviewing decisions made by the publisher.
The copy editor will mark the manuscript with suggested changes and questions
to be dealt with by the author. The graphic designer or illustrator may send
drafts of the book design and illustration artwork for review and approval.
There may also be an indexer involved, who may send the preliminary index
entries to the author for review. The author must also check the composition
process by first looking at the galleys and later at proofs of the assembled pages.

® Typist

The typist prepares the draft manuscript for the author using a typewriter,
word processor, or text editor program. Typewriter composition involves only
simple typography, typically with only a small number of type styles. Technical
typing with many mathematical symbols is much more difficult and time
consuming; some typists resort to hand printing symbols that are unavailable on
the typewriter. The layout of typewritten material is free form and requirements
are quite relaxed. Tables are easily laid out with fixed-width characters on a
typewriter.



2 DOCUMENT COMPOSITION 2-9

The human typist frequently acts as a built-in spelling checker and
copy-editing service while transcribing the manuscript.

There are several drafts prepared during the creation of a manuscript. If
each draft is retyped to incorporate changes, there is a strong tendency to reduce
the number of drafts because of the effort required. Often, the completed
manuscript contains partial page inserts pasted or stapled together.

e Acquisition Editor or Journal Editor

The acquisitions editor solicits and reviews new manuscripts from authors.
Opinions of reviewers are sought to determine if the manuscript should be
published. The publishing decision is made by a publication board or a
committee of journal editors and is concluded by the signing of a publication
contract or agreement between the publisher and the author.

e Reviewer or Referee

A manuscript reviewer may be asked by a publisher to give one of several
opinions. Book publishers refer to these people as reviewers, and journal editors
refer to them as referees. Reviews made early in the process seek to establish
the marketability of a manuscript or the appropriateness of a journal article.
Later, more comprehensive reviews seek to assess the subject coverage, research
contributions, and technical accuracy of the manuscript. Reviewers are generally
most concerned with document content, although in some special cases they may
also consider the format or style of a manuscript.

Some reviewers of technical material may use their own typesetting
capabilities to capture their comments in the complex notation of the subject
area, such as mathematics or computer programming. I[n some cases, such as
computer science journals, the reviews may even be transmitted electronically via
electronic mail networks. '

e Production Editor

The production editor controls the document production process. [nitially
the production editor deals with the author to ensure that the manuscript has all
necessary illustrations, that all the sections of the manuscript are finished, and
that permission is obtained to reproduce items from other sources. Copies of the
completed manuscript are sent in parallel to the copy editor for editorial
revisions and to the graphic designer for book design and illustration.



2 DOCUMENT COMPOSITION 2.10

Production editors contact and select appropriate suppliers for graphic arts
services when those services are not available within the publisher.

To help manage and track the various stages of several publications going
on simultaneously, the production editor maintains a production database
recording the expected services, the date and time each service began and
finished, the estimated and actual costs incurred, and the current status of
ongoing services. This database exists either on paper as the job docket (a large
envelope that contains all the partially completed results) or in a computer file.

e Graphic Designer

The graphic designer provides the book design and layout guidelines. This
design can only be done effectively when the entire manuscript is available,
although some designs are attempted with incomplete information and later
revised during publication. The design guidelines are written in a specification
sheet or in a style sheet to be sent to the compositor with the copy-edited
manuscript (see the example in the next section).

As difficult typographic situations arise, graphic designers may design special
guidelines for those not covered in the general scheme, such as designing the
layout for tables, and specifving the typography for nested lists of material or for
foreign language extracts.

Artwork for the illustrations may or may not be the responsibility of a
graphic designer, depending on the designer’s agreement, talents, or interests.
Jacket or cover designs may also be the graphic designer’s responsibility.

o Copy Editor

The copy editor ensures that the manuscript meets the publisher’s house
style for language usage, grammar, spelling, citations, references, illustration
captions, table arrangements, headings, lists of items, foreign language phrases,
etc. The copy editor deals with all the irksome details that would annoy the
reader if they were not treated consistently. For example, the copy editor checks
cross references from one section to another for completeness and verifies that
captions, footnotes, and citations are numbered sequentially. Missing
information or references and questionable corrections are sent to the author for
action.

Obviously electronic editing tools greatly assist the copy editor to accomplish
these consistency checks. Displaying both the cross reference and its referent
through multiple views (or windows) of a manuscript help to check cross



2 DOCUMENT COMPOSITION 2-11

references; pattern-matching search operations permit quick global checks; style
and diction analysis tools may be of assistance in checking the grammar, spelling
and language usage.

The copy editor marks the manuscript for the compositor by identifying the
logical parts of the document, such as chapter openings, various levels of section
headings, types of lists of items, and captions for tables and illustrations.
Selecting the typographic treatment of those logical parts is the responsibility of
the graphic designer, who specifies to the compositor the typography for each
part in the style guidelines.

e [ndexer

The indexer prepares the index entries for a manuscript, assigns page or
reference numbers to each entry, sorts them, and creates an index manuscript.
The indexing job may or may not be done by the author, although the author
usually must approve the index manuscript. The indexer works with the
manuscript in two stages: the copy-edited manuscript prior to composition to
determine the index entries, and the page proofs to assign the correct page
numbers to the sorted index entries. The requirement for correct page numbers
places the index on the critical path for publication and some publications omit
the index to reduce the delay.

Electronic aids for indexing have not proven to be a panacea. Winograd
and Paxton created a general set of indexing tools [Winograd&Paxton. TEX Indexing],
yet the index still required hand editing and fine tuning. The difficulty in
preparing an index is the proper selection and cross referencing of index entry
terms or phrases. Skilled indexers still produce better indices than most
computer-generated ones because they index on meaning, not on a precise
phrase found in the manuscript.

e [llustrator, Draftsman, Graphic Artist

The illustrations for a publication are prepared from initial artwork provided
by the author. The range of illustrations found in technical documents spans
fine hand-drawn illustrations produced by a graphic artist, engineering drawings
prepared by a draftsman, and photographs supplied by the author or a
photographic service. Often illustrations are produced by tracing the author’s
sketches, which results in revision cycles as the author more clearly indicates his
intentions.



2 DOCUMENT COMPOSITION 2-12

The graphic designer may produce illustration artwork personally or may
establish artwork guidelines for original size, reduction factors, line weight,
typography, shading textures, materials, and so on. Reducing the original
artwork improves the quality of the line drawings by making the line weights
appear more consistent (small variations are less noticeable) and by sharpening
the contrast in the image. Careful coordination of dimensions and text size on
the original artwork is necessary to ensure that the reduced artwork suits the
surrounding typography when assembled on the page.

e Keyboarder, Coder, or Inputter

The composition of a document is accomplished in two stages: entering the
marked-up manuscript into a typesettable file, and then outputting the file on a
typesetting device. Typically there is one format code for each logical part of
the document marked by the copy editor. For example, there might be a code
for the chapter opening, for each level of section heading, for beginning an
indented list of items, and for a line of a table. The job of entering the
marked-up manuscript may be further subdivided into several phases: assigning
format codes to the copy editor’s marks, designing the typesetter codes for each
format, and inputting the manuscript codes and text. The style sheet provided
by the graphic designer determines the appearance of marked up parts of the
manuscript and hence the typesetter codes required.

The typesettable files may either be entered directly, on less expensive slow
typesetting devices, or kept on some storage medium (perhaps paper tape, floppy
diskettes, rigid disks or magnetic tape) for more expensive high-speed typesetters.
Corrections to the typeset galley proofs are most often made by typesetting
corrected pieces of the manuscript, rather than correcting the files and
retypesetting the entire galley. In the case of large documents, management of
the corrections is a concern and poses difficulties for subsequent uses of the
document.

e Compositor, Typesetter

The compositor produces the actual typeset output. This person may also
do the keyboarding, but a compositor must have the skill to enter specific
typographic codes for unusual or difficult typesetting jobs, such as for
mathematics, tables, illustration labels, copy fit text that must fit certain
dimensions, and so on. The compositor runs the typesettable file through the
typesetting device and produces the typeset galleys or pages.



2 DOCUMENT COMPOSITION 213

o Paste-up Artist

Most documents are typeset in galley form and later cut and pasted into
page assemblies. The paste-up artist collects all the pieces of the manuscript in
their final form: typeset text, running heads with page numbers, mechanical
artwork for the illustrations, and photographs. Pages are assembled by cutting
apart the galleys into pieces that will fit on each individual page and pasting the
pieces onto page layout forms. These layout forms are typically printed with
light blue lines that will not reproduce on photographic negatives for printing.
The paste-up process requires a sharp knife and a waxing machine, which coats
the back of photopaper lightly with wax that helps the paper adhere to the
layout forms when the two are pressed together. The wax adhesive is pliable so
that the pieces can be safely separated if the layout needs to change.

Paste-up only applies to photocomposition systems that produce paper or
film original type. With metal foundry type, the assembly process involves
moving metal type slugs into place and performing craft operations, like
surrounding type slugs with furniture to provide the spacing for page layout, or
kerning individual letter slugs by cutting off the corners to make them fit
together better. Some legal organizations have required metal type for legal
documents to avoid potential errors in electronic composition systems using
phototypesetters [Leith, Mctal type]; they wanted to see and verify the final type.

The graphic designer may paste-up a document, especially if the manuscript
requires frequent design decisions. [n such cases it is quite difficult afterward to
determine the rules and logic that were applied to accomplish some of the
creative layouts.

o Process Camera Operator, Stripper

After the page assembly stage, completed pages are ready for printing.
Depending on the printing process, it may be necessary to use a large-format
graphic arts process camera to prepare photographic negatives of each page. The
negatives are in turn used to expose printing plates. Text and line art
iltustrations are photographed directly on very high contrast negative film,
whereas photographs are screened or halftoned to provide the tonal variations
on high contrast film. If the printer is capable of printing several pages in one
pass, then the stripper must prepare an imposition of several pages into one
printing signature. '

The graphic arts process of producing printing plates from assembled pages
(master images) has been imitated by the concept of rendering




2 DOCUMENT COMPOSITION 2-14

device-independent image masters through page description languages like
Interpress from Xerox [—, Interpress] and PostScript from Adobe Systems
[— .PostScript].

e Printer

The printing process selected by the publisher depends on the number of
copies or impressions required. Short-run printing (up to 50 copies) can be
printed cost-effectively with a photocopier from a paper original. Medium-run
printing (from 50 to 1,000 copies) can be printed with an offset duplicator using
an inexpensive paper-based printing plate. Long-run printing (from 1,000 to
10,000 copies) are generally printed with high-speed offset printing presses in
signatures containing several pages and using metal printing plates.

If the document requires color, then there must be separate impressions
made for each printing ink color. Each impression requires a separate master
image, one for each color of ink. To print images with a full range of colors,
separations may be prepared by an outside supplier working from a slide
transparency of the colored image. For a small number of flat colors (typically
black plus one or two colors) the separations may be made by the process
camera operator from color-keyed parts of the original document.

e Binder

The printed pages must be collated and bound together to form a completed
document. The bindery specializes in taking the bulk pages, possibly in
signature form, folding them, collating them in the correct sequence, sewing or
otherwise fastening the pages together, and trimming the pages to finished size.
The cover, whether a cloth-covered hard-cardboard case or a strong paper back,
is attached around the document. Any printing on the cover or jacket must be
designed and printed in time for binding. The result is a completed publication
ready for distribution.

2.2 The Concept of Style

[t is important to observe that there are an incredible number of choices in
the design parameters that go into producing a document. How do people make
the choices? What controls the choices? How are the choices communicated
when they are made?



2 DOCUMENT COMPOSITION 2-15

2.2.1 Style as a Series of Design Choices

Many design choices are involved in the process of producing a document.
For example, the copy editor chooses names for the logical parts of the
document and communicates them to the graphic designer and compositor on
the marked-up manuscript. The graphic designer chooses the typographical
parameters for these marked parts of the manuscript and communicates them to
the compositor on type-specification sheets, such as the one shown in Figure 2-3.
The compositor acts on the mark-up codes, using the type specifications, and
enters typographical formatting codes in the typesettable file.

% _ =
ot = 2z
g |z = = 7 212 ST &1 = =
. s b5 =
. =S lzizlzielz =82Sl IslEl2lE16]E
Content sl e 212 12121E|IIE B R IEIEIE] 1EIEIE]EIE)R
Title main
subtitle
Heading  1st level
2nd level
3rd level
4th level
Text quoles
normal
footnotes
captions
Tables captions
Numbering folios
figures
footnotes
Figure 2-3. TYPOGRAPHIC STYLE SHELT typical of the specifications that graphic designers

provide compositors to control the parameters of typeset documents.

All of these choices influence the publishing style of the organization. The
American Heritage Dictionary’s definitions of ‘style’ and “style book™ help clarify
what style means and how it can be used:



R e T ]

2 DOCUMENT COMPOSITION 2-16

“style n. 1. The way something is said or done, as distinguished from its
substance . .. 7. A customary manner of presenting printed material, including
usage, punctuation, spelling, typography, and arrangement.” [—, Dictionary]

“style book n. 1. A book giving rules and examples of usage, punctuation,
and typography, used in the preparation of copy for publication.” [, Dictionary]

Each publishing house develops its own house style, a way of doing things
that will distinguish documents from that publisher. In the publishing
experiment described in One Book/Five Ways, the University of Toronto Press
provided the most concise set of composition style guidelines, covering the
following topics:

text composition: word spacing, word division (hyphenation), letterspacing,
paragraphs, leading, small capitals, figures (numerals).

punctuation: dashes, periods, apostrophes, colons, semi-colons, exclamations,
question marks, ellipses, quotations.

special settings: capitals, tables (avoid vertical rules), footnotes, extracts,
quotations. T

page makeup: facing pages, widows.

People at different levels contribute to a publisher’s distinctive style. The
editorial staff establishes the guidelines for authors and copy editors, such as
recommended forms of presentation, spelling, language usage, or the avoidance
of vertical rules in tables. Graphic designers select the typography and layout
for book designs. The composition staff determines the final typesetting choices
through interpreting the typographic specifications.

A publisher’s style is developed through an iterative process. The high level
plan is established by the publisher and the editorial staff; they request a certain
‘look’ or ‘feel’ for a publication. The graphic designer reduces that high level
plan into more specific guidelines, but the compositor still has some freedom to
interpret typographic choices. The result is sample pages. These pages are
passed up the chain for approval and are returned for correction. The changes
iterate among publisher, graphic designer, and compositor until the publishing
staff finally “sees’ what they want. For large documents, this leads to
inconsistencies in how variations not covered in the sample pages are handled, or
even differences due to different people working on the manuscript. The
solution has traditionally been “Try it again until you get it right.”

For automated composition systems that rely on algorithms to carry out
repetitive actions, the traditional design process makes it hard to extract the



2 DOCUMENT COMPOSITION 217

formatting algorithms from style guidelines. The guidelines are expressed in
terms of what people are doing, rather than the process of doing it, or the cause
and effect decisions that lead to the result. Therefore, it takes several iterations
with sample pages that cover all the expected situations before a creative
programmer can express the style rules as an algorithm.

2.2.2 What Do Styles Affect?

Style may seem to affect or control more than just the appearance of a
document. For instance, consider the choice between Canadian and American
spelling, something that might be treated as a style choice. Clearly different
spellings contain different letters, as in ‘colour’ versus ‘color’, ‘labelling’ versus
‘labeling’, but the same letters may appear in a different order, as in ‘centre’
versus ‘center’. The concept of style must accommodate these apparent changes
in substance.

We need to realize that style can accomplish changes at many different
levels. The change in spelling does not affect the meaning of the sentence
containing those words, and therefore the substance of the meaning remains
constant while the spelling varies. In fact, many Canadian and American readers
easily pass over these different spellings. The style may have changed the
characters but not the meaning of the words.

Consider the language processing tricotomy of lexical, syntactic, and
semantic analysis. Style can be seen to affect primarily the first two stages of
analysis. Style at the /exical level affects a token's appearance, such as the choice
of spelling. More common lexical style changes are the use of distinctive
typefaces for section headings, the inclusion of whitespace above and below
section headings, etc. In fact, most typographic parameters fall into this lexical
category of style.

Style at the syntactic level affects the order of information in the document.
One example is the order of names in a bibliographic citation; one style places
the surname before initials, while another style places initials before the surname.
Another example of syntactic style is the placement rule for parts of a document
during page layout, such as locating figures at the top or bottom of a page and
collecting all footnotes at the bottom of each column.

Style is also possible at the semantic level by providing different readers with
different views of the document. For instance, a document on how to use the
Cedar mail system on a new kind of file server [van I.eunen, Onc Document] was
prepared for readers with different backgrounds. The document contained



2 DOCUMENT COMPOSITION 2-18

written modules of information for one of three kinds of audiences: those who
had never used the mail system, those who had used the mail system but stored
their files locally, and those who had used the mail system and had some
experience with the new file server. A map of which modules applied to which
experience categories was used to compile three versions of the document from
the various modules. Cargill presents similar ideas for managing different views
of software source code [Cargill, Views]. In his scheme, multiple software versions
for differently configurable systems were maintained in the same file structure.
Depending on the configuration desired, different software versions would be
extracted.

2.2.3 Styles for Specific Media

Anotﬁérsty\le dimension is differentiation in media. Traditional printing
processes provide some variation in colors and papers, but other reproduction
technology and electronic documents span a broader range of possibilities.
Documents that become projection slides, posters, or video displays represent
some of these.

The notion of device independence in computer graphics can be applied to
document formatting. The survey article on document formatting [Furuta, Survey]
presents the notion of a ‘view’ of a document as the device-independent
post-processing of a formatted document for a particular device. However,
media and device capabilities may influence the appearance and readability of
information in a document. In this case, device independence is less desirable.
Rather, we wish to reformat the document to take advantage of device
characteristics or, put another way, to change the style to suit the medium in
which the information will be presented.

Low-resolution devices without color must obviously use different
techniques than high-resolution color laser printers. Type families are hard to
distinguish on low-resolution devices: 8-point Times Roman on a display screen
is difficult to distinguish from any other serif typeface (such as Garamond or
Baskerville) because there are so few ‘bits available to display subtle differences.
A color image may lose a great deal when viewed in black and white, especially
on low-resolution devices that display only a few, if any, grey levels.



2 DOCUMENT COMPOSITION 2-19

2.3 Early Typesetting Systems

The early use of computers in graphic arts typesetting systems has been
chronicled in several interesting books. One report of a computer composition
system is Barnett's Computer Typesetting [Barnett, Computer Typesetting], which
describes his work at MIT in the early 1960’s. Arthur Phillips's compendium
Computer Peripherals and Typesetting [Phillips, Computer Typesetting] describes the
computing and typesetting technologies that were being applied in the graphic
arts industry up to the late 1970’s. Seybold’s classic book, Fundamentals of
Modern Photocomposition [Scybold, Fundamentals], surveys the first three
photocomposition generations and the state of document preparation systems, as
well as presenting his seminal thoughts on the problems of area composition
(page layout), computer-generated halftones, and integrated system solutions.
Phillips's-later book, Handbook of Computer- Aided Composition [Phillips,
Handbook], describes the evolution of electronic tools in the publishing and
printing industries. Berg's Electronic Composition [Berg., Composition] provides a
complete assessment (much in the style of a consultant’s report) of the issues in
_ composition systems, the options available, and the pitfalls to be avoided.

Most of the early graphic arts systems used rather small resources and
simple approaches to the complex problem of producing typeset documents:
Barnett [Barnett, Computer Typesetting] used the IBM 709 at MIT; Seybold [Seybold,
Fundamentals] describes composition software run on an IBM 1130; the first
stand-alone typesetter at Waterloo, a Photon 737 Econosetter, had only a 4K
12-bit program memory {Beach, PROFF]. These computer programs accepted
typographic codes that mimicked the manual actions of a typographer using a
hot-metal type-casting machine. The coding structure intermixed action codes
with text character codes. Due to the use of shift-codes, super-shift codes, and
even upper-rail and lower-rail shift codes, the text was often inscrutable for
editing purposes.

Table formatting was an early application of computers in typesetting. The
earliest such publication, found after an extensive literature search, was the 1962
NBS Monograph 53, Experimental Transition Probabilities for Spectral Lines of
Seventy Elements, by Corliss and Bozman [Corliss&Bozman, NBS53]. Since
computers were generating numeric data and since typesetting equipment was
being driven from magnetic tape, it was natural to combine the two together.
This monograph contained only a single table and the table formatting was
accomplished by a special purpose program. The program is described in more
detail in Chapter 4.



2 DOCUMENT COMPOSITION 2-20

Another class of document composition systems evolved from the text
formatting programs developed on general purpose computer systems. The
evolution of such formatters from Saltzer's RUNOFF document formatter [Saluer,
RUNOFF] is chronicled in Brader’s Masters thesis, An Incremental Text Formatier
[Brader, Incremental Formatter], and later in the Computing Surveys article by Furuta
et al., “Document Formatting Systems” [Furuta, Survey]. Documents for such
formatters were presented as a stream of characters that included embedded
control codes. The earliest RUNOFF systems used a period at the beginning of a
line of input, an unlikely occurrence in normal written material, to indicate the
presence of a formatting command. Later systems escaped from the ‘line of
input per command’ restriction by designating command delimiters as
infrequently used characters like braces [Beach, Typesct], backslashes [Ossanna. troff]
or at-signs [—, SCRIBE]. Macro and conditional execution facilities for commands
extend the range of document formatting possibilities. One tenet of
documentation folklore at that time was that if you could make writing a
document more like programming, then programmers would take the time to
prepare documentation for their work, something which proved difficult to
ensure. Unfortunately this was the wrong paradigm. It did not make writing a
document easy and it did not get programmers to write better documentation.

The model of a document as a stream of text with embedded commands
survives today as a prevalent document formatting model. One consequence of
the stream document model in both the early graphic arts systems and the early
document formatters is the need to accept the document stream as an abstraction
of the formatted document. An early system by Engelbart provided an
alternative document model and several alternative views of the document.

The editing and formatting part of Engelbart's augmented human intellect
system, NLS [Engelbart. N1.S], provided a concrete view of formatted documents as
they would appear when printed, without the intrusion of formatting commands.
The NLS system was the original ‘what you see is what you get’ document
formatting system and Engelbart coined the phrase wysiwyG (pronounced
whizy-wig) to describe it. Due to the limitations of the display and printing
devices, NI.S was exactly a WYSIWYG system. Many later systems also claim to
be WYSIWYG, but cannot claim to render printed output exactly on the display,
mainly because of differences in fonts and character widths between the display
and the printing devices.

[n a further departure from the stream of text and embedded commands

model, the NI.S system represented the document contents in a tree-structured
hierarchy of text blocks, such as the common hierarchy of chapters, sections,



2 DOCUMENT COMPOSITION 221

subsections, and paragraphs. A reader of the on-line document could display
one of several views. For example, one viewing parameter controlled whether
the structure labelling was visible or not, another parameter controlled the
number of hierarchy levels displayed, and yet another controlled the number of
lines displayed in each text block. NLS could also incorporate line drawings
within documents by allowing a graphical object to take the place of a
paragraph.

Sadly, these ideas were not widely accepted at the time when they were first
introduced in the late 1960°s. Almost a generation passed before Engelbart
began to receive the appropriate credit for the ideas of the mouse pointing
device, multiple windows, and WYSIWYG formatting systems.

Many early graphic arts typesetting systems did not attempt to deal with
page layout but only produced typeset galleys to be pasted-up manually in the
normal way. The RUNOFF-style formatters provided some limited page breaking
capabilities and they could print running heads and footnotes. Such formatters
relied on the simple and easily-handled dimensions of fixed-width characters on
. a line printer or teletype page to make the algorithms workable.

Typesetting document formatters based on extensions to the RUNOFF model
could produce output for typesetters. They produced typeset pages by executing
page breaking algorithms coded as macros. Some early typesetting work with
PROFF [Beach, PROFF], a RUNOFF-like formatter for the University of Waterloo's
Photon Econosetter, used simple page depth measurements to break large
documents into pages. This was done mainly to avoid the manual paste-up stage
due to a lack of available manpower to handle the number of pages produced.
Seybold [Seybold, Fundamentals] outlines many of the concerns and difficulties with
page layout or area composition addressed by commercial typesetting suppliers.

More complex typesetting systems for high speed typesetters, like the Page-1
composition language [Pierson. PAGE-1} for the RCA Videocomp, permitted more
complex page breaking logic to utilize the typesetter for very large documents
better. Page-1 is one of the few early composition systems with widely available
published documentation. A programmer could write a page breaking algorithm
and style handling routines in the Page-1 language, have that compiled, and then
execute the resulting composition program against the document input data.



i |

i e T

2 DOCUMENT COMPOSITION 2-22

2.4 Document Compilers

A significant stage in the evolution of document formatters occurred when
the embedded formatting commands in the document began to describe the
logical content of the document. These logical commands, or formatting tags,
require an additional level of indirection to associate the detailed formatting
attributes with each tag. Initially this association was provided by a macro
processor. Each tag was treated as a macro name. Expanding the macro
produced the primitive formatting commands necessary to format that part of the
document.

For example, with logical commands one could specify that a part of a
document was a heading. By including a tag like .heading, one could
replace a sequence of detailed commands like “leave 24 points of whitespace,
select Times Roman bold typeface, use 14 point type size, and produce
unjustified line endings.”

Later systems like Reid’s Scribe introduced the notion of compiling a
document [Reid, Scribe thesis]. The tags in a Scribe document identify the
document parts that are compiled using a tag definition database to supply the
formatting attributes for a suite of built-in formatting algorithms.

Since more processing is required to interpret macros or compile a
document, the development of document compilers was restricted to large
general purpose computer systems, typically in universities and industrial
research laboratories. Most commercial graphic arts systems remained on less
expensive and smaller mini-computers and chose not to provide these ‘more
expensive’ features.

This introduction of document compilers coincides with increasing support
for document style. The indirection from tags to detailed formatting instructions
emulates the style sheet concept used by graphic designers. Designing tag
macros or formatting databases is separated from the marking up of a
manuscript. A document style can be shared among a set of documents, for
example, among the chapters of a book, the theses written at a university, or
journal articles submitted to a particular journal. With such tools, authors who
lack the skills for document design can still produce good-looking documents by
choosing a document style database and inserting the appropriate tags within
their document.

The separation of document design and markup enables the document
content to be reused in different situations by changing the style definitions



2 DOCUMENT COMPOSITION 2-23

associated with the formatting tags, without changing the manuscript or the tags
themselves. At Bell Laboratories, where troff was developed, a manuscript
could be published in three forms: first as an internal memorandum circulated
within the lab, second as a technical report cleared for external review, and
finally as a published journal article. A single set of tags within the document
sufficed by substituting different style parameters for each of the three forms.

The notion of compiling a document implies a massive undertaking.
Indeed, problems with compiling monolithic documents occur frequently. Large
documents often evolve from smaller ones rather than being planned, requiring
more computing resources to format, longer turnaround time, and introducing
longer delays in producing drafts of the document. There is a constant tension
between the simplicity of making the document out of smaller modules and the
complexity of managing the pieces. Simple problems like numbering pages
sequentially between pieces can be a problem with some document compilers.

Document compilers exhibit similar debugging problems to those found in
compilers for programming languages. An example of a bug in a compiled
document is the production of fifty typeset pages with a column width of 1.5
inches because the logic of a macro failed to reset a temporary change in line
width. Debugging tools for document compilers have modeled program
debuggers such as syntax checkers, simulators of the final output device on less
expensive or faster devices, and interactive previewers to display the typeset
document on a graphics display. The complexity of writing document format
designs in the language of the document compiler leads to the need for ‘gurus,’
‘experts,” and ‘wizards,’ just as for complex programming languages.

Certainly, document compilers make some kinds of changes much easier.
For example, correcting a chapter heading in one place can automatically affect
the chapter opening, the table of contents, and the running heads for that
chapter.

Some aspects of documents may not be handled very well or at all by a
particular compiler. Difficult composition features are sometimes left for future
development, such as mathematical and tabular composition, the incorporation of
line drawings and scanned images, or complex page layout designs. The inability
to integrate all aspects of the document leads to special handling of the
unintegrated parts of the publication, resulting in pasting up artwork for
illustrations or special notation typeset separately. Other typographic problems
may require specific commands to override the automatic compiled algorithms,
such as forcing page breaks to avoid one-line widows, and inserting explicit line
breaks to avoid rivers of whitespace or awkward hyphenation problems. Final



2 DOCUMENT COMPOSITION 2.24

corrections and revisions are frequently done by manual cut and paste methods
because recompiling the corrected document would take too long or would
create new problems, especially with page breaks. Of course, various document
compilers do better than others with these problems.

The following sections describe aspects of three document compilers in
widespread use, troff on UNIX, the Scribe portable document compiler, and
Knuth’s TEX. Of special interest will be the way these systems handle document
style, mathematics composition, illustrations, table formatting, and page layout.
The survey articles mentioned above [Brader, Incremental Formatter] {Furuta, Survey]
discuss additional aspects of document compilers.

24.1 troff

The troff document formatting language developed by Ossanna [Ossanna,
troff] and distributed for UNIX systems is perhaps the most widely used document
compiler. The earliest UNIX application was preparing patent applications with
troff [Ritwhie, Turing Lecture, p 758]. troff encompasses a family of document
compilers. All accept the same formatting commands but differ in their
formatting algorithms, which are sensitive to output device characteristics:
nroff formats for typewriter and line-printer devices with fixed width
characters; troff formats for typesetting devices with multiple fonts and
variable width characters. Porting troff to other typesetting devices was very
difficult. An output device independent version, ditroff [Kernighan, ditroff],
was created by Kernighan to handle a wide variety of typesetting devices and
laser printers, although the formatting algorithms were essentially unchanged
from troff.

The troff formatting language has remained essentially constant since the
late 1970’s. There are primitive functions for controlling the formatting
algorithms and the output device, establishing parameter values, selecting type
fonts and sizes, positioning characters, and drawing lines. Additional primitives
provide programming support for writing macros and building data structures,
such as strings and diversions of formatted text. The command name space is
severely limited to two-character tags. Generally lower case letter tags are
reserved by convention for troff primitive commands and combinations of
upper case letters and graphic symbols are used for macro commands.
Commands are embedded in the document, either occupying an entire line of
input beginning with a command character, or included within lines of input
delimited by a backslash character.



2 DOCUMENT COMPOSITION 2-25

The strength of the troff document formatting system is the collection of
tools implemented as preprocessors. These preprocessors include tbl for
formatting tables [Lesk, tbl], egn for typesetting mathematics notation
[Kernighan&Cherry, eqn], pic [Kernighan, pic] and ideal [van Wyk, ideal] for
drawing illustrations, and refer [Lesk, refer] for producing bibliographic
references.

The filter/pipe model from UNIX has determined the architecture of the
troff document formatting system. The filter model forces the document file
to be a linear stream of characters. Each tool reads the entire document file and
produces a modified version for the next tool in the pipeline. The
recommended processing order is refer, pic, tbl, eqn, then troff, a
convenient order for the majority of documents. Occasionally, when it is not
possible to establish a sequential processing order, this scheme breaks down and
elaborate techniques to break circular dependencies are needed. Otherwise, the
material cannot be formatted by troff. Nonetheless, collecting several types
of diverse content in a complete document manuscript is more convenient for
~the author than managing the separate pieces.

Each tool distinguishes its commands in some unique way. For instance,
eqgn processes embedded mathematical notation by recognizing its own
delimiters different from other formatting commands. This leads to a hiding of
information among various tools. For example, the spelling checker does not
investigate any misspelled words inside eqn or tbl commands even if they are
English phrases. Some document commands are treated differently at different
stages in the pipeline. For example, . TS and .EQ are tbl and egn
commands respectively to begin formatting tables and displayed equations.
Later, these commands are passed on to troff, which treats them as ordinary
macro commands to layout a particular table or displayed equation.

An unfortunate consequence of executing the macro processor last in the
troff pipeline is the preclusion of style facilities or indirect definitions of
formats for tables, mathematical notation, illustrations, or any other preprocessor
to troff. Some preprocessors furnish their own simple and different macro
languages while some users invoke their own preprocessor to provide the missing
macro facilities.

Yet the unifying concept of the pipe mechanism provides the troff
document formatting system with its simplicity. Should the need arise, it is easy
to create your own tools to solve difficult document content problems. The
ubiquitous document model of a stream of characters with embedded commands
makes this possible.



z pucumtNIT COMPOSITION 2-26

Document style in troff is provided by its macro packages. Two
frequently used packages are the -ms and -me packages, the former created by
Mike Lesk at Bell Labs [l.esk, -ms] and the latter by Eric Allman at UC Berkeley
[Allman, -me}. Macro packages provide two alternative techniques for defining
different document styles: one can either parameterize the behavior of the
macros or replace the macro package with another that defines the same
commands with different effects. As an example, the Bell Labs ~ms package
can format title pages in different ways by initializing parameters from the .RP
command (released paper format) rather than . TM command (Bell Labs
technical memorandum format). Also, several variants of the —ms package exist
for formatting documents in styles suitable for the Journal of the ACM,
Communications of the ACM, and ACM conference papers [Johnson, CACM].

Mathematics composition is provided within troff by the eqn
preprocessor. This mathematics typesetting system has become widely emulated
and variations have appeared at other research centers [Gruhn, YFL} and in
commercial typesetting systems [Alexander, Micros). The basic technique is to
define a notation language that expresses various two-dimensional relationships
among boxes. These relationships may affect the size of boxes, such as making
brackets larger around large fractions, or their relative arrangement, such as
positioning superscripts and subscripts. egn knows nothing about mathematical
concepts or the actual dimensions of the boxes. It relies on the author to
provide the precise spacing or line breaking of mathematical notation, and on
troff to do the actual positioning and formatting of the boxes.
Unfortunately, eqn guesses about some size relationships and it must be told
the current type size explicitly. egn provides built-in relationships for common
mathematical notation, but the set of notations is not extensible. However, the
eqn macro facility (separate from troff) and some low-level positioning
primitives do provide an escape mechanism for creating new notation as macros.
As there are different versions of troff for different device classes, there are
also two versions of the mathematical typesetting system: negn for typewriter
devices and eqn for typesetting.

This lack of knowledge of mathematical concepts in eqn is both a strength
and a weakness. Without any knowledge in the mathematical formatter, one is
forced to supply in tedious detail all the necessary spacing for operators. On the
other hand, the absence of built-in knowledge avoids having to circumvent
inadequate rules when they must be broken.

The two illustration preprocessors, pic and ideal, provide elementary
facilities for including line drawings within documents. The two differ in the




2 DOCUMENT COMPOSITION 2-27

mechanisms for defining the line drawings: pic uses a line and curve paradigm
while ideal uses nonlinear constraints to define boundaries and connected
lines. The illustration tools have only rudimentary style facilities for solid and
dashed lines and for arrow heads. More elaborate styles, such as various line
weights, fancier arrows, textures, and shadows are not provided. Through the
preprocessor architecture, and subject to the pipeline order of preprocessors, it is
possible to include any troff material in the illustrations, including equations
and formatted text.

The tbl table formatter is a very comprehensive facility capable of
formatting almost any table design. Evidence of its power is shown by one
author who created boxed illustrations for his paper with tbl when a line
drawing tool was unavailable [Rosenthal, Graphical Resources].

Even with its flexibility and generality for table formatting, it is awkward to
achieve consistent table styles in tb1l. The user of tbl must carefully specify
all the layout parameters in a consistent fashion. There are no separate macro
facilities within tbl to help, and the troff macro processor executes later in
the pipeline, after tbl has processed all of the table information. There is no
interactive design tool for tables to assist with the specification. An extensive
search for such tools found only a prototype built by Biggerstaff as part of an
experiment in object-oriented program design [Biggerstaff, TABLE], described more
fully in Chapter 4.

The page layout mechanisms in troff depend on two powerful ideas: traps
and diversions [Witten, Traps]. A trap is a macro to be executed at a measured
distance from the most recent page break in the output stream. The trap macro
might, for example, emit the footnotes at the bottom of a page of text. A
diversion is an alternate output stream, distinct from the normal stream which is
directed to the output device or file. Internal diversions are used to capture
formatted information, such as footnotes, for later inclusion on a page. Floating
a table or illustration from where it occurs in the manuscript to where it will
next fit on a page is accomplished with diversions in troff. When a table is
first encountered, a new diversion is started to capture the formatted table.

After the table has been formatted, the diversion is closed and the macro
package can check for sufficient space on the current page to hold the diverted
table. If there is room then the diversion is copied immediately onto the normal
stream, otherwise it is held until the beginning of the next page. (Complications
arise if the table is larger than the page but they need not be considered here.)

[mplementation restrictions within troff have persisted for a decade.
troff is an old program, originally coded in assembly language for the DEC



2 DOCUMENT COMPOSITION 2-28

pDP-11, subsequently translated into C. It has changed little since. The facelift
for device independent troff concentrated mainly on font data structures and
generalizing the output device model. The most notorious restriction is the
two-character name limitation. Macro packages for troff have used elaborate
conventions to avoid catastrophe due to name conflicts. Each preprocessor
requires some set of macro and register names to support its operations and
therefore each reserves some set of two-character names. Users of troff must
tread gently when creating their own macros or extending the existing packages
to avoid name conflicts because the name space is so limited. Limited internal
data structures are another annoyance, restricting the complexity of lines of text,
the number of columns in a table, or how many entries may exist within a
matrix.

The author of this thesis led the development of a document compiler,
TYPESET [Beach. Typeset], to alleviate many of the shortcomings of troff. A
small typesetting business, WATTYPE, used TYPESET extensively to create
technical and scholarly publications for a variety of publishers, mainly in
mathematics and computer science. TYPESET was built with full knowledge of
" the troff system and attempted to eliminate many of its limitations. The
macro processor has a similar syntax and flavor to GPM [Strachey, GPM].
Conditional execution and control structures were added to the macro language,
providing document layout programmers with more freedom in expressing their
designs. Register names of any length were stored in a hashed symbol table.
Most data structures were dynamic and could grow as necessary. Math
typesetting was based on the eqn design [Kernighan&Cherry, eqn] but the
implementation incorporated many enhancements to improve the quality of
formatted equations and to facilitate more options for aligning equations and
handling matrices. A table formatting package was built using the macro
language and provided several additional typographic facilities suitable for style
control over the table design. Pagination and layout algorithms were based on
trap and diversion paradigms similar to Page-1 [Pierson, PAGE-1] and troff.
TYPESET was not fully exploited because it required significant programming
skill to design new documents and it lacked sufficient documentation.
Nonetheless, it did serve well to express difficult book designs and produce
competitive graphic arts quality typesetting. TYPESET serves as an interesting
contrast in goals with Scribe, described next.

troff is in widespread use and continues to have a significant impact on

technical document production. lts strengths are the simple document model
and the large number of preprocessors and tools that can manipulate documents.



2 DOCUMENT COMPOSITION ' 2-29

[t provides the broadest range of functional capabilities for mathematics, tables,
and illustrations. There are several difficulties that limit its effectiveness:
implementation limitations, expensive and resource intensive computation, and
restrictions on the inclusion of mathematics, illustrations, and tables.

2.4.2 Scribe

The second document formatting system in widespread use is Scribe [Reid,
Scribe thesis], which was the first to use the term ‘document compiler.” The goal
for Scribe was to format documents in a portable fashion across document styles,
across output devices, and across various computer system installations. Scribe is
widely used among the ARPANET community and is distributed commercially [,
SCRIBE].

The notion of the form of a document, or its style, as opposed to the content
of a document or marked up manuscript was made explicitly separate in Scribe.
Style information is maintained in a database under the control of a database
administrator. The database contains various formatting environments, each
specifying a vast number of formatting attributes. Normal users of the
document compiler cannot create new environments or attributes. The
compilation process takes in a marked up manuscript file and creates a formatted
document file suitable for printing.

Unlike troff with its macro packages, Scribe provides only built-in
formatting algorithms that are parameterized by the environment attributes.
The Scribe document formatting language is declarative only. Reid defends the
absence of procedural facilities in the database language because 1) a procedural
language would reduce the feedback from users when they were unable to do
something in Scribe, and 2) without enforcement or user training,
“programmability invariably leads to a diversity of style™ [Reid. Scribe thesis,
p108-109]. Reid concedes that an algorithmic language would increase the
usability of the compiler (the goal of this author’s TYPESET system). Reid
concludes that:

“Furthermore, a programmed system implemented by a diverse variety of
people without central control, namely the union of the procedural extensions
with the basic system, will invariably be more obtuse and difficult to
understand and use than a unified one.” [Reid, Scribe thesis, pl09]

The Scribe system provides many services for document writers and Reid
coined the phrase ‘writer's workbench’ [Reid. Scribe thesis, p71] 10 describe the
collection. Included among these facilities are the automatic collection of entries



2 DOCUMENT COMPOSITION 2-30

for tables of contents, indices, and glossaries, the automatic cross referencing
within a document through symbolic labels, the collection and sorting of index
entries, the management of large documents composed of many component files,
and the extraction of bibliographic citations from a database of reference entries.

The lack of an algorithmic formatting language has prevented the
proliferation of special purpose formatting preprocessors like those for troff.
There are some mathematical formatting capabilities, but they are of limited
capacity, sufficient for some technical documentation but limited for more
concentrated mathematical documents. The lack of recursion in Scribe has been
a serious impediment to building a mathematical formatter; overprinting is the
only readily available technique that can handle the recursive nature of
mathematical expressions [Monier, Scribe math].

Table formatting in Scribe is simple to use, but again limited in
functionality. The scheme is based on extending the notion of typewriter tab
stops that define column boundaries. Scribe provides several typographic
capabilities, such as centering within tab stops and filling with leaders, but more
~ general facilities such as centering headings over several columns requires
changes to the tab stop settings.

Scribe does provide a nonportable capability for scanned illustrations.
Image files scanned for a particular class of output device may be incorporated
into a document. Scribe will manage the whitespace layout described for the
image, but expects the device to output the image file.

The major accomplishment of Scribe was its successful separation of form
from content in a document. The database of formatting environments takes
advantage of the special skills of document designers and shares the design
among document creators. The range of document content beyond text is
limited, and there are few options for building special purpose formatters or
preprocessors due to the lack of a formatting language. The next document
compiler deals directly with formatting algorithms.

2.4.3 TEX

Donald Knuth has made document formatting a legitimate topic for study in
computer science by his work on TgX [Knuth, The Ti:Xbook]. The boxes-and-glue
model serves as the basis for algorithmic research into document formatting.
Three algorithms have resulted from this work: optimal line breaking [Knuth. Line
Breaking], hyphenation [Liang. Hyphenation], and optimal page breaking [Plass.
pagination]. The TEX document compiler incorporates this model and these



2 DOCUMENT COMPOSITION 2-31

algorithms to provide a comprehensive document formatting system that extends
beyond text to mathematics, tabular matter and complex typography.

Typesetting mathematics was a primary goal of Knuth's work on TgX [Knuth,
AMS lecture]l. The notion of composing mathematical expressions from boxes
surrounding each character and composing equation boxes for the arrangement
of other boxes applies directly to mathematical notation. TgX relies on both a
large font library to represent mathematical symbols, and a set of positioning
operators. The TEX typesetting language is a linear expression of the
boxes-and-glue model for formatting two-dimensional notation.

Related work on METAFONT [Knuth, METAFONT] resulted in a font design
tool capable of producing the many mathematical symbols and alphabets used in
TEX. METAFONT relies on linear optimization and equation solvers to determine
the outline shape of character designs specified by small METAFONT programs.

TeX provides a macro definition capability which permits the introduction of
shorthand inclusion of complex formatting commands and repeated text. There
“have been a small number of macro packages developed for TgX. Perhaps the
most widely distributed is Lamport’s 1.#TgX package [Lamport, [2TgX].

Document layout is expressed through implicit controls in TgX. TgX uses
one global algorithm for many layout situations. Thus when breaking lines,
there is no explicit notion of centering. Instead one surrounds centered text with
two gobs (a technical term in TgX) of glue with large but equal stretchiness
values. The justification (glue-setting) algorithm fixes the glue size to
accommodate all the boxes within the given line measure. Similarly, page
justification algorithms are influenced indirectly by gobs of glue between lines of
text or parts of a page to accomplish the vertical layout.

Plass’s work with dynamic programming optimization algorithms lead to the
development of line- and page-breaking algorithms for TgX [Knuth, Line Breaking]
[Plass, pagination]. The optimization goal is to minimize some badness criteria,
such as the sum of penalties for breaking a line in some way. Examples of
line-breaking penalties are inserting a hyphen between syllables in a word,
hyphenating very short syllables, and introducing hyphens in two or more
successive lines in a paragraph. Given the set of boxes and the set of penalties,
the optimization algorithm determines the optimal break points. The
line-breaking algorithm is part of the current T1:X82 release, but the
page-breaking algorithm is not because it is too resource-intensive and/or too
slow.



2 DOCUMENT COMPOSITION 2-32

Sometimes the algorithms in TgX produce beautiful results, but they require
very clever designers. In this regard, the following summary comment appeared
in the Seybold Report on Publishing Systems when discussing Tyxset, the first
implementation of TEX available commercially on a microcomputer:

‘There are, however, some serious flaws. The greatest of these is the need for
access to Xenix and TgX ‘gurus.” This would be necessary, we think, for all
but the most trivial work.” [Alexander, Tyxset, p 14]

Many situations that can be handled by TgX are collected into the ‘Dirty
Tricks’ appendix of The Trxbook. One example of both the power of TEX and
the excessive cleverness required to master TgX is the inclusion of leaders in an
index entry [Knuth, The TpXbook, p 392-394]. The example in Figure 2-4 provides
the TeX codes needed to format the given input for various line measures.

Tables can be handled within TgX. However, TEX tables rely on horizontal
and vertical justification primitives that align in one direction or the other but
not both simultaneously. 7The Trxbook demonstrates the ability of TEX to
reproduce some of the sample tables from the tbl manual as evidence of the
functionality of TgX.

TeX is valuable for the algorithmic foundations it brings to document
formatting. The interface to those algorithms remains a stream document model
without any structure. No WYSIWYG interactive composition system is yet based

on TgX.
2.5 Integrated Composition Systems

An integrated document composition system provides a more direct way of
working with documents. One aspect of integration is the combining of the
editing and formatting tasks. Document compilers require one to first create or
edit a separate manuscript file, then to ask the compiler to turn it into a
formatted document. In an integrated system, changes to the document become
visible as they are made. Another aspect of integration is the integration of a
variety of document content beyond simple text, such as line drawings, scanned
images, mathematics and tables.

The first integrated composition system was Engelbart’s NLS, developed
during the late 1960's. The NI.S system introduced the notion of ‘what you see
1s what you get,” presented a visual interface to accelerate human understanding
of the document, accepted direct manipulation of the document structure and
appearance, separated the form of the document from its content, and integrated
many abstract objects into a uniform representation.



2 DOCUMENT COMPOSITION 2-33

ACM Symposium on Theory of Computing, Eighth Annual
(Hershey, PA., 1976) ......... e
1879, 4813, 5414, 6918, 6936, 6937, 6946, 6951, 6970.
7619, 9605. 10148, 11676, 11687, 11692, 11710, 13869

ACM Symposium on Theory
of Computing. Eighth
Annual (Hershey, PA.,
1976) ......... 1879, 4813, 5414,
6918, 6936, 6937, 6946, 6951,
6970, 7619, 9605, 10148, 11676,
11687, 11692, 11710, 13869

ACM Symposium on
Theory of Computing,
Eighth Annual
(Hershey, PA., 1976)
...... 1879, 4813, 5414,

6918, 6936, 6937, 6946,
6951, 6970. 7619, 9605,
10148, 11676, 11687,
11692, 11710, 13869

\hyphenpenalty10000 \exhyphenpenalty 10000 \pretolerancel0000 % no hyphens
\newbox\dbox \setbox\dbox =\hbox to .4em{\hss.\hss} % dot box for lcaders
\newskip\rrskipb \rrskipb =0.5em plus3em % ragged right space before break
\newskip\rrskipa \rrskipa=-0.17em plus-3em % ragged right space after break
\newskip\riskipa \riskipa=0pt pluslem % ragged left space after break
\newskip\riskipb \riskipb=0.33em plus-3em % ragged left space before break
\newskip\Iskip \lskip = 3.3\wd\dbox pluslfil minus0.3\wd\dbox % for leaders
\newskip\iskipa \Iskipa=-2.67em plus-3em minus0.11lem % after leaders
\mathchardef\rlpen =1000 \mathchardef\leadpen =600 % constants used
\def\rrspace{\nobreak\hskip\rrskipb\penaltyO\hskip\rrskipa}
\def\rlspace{\penalty\rlpen\hskip\riskipb\vadjust{} \nobreak \hskip\riskipa}
\uccode'~ =* \uppercase{
\dcf\:{\nobreak\hskip\rrskipb \pecnalty\leadpen \hskip\rrskipa
\vadjust{ }\nobreak\leaders\copy\dbox\hskip\Iskip
\kern3em \pcnalty\leadpen \hskip\iskipa
\vadjust{ }\nobreak \hskip\riskipa \let~ = \rlspacc}
\everypar{\hangindent = 1 .5cm \hangafter=1 \let~ =\rrspacc}}
\uccode'~ =0 \parindent=0pt \parfillskip=_0pt
Figure 2-4. CLEVERNESS REQUIRED TO MASTER TpX is exemplified by one of the “dirty tricks’
from The Tpxbook, page 392-394. The top three examples show the same index entry formatted
with different line lengths. Note that the dots hehave differently depending on whether the two
parts fit on the same line or not. The TEX code fragment is shown at the bottom.




2 DOCUMENT COMPOSITION 2-34

In the following survey, several more recent integrated document
composition systems are reviewed. The first two, Etude and Janus, are research
projects and deal mainly with document structure and interaction issues. The
Xerox Star system tackled the integration of various document contents from the
perspective of an office information system rather than a typesetting system.
Evolving research at Xerox PARC into document structure and integrated
composition will be highlighted briefly.

2.5.1 Etude

The Etude project at MIT {lison, Etude] [Hammer, Etude] was part of a larger
office automation research project. Etude (easy to use display editor)
concentrated on the integration of document editing and formatting. The
document formatting functionality was similar to Scribe while the internal
formatting model was based on TgX’s boxes-and-glue model. Etude operated on
‘high level typographical objects,” such as a chapter, section, paragraph, or italic
phrase. A document design database mapped these objects into formatting
- attributes. The system was designed to be a ‘what you see is what you get’
document composition system with a high standard of typographic quality,
oriented towards the ‘professional user.” User interface issues and minimizing
training were major goals of the research effort in Etude [Good, Etude interfacc].

Documents in Etude are hierarchical structures. A document exists as two
structures, one for the internal representation of the content and another for the
representation of the formatted document broken into lines, columns and pages.
The document structure has the potential for accommodating nontextual content
but this has not been described in published papers. Support for mathematics
and tables appears to have been deferred.

Etude supports the notion of a document style by providing formatting
environments for each high level typographical object. These environments
supply attribute values for formatting parameters. Relative values are permitted
and the current attribute value is determined by an inheritance scheme that
traverses the path from the root to the current node in the hierarchical structure.

The Etude formatter displays changes as they are entered into the
document. An incremental formatting algorithm minimizes the recomputation
necessary to display the changes. Extra state information is maintained in the
formatted document structure to support the incremental displayer. The
incremental algorithms provide the basis for developing formatters and displavers
for more general document objects represented as boxes and glue.



‘j‘f‘;\

2 DOCUMENT COMPOSITION 2-35

2.5.2 Janus

The Janus project at IBM Research [Chamberlin, JANUS] took a slightly
different approach to integrating document composition. The Janus workstation
uses two different displays of the document, one the abstract manuscript file and
the other the formatted document. Editing changes are made to the manuscript
file and periodically the formatted document view is updated.

Janus is a declarative formatter like Scribe, rather than a procedural
document compiler like troff or TgX that relies on macro packages to execute
primitive formatting operations. A declarative tag on part of the document
annotates the intention of an author to compose a heading or an itemized list.
The document may contain images as well as text since the tag may interpret the
document content as it wishes, perhaps as words of text, or as a line drawing or
scanned image. Incorporating mathematical and tabular material is planned but
has not yet been accomplished.

The definition of tags involves specifying the names of the tags, coding a tag

~action routine, and designing a page layout template. The tag markup language

is a direct descendant of the ‘Generalized Markup Language’ of IBM’s Document
Composition Facility [—, DCF] [-, GML]. A document designer creates a library
of tag routines that captures the formatting attributes and layout actions related
to the tagged content. Tag routines are coded in a Pascal-like language. Page
templates control the placement of the tagged object and are designed using a
graphical design tool.

The Janus formatting algorithm is based on the boxes-and-glue model of
TeX. Tag routines produce boxes that are collected into a galley. Out of
sequence boxes, such as the text of a footnote or a floating illustration, are
represented by an anchor in the galley pointing to a galley fragment. The
packer algorithm places boxes from the galley into the page templates. The
resulting structure is the formatted document. Janus provides for local
intervention in the final positioning of boxes on a page by moving pieces of the
document. Any such changes are lost when the document is reformatted.

The published papers on Janus give no specifics on how illustrations are
accommodated by the tag routines. The tag routines provide a very general
capability for interpretting style and rendering nontextual content. The Janus
prototype was expected to provide the base for future research in formatting
mathematics and tables, but no published information is available.



2 DOCUMENT COMPOSITION 2-36

Janus provides insight into the customization of formatting documents by
providing a formatting language for writing the tag routines to accommodate new
classes of document content objects. To support a new class, one writes a tag
routine and links it into the existing software. The style machinery in Janus is
not centralized; each tag routine can accept its own set of attributes. This will
cause difficulty with tables where the style information comes from the
document containing the table, the table, and from each row and column.

2.5.3 Xerox Star

The Xerox Star [Smith, Star Interfacc] [Seybold. Xerox's Star] approaches integrated
document composition from the office information perspective. Since office
documents are its major focus, Star supplies less capability to describe and
control all of the possible typographic features.

Nonetheless, Star integrates several classes of document objects, such as text
in various fonts and sizes, simple business graphics, mathematical notation,
tables, and forms. The Star user interface design is carefully managed to ensure
that common actions operate across all document object classes. For instance,
the act of copying part of a bar chart is the same as copying part of a
mathematical formula or a part of a sentence of text.

The style mechanism in Star provides only for the specification of individual
formatting attributes. There is no indirection or central registry of named
collections of attributes; changing the appearance of an entire document requires
changing the attributes of each instance.

[Mustrations created by Star Graphics [Lipkic, Star Graphics] are mainly simple
business graphics. Predefined categories of graphic images are provided: bar
charts, pie charts, and simple line drawings such as organization charts. Scanned
images are not supported. The centrally designed user interface extends to
illustrations and its property sheet mechanism provides style attributes for
graphic illustrations.

Mathematical notation is handled very well by Star. The notation 18
displayed in a WYSIWYG fashion using special fonts for the mathematical
symbols. When symbols take their sizes from the expressions nearby, such as
summation or large parentheses, these symbols grow automatically as the
expressions are changed. The mathematical notations are built-in and not
extensible, but cover most of the rudimentary algebraic notation.

Star also supports the interactive editing and formatting of tables and forms.
Tables are defined as a matrix of rows and columns with some distinguished



2 DOCUMENT COMPOSITION 2-37

entries spanning multiple columns. Table appearance is controlled through
specifications in a set of property sheets for the table, the rows, columns,
headings, and the rules (or lines) within the table.

Because the fundamental premise for Star assumes an office environment,
there are many extensions and quality issues that were avoided. Adapting the
Star to more typographically demanding environments will require addressing
many of these design issues.

2.5.4 Xerox PARC Research

Xerox PARC has continued to research integrated document composition
systems. Prior to the development within Xerox of the Star office workstation,
PARC had built the Bravo editor {Lampson, Bravo]. Bravo is an integration of both
the editing and formatting of text and provides a WYSIWYG display of the
document. When a document was to be printed Bravo produced a Press format
file. The Press format is a device independent representation of the marks on
paper. Text, line drawings, and scanned images are all treated in a resolution

-and device independent notation. However, Bravo could not incorporate

illustrations directly and relied on the PressEdit utility to merge Press-file
versions of the illustration into the document Press file.

This digression into how illustrations were incorporated in documents serves
to highlight the distinction in meaning between integrated editor/formatters and
integrated document composition systems. An integrated editor/formatter
permits editing a text document which you see presented in the form that it will
be printed; an integrated document composition system stresses the integration
of various kinds of document content, typically text and illustrations, into a
single integrated document.

The Tioga editing system that is part of the Cedar programming
environment [Teitelman, Cedar] attempted to provide an extensible document
structure to integrate document object classes. Tioga is noteworthy for its
document structure and style machinery. The hierarchical node structure in
Tioga evolved from NLS. Each node contains the document content and
formatting properties. The editor provides interactive operations on that
structure, such as selecting subtrees of nodes, displaying nodes at various depths,
and applying properties to subtrees. Special node properties can be interpreted
by the formatter to extend the kinds of content supported. Current artwork
properties designate Press files, scanned images, line drawings, and tables.



2 DOCUMENT COMPOSITION 2-38

The Tioga style machinery maps node properties into formatting attributes.
Style rules are explicitly named, written in an interpreted style language, and
stored 1n style dictionaries. Attributes for a node are inherited through the node
hierarchy. Relative attributes, such as “make the indent of this node so much
more than the indent of its parent,” are easily accommodated. The style
machinery is extensible by defining new style dictionaries and new attributes.

The implementation has not progressed beyond a robust integrated
editor/formatter with some extension capabilities. Tioga served as the test bed
for various experiments in document objects discussed in later chapters of this
thests.

2.5.5 WYSIWYG — or is it?

What is it that you get with WYSIWYG formatters? There are two answers:
either a preview of the final appearance or the real appearance of the document
on the output device. If what you get is the real appearance, the acronym might
be renamed ‘what you see is a/l that you get.” When a WYSIWYG formatter
displays the real appearance, then there is no compensation for the resolution
capabilities between printers and displays, sometimes a ratio as high as 20:1. In
true WYSIWYG the final hardcopy output is artificially limited by the display
technology. The MacWrite formatter produces almost identical printed output
on the ImageWriter as the displayed output because the screen and printer fonts
are the same [Seybold, MacWrite].

If what you get is a preview, then the acronym should be ‘what you see is
almost what you get.” Resolution differences result in positioning inaccuracies
and limited font discrimination on the display. With limited resolution and
small type sizes, there are simply too few bits to convey the distinctions between
typefaces like Times Roman, Garamond, and Baskerville. Therefore WYSIWYG
formatters often provide only generic typefaces that distinguish major type
families and characteristics, like serif versus sans serif, or bold versus italic. The
Xerox Star provides this kind of preview capability.

A WYSIWYG formatter constitutes a dilemma. On the one hand, creators of
documents may tend to spend excess time and energy on the wrong aspect of
document production. Instead of creating information, there is a tendency to
make beautiful documents of little value. On the other hand, authors are
notorious in the publishing world for making substantial author’s alterations
only after their manuscript is typeset. A typeset manuscript is more readable so
authors read it more carefully and often see a different message in that context.



2 DOCUMENT COMPOSITION 2-39

Significant benefits in improving the quality of documents accrue to authors
working with a document in its close to final appearance, using the ability to
~ incorporate those insights into the manuscript prior to publication.

WYSIWYG formatters are expensive. Displaying typographic fonts implies
using higher resolution displays and more computational power than simple text
editors. These formatters are more complex because they must maintain
formatted data structures while accepting changes to the document. Operating
all the formatting controls requires investing time in learning to use such a
formatter, although the time can be reduced with good user interface design such
as evidenced by the Xerox Star. Further study of these problems seems
warranted, but is beyond the scope of this thesis. The work reported here is
designed for future incorporation into WYSIWYG systems.

2.6 Document Content Models and Views of Documents

The representation of documents changes radically through this survey of

~ document composition systems. Traditional graphic arts processes produce a
master document only on paper or photographic film. Electronic processes
produce computer files for the electronic master document with all the text,
illustrations, and formatting information included. The prevalent document
representation is a simple stream of text with embedded commands, as used by
troff, Scribe, TgX, and Janus. This simple model is ubiquitous and may be
used by preprocessing tools for these formatters. More complicated
representations involving a structured document organized into a hierarchical tree
or linked directed graph structure are used by NLS, Tioga, and Etude. Typically
the structure contains property lists or a labelling of the content associated with
parts of the structure.

Abstract document structures has been recently studied by Kimura [Kimura,
thesis] [Kimura&Shaw, Abstract Documents]. This representation is a graph-like
structure composed of abstract document objects. The abstract objects are
mapped into concrete objects by a formatting process and these concrete objects
are made visible by a viewing process. This structure has introduced ordered
and unordered sets of objects, and the sharing of objects within the document
structure.

Structured documents have several advantages at the expense of a more

complex representation. The scope of operations can be specified in terms of
substructures of the document, such as rearranging sections within a chapter, the



2 DOCUMENT COMPOSITION 2-40

items in a list, or rows and columns of a table. A class mechanism for building
extensible document object classifications can be superimposed on the document
structure. Each object in the document structure can have a content class
associated with it, and a specific set of procedures to perform editing and
formatting operations. A distinct advantage of such a class mechanism is that all
text is marked as text even if it used in the context of other objects, such as
illustrations or tables. Therefore spelling checkers can check all of the text
objects anywhere in the document when represented in a structured document.

More general document structures, such as integrated documents and
databases, are suggested in Chapter 6. As the document structure becomes more
complex, the difficulty in managing the pieces of a document increases. Almost
all formatters provide a mechanism to include parts of a document within a
larger document. Scribe does the best job of managing components of large
documents, especially cross references. However, few schemes exist to provide
interactive formatters for nonhierarchical document structures.

Another advantage of structure within the document representation is the
ability to present the reader with different views of the information.
Hierarchical structures permit showing only a few levels of the hierarchy (level
clipping) to reveal the outline structure of the chapter and section headings. NLS
also provided a view of only a few lines of each paragraph (line clipping) to
compress more thoughts onto the same display space [Engelbart, NLS). Additional
views might be based on selecting content matching a pattern string or on
matching properties of the reader to the nodes in the document structure fvan
Leuncn, One Document]. Cargill’'s notion of different views of software based on
configuration properties [Cargill, Views] demonstrates how a single comprehensive
structure, possibly containing redundant information, may be accessed to
produced several different configurations of a document.



3
Graphical Style

3.1 Producing High Quality Hlustrations

This chapter addresses the problems of producing high quality illustrations
in documents. [n particular, the issues of ensuring stylistic consistency among a
group of related illustrations and of reusing illustrations in different media or for
different purposes are presented. The concept of graphical style is introduced
to deal with both of these problems. The illustrations considered here are
two-dimensional images formed with lines, curves, areas, scanned raster images,
and text. Three-dimensional images must currently be reduced to
two-dimensional representations for displaying on screens or printing in
documents. The concept of graphical style however extends gracefully to
structured image rendering systems of any dimension.

The research into graphical style for illustrations was conducted at Xerox
PARC in 1982. That work resulted in a paper coauthored with Maureen Stone
and presented at the 1983 ACM SIGGRAPH conference [Beach&Stone. Graphical Style].
The paper reports on a prototype implementation, TiogaArtwork, in the Cedar
programming environment [Teitelman, Cedar] using the Tioga document structure
and the CedarGraphics imaging software [Warnock& Wyatt. CedarGraphics].  This
chapter provides additional background to the problem and summarizes the main
features of the graphical style prototype.

Few of the document composition systems outlined in Chapter 2 can
integrate illustrations within the electronic manuscript file. Those that can
impose severe restrictions on the achievable quality: pic and ideal produce

3-1



"

3 UKAPHICAL DTYLE 3-2

line drawings with only a single line weight, and the Xerox Star does not output
to typeset-quality devices. lllustrations for many typeset documents are prepared
by skilled draftsmen and then manually pasted onto the final typeset pages. In
the past, computer-generated illustrations have been easy to identify by their
poor quality, especially in author-prepared manuscripts that feature diagrams
prepared on pen-plotters with irregular character shapes.

This is not a new problem brought on by computer technology, but one
which has always existed. All too often the illustrations in a book, especially in
a technical book, do not receive the same production treatment as the text.
Some publishers require the author to prepare the illustrations while others
provide minimal resources for creating illustration artwork.

“When the author’s contract stipulates that he is to supply illustration copy,
he may choose to draw it himself or get it drawn by somebody else whose
main qualification for the task is that he will make no charge for it, or next
to none. The resulting material may be clear enough to explain its meaning
but incapable of adequate reproduction or too irregular in drawing to appear
in a well-produced book.” [Williamson, Book Design, p 258]

The incentive for this research was to develop tools for use by an author who
chooses to draw illustrations himself yet wishes to achieve a graphic arts standard
of quality.

3.1.1 Text Book Ilustrations

Two college text books [Dyck, PASCAL] [George&liu. Sparse Matrices] formatted
and typeset by the author of this thesis are representative of the difficulties one
encounters in producing publishable quality illustrations. Both books are heavily
illustrated: the first book contains over 150 line drawings and the second about
80. Both books contain hundreds of computer program fragments and many
mathematical equations, typographic requirements that are often difficult and
expensive when preparing text books without electronic composition tools. The
computer program fragments could be treated as text and simply typeset with an
appropriate font to resemble the fixed-width characters on a computer line
printer. The mathematical equations were formatted with a system similar to
eqn. However there were no support tools for preparing the illustrations which
were ultimately drawn by hand and pasted onto the final pages.

The numerous illustrations in the two text book projects could be grouped
into a few categories: mathematical graphs of curves complete with axes, tick
marks, and labels; syntax charts for a programming language; data structure




3 GRAPHICAL STYLE 33

diagrams consisting of shaded boxes for variables and curved arrows for pointers;
sparse matrix layouts depicting an arrangement of nonzero elements; and
schematic diagrams to illustrate examples or exercises at the end of the chapters.
Ensuring that the draftsman prepared all of the illustrations from a particular
category in a consistent manner proved difficult. Several factors varied: choice
of line weight, reduction percentage for illustrations drawn larger than finished
size, positioning and style of tick marks on graphs, treatment of points along a
curve, treatment of arrows and arrowheads, and the typography of text labels on
graphs. Figure 3-1 is an example of one of the mathematical graphs from the
Computing text book.

¥

S

a (a+b)2 b

Trapezoidal Rule for n=1 and n=2.
Figure 3-1. TRAPEZOIDAL RULE FIGURE from Computing |Dyck, Computing] redrawn with the Griffin
illustrator using a style faithful to the hand-drawn original. This illustration will be used in
several examples in this chapter. (Used with permission from Reston Publishing Co.)

To control this variation, guidelines were drawn up to establish the desired
choices. An axis line was always to be drawn with a thin line; the data curve
would be drawn with a heavier line; points along the curve would be dots of a
certain radius; tick marks would be a specified length; arrows would bend a
preferred way and have a certain kind of arrowhead. Text captions and labels
proved to be the most troublesome to handle. The book designers had taken
great advantage of the flexible electronic document composition system to use
several fonts in a disciplined way. To ensure that the illustration labels
conformed to the typography of the book, the labels had to be typeset separately
and supplied to the draftsman, who either cut and pasted the labels onto the



3 GRAPHICAL STYLE 3-4

artwork, or else rubbed on customized transfer lettering developed from the
typeset labels.

The goal of those efforts was to ensure a consistent appearance among all
the illustrations in each category. Books on graphic design urge this discipline
and consistency:

“Every item in the book gains in appeal to the reader’s eye from its relationship
with all the other items. Something of a family resemblance, an appearance
of being a set of pictures rather than a collection from disparate sets, may
confer this advantage on the illustrations of any edition.” [Williamson, Book
Design, p 256]

The first problem is to ensure consistency among a set of illustrations. In
developing the illustration style guidelines, several iterations between designer
and draftsman were needed to specify the correct rules completely. [t became
obvious that this iterative design process was essentially the same process as
specifying the book design guidelines between a graphic designer and the
programmer of a document formatting package. The consistency problem for

- 1llustrations would be solved if one could capture and share style guidelines for

rendering computer-generated illustrations in precisely the same way that style
guidelines are developed for text preparation.

The second problem is to extend the lifetime of illustrations beyond a simple
use. Both of the text books were used in college courses. Lecturers in those
courses wanted to present overhead transparencies of the illustrations. Text book
publishers often supply instructors’ manuals free of charge with transparency
masters for creating overhead slides. All too frequently to save time and money,
the preparation of these transparency masters is done near the end of the book
production cycle (or afterward) from inexpensive typewritten illustrations. It
would be preferable to have the same illustrations from the text book available
as transparency masters for overhead slides.

In the published forms of the two text books, the graphs and diagrams used
fine lines and shaded textures appropriate for the typeset material surrounding
them. Those same fine lines and shades do not reproduce well onto
transparenctes. For overhead or 35 mm slides projected to a large audience, the
lines must be much darker, the text much bolder, and the shaded textures much
coarser or (better still) displayed in color. The problem of reusing illustrations
across different media would be greatly reduced if one could automatically
render the illustrations with different graphical attributes suitable for different
media.



3 GRAPHICAL STYLE 35

[f it were easier to reuse illustrations, then perhaps people would take more
time and care to create really good ones.

3.2 Previous Work

Most earlier computer-based illustration systems have been primarily
concerned with functionality. The thrust has been in developing algorithms for
synthetic graphics and in implementing software to render illustrations. Many of
these systems permit graphical attributes to be assigned to elements of the
images [Crow, Image Environment], but they have no mechanism to collect attributes
for easy change.

The PICTURE language [Beatty. Picturc] and Picc [White.. Picc], a later
implementation for the C language, define picture description languages for
publication quality illustrations. The style of the illustration is described by
graphical parameters supplied to the rendering operations, such as line width and
dash pattern required by the line drawing routine These parameters provide
explicit control over some aspects of graphical style. The TELLE-A-GRAF business
graphics package by ISSCO [—, TELLE-A-GRAF] provides templates for generating
idiomatic graphics with a convenient style of presentation built into the template.
Two other interesting illustrators, JUNO [Nelson. Juno] and GOB [Zabula-Salclles,
GOBJ, use constraints to create pictures that preserve certain relationships after
changes in portions of the picture, but there is no style capability to make a set
of illustrations consistent.

[nteractive illustrators, such as those developed at Xerox PARC, also suffer
from a lack of style facilities. Bitmap illustrators like MARKUP [Newman, Markup]
draw lines of different widths or shade areas with different textures to create a
black and white bitmapped illustration. However, the illustration has a fixed
resolution and one cannot easily change the line widths or shading textures after
the illustration is created. An object illustrator like DRAW [Baudelaire, Draw] makes
it easier to manipulate graphical objects, but does not provide attributes for all
the rendering options nor a means of grouping graphical attributes for objects
that look similar. The Griffin illustrator [Baudelaire&Stone, Griffin] does have an
explicit notion of style attributes and provides menus for selecting line weight,
filled and/or outlined areas, colors, text fonts, sizes, and orientations. Still, there
1s no grouping of style attributes nor any naming or indirection to allow sharing
of attributes among several objects with the same style.



S

3 GRAPHICAL STYLE 3-6

The troff preprocessors for illustrations, pic [Kernighan, pic] and ideal
[van Wyk. ideal], can produce simple line drawings. There are few attributes for
the graphical objects and no style mechanism. The line drawing capabilities are
device specific, provide only a single default line weight, and are implemented
on some typesetters by overlaying a prodigious number of dots to form
connected curves.

The Xerox Star provides a comprehensive integration of graphics within
office documents [Lipkic, Star Graphics]. The editing and formatting environment
of the Xerox Star permits similar user interaction techniques to be used across
both graphical and textual material. In particular, formatting attributes for both
textual and graphical objects are assigned through the same property sheet
mechanism. However, there is no grouping or indirection of these properties.

Consider an example of the frustration that occurs when there are graphical
attributes but no style mechanism which occurred at Xerox PARC. A Griffin
illustration of three roses was selected for use in a trade show demonstration of a
new graphics printer. The original illustration had red flower petals with green
leaves and stems. Unfortunately, the new printer could produce only three

~ shades of grey and no color. The printing software substituted the same grey

pattern for both red and green colors. The result was a rather flat picture. To
change the colors of the red petals, green stems, and green leaves to three

~distinct greys required tediously applying style attribute changes to each petal,

leaf and stem of the three roses by selecting each one individually. It would
have been much easier if the petals, leaves, and stems each referred to a named
set of graphical attributes that could be changed once to affect all references.

Grouping and sharing graphical attributes into styles is not a new idea. An
early proposal by Thomas in 1976 for specifying display parameters in graphics
programming languages [Thomas, Graphics Parameters] contains the essence of the
graphical style idea. The Graphical Kernel System [ANSI. GKS] also provides a
mechanism for grouping graphical attributes into ‘bundles’ that are assigned to
graphical objects to be rendered by a display workstation. However, these ideas
have never been integrated into document composition systems or document
style mechanisms.

3.3 The TiogaArtwork Prototype

The TiogaArtwork prototype illustration system was an experimental
implementation of graphical style. An extended document structure that



pr T,

3 GRAPHICAL STYLE 3-7

incorporates illustrations and an extended style machinery for graphical style
attributes were embedded into the existing Tioga document composition system
in the Cedar programming environment [lcitelman, Cedar]. The Cedar graphics
package [Warnock&Wyatt, CedarGraphics] provided the necessary graphics rendering
algorithms, including drawing straight lines and curves with different thicknesses,
shading areas with various colors or textures, typesetting text with graphic arts
fonts in various sizes, and rendering continuous tone images from either scanned
or synthetically computed sources.

The TiogaArtwork illustration system is integrated with the Tioga document
formatter in two ways: the document structure was extended to include both text
and illustration objects, and the style machinery was extended to incorporate
graphical formatting attributes. The resulting document structure for text and
illustration objects provides a recursive nesting of text within illustrations and
iltustrations within other illustrations. Such an integrated document structure
provides the basis for integrating illustrations into the editor, since many of the
user interaction techniques can be made similar for text and graphics, in the
fashion of the Xerox Star user interface. The style machinery extensions define

" additional graphical style attributes needed by the illustration rendering

algorithms.

These extensions to the document structure and style machinery provide the
basis for separately specifying the form (or rendering) of an illustration from the
content (or geometry) of an illustration.

3.3.1 Tioga Document Model

The document model in Tioga 1s a tree structured hierarchy of nodes, much
like NLS [Engelbart, NLS]. Textual documents are typically organized as
paragraphs within sections within chapters. Each document node has textual
content and an associated property list. The properties of a node affect the
formatting algorithms by supplying parameters or hints.



3 GRAPHICAL STYLE 3-8

(Style, WaterlooThcsis)

| ...

(FFormat, chapter)

‘ ——-{ "§3 Graphical Style” j

(Format, head)

—-[ "§3.1 Producing High Quality [llustrations” I

(Format. paragraph)

———-l "This chapter addresses the problems . . " l

(Format. paragraph)

——{ ""I'he rescarch into graphicat style . . " 7

(Format. head)

——L "§3.2 Previous Work" j

(Format. paragraph)

——-{ "Most earlier computer-based . . . " I

(Format, paragraph)

____[ "The PICTURE language . . ." l

(Format. chapter)

-—-—{ "§4 Tabular Composition”

Figure 3-2. TIHE TIOGA DOCUMENT STRUCTURE is a hicrarchical structure of text nodes. kach
node is shown as a text phrase cnclosed in a hox. The hierarchical structure is shown by lines
connecting hoxes: lines down indicate sibling relationships (several section headings within a
chapter); lines to the right indicate children (chapters contain section headings that in turn
contain paragraphs). Each node has a property list shown in parentheses on top of the node box.
The root of the structure has a property, (Style. WaterlooThesis), that defines the style dictionary
appropriate for formatting PhD dissertations. Formatting style rule properties on cach text node
identify a group of formatting attributes.




3 GRAPHICAL STYLE 39

Two standard properties for Tioga nodes are Style and Format.
(Property names and values are distinguished by a special typeface in this
chapter). The Style property identifies a dictionary that binds style rule
names to formatting attributes. There may be any number of style dictionaries,
corresponding to kinds of formatted documents such as Cedar for program
source code files, or BlueAndWhite for Xerox PARC Technical Reports
(which happen to have blue and white covers). The Format property
identifies a style rule in the current style dictionary. The style rule name for a
particular node is usually chosen to relate to some semantic notion in the
document, such as paragraph, head, or item.

Formatting attributes in the Tioga style machinery are defined by formatting
algorithms which register an attribute name and a default value. Style rules are
sets of interpreted instructions that assign values to the formatting attributes.

For instance, the paragraph style rule sets the type size for normal text, the
head rule increases the type size and sets the font bold, and the i tem rule
increases the left indent.

The hierarchical path from the root to the node forms a search path for
locating attribute-value bindings similar to programming language scoping. A
Style property establishes the identified dictionary as a current scope for all
nodes in the subtree spanned by that node. Attributes are assigned their values
by walking the search path and executing each style rule in turn. A formatting
style rule is found by searching for the style rule in the set of nested scopes. An
extensive caching mechanism in the Tioga style machinery makes this traversal
efficient. The existing Tioga style mechanism deals with about 50 text
formatting attributes.

These format properties are analogous to declarative tags in Janus or Etude,
and the formatting attributes they describe are similar to properties in the Xerox
Star. However, unlike NLS and Tioga, those other document composition
systems lack an explicit structured document model.

3.3.2 Artwork Class Nodes

To extend the Tioga document model to incorporate illustrations, a new
node property, ArtworkClass, was defined to distinguish the illustration
node content from plain text. The ArtworkClass property is interpreted by
the document formatter which treats the node content as the specification of an
illustration.



3 GRAPHICAL STYLE 3-10

During development of the prototype, the Tioga editor was not modified
and thus did not recognize the new ArtworkClass property. The content
of these artwork nodes was a textual representation of illustrations. Therefore,
the Tioga editor displayed them as text and could not present the images in a
WYSIWYG fashion. Future implementation outlined in Chapter 6 will involve
modifying the editor to provide a general mechanism for WYSIWYG editing
classes of nontextual nodes, including illustrations.

We next define the representation within an ArtworkClass illustration.
[llustrations have a natural hierarchy for positioning subpictures relative to other
pictures as recognized in the earliest computer graphics systems [Sutherland,
Sketchpad). This hierarchy is mapped directly onto the Tioga document model,
one subtree for each subpicture. The positioning in the hierarchy is
accomplished by providing a stack of transformations and activating a new
positioning transformation at each branch in the tree. These are the standard
graphical transformations of translation, scaling, and rotation. The illustration
content is formed from the set of graphical primitives: lines, curves, areas,

‘scanned raster images, and text. Each of these is defined as a distinct class,

described below.

The class mechanism permits recursive inclusion of content. Thus a text
document may contain an illustration, and that illustration may in turn contain a
text label. Furthermore, illustrations may contain any future class of object, such
as mathematical equations or tables.

The artwork class of nodes is formatted using an object-oriented design.
Each artwork node is represented by an object with two associated procedures,
one for layout and one for rendering. The layout procedure is given the
document subtree rooted at the current document node and returns the
bounding box dimensions of the formatted artwork object. The dimensions of
the box may be specified as glue [Knuth, The TgXbook], with appropriate stretch
and shrink, so that the object can be included in the existing page layout
algorithms just as a normal box, but with a special rendering procedure. The
rendering procedure is given the subtree and the dimensions determined by the
layout procedure. [t produces an instance of the object at that size on the
formatted output stream, normally a printable document file.

The TiogaArtwork prototype implementation defines several artwork classes.
A registry mechanism permits extensions to be added by supplying the necessary
layout and rendering procedures for each additional class. Objects of the first
artwork class, ArtworkNode, serve as the roots of subpicture trees in the
document structure and normally contain the transformations for positioning the



3 GRAPHICAL STYLE

(Style, BeachThesisArtwork)

(ArntworkClass, ArtworkNode)

set figure transformation

(ArntworkClass, ArtworkNode)

——1£ct axis transformation

]

(ArtworkClass, ArtworkPath), (StyleRule, axis)

draw y -axis

-

(ArtworkClass, Artwork Node)

——[ sct axis transformation

(AntworkClass, ArtworkPath). (StyleRule, axis)

-—{ draw x-axis

(ArtworkClass, ArtworkNode)

_——'{ set curve transformation

],‘

(AnworkClass. ArtworkPath). (StyleRule, curve)

—'l draw curve

|

(ArtworkClass. ArtworkNode)

—[ set area transformation

|

(ArtworkClass, ArtworkPath), (StyleRule, lightArea)

—'{ draw arca

|

(ArtworkClass, Artwork Node)

—-{ set label transformation

]

(ArtworkClass. Artwork Node)

{StyteRule. yAxislabel)

-—-{ set label transformation

l

(ArtworkClass. Artwork Node)

(StyleRule, xAxislabel)

———{ sct label transformation I

i

(StyleRule, caption)

Figure 3-3. HIERARCHICAL ILLUSTRATION STRUCTURE of Figure 3-1. The ArtworkClass property
identifics a graphical object and a description is shown as the content. Note the inclusion of text

nodes, without an ArtworkClass property, for the caption labels.




3 GRAPHICAL STYLE 3-12

subpicture. An ArtworkPath class node contains the geometric definition of
a path for a line or curve object, described in detail below. An
ArtworkImage class node defines a continuous-tone scanned image. In the
prototype implementation of the image class the node content is the filename of
the scanned image, although a future extension would be to include the scanned
image data directly in the node. An ArtworkFileName class node contains
the name of another TiogaArtwork illustration file and thus serves as an
inclusion mechanism for large or shared illustrations. The prototype provided no
additional naming capability for sharing subpictures, although such a facility
could be added.

3.3.3 Geometric Representation of Illustrations

The internal geometric representation of illustrations in the TiogaArtwork
prototype is based on a text description in an interpretive graphics language in
Cedar [—, JaM]. The language is stack-oriented with postfix operators for
arithmetic, logical, and graphical operations. Geometrical objects are defined by
a path that determines the trajectory followed by a line or a curve, or the
boundary of an area filled with color or texture. All of the rendering parameters
for the geometric objects in an illustration are defined by the style rules
described in the next section. Figure 3-4 contains the plain geometry of the
trapezoidal rule illustration. The textual representation of this illustration is
shown later in Figure 3-5.

Transformations in an illustration can be composed of translation, scaling
and rotation elements appropriate for standard graphics packages. The
hierarchical structure for the illustration is traversed using a standard tree-walk.
At each branch in the tree, the current transformation is stacked and the new
transformation concatenated. These operators are used to specify the positioning
transformations:

x y .translate — translate the origin to <x,y>
sx sy .scale — scale by the factors sx in x and sy iny
r .rotate — rotate clockwise by r degrees

The paths that define stroke trajectories or areas are composed of straight
lines and Bézier parametric cubic curves. The graphics package provides the
notion of a current point that is set at the beginning of the path and updated as
line segments and curves are added to the path. As a trajectory, the path
specifies the centerline of strokes. As a filled area, the path specifies the
boundary of the area. Note that no rendering specifications are necessary in the



3 GRAPHICAL STYLE, 3-13

y
f(x)
a (a+b)/2 b X
Trapezoidal Rule for n=1 and n=2.
Figure 3-4. SKETCH OF THE ILLUSTRATION for Figure 3-1 represents the basic geometry of the

picture. The same TiogaArtwork representation was used for this illustration as for Figure 3-1,
however all of the rendering attributes have been reduced to drawing only thin lines and using a

typewriter-like typeface.

geometrical specification, because they are available through the style machinery.
These operators are used to define geometrical paths for each synthetic graphical
object:
x y .moveto — establish the current path position <cx,cy> as <x,y>
with respect to the current transformation

xy .lineto — extend the path with a straight line from the current
path position <cx,cy> to <x,y>, and update the current path
position <cx,cy> to be <x,y>

x1 y1 x2 y2 x3 y3 .curveto — extend the path with a curve which
has the four Bézier control points <cx,cy>, <x1,y1>, <x2,y2>,
and <x3.,y3>, and update the current path position <cx,cy> to be

<{x3,y3>



3 GRAPHICAL STYLE 3-14

% TiogaArtwork figure for Trapezoid Rule
% Cluster 1
0 0 .translate 1 1 .scale O .rotate

% y-axis

11 31 .translate 1 1 .scale O .rotate
1 1 .moveto 1 185 .lineto

% x-axis

3 39 .translate 1 1 .scale O .rotate
1 1 .moveto 249 1 .lineto

% curve

27 87 .translate 1 1 .scale 0O .rotate
1 1 .moveto
8 17 15 33 25 49 .curveto
43 78 71 106 105 113 .curveto
131 118 161 110 185 97 .curveto
194 92 201 87 209 81 .curveto

% area from a to (a+b)/2

51 39 .translate 1 1 .scale O .rotate
11 .moveto 1 97 .lineto
81 161 .lineto 81 1 .lineto
1 1.1ineto

% area from (a+b)/2 to

% y-axis label

8 216 .translate 1 1 .scale O .rotate
r y

% x-axis label

247 36 .translate 1 1 .scale 0 .rotate

X

Figure 3-5. GEOMETRIC REPRESENTATION of Figure 3-1 in a textual form consists of
transformations and path definitions. The Trapezoidal Rule illustration was first drawn with the
Griffin illustrator and then automatically converted into a TiogaArtwork representation. The
node structure corresponds to Griffin clusters and the node properties correspond to groups of
Griffin style attributes. Here, the indentation indicates the node structure. The style properties
are not shown. Comments, which begin with percent signs, were added for exposition purposes
only by manually editing the text.




3 GRAPHICAL STYLE 3-15

3.3.4 Graphical Style Attributes

Extending the style machinery for the TiogaArtwork prototype required
defining additional style attributes to provide parameters for the various
graphical rendering algorithms. Some of these attributes specify straightforward
parameters, such as line thickness or area color. Other attributes specify how the
geometry of the illustration should be treated, for instance, whether the path
defines an outline or an area or both. Secondary attributes are necessary to
describe how outlines are to be drawn. For instance, a pen metaphor, similar to
the one in METAFONT [Knuth, METAFONT], 1s used to draw lines that provides
different shapes of pens specified by various parameters. The following
attributes are provided in the TiogaArtwork prototype for simple line drawings.
Some values are keywords and others are numeric. Later in this chapter, Figure
3-7 contains several examples of graphical style rules.

pathType — the choice of path treatment as an area or outline or both:
filled, outlined, filled+outlined

lineWeight — the line thickness (a measurement)

penType — the choice of pen shape: round, square,
rectangular, elliptical, 1talic

penHeight — the pen height as a proportion [0..1] of 1ineWeight
penWidth — the pen width as a proportion [0..1] of 1ineWeight

penAngle — the rotation of the pen, in degrees clockwise from
horizontal

areaColor — the color of filled areas as hue, saturation, brightness
values in the range [0..1]

outlineColor — the color of outlines as hue, saturation, brightness
values in the range [0..1]

Additional attributes define how textual captions and labels should be
handled within illustrations. Several attributes come directly from the existing
Tioga style attributes, while others were added to distinguish among the variety
of caption alignments:

family — the name of a type family, such as "Helvetica” or "Times
Roman”

size — the type size (a measurement)



3 GRAPHICAL STYLE 3-16

face — the choice of type style: regular, italic, bold, and
bold+italic

captionFormat — the choice of text justification format:
flushLeft, flushRight, centered, or justified

captionAlign — the choice of the text alignment point: flushTop,
centered, baseline, or flushBottom

lineLength — the length of caption lines (from Tioga)
leftIndent — the left indent for captions (from Tioga)
rightIndent — the right indent for captions (from Tioga)
leading — the spacing between lines of text (from Tioga)

textRotation — the rotation of the text line, in degrees clockwise
from horizontal

textColor — the color of caption text: hue, saturation, brightness values
in the range [0..1]

3.3.5 TiogaArtwork Rendering Algorithms

Recall that artwork class objects have two procedures, one for layout and
one for rendering the illustration. The layout procedure returns the bounding
box for the illustration, and the rendering procedure creates an image either on a
display screen or in a printable file.

In fact, both these object procedures depend on the rendering algorithm.
The bounding box information for layout is collected by rendering the
illustration through a special imaging device that computes the bounding box of
all the graphical objects it sees. The document formatting algorithm accepts the
~ illustration as a box with those dimensions and positions the illustration box
within a page. With the position determined, the formatter invokes the object
rendering procedure to create the viewable illustration.

The rendering technique is to walk the illustration subtree in prefix
tree-order, and for each child of the subtree root representing a subpicture, stack
the current transformation, render the subpicture and pop the transformation
stack. The subpicture node class determines the layout and rendering procedures
to use for an object of that class.



3 GRAPHICAL STYLE 317

Algorithm A (Render Artwork)

Al [Traverse the illustration subtree] Given the root of the illustration
subtree, walk the tree. For each child node of the root:

All [Stack Current Transformation] Request the graphics package
to remember the current transformation on its stack.

Al2 [Invoke Node Render Procedure] Select the object rendering
procedure depending on the class of object found. Common
classes are listed here for convenience.

A12.1  [ArtworkNode] Concatenate the transformation and
invoke Algorithm A on this node as the root of a
subpicture.

A122  [ArtworkPath] Render the path according to the graphical
style attributes using the geometry defined by this node as
needed.

A123  [Artworklmage] Render the raster image stored in the file
named in the node contents.

A124  [Text] Format the text caption using the text class layout
procedure and graphical style attributes to position the
caption.

Al3 [Pop Transformation] Pop the transformation stack in the
graphics package to return to the transformation of the parent
node.

The path rendering algorithm uses the graphical style attributes to determine
how to use the geometrical path information. Given the separate specification of
geometry from style in a TiogaArtwork illustration, one can make multiple uses
of the geometry to create special effects. Multiple use has already been
discussed for areas that are both outlined and filled where the path serves once
as the boundary of the filled area and a second time as the centerline of the
outline. Other special effects, such as shadows, arrow designs, and border
patterns, were considered for the prototype. Only shadows were implemented in
TiogaArtwork, although techniques for rendering arrow and border designs along
path geometries were discussed in the Graphical Style paper [Beach&Stone.
Graphical Style].

Two types of shadows were implemented to simulate apparent depth: a drop
shadow, where the object is drawn with a slanted shadow, and an offset shadow,



3 GRAPHICAL STYLE 3-18

where the object is drawn repositioned slightly from the original and in a
different color. A similar scheme was used for highlighting text in an interactive
paint program previously developed by the author of this thesis [Beach, Paint].
The shadow style attributes defined were the following:

shadowType — the choice of shadow effect: drop or offset

shadowAngle — the angle of the shadow from the object, in degrees
clockwise from the horizontal

shadowDirection — the direction of the shadow from the object:
upLeft, upRight, downLeft, downRight

shadowPathType - the choice of offset shadow treatment: filled,
outlined, filled+outlined

shadowOffsetAmount — the distance that the offset shadow is placed
at shadowAngle

shadowWeight — the thickness of the drop shadow or the outline of
the offset shadow

shadowAreaColor — the color of the drop shadow or offset shadow
area

shadowOutlineColor — the color of the offset shadow outline

3.4 Results

To experiment with the graphical style prototype, line drawing illustrations
were created with the Griffin illustrator and converted into the TiogaArtwork
document structure. The conversion program understands the Griffin file format
and extracts the geometric definition of objects from the files. Griffin
illustrations can be built with clusters of graphical objects and the clusters are
preserved as a subpicture tree in the hierarchical TiogaArtwork document
structure. The coordinate origin for each cluster is set to the lower left corner of
its bounding box and an appropriate transformation is inserted into the root of
the subpicture tree. Griffin style attributes for each object are collected into
TiogaArtwork style rules and a style dictionary is built automatically for each
illustration. Generic names for the style rules and style dictionary are
synthesized by the conversion program. These names can be edited by hand to
reflect more meaningful names, and the styles for several illustrations collected
into a single style dictionary. This process simulates the operation of an



3 GRAPHICAL STYLE, 3-19

interactive WYSIWYG-style user interface for an illustrator program (one that was
not built as part of the prototype experiment). The trapezoidal rule figures in
this chapter, Figure 3-1, Figure 3-4, and Figure 3-6 were all created this way.

Existing scanned images, new images scanned using services on the network
or raster images computed by image synthesis algorithms may also be included
as illustrations. TiogaArtwork nodes referencing image files or illustration files
were inserted into test documents ‘by hand’ for the prototype using the Tioga
editor.

£}

The class mechanism for artwork 1llustrations proved to be a very successful
extension strategy for Tioga documents. Several additional ArtworkClass
properties have been implemented through this mechanism, including tables
discussed in Chapter 3.

The TiogaArtwork scheme was successful in creating pictures more complex
than previous interactive illustrators at PARC. In particular, the concept of
transformations and named subpicture elements stored in a hierarchical fashion
was not available in the Griffin illustrator. The inclusion of simple text is
supported by Griffin, but the general formatting capabilities of Tioga are only
accessible through the TiogaArtwork scheme. The combination of synthetic line
drawings with images and formatted text within a document was not available,
except through a ‘paste-up’ program for combining printer format files.

The TiogaArtwork prototype was successful in separating the graphical
attributes from the illustration rendering algorithms. The graphical style concept
thus provided the enforcement mechanism to ensure that a set of illustrations in
a document have a consistent appearance. Reusing the same illustration for
different media was also made possible by changing the graphical attributes in
alternate versions of the style rules. Figure 3-6 contains the same trapezoidal
rule illustration as Figure 3-1, but with a style suitable for a 35 mm color slide
presentation. Figure 3-7 contains the two sets of style rules for the typeset
illustration, Figure 3-1, and the 35 mm slide illustration, Figure 3-6.

Unfortunately, the style concept is not sufficient to capture all the notions of
changing illustrations across media. Unless the illustration and its style attributes
are carefully designed, such as carefully choosing the text alignment and anchor
points, unfortunate results may occur when changing the style without changing
the content. When an illustration is prepared as a projected slide there is less
room for detail. Suppressing detail is a change supported by some graphic
systems, such as in Crow’s scene assembler [Crow. Image Environment] , which the
prototype graphical style system does not accommodate. Text size is a style



3 GRAPHICAL STYLE 3-20

a (a+b)/2 b
Trapezoidal Rule forn=1 and n=2.

Figure 3-6. TRAPEZOIDAL RULE SLIDE uses the sume picture file as Figure 3-1, but with a style

“appropriate for a projected 35 mm color slide. The image has the ‘preferred’ format with light

detail on a dark hackground, thicker lines in white, a larger, bolder and simpler typeface. (Used
with permission from Reston Publishing Co.)

parameter, but transformation scaling of the graphical objects is not. For
instance, the graphical box surrounding a text phrase would not change size
when the text was made larger. Constraints would be an asset in changing the
graphical objects with respect to surrounding material. Incorporating the
constraint aspects of Nelson’s JUNO illustrator [Nelson. Juno] into the illustration
artwork rendering system might alleviate these problems. This is discussed in
Chapter 6.

Manipulating styles in the TiogaArtwork prototype stresses the tools
available in Tioga. More interactive tools, such as property sheets from the
Xerox Star, would be a boon to selecting attributes and naming format rules.
New style tools should list the set of style dictionaries available, list the
formatting style rules in a selected dictionary, and list the values of formatting
attributes defined in a selected style rule. Style rules could then be defined to
be the ‘same as but different’ from other style rules by naming one style rule
and setting specific attribute values to be different. Layout parameters might be
more easily specified through an interactive design tool for styles.

The goal of the graphical style research was to provide a new tool for the
graphic artist to be more effective when mixing illustrations within electronic



1'YLE 3-21

# TrapezoidBook.Style
BeginStyle

(BasicGraphics) AttachStyle
(BasicText) AttachStyle

(axis) "x,y axes"
black outlineColor
outlined pathType
1 pt lineWeight

StyleRule

(darkArea) "dark areas"
grey areaColor
filled pathType

StyleRule

(lightArea) "light areas"”
lightGrey areaColor
filled pathType

StyleRule

{curve) "function line"
) black outlineColor
outlined pathType
2 pt lineWeight
StyleRule

(caption) "text caption”
"TimesRoman" family
8 bp size
italic face
flushLeft captionFormat
flushTop captionAlign
0 leftIndent
black textColor
StyleRule

(xAxisLabel) "text label"”
caption
center captionFormat
StyleRule

(yAxisLabel) "text label"
caption
flushRight captionFormat
StyleRule

EndStyle

% TrapezoidSlide.Style
BeginStyle

(BasicGraphics) AttachStyle
(BasicText) AttachStyle

(axis) "x,y axes"
white outlineColor
outlined pathType
2 pt lineWeight
StyleRule

(darkArea) "dark areas"
orange areaColor
filled pathType
StyleRule

(lightArea) "light areas"
lightYellow areaColor
filled pathType

tyleRule

{curve) "function line"
white outlineColor
outlined pathType
4 pt lineWeight
StyleRule

(caption) "text caption"
"Helvetica" family
12 bp size
bold face
flushLeft captionFormat
flushTop captionAlign
0 leftIndent
white textColor
StyleRule

(xAxisLabel) "text label"”
caption
center captionFormat
white textColor

(yAxisLabel) "text label"
caption
flushRight captionformat
white textColor

EndStyle

Figure 3-7. GRAPHICAL STYLE SHEETS for the two T'rapezoidal Rule illustrations in Figure 3-1
and Figure 3-6 demonstrate the style language and the graphical style attributes. The style on the
left produces a typeset hook quality illustration and the style on the right produces a colored 35
mm slide form. Note that the styles differ in the choice of line weights, color selections, and
typography parameters, and that the caption rules depend on a common definition with different
alignment. The style rules are named for the ohvious parts of a4 mathematical graph.




3 GRAPHICAL STYLE 3.22

documents. Just as careful document design permits a manuscript to be
published in several different forms, the careful design of illustrations and their
styles leads to the ability to reuse illustrations for several purposes and to control
the production of high-quality illustrations more efficiently.

- "MM’WAMM“ZMMW N




4
Tabular Composition

4.1 What is a table?

- The previous chapter concentrated on illustrations and provided a style
mechanism for the graphical information within documents. We now turn our
attention to the problem of laying out the arrangement of information in two
dimensions. Table formatting presents a concentrated form of this problem. It
has a strong two-dimensional nature because tables are composed of entries
arranged into rows and columns.

This chapter defines a general notion of a ‘table’ and surveys early work in
typesetting tables. It then describes the typography of tables and tabular
composition. The final section reviews the capabilities for typesetting tables in
existing electronic document composition systems. A good summary of tabular
formatting in the graphic arts is contained in Phillip’s article “Tabular
Composition™ published in The Seybold Report [Phillips, Tabular Composition].

A table is an orderly arrangement of information. Tables are defined to be
‘rectangular arrays exhibiting one or more characteristics of designated entities or
categories’ [—, Dictionary]. Tables may be less structured than this, simply serving
to present a list of entries. However in most cases, tables have some structure
that is relevant to the presentation of information. We will take a fairly general
view of tables, encompassing a broad range of layout possibilities.

Within this view, the layout of mathematical notation might be considered a
small instance of table formatting and page layout might be considered a large

4-1



b T TR I AT

4 TABULAR COMPOSITION 4.2

instance of table formatting. These comparisons will be elaborated in Chapter 6,
where we will argue that the table formatting framework presented in Chapter 5
can be extended to deal with both of these other layout problems.

The succinctness of a table aids in revealing and understanding complex
relationships within the information.

“Tables offer a useful means of presenting large amounts of detailed
information in small space. A simple table can give information that would
require several paragraphs to present textually and can do so with greater
clarity. Tabular presentation is often not simply the best but the only way
that large quantities of individual, similar facts can be arranged. Whenever
[the] bulk of information to be conveyed threatens to bog down a textual
presentation, an author should give serious consideration to use of a table.”
[--. The Chicago Manual of Style, 1982, p 321]

Designing table typography is a hard problem. There are many formatting
details to get right and there is only a small amount of space with which to
work. The two-dimensional nature of tables requires alignment in both

- directions at the same time. It is very important to maintain control over

placement because the organization of information in tables is part of the
message. Juxtaposition and other spatial relationships within tables have an
important impact on the way in which tables convey information.

“The principles of table making involve matters of taste, convention,
typography, aesthetics, and honesty, in addition to the principles of
quantification.” [Davis, Tabular Presentation, p 497]

There seem to be great opportunities for applying electronic techniques to
typesetting tables of information:

“Tabular setting has proved both the easiest and the most difficult form of
composition to bring under computer control. Because tabular setting is
mainly for numeric data, it might seem strange that there should be any
difficulty in providing computer-generated [typeset] tables.” [Phillips, Handbook,
p 189]

However, tables in technical documents contain a wider variety of

information than the traditional mathematical tables of roots, logarithms, and
trigonometric functions.

“While many tables of physical and scientific data are being compiled by

computer, there is still a requirement to include these data in technical
publications because they are considered of interest to the reader who may



4 TABULAR COMPOSITION 4-3

not have access to the generating algorithms even if he is a computer user.
The publication of such data in printed form may also be considered necessary
to establish the status of the author! It would appear that the need for tabular
composition in general bookwork will continue for some time.” [Phillips, Tabular

Composition]

The sources and purposes of tables in documents span a broad range of
information. Some examples include computed data from mathematical
algorithms, statistical data from scientific experiments, financial data and
spreadsheets, taxonomies of observed data, extracts from databases of
information, or just about anything else an author might wish to convey to a

reader.

4.2 Early Table Formatting Systems

As mentioned in Chapter 2, several early composition systems could produce
typeset tables. Computers were heavily involved in numeric computations at
- that time. Publishing tables of numeric results by traditional methods required
the error-prone transcription of line printer or punched card data by keyboard
operators of typesetting devices. Because photomechanical typesetting devices
used electronic input data that were compatible with computer systems (mainly
punched paper tape and occasionally magnetic tape), it was natural to conceive
of a computer program that would convert the numeric data directly to the
formatting commands suitable for driving the typesetting devices. These
commands could then be passed directly between the computer system and the
phototypesetter.

Several reviewers [Barnett, Computer Typesetting] [Stevens, NBS99] [Phillips,
Handbook] have reported that the earliest book of computer typeset tables was the
monograph produced at the National Bureau of Standards by Corliss and
Bozman in 1962 [Corliss&Bozman, NBS5s3]. Those tables of numeric calculations
were formatted by a special program running on an IBM 7090 computer and
were output onto tape for a Linofilm phototypesetter. The tables included
column heads in bold type centered over numeric data aligned on decimal
points. Reportedly, this monograph contained only a single tabular format
throughout [Stevens, NBS99, p 6].

Another pioneering effort in typesetting tables was TABPRINT [Barnett,
Computer Typesctting] developed by Barnett at MIT in the early 1960’s. TABPRINT
ran on an [BM 7090 computer and prepared tapes for a Photon 560



4 TABULAR COMPOSITION 4-4

phototypesetter. The tabular data was input in a fixed format typical of numeric
computations in that era. Typographic specifications for each table preceded the
set of data records and provided rudimentary style capabilities. Several
typographic refinements to the program were proposed as future developments,
including such features as folding long column heads over narrow data fields,
introducing blank lines every 5 or 10 lines, and grouping digits of long numeric
values for readability.

These programs for formatting tables of numeric data were relatively simple.
“The significance of this early work in tabular composition is that all the
typographic parameters were defined by program.” [Phillips, Handbook, p 195]
However, tables of numeric data constitute only one aspect of table formatting
problems:

“But there are really two very different categories of tabular composition: One
comprises a book of similar tables in which the values shown can be calculated
by program algorithms from the minimum of data input, and the other consists
of the tables appearing in technical texts. In the first case the style is similar
for many consecutive pages, but in the second case each table, and there are
sometimes several tables on the same page, has different column widths,
different numbers of columns, and also ranges the entries differently, both
vertically and horizontally; in addition, each table may have different complex
box headings.” [Phillips, Handbook, p 189]

To format the more general table designs required in technical publications,
we need effective interactive design tools that can handle a wide range of
typographic requirements. Interactive tools seem preferable because many table
designs are unique. The variety of table designs limits the amortization period
for the time invested in programming a table formatter with sufficient
specifications to accomplish each arrangement. Phillips expected interactive table
composition programs to be necessary because of the typographic complexity of
tables:

“These complications will tend to keep interactive terminals employed for
page make-up and with soft-copy proofS on page view terminals.” [Phillips,
Tabular Composition, pg. 23-11]

The next section investigates these complications and the typographic
requirements for formatting aesthetic tables.



e

4 TABULAR COMPOSITION 4.5

4.3 Typographic Requirements for Tables
4.3.1 Tables are Two-Dimensional

Tables have a two-dimensional structure because of the organization of the
table into rows and columns. These row and column structures intersect to
identify the characteristics of the table entry at the intersection. The layout of a
table must simultaneously align table entries horizontally in a row and vertically
in a column. The table width is determined by accumulating the widths of each
column. In turn, column widths are determined by the widths of the entries in
the column. Similarly, the table and row depth are determined by the depths of
the entries in each row. The arrangement of table entries can be expressed
separately from the actual widths of rows and columns. This separation of the
topology (ordering) of entries from the geometry (positioning) of entries will be
exploited in Chapter 5.

The two-dimensional nature of tables differentiates table formatting from
simpler text formatting. Tables deal with areas and graphical relationships, both

- of which have two degrees of freedom. Lines and paragraphs of text have only

one degree of freedom (where to break the line), although even then a complex
algorithm may be necessary to produce aesthetic line breaks [Knuth, Line Breaking].

The conventional two-dimensional structure of tables is illustrated in Figure
4-1. The rows and columns intersect to form the table entries in the pane/
which 1s the main body of the table. The area with row identifications at the
left of the panel is called the stub. The column headings in the area along the
top of the panel are called the box head because when a table is fully outlined
the column heads are completely boxed. Some headings group several columns
together and are referred to as spanning heads or spanning subheads,
depending on the depth at which they occur in the box head. Spanning row
headings for several rows are also possible.

As an example, the box head in the table of Figure 4-1 has completely
determined the width of each column because the headings themselves are wider
than the information in the columns. In other tables, the table entries may be
wider than the headings above them, and they would then determine the column
widths.



4 TABULAR COMPOSITION 4-6

Figure 4-1. THE TWO-DIMENSIONAL STRUCTURE OF A TABLE includes the arrangement of its
entries into rows and columns. Here the parts of a table have been shaded for casy identification.
The light grey area is the box head that contains all of the column headings. The dark grey
area is the stub that contains all of the row identifications. The remaining white area is the
panel containing the actual table entries.

Various graphic embellishments to the basic row and column structures help
convey the table information. Dividing lines called rules help separate dissimilar
parts of the table. The box head and stub in Figure 4-1 are completely
outlined; all possible horizontal and vertical rules are present in the headings.
Some table designers prefer only horizontal rules (see below for more discussion
of table rules).

The word ‘rules” will appear frequently in this and the next chapter, in
relation to the typographic lines (rulings) drawn in a table to separate rows or
columns. This use of the word is traditional in the graphic arts. However, it
may be confused with the notion of ‘style rules’ from the previous chapter.
Throughout this thesis, the word ‘rule’ by itself refers to a typographic line and
terms ‘style rule’ and ‘formatting rule’ refer to a way of doing things.

The content of table entries may vary considerably. Certainly textual and
numeric information are commonly organized into tables. Other types of
information often included in tables are pictures, illustrations, mathematical
equations, and even other tables.

In most table designs, the table entries are fully contained within the row
and column intersection. More general table designs permit the content of one
table entry to flow into another. Connected entries would be necessary when
folding a long table entry of text into two column entries, or when flowing a
caption around several illustration entries. This capability is necessary to extend
table formatting to full page layout requirements.



4 TABULAR COMPOSITION 4.7

4.3.2 Typographic Treatment

This section discusses the wide range of typographic details required to
format tables. Careful text placement is an obvious requirement steming directly
from the two-dimensional structure of tables. Alignment choices to guide the
placement are also needed. Formatting attributes can be applied to different
parts of the table structure. The treatment of whitespace, typographic rules, and
rows of dots between table entries are devices for guiding the eye along rows or
columns. Footnotes on table entries must be referenced and positioned
appropriately. Finally, readability concerns in table formatting are important.

Fine Resolution Placement

Compared to the line lengths in normal text, table entries are formatted to a
relatively short line length within each column. These short line lengths force
more hyphenation and line breaks in text entries. Placing several narrow
columns side-by-side requires inserting some whitespace between each column to
improve readability. Centering table entries or balancing space between entries
also requires fine control of their position. These small distances must be chosen
carefully since the human visual system perceives patterns and groupings,
whether intentional or not, and bad choices may dramatically affect the way the
table is interpreted by a reader.

Typesetting devices often provide resolutions in very small units, a common
one being 1/10 of a printer’s point (about 1/720 of an inch). Formatting a table
with the coarse positioning typical of a fixed-pitch printer or typewriter is a
much easier task. The results are normally not very aesthetic, since the fixed-size
units are quite large, but they eliminate many choices and decisions:

“Tabular material is always difficult to typeset — much more so than to compose
on the typewriter. This is true even though figures have a ‘monospaced’ value.
Letters do not, and therefore it is more difficult to align material or even to
determine what will fit in a given space . . . The monospaced typewriter —
where you can actually visualize what you are setting — is certainly the
simplest way for the novice to proceed. And it will not be an easy task for
the typesetter to imitate what the typist has done.” [Seybold. Fundamentals]

Alignment within Tables

The alignment choices within tables correspond to the_two-dimensional
nature of table layouts. Horizontal row and vertical column alignments
predominate. However, other alignments for spanned headings, equal width



4 TABULAR COMPOSITION 4.8

rows or columns, and balancing the extra whitespace between columns are
common.

Column entries are vertically aligned with each other in various ways, as
seen in Figure 4-2. (Note that one must adjust an entry horizontally in order to
align it vertically with another above or below it; such distinctions are made
carefully in the remainder of the thesis.) The three most frequent choices for
vertical alignment are flush to the left (generally for textual material), flush to
the right (generally for numeric material), or centered within the column
(generally for headings and textual material).

FlushLeft Center FlushRight Decimal.Align
XXXXXX XXXXXX XXXXXX 000000
XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX 00.000000
XXXX XXXX XXXX .000
XXXXXXXX XXXXXXXX XXXXXXXX 0000.0

Figure 4-2. VERTICAL ALIGNMENT WITHIN A COLUMN of table entries is commonly flush left,
~flush right, centered, or decimal aligned.

Numeric data with a varying number of decimal digits require another type
of vertical alignment where the data items align on the decimal point. Numeric
entries without decimal points must have one inferred, usually after the last
decimal digit. The alignment on decimal points can be generalized to alignment
on any character. For example, mathematical equations are often aligned on
their equality signs. More complex alignment possibilities arise when multiple
alignment points are needed, such as aligning the terms of polynomials in a
system of equations where each of the additive and subtractive operations
require alignment (although the unary minus sign does not):

le1 - 7)c2 = 7,
—3)6l + 6){3 = 4,
5)c1 - X + 5x3 = 6.

Just as for columns, row entries are horizontally aligned with each other in
various ways, as shown in Figure 4-3, again with three frequent choices, flush to
the top, flush to the bottom, or centered. (Again, note that an item is adjusted
vertically to accomplish horiztonal alignment.)



4 TABULAR COMPOSITION 4.9

XXX XXXXXXX X
Flush Top ity 2z
XXXXXXXX XXXXXX y
XXXX
XXX
XXXXXXX X
Center XXXXXXXX XX +yy +zz
XXXXXX y
XXXX
XXX
XXXXXXXX XXXXXXX X
- XX + +z7z
Flush Bottom XXXX XXXXXX yyy

Figure 4-3. HORIZONTAL ALIGNMENT WITHIN A ROW of table entries is commonly flush top,
centered, and flush bottom as indicated by the stub labels on each row. The entries in the second
and third columns have multiple lines of text. The last column contains entries with superscripts
and subscripts that affect the height and depth of the text entry. Alignment without regard to
baselines produces unaesthetic results, especially when centering an even and an odd number of
lines, and when aligning entries with different heights and depths. A fine point: note that the
capitalization of the stub labels affects their position when aligned.

Row entries possess an additional characteristic similar to decimal-point
alignment: the baseline on which successive characters are aligned. The
rightmost column of the table in Figure 4-3 contains entries with baselines
different from the other three columns. Without a horizontal alignment choice
for baseline alignment, table entries with different baselines will not be arranged
in a visually pleasing manner. This problem is addressed in Chapter 5.

Spanned headings are aligned within a set of columns, or set of rows if the
heading spans several rows. The set of columns spanned by the heading
determines the aggregate dimensions of the spanned heading. Should the
heading exceed this size, perhaps because it is longer than the narrow columns it
spans, then the heading may be folded to make it shorter, or the columns spaced
out to accommodate the long heading. Spanned row headings have similar
needs.

Equal widths of columns (or equal heights of rows) may be called for. In
some cases the precise size will be specified by the designer and applied to the
table. In other cases, the size can be determined automatically by the largest
entry in the set of rows or columns.



4 TABULAR COMPOSITION 4-10

Formatting Styles

Tables are often formatted with a different (but related) set of attributes to
those used for normal text. Frequently tables are typeset in the same typeface
but in a smaller point size, both to attract less attention to the table and to
include more information. These changes in formatting attributes promote the
use of a separate formatting environment or set of style rules for tables.

Further specification of formatting attributes is necessary when rows or
columns are to be distinguished. For instance, a row of totals may be the most
important aspect of the table and therefore should be set in a bolder type face,
or one column of information may be exceptional and thus be distinguished in
an italic type face. Finally, individual table entries may be distinguished with
special formatting attributes such as highlights.

Whitespace Treatment

The treatment of whitespace between table entries is more complicated than
between paragraphs of text because there are more relationships for each table
entry. The space between two columns of text is called the gutter in normal
formatting, while the space between table entries is generally referred to as the
bearoff or bearoff distance. The separation of rows or columns with
whitespace helps to establish the apparent grouping of data. The introduction of
rules into a table permits the physical separation to be reduced or eliminated
since the grouping s provided by the rule.

Some strategies for compacting large tables to fit a page (discussed later)
involve shrinking the bearoff space. The bearoff may provide a place for a
footnote reference or g/foss marker to intrude between table entries without
expanding the column width. These markers do not participate in the alignment
of table entries and therefore need not be separated with the same bearoff
distance.

Excess whitespace due to a large spanned heading requires apportioning the
space among bearoffs for the spanned rows or columns.

Rules and Decorations

The use of dividing rules within tables to separate rows or columns is a
traditional practice. Rules run along the row or column boundaries in either the
horizontal or vertical direction. In large tables with narrow columns, vertical
rules are often indispensible in maintaining order among the vast quantity of



4 TABULAR COMPOSITION 4-11

data. The preference for horizontal rules is a recent phenomenon due in part to
faddish design preference and in part to harsh economic reality. Consider the
experience of the University of Chicago Press by comparing the statements from
the 1969 and 1982 editions of The Chicago Manual of Style:

“Ruled tables, for example, are usual in the publications of this press, in part
because Monotype composition has always been readily available. For a
publisher who is restricted to Linotype, open tables or tables with horizontal
rules alone may be the only practical way tabular matter can be arranged.”
{—. A Manual of Style, 1969, p 273]

“In line with a nearly universal trend among scholarly and commercial
publishers, the University of Chicago Press has given up vertical rules as a
standard feature of tables in the books and journals that it publishes. The
handwork necessitated by including vertical rules is costly no matter what
mode of composition is used, and in the Press’s view the expense can no
longer be justified by the additional refinement it brings.” [—, The Chicago
Manual of Style, 1982, p 326]

The difficulty with inserting vertical rules stems from the mechanical
properties of photocomposition devices. With manual makeup of pages from
metal type, inserting rules involved laying down a thin metal strip. High-speed
phototypesetting devices that have only a narrow aperture across the page are
strongly biased towards the horizontal, both for typesetting text and for drawing
typographic rules. This same bias towards the horizontal is reflected in the
composition software that supports these devices. Newer typesetting devices with
more accurate positioning of laser beams can print in both orientations with
equal ease and eliminate this restriction.

There are several distinguished rules that frequently occur in tables: the
head rule above the box head, the cutoff rule below the box head, the spanner
rule below a spanning head, the foot rule below the table, and the total rule
above the total row. These rules may be of different thicknesses, with the
outermost head and foot rules generally drawn thicker than rules inside the
table.

Rules come in a variety of shapes, sizes, and patterns. Different thicknesses
or weights of rules provide appropriate emphasis. A common design is to use
medium-weight rules for the head and foot rules above and below the table, and
fine hairline rules for the cutoff rules between the column headings and the
table entries [Williamson, Book Design, p 159]. Double rules or combinations of thick



4 TABULAR COMPOSITION 4-12

and thin rules are sometimes used to provide emphasis and closure to a table.
The intersection of these patterned rules is a complicated affair.

Braces that group table entries are sometimes required within tables. The
brace is placed in the space between two rows or columns, sometimes requiring
extra space to accommodate its curly shape. Braces are frequently added by
hand from transfer lettering sheets because they are not supported by table
formatters and their positions are awkward to specify and align properly.

Ornaments, such as flowers or other interesting designs, are inserted at the
corners or along the outer border of a table. They are old fashioned and used
mainly as a decoration for the purpose of catching the reader’s attention.

Background tints were used in Figure 4-1 to highlight the different parts of
the table. Traditionally, tints would be added by hand at the page makeup or
camera stage since they involved halftone screens. Phototypesetters and laser
printers can produce screens automatically by shading the area of the table
before the content is typeset.

Leaders

Various graphic techniques, such as dot leaders, help the reader capture the
content and meaning of the table.

Leaders are the dot patterns that guide your eye from an item at one side
of a table to the related item at the other side of a table. Headings in tables of
contents are often connected with dot leaders to the page numbers on the right.
Typically, leaders are formed from dots although dashes or rules are sometimes
used. Dot leaders are positioned congruently so that successive rows of leaders
all have the dots in the same horizontal position. The harmony of the aligned
dots enhances their purpose of guiding the reader without distraction. Leaders
cross through column gutters and possibly vertical rules, although rules are
ill-advised when leaders are used.

Footnotes within Tables

Footnotes within tables pose an interesting layout problem. As in page
layout, footnotes for table entries are collected and placed at the bottom of the
table within the page area allocated to the table. This means that for the table
formatter to accommodate footnotes, it must be at least as powerful as the page
formatter. Most table formatters only handle footnotes placed manually within
the table.



4 TABULAR COMPOSITION 413

By convention, footnote references are separately marked or numbered for
each table. Typically, footnote references within tables use letters or symbols
rather than superscript numbers to avoid confusion with numeric exponents in
the data. Should footnote references be numbered, they usually are sequenced
independently from any text footnotes.

Readability Issues

Tables of numeric information have been published for many years and
there are classic methods for making tables more readable {Knott, Napier
commemorative]. For example, long columns of numbers are separated with extra
whitespace or with thin rules every 5 or 10 entries to provide ‘chunks’ that help
the human visual system scan the long columns. Background tints behind rows
of a table are another technique to improve readability in long tables. Grouping
digits in threes with commas or extra whitespace provides the same chunking for
long decimal expansions of logarithms or trigonometric functions.

4.3.3 Large Tables are Awkward

Tables tend to be awkward to handle in page composition. They must be
treated separately from the running text because they contain separate
information. However, the tables may be too wide for the page width or too
long for the remaining space on the page, or even too long for the page height.
Following are some of the problems and solutions for dealing with large tables.

Common Strategies for Large Tables

Tables are commonly formatted in a smaller type size to reduce the impact
of the table on the reader. This choice also helps fit more information in a
table. Reducing the point size to 70% or 80% of the text size reduces the
character height and width proportionately. Common sizes for text are 10-point
type on 12-point leading. Tables often use 8-point type on 9-point leading or
even 7-point on 8-point. Compressed type faces have the same height but
reduced width that permits more text in the same horizontal space. For
example, Helvetica Light Condensed is a narrow font commonly used in tables.

The bearoff distances between table entries can be reduced to eliminate
whitespace and thereby reduce the width and height of a large table.

Transposing rows into columns and vice versa [Williamson, Book Design, p 159]
may make a large table fit the page. Wide tables with many columns are
transposed into longer tables with fewer columns, and long tables with few



4 TABULAR COMPOSITION 4-14

columns are transposed into wider tables with many columns. A table and its
transpose are shown in Figure 4-4. Note that the stub heads and spanning heads
have been transposed in a nontrivial matrix transposition that preserves the
column heading relationships. One must be careful about transposing statistical
tables that might imply an incorrect cause and effect relationship [Zeisel,

Figures, p 41].

Figure 4-4. TRANSPOSING A TABLE may help make a table fit on the page. The top table is wide
with more columns than rows. The bottom table is the transpose of the top table and is narrower
with fewer columns than rows.

Long Tables

Some tables can be made shorter by folding a long column into multiple
columns. For instance, one long list of names in a single column would become
two or more lists of names. This folding trades off shorter table length with
increased table width.

Long tables that exceed the page height must be broken into smaller tables.
Breaking a table is similar to breaking lines of text at page boundaries, and
similar algorithms [Plass, Optimal Pagination] can be applied. However, broken
tables must introduce continuation headings in the second and subsequent parts
of the table. The continuation headings may be very complicated functions of
the table entries:



A s v R - T N T s,

| S

4 TABULAR COMPOSITION 4-15

“It would be asking rather a lot of a page make-up program to insert carried
forward and brought-forward totals automatically at a table break, and indeed
these were often omitted when tables were made-up by the hand compositor.”

[Phillips, Tabular Composition, p 23-11]

The continuation headings can be supplied in the table input as variants of
the regular headings. When a table is broken then these variations can be used.
Brought-forward totals could be supplied automatically when the table structure
and content is recognized within the formatting program, for example, in
financial spreadsheets. This is an instance of a particular table entry (a total)
that might compute itself on behalf of the table formatter (for the current total
of all formatted entries). An extensible table content structure, such as that
described in Chapter 5, provides a general mechanism for incorporating
self-totaling table entries and other continuation headings.

Wide Tables

A table that 1s wider than it is long may be made to fit the page by rotating

- the table and printing it broadside. A broadside table has the long dimension

of the table along the long dimension of the page, that is, rotated 90° so the
rows read up the page and the columns read from left to right. Right-hand
pages are preferred for such tables since a turned book will present the
broadside table closer to the reader [Williamson, Book Design, p 271]. Broadside
tables (or illustrations) impact page composition, because these pages are
typically designed with page numbers in a different position and without running
heads (otherwise the page numbers would appear in a different orientation to the
broadside table and detract from the readability of the facing page).

Instead of rotating the entire table to make a wide table fit the page, it may
be sufficient to rotate the text of column headings to read vertically. Especially
when the column headings are much wider than the column entries, turning the
text so that it reads upwards with successive heading lines to the right reduces
the column width. If column headings in a broadside table are turned, they
should instead have the descenders to the left, otherwise the text would appear
upside down on the page [Williamson, Book Design, p 159].

Wide tables may be formatted as a two-page spread across two facing pages.
A two-page upright table would appear with the box head spread across the
binding gutter. A two-page broadside table is possible with the rows split across
the gutter. Continuation headings may not be needed in a two-page broadside
table, but would be if the table continued onto subsequent pages.



e — s

4 TABULAR COMPOSITION 4-16

EXtremely wide tables may be printed on a foldout plate. This requires
special paper to be folded and inserted into the book at the binding stage. The
extra manual handling makes this alternative very expensive and rarely used.

Otherwise, wide tables are broken into smaller table parts with continuation
stub headings. Any spanning headings in the box head will have to be
continued across the break. Some reference columns, such as sequence numbers,
may be repeated to assist in finding information in the continued table parts.

4.4 Previous Approaches to Table Formatting
4.4.1 The Typewriter Tab Stop Model for Tables

The use of a fixed width character model for table formatting is a key
simplification available with typewriters or line printers. The fixed width of each
character on these devices permits a coarse grid with complete specification of
the character positions. Spreadsheet programs take advantage of this to provide
regularly spaced grids and simple typographic features. There are fewer
possibilities for positioning and aligning characters when using a fixed grid,
making the formatting problem much simpler. The typewriter tab stop model is
often provided in document composition systems as a rudimentary table
formatting capability.

Tab stops are based on a physical escapement mechanism in mechanical
typewriters. The carriage in old typewriters is spring-loaded and advanced to the
next character position whenever a key is pressed. The tabulator key permits the
carriage to fly to the right past several character positions until stopped by a
mechanical ‘finger.” These fingers are the tab stops. Any number of them can
be requested along the carriage. The measurement between stops is always in
units of character positions. Furthermore, the stops indicate only the left margin
of a tab column. Aligning numeric information or centering headings requires
spacing the carriage manually. Teletype devices also have tab stops, but they
standardized on 8 characters between stops to ensure that the sending and
receiving devices would place characters in the same positions. Early computer
terminals also have 8-character tabs, while later ones have settable tab stop
posItions.

Document formatters extended the typewriter tab stop model to align
numeric and centered information. Defining a tab stop requires specifying a
formatting attribute for the position of the stop and for the alignment choice.



4 TABULAR COMPOSITION 4-17

Different formatters choose to interpret the tab stop differently as determining a
position (Runoff) or a column (Scribe). The entries in Figure 4-5 are aligned at
tab stops according to the different interpretations made by the Runoff class of
formatters and by Scribe.

Runoff/troff left right center
* 1 1
Scribe left right  center
1 1 1

Figure 4-5. TAB STOPS are interpreted differently by various document composition systems. The
first row treats a tah stop as an alignment position for text; the text is aligned at the tab stop.
The second row treats a pair of tab stops (or a tab stop and the page margin) as defining a
column within which text is aligned.

Defining a column to be the space between two tab stops creates an
inconsistent notion of a column. Two short pieces of text can be positioned in
the same column if the first is left-aligned and the second right-aligned; two
longer pieces of text will be positioned in different columns. The tab stop
defining a column does not imply a boundary, only an alignment point. A long
line of text is not folded when the text extends beyond the next tab stop. Thus
editing the text entry may result in aligning it in a different column than before.

Tab stops provide only a very limited table formatting functionality with few
typographic features. They are not satisfactory for most tables, yet they are the
only table formatting capabilities offered by several document composition
systems. The tab stop model breaks down completely when table entries must
be folded from one line to the next. The next section discusses the first real
table formatter available with an electronic document composition system:.

4.4.2 tb1l Preprocessor

The tbl table formatter [Lesk, tbl] for troff is a preprocessor that accepts
a table definition and generates formatter commands to render the table. The
table definition is in two parts: the table arrangement part and the table content
part. These parts may be intermingled to keep the arrangement definition close
to the affected content. The last row definition is reused whenever more row
contents are encountered than defined in the arrangement part.

The table arrangements may include spanned headings across arbitrary
columns or rows. However, the specification of spanned column headings is



4 TABULAR COMPOSITION 4-18

asymmetric to spanned row headings. The spanned column heading is specified
in the table arrangement part while the spanned row heading is specified in the
table content part or the heading, as discussed in Chapter 2.

Folded table entries are possible with the column width stated explicitly.
Whole paragraphs or complex formatted objects may be included as a table
entry. Should the table contain objects formatted by another troff
preprocessor, the order of processing must be carefully chosen to avoid
interaction between the preprocessors.

Formatting attributes may be specified to apply to all entries in a given
column. No similar capability is provided for rows, although troff commands
may be inserted before and after rows to control some of the formatting
attributes.

Rules may be specified within the table in a stylized fashion. Thin single
and double rules may be specified; tbl computes the intersections between
single and double rules that are only a single thickness and color. There is a
shorthand specification to box all table entries. Rules are specified in an
asymmetric fashion where vertical rules are included with the table topology and
horizontal rules are included with the table content.

The position of table entries is computed by troff. tbl assigns the
width and height of table entries to troff registers and uses troff
commands to compute the position of table entries. Thus, tables are limited in
complexity by the number of available registers, which is in turn limited by the
two-character naming restriction.

Long tables with repeated rows can be formatted with tbl. Distinct
continuation headings can be supplied explicitly or the original box head can be
repeated for each table fragment on successive pages.

The tbl preprocessor has the generality to accommodate most table
arrangements. The specification of spanned row and column headings permits
general layouts. The asymmetric treatment of rows and columns often impacts
the ease of table specification. The content of tables is limited by troff
resource restrictions and by the interaction with other troff preprocessors
such as eqn and pic. Recursive content is not possible. For example, a
troff document cannot contain both a table of mathematical equations (tbl
includes eqn) and a display equation that includes a table of equation fragments
(eqn includes tb1l), since the troff preprocessors must be executed in a
sequential pipeline order.



@ ——

4 TABULAR COMPOSITION 419

443 TgX

There is no table formatting preprocessor for TEX. Equivalent functionality
is provided through extensive macros [Knuth, The TeXbook, Chapter 22]. The TgX
halign (horizontal alignment) primitive defines a template for the table layout
that specifies a separate formatting environment for each column. Successive
rows of the table then match entries in the preamble. Complications arise when
introducing horizontal and vertical rules. Sophisticated knowledge of TgX is
required to master them [Knuth, The TgXbook, Chapter 22].

The L¥TEX macro package [Lamport, L*Ti:X] provides a specification language
similar to tbl for defining tables. The table topology is defined as successive
rows of column entries with vertical rule codes. The L¥TgX scheme provides a
more robust implementation than tb1l since it is based on the TgX box and
glue abstraction, whereas tb1l simulates this abstraction with troff macros.
The difference is revealed in the success with integrating mathematical notation
in tables. [2TgX provides a more reliable and predictable table formatter
compared to tbl and egn which may fail in unexpected ways when
interactions between the two preprocessors occur.

However, the L2aTgX table formatting macros do not ensure that aesthetic
layout is easily accomplished. The L#TgX manual cautions authors of complex
tables that some final hand tuning of the space around boxes will be required to
achieve the best results [Lamport, 12TgX, p 105].

4.4.4 TABLE

None of these previous approaches provide interactive table design
capabilities. They are all batch-oriented formatters. The TABLE editor [Biggerstaff,
TABLE] is a prototype interactive graphics editor developed for editing complex
structures. The prototype editor provides an interactive front end to the tbl
formatter as part of an experiment in object-oriented programming. The objects
implemented were tables and text. Operations on objects would be determined
by the nature of the objects, such as deleting a row or column from the table.
Editors were to provide WYSIWYG feedback so that the screen image would be
identical to the printed form. Several software engineering concerns about
object-oriented programming were tested in this experiment, such as the ease of
building and modifying an editor, and the responsiveness of editing interactions.
The results favor the first two criteria but raised some concerns about the latter.

‘The TABLE prototype is a WYSIWYG editor for table structures. The table
layout is presented graphically. The layout of table objects is accomplished with



4 TABULAR COMPOSITION 4-20

the tbl preprocessor. This provides TABLE with sufficient layout generality but
with the associated performance penalty of using batch programs. The paper
recommends developing a custom post-processor for a production system
[Biggerstaff. TABLE, p 343].

The user interacts with TABLE objects through a selection mechanism. The
granularity of table selections are the entire table, a table element, or selections
within the object contained in the table element. Positioning commands allow
the user to traverse the table structure along rows or columns and from the table
to within the table element objects.

The TABLE prototype succeeded in providing a graphical interface to
complex table structures. Table designs could be generated more quickly and
more accurately with TABLE than by coding tbl commands directly. However,
TABLE inherited from tb1l the resource restrictions, the lack of object structure
characteristic of troff preprocessors, and the sluggish performance of a large
batch formatter. TABLE lacks operations suited to the logical structure of tables
through limitations in its internal table data structure and its selection
mechanism. There is no style provision in TABLE, possibly because tbl did not
“provide one to be inherited.



A New Framework for
Tabular Composition

5.1 The Interactive Table Formatting Problem

This chapter presents a new framework for formatting tables that is suitable
for use in interactive editors and formatters. The framework extends the
object-oriented approach of the document structure model in Chapter 3 by
providing for the arrangement of objects into two-dimensional tables. The
framework incorporates a wide range of typographic requirements for typesetting
tables through extensions to the document style mechanism. Table layout 1s
specified through grid designs similar to page layout grids familiar in the graphic
arts. A mathematical linear inequality constraint solver is used to determine the
final placement of table entries. A central idea in this approach is the separation
of specifying the arrangement of table entries from computing their positions.
Several interesting research problems arise from this framework. Some of those
are outlined for future work in Chapter 6.

5.1.1 What do we need to do?

To support interactive table formatting, one needs efficient algorithms for
WYSIWYG table display and for direct manipulation of both the table content
and structure by pointing at and selecting components of the table. In an
electronic document, tables can be represented by extending the idea of
separating form from content, in this case by specifying the arrangement of table

5-1



L e 4 o

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-2

entries separately from the content for each entry. Table entries can be arbitrary
document objects such as text, illustrations, mathematical notations, or other
tables. Typographic rules, decorations, and shaded backgrounds may be
specified at the boundaries between table boxes. The data structure used here
represents these boundaries explicitly, and thus supports all of these capabilities.

Abstractly, tables are two-dimensional rectangular arrangements of
information that have both a row and column structure. Manipulating table
content may require dealing with either a row or a column at different times.
Thus the interactive operations should handle both row and column structures
and should make it equally easy to select a row or a column and to perform a
movement or editing operation on any selected table part. A selection hierarchy
must permit identifying a distinguished table entry, a containing row or column
of that table entry, a succession of enclosing rows or columns around the current
selection, and ultimately the entire table. Operations on the selection hierarchy
should work equally as well for groups of rows as for groups of columns. In
particular, transposing the rows and columns of a table should be easy to
accomplish with the table structure.

Style attributes for tables should be provided in a manner analogous to the
way attributes were provided for illustrations in Chapter 3. The additional
structure in tables poses some difficulties. Style attributes may be applied at
several levels in a table. For instance, a typeface attribute might apply to the
entire table, a single row within the table, a single column, a group of spanned
rows or columns, or only to an individual table entry. A method is needed to
determine the style attributes that apply to each table entry as it is formatted.

The table layout mechanism needs to handle not only general arrangements
of rows and columns but also to specify the many alignments possible within a
table design. Spanning a column heading across several columns is a special case
of the general problem of aligning one set of entries with another set of entries.
A robust framework for table formatting must be capable of expressing those
arrangements and of determining the positions of the table boxes in such an
arrangement.

A generalization of the table formatting problem permits overlapping layers
of information. Background tints, such as the colored tints used in tables
published in recent issues of the Communications of the ACM, form one class of
overlapped information. This class of 2-1/2 dimensional overlapping can be
handled without adding another dimension to the table arrangement algorithms.



AT ;’;‘ N

IS 5 s B ey e

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-3

5.1.2 How are we going to do it?

The framework for formatting tables that is proposed here has three parts:
extensions to the document structure model, two-dimensional grid layout
specifications (topology), and a layout constraint satisfaction algorithm
(geometry).

The document structure and style machinery for tables is an extension of
the model used in Chapter 3. Each table entry is a document object. Recall
that a document object formats itself and is represented by a set of dimensions
and two procedures, one for laying out the object and one for rendering the
object. For tables, additional style attributes must be created for the new
typographic features that appear only in tables, such as rule thicknesses and
colors, alignments, and bearoff distances (the whitespace between table entries
and grid lines). The tabular style attributes for a particular table entry may be
collected into formatting style rules which are then attached as properties to the
table entries. Since a table does not have the same simple hierarchy as the
current tree-structured document model used in Tioga and extended for
illustrations in Chapter 3, a more elaborate binding algorithm is needed to
associate tabular style attributes with each entry.

The table arrangement, or fable topology, is expressed using a grid design.
The table layout, or table geometry, is computed from both the table topology
and the dimensions of the table entries. A linear inequality constraint solver is
used as a general mechanism for computing the table geometry.

Before discussing the table formatting system that has been implemented, it
is appropriate to digress and look at some general strategies for two-dimensional
layout problems. We would like to know how hard the problem of laying out
tables is before tackling the solution. The general problem will be seen to be
too difficult to solve in an interactive environment. Simplifying and restricting
these problems leads to more realistic table formatting problems that can be
handled interactively.

5.2 The Complexity of Table Formatting

Before discussing a framework for formatting tables, we examine some
theoretical aspects of the problem to gain a perspective on its complexity. The
problem of producing an optimal table layout seems intractable in its most
general setting. The problem becomes tractable when sufficient structure is



B R

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-4

added to the table arrangement. If a set of unordered table entries is to be
arranged into minimum space, the problem is NP-complete. When only an
approximation to the optimal size is needed (and the table can be formatted in
horizontal slices) the problem is O(nlogn) where n is the number of table entries.
When a total grid structure is imposed (entirely constraining the order in which
entries are arranged into rows and columns) the table formatting problem
becomes linear in the number of entries.

The general table formatting problem belongs to a class of two-dimensional
packing problems first analyzed by Baker et al. [Baker, Packings]. The next
subsection analyzes two versions of the table formatting problem that are
NP-complete. We then look at restricted forms of the general problem which
have simpler solutions. The simplest of these, GRID PACK, is then used as the
basis for table formatting by grid structures, the main topic of this chapter.

5.2.1 RANDOM PACK

One type of table that occurs in practice is a completely unstructured
collection of entries. A table containing a collection of photographs illustrating
several aspects of a topic, in which the precise order of the photographs is
unspecified, might require a formatting system to arrange the pictures to occupy
the minimal space on a page. This can be formalized as RANDOM PACK, the
problem of laying out an unordered set of rectangular table entries 7 = {#;}
with entry ¢ having height A(r;) and width w(z;), so that the resulting table is
bounded by the page width and has a minimum depth (to be more precise, the
RANDOM PACK problem asks whether the table can be laid out to fit on a page
of depth k). In laying out the table, whitespace may be left within the table
boundary where entries do not abut exactly.

THEOREM 1. RANDOM PACK is NP-complete.

Proof. The proof follows from a reduction of the PARTITION problem,
known to be NP-complete [Garey&Johnson, NP], to RANDOM PACK. Consider a
table of rectangular entries, each with widths exactly one-half the page width but
with arbitrary heights that sum to 2k. The best possible table arrangement
would be two columns of exactly the same height (in this case k). This
arrangement requires partitioning the entries into two subsets whose total height
(the sum of the heights of its entries) is k. Thus, we are given a set of entries, T
= {¢;} with heights A(¢;) such that T A(r;) = 2k, and we wish to find two
subsets of 7, S and S = T—S5, such that = A(s) = 2 h(s)) = k. This is
precisely the PARTITION problem. There, we are given a set of integers and are



5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-5

asked to partition them into two disjoint sets whose sum is the same. Given any
instance of the PARTITION problem, we construct an instance of RANDOM PACK
by specifying a set of rectangular table entries of width one-half the page and
heights equal to the integers in the set to be partitioned. The original
PARTITION problem has a solution if and only if the constructed RANDOM PACK
table entries can be laid out with equally balanced column depths. This
completes the reduction and the proof. I

[n fact, we can say more than this. Theorem 1 shows only that RANDOM
PACK (and thus the general table layout problem) is NP-complete and hence
almost certainly intractable. The PARTITION problem is known to have a
dynamic programming algorithm that is polynomial time in the size of the set if
there is a bound on the magnitude of the integers (the coefficients in the
polynomial may be exponential in this magnitude) {Garey&Johnson, NP, page 90]. In
formatting tables, the table entries are bounded by the page size, and thus the

.PARTITION problems that would be produced by the reduction in Theorem 1

would all have polynomial time algorithms. If the BIN PACKING problem is
used instead of PARTITION we can in fact show that the table formatting
problem is even more difficult than indicated by the the result of Theorem 1.
BIN PACKING [Garey&Johnson, NP} is a problem which has no polynomial time
algorithm unless P=NP, regardless of the magnitude of the numbers used in
describing the problem (it is in the class of strongly NP-complete problems).

THEOREM 2. RANDOM PACK is strongly NP-complete.

Proof. We again perform a reduction from a problem known to be difficult.
Consider a table of rectangular entries with integer widths less than the page
width but with uniform heights. The table layout algorithm must minimize the
number of rows required for the table in order to optimize space. This requires
partitioning a set of table entries 7= {r;} having widths w(¢;) into k rows Ry, R,
.... Rx. This partitioning is an instance of the BIN PACKING problem, known to
be strongly NP-complete. The proof follows that for Theorem 1. B

We realize that RANDOM PACK does not produce very interesting or
aesthetically pleasing tables. Few tables contain unordered entries (although the
example given before, a collection of related but unordered photographs, is such
a table). Even when a table is an unordered set of entries, the mix and match
jumble produced by RANDOM PACK is not typical of the row and column
structure usually employed for such tables. The juxtaposition of different sizes
and shapes for the vartous entries does not lend itself to a readable table. An
aesthetically pleasing table exhibits a design discipline for organizing the table
entries that avoids unexpected relationships due to the random positioning of



5 A NEW FRAMEWORK FOR TABULAR COMPuU>I1ION L

table entries. We are thus led from this general problem to introduce restrictions
that make the problem more realistic and also more tractable for formatting,
especially for interactive work.

5.2.2 STUB PACK

There are two approaches to dealing with the general table formatting
problem: accept an approximate solution to the optimal table layout or restrict
the table formatting problem so that efficient optimal algorithms exist.
Approximation algorithms for the TWO-DIMENSIONAL BIN PACKING problem,
and hence for the RANDOM PACK problem, are known [Coffman, 2D Packing].
These approximations use polynomial time algorithms to produce layouts within
5/4 of the optimal space [Baker, 5/4 Algorithm]. The Up-Down (UD) algorithm
presented by Baker er al. i1s known to have a bound UD(L) on the packing
height for any list L of rectangles with height at most H as follows:

UD(L) < 5/4-OPT(L) + 53/8+H,

where OPT(L) is the height of the optimal packing of the list L of rectangles (as
would be produced by RANDOM PACK).

However, the table layouts produced by these algorithms are still
unaesthetic, with a chaotic arrangement of small entries among the crevices
between larger ones, as shown in the example layout of Figure 5-1 adapted from
Figure 2 in Baker er al. [Baker, Packings].

Figure 5-1. AN APPROXIMATELY OPTIMAL LAYOUT produced by the Up-Down packing algorithm
duc to Baker et al [Baker, Packings]. 'The example is similar to Figure 2 in their paper. The light
grey, medium grey, and dark grey boxes were packed with three different strategies.




B —— o <21

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5.7

Restricting the table arrangement leads to more aesthetic table layouts and
to algorithms with polynomial running time. Introducing a row structure to the
table by placing horizontal rules between the rows is the first restriction we
consider. Once a rule is introduced into the table, it must extend all the way to
the right of the table. These rules form the stub of the table (typical of financial
tables) and hence this restricted table formatting problem will be called STUB
PACK. Figure 5-2 contains an example of a STUB PACK table layout.

Figure 5-2. A HYPOTHETICAL STUB PACK table layout with the largest elements at the bottom left
and the smaller elements packed from left to right.

STUB PACK can be formalized as a set of unordered table entries 7 = {¢;}
with height 4(¢;) and width w(¢;) that are to be placed into an arrangement
bounded by the page width and having minimum depth. Each entry in the final
layout is separated from the entry below it by a line (typographic rule) that
defines a row of the table.

A polynomial time algorithm exists to solve the STUB PACK problem within
1.7 of the optimal space [Coffman, 20 Packing, Theorem 2]. The First-Fit
Decreasing-Height (FFDH) algorithm described by Coffman er al is shown to
have a bound on the packing height of

FFDH(L) < 1.7-OPT(L) + L.

The FFDH algorithm takes a list L of rectangles with arbitrary widths ordered
by nonincreasing height and places each rectangle left-justified on the first level
in which it will fit, or if none of the levels will accommodate the rectangle, a

new level is begun. The FEDH algorithm requires O(n2) time for n rectangles



S —

e
. B co e Ty

S A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-8

in the list. A linear post-processing pass may be added to improve the aesthetics
of the table by distributing the excess whitespace within a row and around each
entry.

While STUB PACK has a polynomial time algorithm, it still does not lay out
the ordered tables normally encountered in practice. The row and column grid
structure that occurs in tables imposes an ordering of table entries specified by
the table designer, who has taken into account a number of aesthetic
considerations. Restricting tables to be ordered in advance by the designer
reduces the complexity of the table formatting problem (at the expense of
possibly requiring greater space). An algorithm which performs table layout
given the arrangement is what we need to achieve the aesthetics we desire.

5.2.3 GRID PACK

The GRID PACK problem is to lay out a given set of table entries, each with
a width and a height, where all of the entries are assigned to lie between
particular row and column grid coordinates within the table. The layout is

-entirely determined once the physical (page) coordinates of the grid lines are

known. These are determined by the width and height of the entries.
THEOREM 3: GRID PACK requires linear time.

Proof: The requirement is to determine the position of the grid lines. This
can be done by a two pass algorithm that examines all of the table entries in
turn. The first pass determines the relative width and depth of each row and
column (horizontal and vertical pairs of grid lines) by ensuring that the relative
width of the column is greater than the width of any entry in that column and
that the relative depth of the row is greater than the height of any entry in that
row. The absolute page coordinates of the row and column-grid lines are then
determined by accumulating relative widths and depths for consecutive grid
lines. The second pass over the entries determines the page coordinates of each
entry from the row and column grid coordinates. R

The GRID PACK algorithm is similar to the one used by the tbl table
formatter. Additional alignment possibilities may be incorporated into the GRID
PACK problem through suitable extensions. As stated here, it does not handle
spanned column headings or aligning table entries on decimal points. The
remainder of this chapter will discuss the practical issues of table formatting,
including a document structure and grid system for representing table layouts
and an interactive algorithm for formatting these tables.



5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-9

R
. '“‘m’”sw

5.3 Table Document Structure

The document structure outlined in Chapter 3 for including graphical
illustrations in documents is a tree-structured hierarchy of document objects.
The same object-oriented strategy can be used to extend the document structure
to represent tables by adding another class of document content objects. The
recursive document structure still pertains, and text documents may contain
tables that in turn contain text, illustrations, other tables, or any other document
object that has been defined. Unlike the pipelined structure of troff
preprocessors, this recursive structure implies no ordering or ranking among the
document object classes, and the recursion can start with any object. This
permits a general and extensible treatment of information presented within
documents, illustrations, and tables. An example of a table with varied content
is shown in Figure 5-3.

5.3.1 Table Entry Representation

For formatting purposes, a table object in the extensible document structure
can be thought of as a box and two procedures for laying out and rendering its
content. The box concept is similar to the boxes used in egn and TgX but
with additional information required for alignment of table entries. The
procedure concept is similar to the artist procedures used to render data
structures graphically [Myers, Incense] or animate graphical objects [Kahn&Hewitt,
Actors].

A table entry is abstractly represented by a box with four offsets (left, right,
up, and down) from an origin implied by the content. This origin is the starting
point for the rendering procedure that displays the content of the table entry.
Four offsets, rather than simply a width and a height, permit alignment in both
the horizontal and vertical directions simultaneously. Other schemes like egn
and TgX that represent boxes with fewer parameters provide less-functional
alignment primitives. To align the table entry with other entries an alignment
point is computed within the box depending on the typographic alignment style,
as shown in Figure 5-4.



S A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-10

Chester
Carlson
Formatted
Document orapier? *
A paragraph of text goes
here to demonstrate a thumbnail
sketch of a formatted page.
) Section Heading
G nfﬁn A paragraph of text goes
R ose here to demonstrate a thumbnail
sketch of a formatted page.
Table 0 speed X time
625 |acceleration X time
A Rose is a Rose 1023.5 force X distance

Figure 5-3. A WIDE RANGE OF CONTENT can be incorporated within tables using an
ohject-oriented document structure. This tahle includes five different kinds of content: text, a
scanned illustration, a synthetic computer generated drawing, composed pages, and another table.
The text captions in the center column are positioned flush at the top of each row and alternate
flush right and left. The picture of Chester Carlson, the inventor of xerography, was scanned
from an original photograph and is 367 scan lines by 474 pixels with each pixel containing an
8-bit grey value. The formatted document is the output of other software that produces a
compatible printer format used at Xerox PARC. The synthetic graphic image was created by
Maureen Stone with the Griffin illustrator. Both the table and the subtable were composed using
the table formatting prototype described in this chapter.




ubain sk

HEAMEIRI S SR S e

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-11

————— left B right -————’I )
onmaoant
él 11 gl LJ bottom

Origin Alignment point
Figure 5-4. A TABLE ENTRY BOX is represented by four offsets that are the left, right, up, and
down distances from an alignment point. These offsets are computed from the dimensions of the
box and the typographic alignment attributes, in this example, centered both horizontally and

vertically.

The layout procedure is given the arrangement and content of the table
entries and determines their sizes and positions. A table’s arrangement is
explicitly determined by its creator when the table entries are collected in the
document. This is analogous to the ordering of paragraphs in a document as it
is created by an author.

The rendering procedure is given the positions of the table entries, as
computed by the layout procedure, and produces the human-readable form of

- the table by recursively rendering the content of the table entries at each

position. The rendering procedure relies on a device-independent graphics
package that can produce a screen display or a file-based printer description of
the table. This device-independent capability permits WYSIWYG interaction with
table objects in their actual positions, subject to differences in device resolution.
The separation of the layout and rendering steps permits the rapid redisplay of
the table without recomputing the layout when the view of a table is moved or

scrolled.
5.3.2 Table Arrangement

The document structure extensions for tables must capture the arrangement
of the table entries as well as their content. Tables are two-dimensional, and in
this respect are similar to mathematical notation in the microscopic sense, and to
page layout in the macroscopic sense. However, tables are significantly unlike
paragraphs of text, wherein text flows from one line to the next and there are
few positioning relationships between text elements. [t is precisely the
positioning and alignment relationships between table entries that must be
included in the table document model.

One might begin with the obvious row and column structure of the table.
Many document formatting systems have chosen one of these as the dominant
structure and expressed the table arrangement in terms of it, leaving the other



R

T e B

NN o s

JRTT™ WU

S A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-12

structure implicit. For example, rows are the dominant structural element for
tables in tbl. This choice appears natural since all the column entries of a row
can be entered on the same input line, and the UNIX philosophy treats streams
of characters as the unifying data structure.

This row dominance makes column operations more difficult. Adding a
new row is simple; one adds a new input line to the source file. Adding a new
column is tedious; each input line must have a new column entry inserted in the
appropriate place, although special editors could help here. Another asymmetry
between rows and columns in tbl concerns how one specifies spanned
headings. A spanned column heading must be specified as a sequence of s
layout codes for each column spanned, whereas a spanned row heading may be
specified either by a t layout code for each row spanned or by a special
formatting code \t as the table entry content for each spanned row entry. The
treatment of rows and columns in interactive table formatting should be
symmetric to reduce the cognitive burden and to avoid errors.

A hierarchical structure suggests itself from the subdivision of rows and
columns in tables. Figure 5-5 illustrates a table with its row and column
subdivisions and the hierarchical data structure based on the columns. A
column heading that spans several entries becomes a subtree root for those
columns. Multiway branches are for spanned headings, single branches are for
table entries. A dual hierarchy would be expected for the row structure. Such a
dual hierarchical scheme was unsuccessfully attempted in a previous table
formatting prototype [Beach, CS740 project]. The implementation was complex and
the data structures were difficult to coordinate. Many of the algorithms had to
be duplicated for the row and column cases. The crucial realization was that not
all table designs can be represented as hierarchical tree structures. In particular,
the table in Figure 5-5 does not have a hierarchical row structure because
heading D has two row parents, C and G. A more general underlying structure
is required. This is the topic of the next subsection.

When they exist, the dual row and column hierarchies do provide powerful
interactive selections of parts of tables. This selection hierarchy notion is similar
to a text selection hierarchy which enables one to select a character and extend
the selection through various levels of structure from a character to a word,
sentence, paragraph, section, and ultimately the entire document. Starting from
a selected table entry, one can extend the selection to include all entries in the
containing row or column by traversing either the row or column hierarchy.
Successive extensions of the selection would include containing rows or columns
until the entire table is selected. While a hierarchical table representation was



s A D, g v i

S

P s

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-13

A Xxxxx Xxx Xxxx 0

B: Xxxx B X ([:_ ))((iix G Xax D: Xxxx @ G g @ Q

H: Xxxx | I: Xxx 1 J: Xxx {|K: Xxx {L: Xxxx
OO O

Figure 5-5. HIERARCHICAL TABLES contain rows and columns that subdivide into other rows and
columns like parent and children nodes in a tree. The column structure of the table on the left is
shown in the graph on the right. All the table entries are labelled to show the correspondence.
Note that this particular tahle does not have a row hierarchy because entry D has two row
parents, C and G.

not used in table formatting prototype, the selection hierarchy serves as a good
model for manipulating tables and was implemented for the grid representation
described next.

5.3.3 Grid Structure

A more general representation of table arrangements must simultaneously
satisfy several goals: it must exist within a hierarchical document model, it must
embed arbitrary table entry objects, and it must describe the arrangement and
positioning relationships of the table entries. The hierarchical document model
cannot be used directly because tables are not always hierarchical, for example,
the box head in Figure 5-5 is nonhierarchical. The insight applied here is that
one need provide the data structure for tables explicitly in the document model.
Instead, the table arrangement can be described indirectly in terms of a grid
coordinate system with table entries having associated grid coordinates. This
permits a table object to be represented by a collection of arbitrary table entry
objects and the table arrangement to be specified by the grid labelling. The
entries may be listed in any order since the labelling will determine the table

layout.

The proposed grid coordinate scheme expresses the table topology. This in
turn determines the arrangement of table entries between the grid lines, and thus
determines which table entries are neighbors and which entries share the same
boundaries. Grid modules between grid lines may be nonuniformly spaced to
permit both narrow and wide entries. Each table entry is surrounded by four
grid lines, one each on its left, right, top and bottom sides. A row is bounded
by two horizontal grid lines, and a column by two vertical grid lines in a
symmetric fashion. Entries in the same row will share the same pair of



£ S5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-14

horizontal grid lines, similarly for entries in the same column. A spanned
column heading will cross several grid lines and is bounded by the left grid line
of the leftmost spanned entry and by the right grid line of the rightmost spanned
entry. An arbitrarily complex arrangement of table entries can be specified by
listing the four grid lines for each table entry. Figure 5-6 contains a table with
the grid coordinate system overlaid as light grey lines.

Figure 5-6. TABLE WITH GRID COORDINATE SYSTEM in which the grid lines are overlaid in light
grey. Some table entries are contained within a single grid module while others span across
several grid modules. The two black typographic rules, one horizontal below the column headings
and one vertical after the row stub, run along the grid boundaries.

Typographic rules and decorations can be superimposed on the grid
boundaries. In this case, the grid boundary has a nonzero width equal to the
thickest rule that runs along that grid line. Note that both horizontal and
vertical rules are treated symmetrically.

The table layout geometry, that is, the actual position of each grid boundary
and each table entry, is computed from both the table topology and the
dimensions of the table entry contents. A mathematical linear inequality
constraint solver permits general alignment relationships to be expressed, such as
the equal column widths shown in Figure 5-6. The independent variables in the
inequality constraints are the positions of the grid lines and the alignment points
of table entries. An incremental constraint solver that can accept new or
changed constraints permits interactive modification of the table arrangement.

5.3.4 Graphic Arts References to Grid Systems

Similar grids have been used in the graphic arts since grid systems were first
developed by designers in Switzerland shortly after World War Il. The principle
behind a grid system is an objective attitude to the presentation of the subject
material and to the uniformity in the layout of all pages. Grids institute a
disciplined approach to design and layout, limiting the number of choices to
provide regularity and order in potentially chaotic situations.

}



5 A NEW FRAMEWORK FOR TABULAK CUMPUDI 11UIN 0 10

“The fewer the differences in the size of the illustrations, the quieter the
impression created by the design.” [Miiller-Brockman, Grid Systems, pl1]

Several graphic designers have written about grid systems in books including
Muller-Brockman’s Grid Systems in Graphic Design [Miiller-Brockman, Grid Systems],
Hurlburt’s The Grid [Hurlburt, The Grid], and Williamson's Methods of Book Design
[Williamson, Book Design]. Some computer composition systems have incorporated
grid systems. One early example was Tilbrook’s NEWSWHOLE [Tilbrook], a
prototype system for interactive newspaper page layout. Hurlburt [Hurlburt, The
Grid] describes the modular design and sense of proportion induced by a grid
design. Several proportions, such as the Golden Ratio, square, and v 2
rectangle, are commonly used as the basis for grid designs. Letter form design is
also often constructed to conform to a grid design [Goines, Constructed Alphabet].

Unlike the orthodox grid formed by uniformly spaced horizontal and
vertical lines to produce square modules, the typographic grid is more casual
with lines introduced to specify margins on the page, column measures, and
alignment guides. Common grid lines are the headline, the first line of text on a
page, the first line of a chapter title, the first line of text within a chapter, the

last text line on a page, and the footline. Figure 5-7 shows the grid design for

the pages of this thesis.

Heading Margin

Chapter Opening

Footing Margin

Qutside Margin
Two Column Gutter
Inside Margin

Figure 3-7. GRID DESIGN for the pages of this thesis illustrates the traditional use of grid
houndary lines to determine margins, column measures, gutter widths, alignment points, etc. The
grid combines both a single column format (the large grey rectangle) for text pages and a double
column format (the two dark grey rectangles) for glossary and index pages.




A e it otws

ey

5 A NEW FRAMEWORK FOR TABULAK CumruSITION o o

The interactive newspaper pagination system NEWSWHOLE [Tilbrook] is an
example of the application of grid systems for layout and formatting. The grid
lines in that system were active; they could be stretched and moved across the
page at the user’s command. There was a simple constraint satisfaction to ensure
that there were always an integral number of grids across the section of the page
and that the grids were equal width. The NEWSWHOLE prototype had only
limited text composition capabilities, and it did not attempt a WYSIWYG
presentation of the entire page (mainly due to display resolution, which will
always be a problem). The same idea can be used here to do interactive tabular
composition and is discussed in Chapter 6.

5.3.5 Style Attributes for Tables

The document style mechanism must also be extended to incorporate
additional table formatting attributes and to apply those attributes to table
entries. The additional tabular style attributes include various alignment
specifications (decimal or character alignment, top or bottom baseline alignment,
centered top or bottom baseline alignment), various rule parameters (rule

- thickness and color), and various bearoff distances (the whitespace between table

entries and the grid lines).

Applying style attributes to table entries is harder than for text or
illustrations because the attributes may come from several nonhierarchical
sources. Figure 5-8 illustrates some of the possible interactions among style
attributes applied to parts of a table. The whole table may have a general
formatting style. Rows or columns may have particular style rules for the entries
within those rows or columns. Each table entry may have additional local
formatting attributes applied that override the other specifications.

Because tables have both a row and a column structure that in turn has
nested subrows and subcolumns, there may be several row or column style rules
applicable for a given table entry. The nested containment of a table entry
within a row and/or a column can determine an appropriate search path for
applying style rules. The rendering algorithm first applies the style attributes
specified in the style rule for the entire table. [t then applies attributes for each
containing row or column that successively contains the table entry, down to the
attributes for the given table entry. When style rules do not specify values for
all the possible style attributes, values are inherited from previous style rules
along the search path. Style rules may be specified for both a row and a column
containing the given table entry, in which case it is necessary to disambiguate the
row or column preference. The solution taken here is to provide a Boolean



5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-17

B U

- —

Spanning Column Head
Stub Head Col Head
Col Head | Head
Col | Cor | Cor |0 He
Row value value |value | value value
Row value value | value {value | value
Row value value |value | value value

Figure 5-8. STYLE ATTRIBUTES for a table entry are determined by several style rules specified for
the entire table, a row, a column or an individual table entry. This table style rule specifies a
Helvetica type family. One row has a style attribute for bold face. The spanned column has a
style attribute for italic face. One of the three table entries in the intersection of the bold row
and italic column has a Times Roman type family attribute, which overrides the global
specification. 'The style attributes for a particular entry are determined by accumulating all the
style attributes according to a natural search order: table, row or column (according to a
preference choice), then table entry.

selector as a property of the table to choose between row-before-column or
column-before-row preferences.

Alignment relationships between table entries are controlled by the
alignment points of the table entry objects. These relationships are
generalizations of the mark and 1ineup alignment specifications for equations

in eqn. Formatting style attributes determine the alignment point based on the

typographic treatment of the table entry. Centered alignment places the
alignment point in the middle of the object box by dividing the sum of the
appropriate pair of dimensions by two. Flush left, right, top or bottom
alignment places the alignment point at the appropriate edge of the box.
Aligning on a character within the table entry sets the alignment point to be the
origin (which may be chosen from one of several alignment options) of that
particular character. Figure 5-9 illustrates two columns of character-aligned table
entries, the first aligned on decimal points (including the implied decimal point
at the end of a numerical string), and the second aligned on a multiplication

sign.

0 speed X time

625 |acceleration X time
1023.5 force X distance

Figure 5-9. ALIGNMENT ON A CHARACTER within a table entry may be based on specific
characters within lines of text, such as decimal points (actual or implied) in the first column, and
multiplication signs in the second column.




ot

A D AN N b1 N . -«

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-18

The positioning of odd-sized table entries requires additional information,
especially for text entries that are folded into muitiple lines or for entries with
varying heights like mathematical expressions. The top row in Figure 5-10,
which has been horizontally aligned on the center of each table entry,
demonstrates the disjointed result when baselines of folded entries do not align
across the column. Simple horizontal alignment attributes such as flush top,
flush bottom, or center do not take into consideration the internal structure of a
table entry. Additional alignment choices are needed to align on the baselines
within a text table entry, such as align on the top or bottom baseline. Text
entries with an even number of baselines have two middle baselines for
centering, thus requiring two choices to center on either the top-middle or
bottom-middle baseline. The bottom row of Figure 5-10 demonstrates the range
of alignment choices available for aligning baselines within table entries.

. . Baseline
Horizontally . Baseline .
. Baseline . Baseline
Centered, Baseline ) Baseline ]
) Baseline ] Baseline
Ignore Baseline B Baseline —
] T Baseline T Baseline
Baseline Baseline .
Baseline
Hori 1 Center
orizonta
c 4 y Bottom Center on Bottom
entered, . . . .
Baseline Baseline Baseline Baseline
Ignore
] at Top at Top of Many
Baseline
of Many

Figure 5-10. HORIZONTAL ALIGNMENT OF FOLDED TABLE ENTRIES may not produce acsthetic
results when the entry has several lines of text. All of the entries in the top row are horizontally
aligned without regard to their internal structure and the baselines do not align; all of the entries
in the bottom row have heen centered on a baseline indicated by the text of the entry.

Establishing the alignment point on baselines within a table entry implies
that the document object must understand all these alignment choices. The
simpler alignment attributes, such as flush top or bottom, could be computed
from the representation of an object and its four offsets (except for decimal or
character alignment). Some table entry objects have little similarity to text
objects, yet the alignment attributes must apply to all objects in a uniform way.
The technique used in the prototype is to extend the representation of a table



5 A NEW FRAMEWORK FOR 'TABULAR COMPOSITION 5-19

entry to include an optional list of baseline origins. Should the list be absent,
the default baseline is chosen to pass through the origin of the object.
Alignment attributes that concern themselves with content, such as decimal
alignment, are left as the responsibility of the table entry object. Some objects
may choose to ignore text alignment attributes. For example, a scanned
illustration object contains no characters, so it could safely ignore those
attributes.

Another alignment attribute deals with the excess whitespace in the wide
columns in Figure 5-11. In this example, the table entries in each column are
aligned on decimal points. The last two columns need further specification: how
should the excess whitespace induced by the very long column heading be
treated? This additional specification determines how the vertically aligned set
of column entries are positioned within the column. The choices are centered,
flush left, or flush right. Currently, the table formatting prototype does not
support this positioning specification, but a more complete implementation is
planned and described in Chapter 6. In tbl, numeric entries that are aligned
on decimal points are centered within the column after they are aligned on
decimal points; there is no control provided over the distribution of the excess
whitespace.

Short Head Very Long Column Head Over Narrow Entries
54.321 | 54.321 | 54.321 54.321 | 54.321
654.32 1654.32 [654.32 654.32 1654.32
54.321 § 54.321 | 54.321 54.321 | 54.321

Figure 5-11. SPECIFYING POSITION WITHIN A COLUMN as well as aligning table entries may be
necessary when there is excess whitespace to disperse among the row or column entries. All the
numeric table entries are aligned on decimal points. The last two columns have excess
whitespace due to the very long column head; the first sct of aligned column entries is positioned
flush right within the column and the second is flush left. Similar specifications are necessary for
rows also.

5.3.6 Text within Table Entries

Textual table entries may be more complex than just simple phrases or
numbers. Some entries may be paragraphs with long lines of text broken into
pieces short enough to fit within the column boundaries. Yet the layout
algorithm attempts to determine the width of the column boundaries from the
widest line in the broken paragraph. Thus the line-breaking algorithm depends
on the column width and the column width depends on the width of lines



A A A W 1

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-20

folded by the line-breaking algorithm. How does one exit from this circular
dependency?

In existing table formatters, such as tbl, the only technique for dealing
with this problem is to require the table designer to supply an explicit column
width attribute. In fact, this is an easy way to specify equal-width columns,
since no matter what the content of the entry, all such designated column entries
are forced to be the specified width. Unfortunately, fixing the column width
often results in an unaesthetic table. Short justified lines induce more
hyphenation and larger spaces between words, making the entries more difficult
to read. Unjustified lines are easier to read but extra whitespace accumulates at
the end of lines creating the illusion of unevenly spaced columns.

A better strategy would be for the formatter to accept the line length as
only a ‘hint’ for folding the text to approximately that length. The actual
bounding box of the composed text could be returned by the object layout
procedure or determined by a scan of the formatted object. With the bounding
box, a folded table entry can be treated uniformly as any other entry. A feature
of this strategy is that a column of folded entries is only as wide as necessary

- without excess whitespace.

The problem of determining an aesthetically pleasing column width for a
column of entries with widely varying widths or for a table that exceeds the page
measure is a very hard problem and is not solved here. Some directions for
determining optimum column widths for folded table entries and for balancing
whitespace are outlined in Chapter 6.

5.4 Implementation of the Tabular Grid Structure

We will need two table representations, one for capturing a table in an
external representation of a document and another internal data structure for
interactive manipulation. This section describes both representations used in the
prototype table formatter that has been implemented in the Cedar programming
environment.

5.4.1 External Representation of a Table in a Tioga Document

An external storage representation is normally concerned with compactness
and ease of conversion between external and internal representations. However,
because the prototype relies on the Tioga document structure, the external



————

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-21

representation of a table must be a textual description of the table. This
representation is editable by the Tioga text editor. While this is an advantage
for testing the prototype, it is expected that an interactive user interface will be
built to permit most editing actions without resorting to editing the textual
representation directly. We believe, however, that the textual description is
useful for debugging, for document interchange, and for possibly fine tuning
table structures.

A table is represented as a subtree of nodes in a Tioga document hierarchy.
The root node of the table subtree has an ArtworkClass property
(described in Chapter 3) of Table to distinguish the subtree as being a table
object (as distinct from text or illustrations). This Table property is recognized
by the table formatting prototype which interprets the contents of the subtree as
a collection of table entries. The table entries themselves may contain an object
of any document object class since the object layout and rendering procedures
understand the content of the object. This object-oriented design permits
arbitrary recursion within document content at any time.

The table representation is converted into the internal data structure
whenever a table is edited in a WYSIWYG fashion or formatted. After
manipulating the internal data Structure (perhaps changing the table topology or
the content of some table entries) the internal data structure is converted back
into a Tioga document subtree. The new subtree is spliced into the original
document to replace the previous table representation.

Only topological information is represented in the table description. Table
entries are described by the grid coordinates that they occupy. Typographic
rules are described by the grid lines along which they run. The table previously
shown as Figure 5-6 has been annotated with grid coordinate values in Figure
5-12. Horizontal and vertical grid lines are each numbered beginning at 0 and
incrementing for each successive grid line. A column or row is contained within
two grid lines (not necessarily two consecutive grid lines). Thus the column
containing the heading “Spanned over Four Columns™ is contained within
vertical grid lines 1 and 5. Two typographic rules are shown along vertical grid
line 1 and along horizontal grid line 3. The table in Figure 5-12 will be used
both to illustrate the external table representation (in Figure 5-13) and the
internal data structure (in Figure 5-15).



5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-22

Very Wlde 'Thm

XXXXXXKKK - XXX

Figure 5-12. A TABLE WITH A GRID COORDINATE SYSTEM superimposed. The table is a duplicate
of Figure 5-6 thuat will be used to illustrate the external Tioga document structure in Figure 5-13,
and the internal corner stitched data structure in Figure 5-15.

A table is described in general terms by the contents of the root node of its
table subtree. In Figure 5-13, the table is formatted on a 6 by 6 grid (for 5 rows
and 5 columns). A grid overlay 3-points thick in a light gray color (hue 0,
saturation 0, brightness 0.7) is superimposed on the table to make the grid
coordinate system visible. (This grid overlay would not appear on printed tables,
except for expository purposes, although the grid overlay serves as a useful target
for interactively manipulating the grid topology.) The direct descendants of the
table root node within the document describe the table structure and table
entries in more detail. There are four things to describe: constraints on the grid
coordinate layout, boxes containing table entries, typographic rules, and
background shaded areas.

Constraints

Constraints are linear inequalities or equalities generated automatically by
the table layout procedure. The table in Figure 5-12 has two auxiliary
constraints supplied by the table designer to force equal column widths. The
first constrains the column between grid lines 1 and 2 to have the same width as
the column between 2 and 3. The second constraint forces the column between
grid line 0 and 1 to have the same width as the column between 1 and 3 (a
column which spans two grid lines). The complete details of the constraint
mechanism are deferred until Section 5.5.



5 A NEW FRAMEWORK FOR TABULAR COMPOSITION

5-23

e i I 1 AP Kt ¥

MW&» P,

Grid 5 Rows 5 Columns GridOverlay 3 pt 0 0 0.7
Constraint 2%C2 - 1*Cl - 1*C3

0

Constraint 2*C1l - 1*CO - 1*C3 = 0
(0,1) (1,5) TopBaseline Center
Spanned over Four Columns
(1,1) (2,3) TopBaseline Center

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Box

Rule (0,1)
Rule (3,0)

Figure 5-13. A TABLE OBJECT IN THE EXTERNAL REPRESENTATION of Figure 5-6. Fach line

Equal Width

(1,3) (2,5)

TopBaseline

Unequal Width

(2,1) (3,2)
Very Wide
(2,2) (3,3)
Thin

(2,3) (3,4)
Very Wide
(2,4) (3,9)
Thin

(3,0) (4,1)
First Row
(3,1) (4,2)
XXXXXXXXX
(3,2) (4,3)
XXX

(3,3) (4,4)
AXXXXEXXAX
(3,4) (4,5)
XXX '
(4,0) (5,1)
Second Row
(4,1) (5,2)
AXXXXKXXKXXX
(4,2) (5,3)
XXX

(4,3) (5,4)
XXXXXXXKXX
(4,4) (5,5)
XXX

TopBaseline
TopBaseline
TopBaseline
TopBaselipe
TopBaseline
TopBaseline
TopBaseline
TopBaseline
TopBaseline
TopBaseline
TopBaseline
TopBaseline
TopBaseline

TopBaseline

(5,1) 1 bp
(3,9)

1l bp

Center

Center

Center

Center

Center

FlushLeft

Center

Center

Center

Center

FlushLeft

Center

Center

Center

Center

corresponds to a document node with indentation depicting the nesting relationship of content
nodes within table entry nodes. The first node is the table subtree root and describes the table in

general. Children of the table root describe constraints on table alignment, table entries,

typographic rules, and backgrounds. Children of table entries are the content of the table entry.




e A 14 i T Wy L e

M!»\m:

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-24

Table Boxes

Table entry boxes are specified by their top-left and bottom-right grid
coordinate pairs. The content of the table entry is specified as the descendant of
the table entry node. This descendant node may be any document object.

The first table entry in Figure 5-13 describes the spanned heading. Its
coordinates are from (0,1) to (1,5), spanning four grid modules. The
alignment attributes are TopBaseline (horizontal alignment) and Center
(vertical alignment). The object within this table entry is the text object,
descended from the first table entry and shown indented in the figure,
containing the phrase “Spanned over Four Columns”. The next table entry also
spans column entries, has the same alignment attributes, and contains the text
object “Equal Width”.

Table entries may appear in the document representation in any order
because the coordinate specifications determine where in the table they will
appear. The nesting of objects as descendents of their corresponding table entry
description is the only requirement for including content within a table

- representation.

Typographic Rules

Typographic rules run along grid lines and have a certain specified
thickness. The two rules in Figure 5-12 are both 1-point thick. One rule runs
along vertical grid line 1, through the entire table, and the other rule runs along
horizontal grid line 3. Rules may run along portions of a grid line. Thus, a
vertical rule under the spanning head to separate the equal and unequal pairs of
columns might run from grid coordinate (1,3) to (5,3).

Backgrounds

Background areas are specified by the rectangle they shade and the color of
the shading. The rectangle is specified by two pairs of coordinate values just as
for table boxes. The color specification could be any recognized color naming
scheme, and in the prototype, color is given as hue, saturation, and brightness.

5.4.2 Corner Stitching Data Structure

The internal data structure for representing tables must meet several criteria.
[t must represent the arrangement of table entries in both the horizontal and
vertical directions. It must support row and column selections and a selection



T

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-25

hierarchy within containing rows and columns. It must also permit fast
algorithms suitable for interactive table editing operations and for conversion
to/from an external form.

The data structure chosen for the table formatting prototype was the corner
stitching data structure employed by Ousterhout [Ousterhout, Corner Stitching] for his
VLSI layout tools. An implementation by Shand [Shand, CornerStitching] which
runs in the Cedar environment was modified and extended for the prototype.

The corner stitching data structure tesselates the plane with rectangular tiles.
Each tile 1s connected to its neighbors by four compass-point links and each tile
references its associated data. The corner stitching implementation uses special
border tiles surrounding the tesselation to simplify the algorithms. Figure 5-14
illustrates a prototypical tile and a fragment of the tesselation showing how
several tiles are connected together.

North

East

South

Figure 5-14. CORNER STITCHED DATA STRUCTURE uses tiles that are joined together by four
pointers, two at the NorthEast corner going North and East, and two at the SouthWest corner
going South and West. The example on the right shows three tiles stitched together surrounded
by special border tiles, shown in light grey, that are used to simplify the algorithms.

To use the corner stitching data structure there must be a geometric
coordinate system. The table topology specified by the grid structure has no
geometric information, only the presence or absence of table entries and their
relative positioning. Grid boundaries between table entries must have nonzero
width, even in the table topology, since provision must be made for typographic
rules. Therefore the corner stitching coordinate system has distinct coordinate
values for table entries within the grid lines and for typographic rules along the
grid lines. The topology is highlighted in the table prototype by representing
table entries as unit squares and grid lines as lines with unit widths. (Some
additional separation between grid lines and table entries is provided in the



mgummn—w«.w -

S A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-26

prototype to help distinguish between adjacent tiles. Thus the table grid
coordinates are in fact multiplied by four to create corner stitching coordinate
values.) The coordinate mapping is indicated in Figure 5-15, which presents the
corner stitched data structure for the table in Figure 5-6.

0 1 2 3 4 5

60 1 2 3 4 5 6 7 8 9 10 111213 14 15 16 17 18 19 20 21

W 0O N O O AW N = O

-
o

Figure 5-15. TABLE MAPPED ONTO A GRID DATA STRUCTURE for the table in Figure 5-6. 'The
medium grey tiles correspond to table boxes and the dark grey tiles to typographic rules. Because
of the way corner stitching coordinates are determined, grid modules are unit squares and grid
boundaries are lines of unit width or height. The light grey shading represents the border tiles
that hold the table entries together in the corner stitched data structure. The two rules intersect
and are represented by several fragments, one of which is the intersection of the rules.

The external description of the table is parsed to create the internal data
structure. The internal table description is held in a table object record, which
remembers the table document subtree. Later, an updated external table
description is spliced into the subtree after edits. The table object record also



5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5.27

points to the grid tesselation of table entries and there are fields for the grid
positions and table origin that will be computed later by the table layout
algorithm. The auxiliary constraints provided by the table designer are contained
in a linked list.
TableRec: TYPE = RECORD|
branchInDocument: REF DocumentObject, -- document subtree
gridTesselation: REEF Tesselation, -- area structure for tiles
numberOfRows, numberOfColumns, INTEGER,
rowGridPositions: ARRAY [0..numberOfRows) OF Dimension,
columnGridPositions: ARRAY [0..numberOfColumns) Oor Dimension,
backgrounds: LIST OF REF TableEntryRec,
origin: Position,
constraints: LIST OF Constraint];
Dimension: TYPE = RECORD[value: REAL, units: Units};
Position: TYPE = RECORD{x,y: Dimension];
Units: TYPE = {in, cm, mm, pt, pc, ...}:
DocumentObject: TYPE; -- representation of a document object
Tesselation: TYPE; -- representation of the grid data structure that contains TileRecs

Constraint: TYPE: -- representation of a linear inequality

The corner stitching data structure tesselates the plane with tiles. An initial
tesselation contains a single tile that serves as a universe. A tile object contains
four pointers for the major compass-points, a tesselation coordinate value, and a
generic pointer to its associated data. (In Cedar, a generic pointer permits a data
structure to be used in several different applications without the algorithm
knowing the type of the data. The application is responsible for providing the
pointer value and for later asserting the type of the pointer whenever the pointer
is dereferenced to access the data fields.) New tiles are added by splitting the
universal tile to maintain a “maximal East-West strip” property, which can be
seen 1n Figures 5-14 and 5-15.

TileRec: TYPE = RECORD|
north, south, east, west: REF TileRec,

x, y: Coordinate, -- NI corner in the tesselation coordinate system
data: REF ANY]: -- @ REF TableEntryRec when used for table formatting
Coordinate: TYPE = INTEGER;

The table formatting prototype creates a table entry record for each corner
stitched tile. The table entry contains the grid coordinates and the kind of table
object. A box table entry points to the document object that will appear in the
table, and retains the box dimensions, origin, and alignment point computed by



5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-28

the layout algorithms. Typographic rules and background table entries have no
content. The style attributes are remembered as a list of attribute-value pairs.
TableEntryRec: TYPE = RECORD]
top, left: GridCoordinate, -- in the table grid coordinate system
bottom, right: GridCoordinate,
object: SELECT boxType: {box, rule, background} FROM
box => [
contents: REF DocumentObject,
extents: BoxDimensions, -- computed later
alignmentPoint: Position,
origin: Position],
rule => |,
background => [],
ENDCASE,
styleAttributes: LIST OF Attributes
I ‘
GridCoordinate: TYPE = INTEGER;
BoxDimensions: TYPE = RECORD[left, right, top, bottom: Dimension];
Attributes: TYPE; -- formatting attribute, value pair

5.4.3 Overlapping Planes

The corner stitching data structure is inherently planar, whereas some tables
may involve overlapping table entries or rules. There are three things that may
overlap: table entries that are “pasted over™” other entries, rules that intersect
with other rules, and backgrounds that underlay part or all of the table. The
positions of all these overlapping elements can be expressed in terms of grid
boundaries, so no additional layout information is necessary or generated by
overlapped entries.

Backgrounds can be easily handled because there are generally few of them
(often only one per table) and their size depends on and does not influence the
table layout. It is sufficient to maintain a list of background rectangles to be
shaded in the table object, so the rendering algorithm can traverse the list and
paint the shaded background before rendering the rules and table entries.

Overlapping rules within tables are more interesting and more common.
Rules intersect when a horizontal rule and a vertical rule meet. Even if the rules
are of equal thicknesses, the end points of the rules must be adjusted to ensure
that they avoid a notched corner, such as the leftmost examples in Figure 5-16.
Additional complications arise when two rules of different colors or textures



5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-29

intersect. Then one of the rules dominates and the other rule should have its
endpoint adjusted to avoid penetrating the first, as shown by the middle
examples in Figure 5-16. The prototype implementation only handles rules with
square ends but an extension capability is available to add other intersection

types.

Figure 5-16. INTERSECTING RULES in a table may require one of several special treatments.
Lines of different thicknesses: lines of different color; lines with repeating patterns (dashes,
borders); lines with ornaments at the end; rounded corners where lines intersect with sufficient
clearance are all examples of the treatments possible with this technique.

The fragmentation of corner stitched tiles, when a tile is about to penetrate
an existing tile, provides the opportunity to capture the notion of intersecting
rules explicitly. For example, the capability for rounded corners (as shown at
the bottom right in Figure 5-16), or for placing special ornaments at the
intersection of two rules can be specified at the intersection tile. The
intersections between double or multiple rules can be treated in various ways.
This technique for capturing the intersections between rules permits a general
mechanism for specifying style attributes that apply to typographic rules and
border patterns.

Overlapping table entries might be handled by maintaining an overlap order
when they intersect. Table entry tiles in the grid data structure presently
reference a single table entry. For overlapping entries, the tiles would have to
maintain the list of overlapped table entries in overlap priority order. The
rendering algorithm could then be modified to render the list of overlapped
entries from back to front using the Painter’s algorithm. These extensions for
overlapping table entries have not been implemented in the prototype.




v e Vel Wy o

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-30

5.4.4 Grid Algorithms

The main algorithms presented in this section are the table layout and table
rendering algorithms. The table layout algorithm takes a table arrangement and
produces the positions of the grid lines and table entries. The table rendering
algorithm is responsible for creating a printable or displayable version of the
table given the positions and content of the table. These two algorithms require
an enumeration algorithm to act on all of the table entries in the internal table
data structure. Interactive manipulation of tables requires a hit-testing algorithm,
which resolves the table entry that is being pointed at on the screen, and
dynamic restructuring algorithms to insert and delete parts of a table.

Table Layout Algorithm

The table layout algorithm determines the coordinates (relative to a table
origin) of the grid lines given the grid data structure representing the table
arrangement. The layout algorithm also needs the bounding box dimensions and
alignment point of each table entry, which are obtained through the object

- layout procedure associated with the class of document content in that table

entry. Typographic rules also have widths which are obtained through the style
machinery. Linear inequality constraints describe the positioning relationships
between table entries and grid lines. A mathematical constraint solver is
described later in Section 5.5, where the complete table layout algorithm is
presented. The time complexity of the layout algorithm is dominated by the
algorithm for satisfying the linear inequality constraints.

Table Rendering Algorithm

The table must be rendered in a form suitable for display or printing. The
table rendering algorithm takes the grid positions determined by the table layout
algorithm along with the collection of table entries in the grid data structure and
instantiates each table entry at its appropriate position. The content of each
table entry is rendered via the rendering procedure associated with that
document object class.

To handle the possible overlap of data, the table content is rendered in back
to front order: shaded backgrounds first, then rules, then table entries.

The table rendering algorithm uses a device independent imaging model
[Warnock&Wyatt, CedarGraphics] for raster devices to produce formatted output for
both displays and printing devices. Device independence provides a WYSIWYG
capability for interactive editing of tables because the display screen presents the



R
W 0 M, s e

Y S

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-31

same fonts and graphics as the printed form of the table, subject to differences
in device resolution. The implementation of a table editor shares the table
rendering algorithm with the document formatter.

Algorithm R (Table Rendering)

R1 [Output Backgrounds] Traverse the list of shaded backgrounds in
the table and for each one, output a shaded rectangle with corners
determined by the coordinates of the table entry’s four grid line
positions, and with the color specified by the area color style
attribute.

R2 [Enumerate Rule Tiles] Traverse the table grid structure and
render each table rule:

R2.1 [Draw Rule] Determine the rule shape from the grid line
position, the rule thickness specified by a style attribute, and
any intersections with other rules. Draw the rule in the color
specified by the rule color style attribute.

R3 [Enumerate Table Entries] Traverse the table grid structure and
render each table entry:

R3.1 [Output Table Content] Invoke the rendering procedure for
this table object at its origin (x,y).

One might extend the rendering algorithm for interactive use so that it
performs only minimal repainting. The technique is similar to that used by
WYSIWYG text editors. By keeping state information about table entries that
change, only those entries need be repainted. By keeping track of grid positions
that change, a block-move instruction on portions of the bit-mapped screen
permits opening up (or closing up) grid lines to update the table without having
to rerender the entire table. The table editor would have to cooperate with the
table rendering algorithm to maintain these state variables.

Enumerate Area Algorithm

Both the table layout and the table rendering algorithm must enumerate all
of the table entries and rules in the grid data structure. The corner stitching
data structure has a directed area enumeration algorithm [Ousterhout, Corner
Stitching] that takes linear time in the number of tiles enumerated. The algorithm
is given the corner stitching data structure and a rectangular search area.



et

T e I

[

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-32

Algorithm EA (Enumerate Area Algorithm)

EAl [Locate Lower Left Tile] Use the corner-stitching point-finding
algorithm to locate the tile at the lower left corner of the search
area.

EA2 [Walk Left Edge] Walk the tiles along the left edge and for each
tile encountered invoke the following steps recursively:

EA2.1  [Enumerate This Tile] Perform some user-supplied action on
this tile, or if no action was supplied, then append this tile to
an enumeration list.

EA22  [Check Right Boundary] If the right edge of this tile is
outside the search area, then return.

EA23  [Locate Right Neighbors] Use the corner-stitching
neighbor-finding algorithm to enumerate neighbors along the
right edge of this tile. For each neighbor that intersects the
search area:

EA2.3.1 [Recurse on Neighbor] If the top-left corner of the
neighbor touches the current tile, or if the top edge of the
search area cuts both the current tile and its neighbor,
then recurse at step EA2.1 on the neighbor.

The implementation of the enumeration algorithm used in the table
formatting prototype uses a nonrecursive algorithm due to Shand [Shand,
CornerStitching] that is based on: traversing the tiles like a threaded tree. The
implementation requires the caller to supply an action procedure to be
performed for each tile. The enumeration algorithm is used in the table layout,
table rendering, deletion, and insertion algorithms. For example, the table
rendering algorithm supplies an action procedure that renders the content of a
particular table entry.

Hit-testing Algorithm

A hit-testing algorithm is necessary for interactive manipulation of a table.
The hit-testing algorithm determines the table entry corresponding to a position
on the display screen pointed at by the user. The algorithm must be quite rapid
if the table entry is to be continuously highlighted as the user moves the
pointing device across the tablie on the screen. The algorithm depends on a
corner stitching algorithm for locating a corner stitched tile given the tile
coordinates. The corner stitching algorithm takes O(+/ n) time on average when



5 A NEW FRAMEWORK FOR 1ABULAR COMPOSITION -3

tiles have a relatively uniform size and O(n) time in the worst case when all the
tiles are in a single column or row [Ousterhout, Corner Stitching].

Given the screen (x,y) coordinates of the pointing device, the hit-testing
algorithm first converts the screen coordinates relative to the display window into
table coordinates relative to the table origin. The appropriate row and column
grids are found by searching the table grid position arrays. The grid coordinates
are converted into corner stitched coordinates and the tile locating algorithm
returns the table entry tile that contains the data pointer to the table entry
object.

Algorithm H (Hit-testing Algorithm)

H1 [Convert Coordinates] Given (Sy,Sy), the screen coordinates,
subtract the screen coordinates of the table origin, (Ox,0)), relative
to the display window, to produce the table coordinates (7x,7;) of
the point. Report an error if (7,7)) lies outside the table.

H2 [Find row and column grids] Search the two vectors of grid
coordinates for row grid line G, preceding 7 and the column grid
line G preceding 7. This can be done with a logarithmic search.

H3 [Find Table Entry] Locate the grid tile at the grid coordinates
(G, Gp) using the corner stitching location algorithm and extract the
reference pointer to the resulting table entry.

Delete Algorithm

Two algorithms for dynamically inserting and deleting table elements were
incorporated into the table formatting prototype. The development of interactive
tools for table editing was not central to the research in this thesis, but the tools
were useful for constructing examples and gaining insight into the value of the
grid structure for interactive editing. Chapter 6 contains plans to implement
better algorithms based on better data structures.

There are two variations of the deletion algorithm. The first variant deletes
table entries without changing the table topology, and the second deletes grid
lines and hence changes the topology.

In the first variant that deletes only table entries, the deletion algorithm is
given two pairs of grid lines that determine a rectangular region. By
enumerating the area within that rectangular region all of the table entries
intersecting that region are found. Some entries may be partially outside the
region and therefore should not be deleted. This algorithm takes time linear in




5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-34

the number of entries enumerated in the rectangular region due to the behavior
of the area enumeration algorithm.

Algorithm E (Table Entry Deletion Algorithm)

El

El.l

[Enumerate Area to Delete] Enumerate all the table entries within
the two pairs of grid lines, and for each table entry:

[Delete Table Entry] If the table entry is completely within
the two pairs of grid lines, then delete the table entry from the
grid data structure.

The second variant of the deletion algorithm deletes grid lines and all table
entries between them. The algorithm is given a pair of grid lines. All grid lines
between the pair of grid lines (inclusive) are deleted and replaced by a single
grid line. All table entries found entirely within the pair of grid lines are
deleted. Any table entry that crosses outside the pair of grid lines is changed to
reflect the new topology. This deletion algorithm is presented in its simplest
form, which creates a new copy of the grid data structure.

Algorithm G (Table Grids Deletion Algorithm)

Gl

G2

G3

G2.1

G2.2

G23

G24

[Prepare New Grid Structure] Prepare a second grid data structure
to receive the modified table topology.

[Enumerate the Old Grid] Use the area enumeration algorithm to
find all the table entries that intersect the region defined by the
pair of grid lines. For each table entry, perform one of the
following actions:

[Table Entry Within Grid Pair] Ignore this table entry; it will
not appear in the new structure and is not copied.

[Table Entry Precedes Grid Pair] Create a tile in the new grid
structure and copy this table entry.

[Table Entry Straddles Grid Pair] Adjust the farthest grid
coordinate of this table entry by the number of grid lines
deleted, and create a tile in the new gnid structure for this
changed table entry.

[Table Entry Follows Grid Pair] Adjust both grid coordinates
of this table entry by the number of grid lines deleted, and
create a tile in the new grid structure for this changed table
entry.

[Install New Grid Structure] Update the table object to use this
new grid structure.



v aere ™ N e e

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-35

The implementation of the deletion algorithm in the table prototype relies
on the existing corner stitching implementation and avoids designing or
implementing a more dynamic data structure suggested in Chapter 6. The
deletion algorithm uses two copies of the table grid structure and ping pongs
between them. The time to create the new grid structure is dominated by the
time needed to refresh the display screen. A major performance benefit is
avoiding automatic storage collection, since the corner stitching implementation
caches deleted grid tiles and reuses them without allocating new ones.

Insert Algorithm

The insertion algorithm also comes in two variants, (a) one which inserts a
table entry into an empty grid module without changing the topology, and (b)
another which inserts a new grid line that changes the table topology. In the
insert table entry variant (a), the new table entry is created and inserted into the
grid structure at the grid coordinates corresponding to an empty tile. In the
insert grid line variant (b), the dual grid structure technique shown above is used

“to create a new table topology.

5.5 Table Layout via Constraints

A linear constraint solver is employed to determine the table geometry from
the table topology, the content of table entries, and explicit auxiliary constraints
supplied by the table creator. The grid data structure represents the topology of
all the table entries and contains pointers to their content. The layout algorithm
enumerates all of the table entries and generates appropriate constraints on their
positions. Additional constraints may be supplied with the table to impose
special conditions such as forcing columns of equal width. Solving the resulting
system of linear inequalities produces the computed positions of all the grid lines
and table entries.

5.5.1 Constraint Systems

Examples of constraint systems in computer graphics provided the
motivation for this technique. Sutherland’s Sketchpad [Sutherland, Sketchpad] was a
seminal interactive graphics system that relied on constraint satisfaction to
position graphical elements. Borning's implementation of Thinglab [Borning.
Thinglab] demonstrated the use of constraints in several problem domains. The
document layout and document content examples in his report were of particular



5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-36

interest. The layout example [Borning, Thinglab, p29] showed a paragraph
surrounded by a rectangle precisely large enough to hold the paragraph. When
the width of the rectangle or content of the paragraph was changed, the
rectangle’s height was adjusted accordingly.

Several other graphics systems used constraints to position things. JUNO
[Nelson, Juno] and ideal [van Wyk, ideal] both use nonlinear constraints to
determine the position of graphical objects. pi ¢ [Kernighan, pic] labels the
corners of boxes and position objects relative to those labellings. The graphical
debugger Incense [Myers, Incense] contained a heuristic for positioning nested
objects in a data structure by dividing the available space in two. The ability of
these systems to position parts of an illustration relative to one another was very
attractive and analogous to the layout of table entries relative to one another.

Linear inequalities are sufficient to describe the positioning relationships
between table entries, such as making a column wide enough for an entry, or
making a row heading tall enough to span several rows. Restricting the
constraints to linear inequalities prevents expressing area relationships, but it is
more common to express such relationships by establishing a ratio among the
sides of the rectangle which can be described by linear inequalities. All the
distances in a table can be expressed as rectilinear (horizontal or vertical)
distances. Thus addition, subtraction and scalar multiplication are the only
operations needed to express the table positioning relationships.

Using inequalities introduces the notion of slack variables that turn the
inequality into an equality for the constraint solver. These slack variables
capture the extra room left over for the table entry to fit the grid lines. Smaller
table entries have greater slack than larger entries, and one or more table entries
will have zero slack. The slack variables are helpful in determining whether the
constraint system must be recomputed when editing a table. A table entry with
slack may grow or shrink without requiring the constraint system to be
recomputed, while a table entry with zero slack that changes size will always
require recomputing the grid lines.

The linear inequality solver due to Nelson [Nelson, Program Verification] used in
the table formatting prototype has an useful property for implementing an undo
facility in an interactive table editor. The constraint tableau maintains a stack of
‘dead’” tableau columns which permits a previous state of the tableau to be
recomputed quickly. Changes to the table that modify table layout constraints
may be quickly undone through this mechanism without recomputing the entire
solution of the constraint system.



JOSTRFUIIREIS SR

W ime st

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-37

5.5.2 The Complexity of Linear Constraint Solvers

Solving a system of linear inequalities is equivalent to the LINEAR
PROGRAMMING problem, which is known to be solvable in polynomial time
[Khachiyan, LP]. A table arrangement without centered table entries can be
described by a system of linear inequalities using only two variables per
inequality, as described in the next section. This particular LINEAR INEQUALITY
problem for two variables can be solved in O(n3) worst case time
[Aspvall&Shiloach, Lincar Incqualities], where n is the number of constraints.
Algorithms for solving more general systems of linear inequalities based on the
Simplex method have O(n?) expected time behavior [Danuig, LP.. A version of
the Simplex algorithm due to Nelson [Nelson, Program Verification] was implemented
in the table formatting prototype. *

5.5.3 The Constraint Table Layout Problem

The table layout algorithm introduced in Section 5.4.4 depends on a linear

_inequality constraint solver to compute the positions of the grid and table

entries. This section discusses the linear inequalities actually used to describe the
table arrangement.

Consider a particular table entry represented as a box k. This table entry is
positioned within a pair of horizontal grid lines and a pair of vertical grid lines
as shown in Figure 5-17. The alignment point of the box is to be aligned with
other boxes that share the same pair of grid lines. Label the four grid lines
surrounding the box as lefiGridy, rightGridy, topGridy, bottomGridy. Label the
offsets from the alignment point to the edge of the box as distances /efi Offsetx,
rightOffsety, topOffsety and bottomOffsety (these offsets are fixed by the content
and can be determined before table layout). The position of the alignment point
within box & will be (Xg, Yy).

The vertical grid lines represent column boundaries and their positions are
designated by the variables C;. The horizontal grid lines represent row
boundaries and their positions are designated by the variables R;. Boxes within
the pair of grid lines left and right that are vertically aligned will be positioned
at the variable Vjef righ, While boxes horizontally aligned within the row between
grid lines top and bottom will be positioned at Hyyp ponom- All variables are
restricted to positive values.



5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-38

R T SRR

B s <rmmsiam

HIeftGria'k rightGrid

R topGrid i

VlopGrid e bottomGrid, i

N RbottomGrid X

ClepiGria X Xeo Yx CrightGrid P

Figure 5-17. CONSTRAINT VARIABLES FOR A PARTICULAR TABLE ENTRY are shown in this
diagram. The box representing the table entry is in dark grey and the grid module formed by two
pairs of grid lines is shown in light grey, the column lines Cpp and Cygp, and the row lines Ry,
and Rporom The alignment point of the table entry hox goes through the two alignment lines,

v

V, left.right and Hiop portom-

The objective function for the constraint solver will be to minimize the
width and depth of the table. For a table with m rows and » columns, the
objective function would be

Min {(Cn — Cp) + (R;y — Ro)} .

The table layout the relationships among grid lines and alignment points can
be described by inequality constraints. The first set of constraints (1) ensure that
all of the grid lines are in the expected order and that the alignment line is
within the column. One set of constraints is required for each pair of grid lines,
left and right, that contain a table entry. (Column constraints are used in the
examples that follow; row constraints are similar.)

Crighl - C/eﬂ >0
Vleﬂ,r[ght - Clefl >0 ()
Crighl - Vleﬁ,r[ghl > 0.

A constraint to ensure that the grid lines are sufficiently far apart to contain
the width of a table entry is generated for each table box 4:

CrighiGridy, — ClefiGridy = leftOffsety + rightOffsety . (2)

In practice, these two sets of constraints are not generated explicitly since
they are subsumed by the alignment constraints below.

The alignment constraints vary with the type of alignment requested.
Aligning a table box flush left in the column without regard to any other box In



5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5.39

the column generates these two constraints to position the box immediately
adjacent to the column gnd:

Xt — CleniGrid, = lefiOffsety (L)
CrighiGridy — Xix 2> rightOffsety, .

Similarly, aligning a table box flush right in the column without regard to
any other box switches the equality and inequality constraints from those in
(3L):

X — ClefiGrid, = leftOffsety (3R)
CrightGrid, — Xk = rightOffsety .

Centering a table box within the column may involve one of two centering
concepts. The first forces the box alignment point to be equidistant between the
column grid lines:

2 Xy — CleﬁGrt’dk - CrighlGridk =0. (30)

The second centering concept positions the box to balance the excess

- whitespace surrounding the box. The excess whitespace is the width of the
column (CrighiGridy, — ClefiGrid,) less the width of the box (lefiOffsety +
rightOffsety):

Xy — leftOffsety — ClefiGrid, =
172 [(CnghtGrzdk - C[eflGrzdk) — (leftOffsety + ”ghloﬁ%e[k)]

which can be simplified to the form:
2 Xk — ClefiGrid, — CrighiGrid, = leflOffSety — rightOffSety . (3C)
The two centering constraints (3C) and (3C") are equivalent only if the two

offsets are equal, which is when the alignment point is in the center of the box.

Note that up until now none of these alignment constraints involved
aligning a set of boxes with each other, only positioning the box within the
column. To align several boxes, we need to force the alignment point within a
box to be equal to the position of the alignment line within that column. Thus,
for each box k in the set, generate an equality constraint:

Xk — VieaiGridy.rightGridy = 0 (4)

In fact, if the variable Xy does not appear in any other constraint, then it may
be dispensed with and treated as an alias.



[

ki O St B T e

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-40

The positioning constraints for each box aligned within a set are simpler
because they only require that the box fit within the column:

V lefiGridy,rightGrid, — CleﬂGridk > leftOffsety (%)

CrightGridy — ViefiGridy.rightGrid, = rightOffsety, .

However, these constraints are not sufficient to force the set of boxes to be
flush left, flush right, or centered within the column. This must be
accomplished by guiding the constraint solver to a particular desired solution.
For example, to force the set of aligned boxes flush left, the objective function
to be minimized by the constraint solver must be augmented with a term for the
left distance:

Min {( VleﬁGridk,rightGridk - Cleﬁ(]ridk)} . N (6)
A similar term is necessary to force the set of aligned boxes flush right.

Centering the alignment line for a set of boxes within a column may be
accomplished in two ways. The first simply positions the alignment line
equidistant between the column grid lines and does not involve an additional

- term in the objective function:

2V lefiGridy,rightGrid, — C[eflGridk - CrighlGridk =0. (7)

The second centering technique is to balance the whitespace between the set of
aligned boxes and the grid lines. The objective function requires a new variable
equal to the maximum whitespace in the column. This was not done in the
prototype but is considered later in section 5.5.4 when such ‘maximum’ variables
are introduced to handle large tables.

These linear constraints can be generated automatically for a table from the
information kept in the grid data structure. A small expression language for
constraint inequalities is provided in the prototype for the table designer to
describe additional constraints for special effects. For instance, to create two
columns of equal-width, say the column between grid lines /eff and right and the
column between left” and right’, the following equality constraint is added to the
table specification:

(C/eft' - Crz'ghl') — (Clept — Crigh) = 0. (8)

The expression language accepts a standard form of the variable names. Two
such constraints were included in the external representation shown in Figure
5-13. A variety of user interfaces to this constraint expression facility are
possible. Only the simplest textual interface of typing the constraint equations is
supported in the prototype.



5 A NEW FRAMEWORK FOR TABULAR COMPOSITION

5-41

Hys — Rgq 2> 6.225697
Ry — Hass > 15.25376
Hys — Ry > 6225697
Ry — Hyg > 1497279
Hys — Rs > 6.0
Ry — Hys > 1222937
Hys — Rs > 6.0
Rs — His > 12.22937
Hys — Rs > 6.0
Ry — His > 1222937
Hys — Rs > 6.0
Ry — His > 1222937
Hys — Ry 2 60
Ry — Hys > 12.22937
Hys — R4 2 60
Ry — His > 1222937
H3s — Ry 2> 60
Ry — Hyy > 1222937
Hys — Ry 2 60
Ry — His > 1222937
Hyy — Ry > 60
Ry — Hy3 > 1525376
Hyy — Ry > 8257013
Ry — Hy3 > 1525376
Hy3 — R3 > 60
Ry — Hys3 > 1525376
Hyy — Ry > 8257013
Ry — Hy3 > 1525376
Hi, — Ry > 8482721
Ry — Hyy > 1525376
His — Ry > 8482721
R — Hyy > 1525376
Hoi — Ry > 8482721
Ry — Hgy > 1525376

(flush left box 4,0)
(flush left box 3,0)
(flush left box 4,4)
(flush left box 4,3)
(flush left box 4,2)
(flush left box 4,1)
(flush left box 3.4)
(flush left box 3,3)
(flush left box 3,2)
(flush left box 3.1)
(flush left box 2,4)
(flush left box 2.3)
(flush left box 2,2)
(flush left‘box 2,1)
(flush left box 1.3)
(flush left box 1.1)

(flush left box 0,1)

Figure 5-18. THE ROW CONSTRAINTS GENERATED for the table in Figure 5-6. ‘The variables for
the row grid line positions are Ry. Ry, Ry, R3, Ry, Rs and the horizontal alignment line positions
are Hﬂ_[. Hl,2~ Hzg,, H}Q.{. H4‘5.

|



5 A NEW FRAMEWORK FOR TABULAR COMPOSITION

O-42

200, - Cp—C3=0
200G, -CL - C3 =0

Co — Vo1 2> 30
Gy — Wy > 6931976
Co— V1230

Cy = Vo > 55.72097
Cs — C4 > 24.0675
20V45 — C4 — C5 =0
Cy — C3 > 60.2025
2.0‘V3,4 - (3 ~C4=0
Cy — C; > 24.0675
20V — G, - C3 =0
Cy — €1 > 60.2025
2'0.[/1.2 - -G = 0
Cs — Cq > 24.0675
200V4s — C4 — C5 =0
Cy — C3 > 60.2025
2.0'V3'4 - C3 - C4 =0
Cy — C > 24.0675
2.0‘V2_3 - Cz - C3 =0
Cy — 1 > 60.2025
200V, —Cy— G =0
Cs — Cq4 > 30.86088
2.0'V4‘5 - C4 - CS =0
Cy — C3 2> 63.23784
2.0’V3'4 - C3 - C4 =90
Cy — C; > 30.86088
2033 — (h — (3 =0
C; — Cy > 63.23784
200V — C; — C, =0
Cs — (3 > 88.15895
2.0 V3‘5 - C3 - C5 =0
Cy — Cyp > 73.83745
2013 - C, = (C3=0
Cs — € > 159.6822
20Vis = (7 — G5 =0

(flush left box 4.0)
(flush left box 3,0)
(center box 4,4)
(center box 4,3)
(center box 4.2)
(center box 4,1)
(center box 3.4)
(center box 3.3)
(center box 3,2)
(center box 3.1)
(center box 2,4)
(center box 2,3)
(center box 2,2)
(center box 2.1)
{center box 1,3)
(center box 1,1)

(center box 0.1)

Figure 5-18 (continued). TIE COLUMN CONSTRAINTS GENERATED for the table in Figure 5-6.
The first two constraints are the auxiliary constraints to force the equal column widths; the rest
are generated by the table layout algorithm. ‘The variables for the column grid line positions are
Cy. C1. G G3, Gy, G and the vertical alignment line positions are Vy 1. Via, Vi3 Vis, V2.

Viao Vs, Vis




B i
B2

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-43

5.5.4 Handling Large Tables

The constraint scheme just outlined suffers from rapid growth in the
problem size as the tables grow larger. Several strategies can greatly reduce the
number of constraints generated.

The first strategy eliminates redundant variables whenever they appear as
aliases of other variables. For example, the box position Xy is often an alias for
ViefiGridy rightGrid, When they are set equal and therefore X can be eliminated.

In many table layouts, a simplifying assumption may be made to solve the
row and column constraints separately. Treating the two sets of constraints
independently reduces the number of constraints and the size of the
corresponding constraint tableau. [t is worth assessing the necessity of this
assumption and the situations in which it is violated.

The independence assumption does not hold when one wants to create grid
designs with modules that are square or have specific aspect ratios. A square
module results from constraining the row height to equal the column width.
Obviously, in this situation the sets of row and column constraints are not
independent. The assumption is also not true when trying to distribute
whitespace within a table, for example, by folding wide horizontally-oriented
table entries to trade off more vertical depth for less horizontal width. In this
situation, decreasing the column width increases the row height and the
constraints are again not independent.

The independence assumption can be tested automatically by examining the
variables in each constraint. Constraints that mix row and column variables,
such as one specifying that a row height equals a column width, are
interdependent and must be solved simultaneously. Constraints that do not mix
variables are independent and can be solved separately as smaller problems. The
prototype currently assumes that the row and column constraints are
independent, but one could easily check the explicitly supplied constraints for
violations of this assumption and thus determine automatically whether to solve
the table layout constraints independently or not.

What is the cost of solving interdependent row and column constraints?
When the two sets are combined into a single constraint system the problem size
is doubled. Since the constraint solver takes O(n3) time on average, the
combined constraint layout would require about four times as much as the sum
of the two smaller independent computations.




s s o

5 A NEW FRAMEWORK FOR TABULAR COMPOSITION

A reduction in the number of constraints can also be achieved by observing
the structure of the constraint inequalities. The constraints that determine the
grid positions surrounding a particular table entry are all similar:

ViefiGridy.rightGridy, — ClefiGrid, = leflOffsety (5)
Cright(;ridk - VleﬂGridk,righlGridk > rightOffsety .

For the set of table entries within a particular column, these inequalities are
dominated by a single maximum value of the right hand side. The maximum
value could be determined by simpler means than expressing so many redundant
constraints. We can discover the value by a linear preprocessing pass through all
the table entries in that particular column to determine the maximum left and
right offsets. The two maximum values are assigned to new variables used by
the constraint solver:

maxLeftief, right = max{leftOffsety for all boxes k in column left,right}
maxRightjefi right = max{rightOffsety for all boxes k in column left,right} .

With these maximum values known by these variable names, the set of
inequalities per column (one or more constraint for each table entry) can be

" replaced by one inequality per column. This vastly reduces the number of

constraints from the product of the number of entries per column times the
number of columns to simply the number of columns:

Viefiright — Clefi 2> maxLeftiefi right (5"
Crighl - Vlefl,righl > mGXRightlefl,rfghl .

A further optimization in the linear constraint solver can be made based on
the observation that most of the constraint inequalities have only two variable
terms. Thus, sparse matrix techniques might reduce the space requirements of
the solver at the expense of more overhead in the constraint solver. The
prototype implementation uses a conventional matrix structure for the constraint

tableau.
5.5.5 The Layout Algorithm

The complete table layout algorithm including the constraint solver can now
be presented. The algorithm requires the grid data structure for the table
arrangement and the contents of all of its table entries. The first step in the
algorithm ensures that the dimensions of all of the table entries are known.
These dimensions are provided by invoking the particular layout algorithm for
each table entry object. In the event that a table entry contains another



5 A NEW FRAMEWORK FOR TABULAR COMPOSITION

5-45

subtable, then the layout algorithm would be invoked on that subtable first. The
dimension information for each table entry is cached in the table entry object
since the box dimensions are used twice when the row and column constraints
are independent.

Algorithm L (Table Layout)

I.1

L2

L3

L2.1

L2.2

L3.1

132

£33

[Dimension the Boxes] Determine the dimensions of the table
entries by invoking the layout procedure for that class of object.

Remember the dimensions since they are used for both row and

column layout.
[Layout the Rows] |
[Establish Row Constraints] Enumerate the table grid struc

ture

and generate the appropriate constraints for each table entry.

[Solve] Invoke the constraint solver on the row constraints,
and record the row grid coordinates.

[Position Table Entries] Enumerate the table grid structure
and compute the layout coordinates of the origin for each
table entry from the computed grid positions.

[Layout the Columns]

[Establish Column Constraints] Enumerate the table grid
structure and generate the appropriate constraints for each
table entry.

[Solve] Invoke the constraint solver on the column constraints,

and record the column grid coordinates.

[Position Table Entries] Enumerate the table grid structure

and compute the layout coordinates of the alignment position

for the each table entry from the computed grid positions.

5.6 Conclusions

This chapter has introduced a new framework for interactive table
formatting. The separation of table topology from table geometry has been
incorporated into this framework. A grid structure describes the topological
table arrangement and a mathematical constraint solver computes the table
layout. A prototype table formatter was built using extensions to the Tioga



5 A NEW FRAMEWORK FOR TABULAR COMPOSITION 5-46

document model and to the style machinery. Unlike many other document
formatting systems, this approach allows more general table designs to be
described and edited with interactive tools.

The grid structure provides an explicit representation of the table topology
suitable for WYSIWYG interactive editing of tables. The grid structure represents
areas directly, permitting symmetric treatment of rows and columns, and
enabling typographic rules and background areas to be treated explicitly. An
implementation of the grid structure exists with linear algorithms suitable for
interactive manipulation which support selection hierarchies of table structures,
table entries, row, columns, and the entire table. Support for overlapping table
designs is possible; backgrounds are easy.

The mathematical constraint solver computes the table geometry from linear
inequalities that express the table alignment possibilities. Most of the
inequalities are generated automatically from alignment and positioning style
attributes, while additional constraints may be specified by the table designer to
enforce special layout requirements.

» The table object class in the document model permits tables to exist within

documents and be interactively edited by appropriate class editors. Tables may
contain arbitrary content since a table entry is treated as an arbitrary document
object. Style attributes for tables are managed by extensions to the style
machinery. New attributes for table alignment and various typographic features
unique to tables have been added to the style mechanism of Chapter 3. A
search path appropriate to the row/column structure of tabular information
determines the values of attributes in force at each table entry.

The prototype table formatter worked well for the tables in this thesis. All
of the tables in Chapter 4, the complex table in Figure 5-3, and the remaining
tables in Chapter 5 were formatted by the prototype. The grid system proved to
be a simple concept to work with, and creating additional linear inequality
constraints for special effects appears to have considerable promise for extending
the kinds of achievable table designs. Several of the large tables became tedious
to manipulate in their textual form, a complaint that will be remedied with the
completion of an interactive table editor. An implementation of an interactive
table editor within Tioga based on this prototype is underway. Goals of this
further work are described in Chapter 6.




IR ot vomson et o

Future Directions

This thesis has presented two prototypes that were implemented for

- composing complex document content, one prototype for graphical style and the

other for table formatting with grids and constraints. These experiments led to
many implementation issues and several new research problems. The
implementation issues arose from a desire to provide integrated and interactive
illustration and tabular composition tools in the Tioga and Cedar environments
at Xerox PARC. The research problems follow from a desire to unify the two
approaches into the same document model and to extend the range of
functionality in both approaches. This chapter outlines some of these future
problems and issues, in particular a comprehensive document framework,
interactive user interfaces for the prototypes, various problems with graphical
style and table formatting, and a proposal for considering rule-based expert
system support for problems in document composition.

6.1 Document Model

The document model has been a common thread through the two
prototypes for graphical style and table formatting. This experience should be
generalized into a document model that can integrate arbitrary classes of
document content by more rigorously defining the object interface for the editor
and the formatter. An interactive editor for such a document model would
coordinate various special purpose editors for each class of document content

6-1



0 FULUKE DIKECIIUNS o-2

and would provide shared undo/redo facilities. Several difficulties arise with
designing a coordinated user model of interaction, specifying the notion of
selection in nontextual objects, and arbitrating interaction requests between
overlapping objects. A more general document structure than a hierarchical one
similar to the abstract document object model from Kimura [Kimura, thesis] should
be considered to incorporate objects with arbitrary interlinking, such as
footnotes, floating figures or tables with several references, and running headers.

6.2 Graphical Style

The graphical style prototype would benefit from an interactive design
environment for specifying styles. The notion of interactive property sheets from
the Xerox Star can be extended to support styles by naming groups of properties
and by managing dictionaries of style rules. Additional graphic design tools for
layouts and rendering algorithm specifications are necessary. Other user
interface issues are discussed below.

The suite of illustration rendering algorithms in the graphical style prototype
provides a basis for an extensible mechanism for adding new algorithms. [nitial
uses of this mechanism might be to add new algorithms for border patterns,
shadows on text objects, or special color highlights. Revealing different levels of
detail as a style attribute when changing media could be requested as an
additional view specification, similar to level clipping when presenting
hierarchical documents.

The ideas of graphical style should be incorporated into a new illustration
system, perhaps based on the Griffin user interface and editing model. This new
illustrator could incorporate layout constraints by utilizing constraints as
demonstrated in the Juno [Nelson, Juno] and Gob [Zabula-Salelles, GOB] illustration
systems and as incorporated in the table formatting prototype described in this
thesis.

6.3 Table Formatter Implementation

The table formatting prototype needs several implementation improvements.
The corner stitching data structure implementation should be replaced by a
dynamic topological data structure so that the insert and delete editing
operations are implemented without copying. The minimal repainting algorithm




b

A e P S

6 FUTURE DIRECTIONS 6-3

for incremental interactive updates to the The handling of constraints for tables
should gracefully solve two sets of row and column constraints when the
constraints do not interact, but should solve the combined constraint problem
when they do. This change would permit the efficient layout of a majority of
table designs while enabling sophisticated table designs to specify grid modules
that were square or any other specified aspect ratio.

Additional typography capabilities will also be necessary to make the
prototype fully functional. For example, the capability to center a set of aligned
boxes within grid lines mentioned in Chapter 5.

Implementing a spreadsheet application based on the table formatting
scheme would stress the performance of the implementation and reveal strategies
for dealing with repetitive structures. It would also be an opportunity to
implement automatic computation of carry-forward table entries, automatic
insertion of continuation and summary headings, and various style attributes for
improving the readability of large tables.

It would be desirable to accept a table design prespecified by a designer or

- precomputed from a prototypical table. Such a completely specified table layout

should be recognized to avoid computing the dimensions of an immense number
of table entries. The implementation would require strategies for dealing with
table entries that do not conform to the prespecified design, at least by reporting
them.

6.4 Table Formatting Algorithms

Determining an aesthetically pleasing table layout remains a significant
research problem. The grid structure presented in this thesis provides a basis for
dealing with the problem. Balancing the amount of whitespace within a table
can be achieved by manipulating the position of grid lines. Some possible
strategies might be to increase the column width while reducing the row height
(or vice versa) or to fold a single long column into several shorter ones. A
useful conjecture to prove empirically would be whether table entries have a row
depth that increases monotonically with decreasing column width. The
monotonic relationship would permit efficient search strategies. Some graphic
design principles can be expressed in terms of constraints on grid lines, such as
forcing table entries to be equal width or equal height when they are ‘almost’
equal.



6 FUTURE DIRECTIONS 6-4

We would like to investigate how to apply the table alignment techniques to
mathematical notation and page layout. Many two-dimensional notations have
positioning and alignment requirements similar to tables. For instance, matrix
notation is obviously similar to a small table, and centered limits above a
summation operator share a common alignment. When two or more summation
notations appear in the same mathematical segment, we may wish that the
corresponding parts are aligned together on a common grid line. Similarly,
corresponding alignment would be desirable for large fractions with complex
numerator and denominator expressions, for matrices with similar numbers of
rows, and for integration operators with limits.

Page layout has long used a grid structure to describe the relationships
among parts of the page. Page and table layout could share interactive graphic
design tools for creating the grid structure and expressing the alignment
relationships. Treating pages as a table layout would require defining a new
kind of table entry for flowing text from one page to another, possibly related to
the mechanisms involved in the spreadsheet system proposed in Section 6.3.

6.5 User Interface Design

The crucial requirement here is to develop an appropriate user model for
interactively specifying graphic design intentions for layout and style. The
specification of style sheets through the metaphor of programming macro
commands for a document composition system is neither interactive nor intuitive.
Interactive graphic design tools are needed to support the graphic designer to
express their intentions within their own design framework.

The grid structure provides a metaphor common to the graphic design
discipline. The interactive techniques implemented in NEWSWHOLE [Tilbrook,
NEWSWHOLE] provide ideas for rubber-band grid lines, measurement rules, and
gravity for nearby placement of objects. The use of a template to refer to a
predefined table layout or illustration layout would simplify the construction of

repeated designs.

The constraint system used in the prototype for table layout needs an
interactive specification tool. Techniques are necessary for identifying alignment
relationships among a set of grid lines. Special arrangements may have to be
written in the expression language unless a suitable interactive specification

technique can be developed.



6 FUTURE DIRECTIONS 6-5

6.6 Expert Style Rules

The application of expert systems and knowledge representations to the
problem of document formatting are but a gleam in the researcher’s eye.
Capturing the style rules used in graphic design and book publishing may be a
productive approach towards aesthetic and effective page layout. There are
certainly many style manuals to choose from for the knowledge base. The grid
structure used in the table formatting prototype described here may serve as a
useful representation for the area layout problems that are the principal domain
of graphic design.




s N

Glossary

Glossary terms are emphasized in an italic sans-serif typefacé when they first
appeared in the thesis. Readers viewing the glossary with Tioga can use the Tioga
Def button to search for the definition of a selected glossary term. Select the term

_ and middle-click Def to cause the glossary viewer to scroll to the definition of that

term. For instance, select reference mark and middle-click Def to scroll immediately
to its definition “reference mark: symbol that connects the reference information
with its application in the table; for words, may use numbers, for numeric entries,
use symbols [~, A Manual of Style, 1969, p 287).”

acquisitions editor: the person within a back matter: the parts of a publication that
publishing organization who aquires a follow the main content; usually includes
manuscript to be considered for indices, glossaries, references,
publication. bibliographies, colophons; see front matter.
align on character: vertically align several baseline: the line on which a string of
table entries on some character found characters sits.
within the entry; examples; decimal points, bearoff: the whitespace between a table entry
commas, dollar signs, percent signs, plus and the nearest typographic rule or
sign, minus sign, neighboring table entry.
[—. A Manual of Style, 1969, p 284] ’ blue lines: lines drawn in a light blue color
artwork: the manifestation of an illustration (pen or ink) on camera-ready copy that arc
for a document; see mechanicals. invisible to the photographic process when
asterisk: the symbol *, used as a reference preparing printing plates; useful for
mark. outlining the grid lines of a page design to
author: the person who creates a manuscript. make aligning material easier.
author's alterations: modifications to a body: of a table, vertical columns to the right
document requested by an author after of the stub and below the hoxheads.
composing the manuscript; a publisher book editor; the person who marks
commonly budgets about 10% of the cost corrections within a manuscript to conform
for author’s alterations, however each to a set of guidelines.

change is very expensive.



GLOSSARY G-2

hoxes: as in ‘boxes-and-glue mode!’ [Knuth,
The TEXbook], the collection of
rectangular areas that have a width, depth,
and height; as in table entry boxes, the
abstraction of a table cell as a rectangular
area.

boxhead: the part of a table above the
columns that usually contains the column
headings; named for the use of typographic
rules to completely enclose the headings
with both horizontal and vertical rules.

boxheading: a synonym for boxhead, or one
of the column headings within the
boxhead.

brace: one of the pair of symbols {}, shows
relationship of groups [—, A Manual of
Style, 1969, p 285].

breaking: the action of separating joined parts
of a word (by hyphenation), or of a line
(by a line-breaking algorithm), or of a page

. (by a pagination algorithm).

broadside table: a table with its columns
designed to run parallel to the short
dimension of the page; see vertical table
[—., A Manual of Style, 1969, p 273]

brought forward: a table entry at the
beginning of a column of data copied from
some preceding part of the table; see
carried forward.

buck tooth: a word at the end of a line that
dangles out over the line below it [van
Leunen, Handbook, p 289].

bullet: the symbol e, used to mark the
beginning of an item in a list; an open
bullet has a dark ring around a light
center, while a closed bullet is entirely
dark.

camera-ready copy: the final form of a
document prior to producing printing
plates; frequently required to reduce
production costs since the author must bear
all the expense up to this stage.

carried forward: a table entry at the end of a
column of data that is copied to some
following part of a table; see brought
forward.

cell: intersection of a row and column or
hoxhead and stub: a table entry [—, A
Manual of Style, 1969, p 283].

centered: the positioning of an object to be
equidistant between two points; common
points are the left and right margins of a

page, the left and right grid lines in a table
column, or the top and bottom grid lines
in a table row.

class: a collection of objects all of the same
type; for example, the class of graphical
objects that are lines.

colophon: a description of how the
publication was produced; a publisher’s
emblem.

column headings: the identifying label that
appears at the top of a column.

column: a collection of table entries arranged
in a vertical stack.

composition: 1) literary composition, 2)
document composition, 3) table
composition; to make a whole out of parts.

compositor: the person who produces typeset
material by composing type on a typesetter.

constraint satisfaction: the state of satisfying
a set of constraints; usually a mathematical
solution to a system of equations that
describe the constraints.

constraint solver: an algorithm that computes
a constraint satisfaction solution.

constraints: a rule that limits the behavior of
an object.

continued: line of text indicating that tabular
material continues from a previous part of
the table [—, A Manual of Style, 1969, p
281].

copy editor: the person who marks
corrections within a manuscript to conform
to a set of guidelines; common guidelines
include grammar rules, language usage,
numbering schemes, and cross references.

copy: the textual material of a manuscript or
document.

copy fit: the process of adjusting the
formatting parameters to force copy to fill
a particular area completely.

craftsman: a person who has developed
considerable skill through practice and
talent.

cross relationships table: items in the stub are
identical to items in the boxhead [—, A
Manual of Style, 1969, p 290].

CRT: cathode ray tube, the means of
converting electronic signals to light by
striking phosphor with an electron beam;
used in computer displays.

cut-in head: a head that cuts across the body
of a table and applies to the tabular



s

GLOSSARY G-3

material lying below [—, A Manual of
Style, 1969, p 278,
ex. p 279]

dagger: the symbol {, used as a reference
mark.

decimal point: the symbol ., used to separate
the whole and fractional parts of a
number; used to align on character.

decked heads: two or more levels of boxheads
[—., A Manual of Style, 1969, p 278, ex. p
279].

difficult copy: the kind of material in a
manuscript or document that requires
special or expensive handling; usually
mathematical notation, tabular material,
and foreign language material (including
computer programming languages); also
penalty copy.

digital typesetter: a device for producing type
by electronic means, usually with a CRT or
laser.

ditto marks: the symbol " (as distinguished
from the double quotation mark symbol )
used within a table to indicate a repeated
entry.

docket: an enclosing folder or envelope that
contains all the parts of a publication
during the production process; often the
outside is used to record production steps,
times, and expenses;see job docket.

document: a collection of information
presented in a form to be read and
understood by humans; traditionally
documents are produced on paper, but the
concept extends to an electronic form of
presentation on a display screen.

document compilers: a computer program
that formats a document from a
specification of the content and a separate
collection of formatting parameters.

document models: a collection of abstract
representations of the organization of the
content within a document; common
models include a stream of text with
interspersed formatting directives, and a
hierarchical organization into sections of
text.

document structure: the organization of the
content within a document; typically a
document has both a logical structure (the
interrelationship of the content) and a
physical structure (the organization of a

document into pages or screens).

document style: a manner of formatting a
document, perhaps guided by rules for
headings, paragraphs, figures, captions, etc.

double dagger: the symbol }, uscd as a
reference mark.

double rule: two typographic rules, perhaps of
different thicknesses, separated by a small
amount of whitespace.

doubled up: two halves of a table running
side by side, with boxheads repeated over
the second half [—, A Manual of Style,
1969, p 280].

dummy: a preliminary sample of a finished
document, often produced to visualize the
design of the document; may be only a
crude approximation drawn by hand, or
more elaborate.

drop folio: a page number or folio placed at
the bottom of the page, typically for the
opening page of a chapter or for a
broadside table.

editor: 1) acquisitions editor, 2) copy editor,
3) journal editor, 4) production editor, 5)
book editor, 6) text editor.

elite: a typewriter spacing system with 12
characters per inch; see pica.

em space: the distance equal to the point size
of type, named for the letter ‘M’ which was
often designed to be a square of that size.

en space: the distance equal to one-half an
em space.

flush hottom: positioning so that the bottom
of the item is at the extreme limit of
vertical movement.

flush left: positioning so that the left of the
item is at the extreme limit of horizontal
movement.

flush right: positioning so that the right of
the item is at the extreme limit of
horizontal movement.

flush top: positioning so that the top of the
item is at the extreme limit of vertical
movement.

foldout insert: a table so wide that it must be
printed separately on a large shect of paper
and bound into the book [—, A Manual of
Style, 1969, p 274].

folio: a number identifying the page: the
page number; sce drop folio, running heads,
running feet.



-

GLOSSARY G-4

footnote: a portion of the document that
should be read out of sequence to provide
additional details; commonly used for
scholarly references or explanations; may
appear within tables to explain exceptional
circumstances.
format codes: in TTS typesetting, similar to
computer programming macros but named
by numbers; typically there are a small
number of them and each one has a fixed
length.
foundry type: the cast metal type that are
composed by hand into pages.
front matter: the parts of a publication that
precede the main content; may include a
half-title page, title page, imprint page,
table of contents, table of figures, abstract,
foreward, and dedication; see back matter.
furniture: the various odd-sized pieces of
used to fill voids in a page composed by
“hand from foundry type.
galley: the typeset form of part of a
document, without any concern for the
breaks between pages; typically a galley is
about 14 inches long, although modern
composition systems may produce galleys
of unlimited length.
galleys: the collection of typeset forms for a
complete document.
genealogical table: the ancestry of a human
being, or the pedigree of an animal [—, A
Manual of Style, 1969, p 290].
gloss: a brief explanatory note or translation
of a difficult or technical expression,
usually inserted in the margin or between
lines of a manuscript or text [—,
Dictionary).
graphic artist; the person who creates
illustrations and artwork for a document.
graphic arts: the collection of skills and crafts
in producing a printed document.
graphic design: the profession of creating
designs for printed or visual material in the
graphic arts.
graphic designer; a person who creates
graphic designs.
graphical style: the application of document
style techniques to the production of
illustrations.
grid system: the disciplined usc of lines to
align parts of a document; created by a
graphic designer.

grid: the rectangular array of lines in a grid
system.

gutter: the whitespace between two columns
of a table or a page.

hairline rule: a thin typographic rule, often
1710 of a point thick.

halftone: a technique for reproducing images
with varying densities by creating dots with
a single density but varied size; an image
produced through this technique.

horizontal alignment: see horizontally aligned.

horizontally aligned: the arrangement of two
or more objects side-by-side along a
common horizontal line; see vertically
aligned.

hot metal typesetting: the process of
mechanically producing stugs of type by
casting molten metal (usually a lead alloy)
into molds for each letterform; the slugs
are assembled by hand into pages; after
printing, the slugs could be melted and the
metal reused.

house style: the appearance of books
produced by a particular publishing house
or company.

hyphenation: the separation of parts of a
word into syl-la-bles by introducing
hyphens.

illustrator: 1) a person who creates
illustrations, 2) an interactive computer
program that aids in creating illustrations.

imposition: the arrangement of several pages
printed at once to reduce printing expenses
and time; care is required to orient the
pages so that after a signature is folded the
pages are in the proper order and position.

imprint page: a page in the front matter that
describes the publication; typically includes
a copyright notice, address of the publisher,
bibliographic information, and production
information or credits.

indexer: person or computer program that
producés the index entries

italic: a slanted typeface.

jacket: the cover of a book or document.

job docket: the record of the production
history of a document; see docket.

journal editor: the person who collects and
edits the contributions to a periodical
journal.

justification: the process of making a line of
text fill the measure.



57 N - A A o o S5 85 b 15 L kAR M

B S, P e

T

i A€

ST

GLOSSARY G-5

keyboarder: the person who cnters the
typesctting codes for a manuscript.

landscape: the orientation with the short
dimension vertical and long dimension
horizontal; sce portrait.

leaders: row of spaced periods [—, A Manual
of Style, 1969, p 282] that “lead the eye.”

leading: the whitespace between adjacent
lines of type; created by inserting a thin
strip of lead.

leading zeros: the zero digits that precede a
numeric value, for example, 03 or 000177.

letterform: the design or shape of a character
in a typeface, usually an alphabetic letter.

letterspace: the space between letters in a
word; the process of adjusting the space
between letters to justify a line of type.

line-breaking algorithm: an algorithm that
separates a long line of text into shorter
lines equal to the measure; may involve
hyphenation to separate long words, and
either local or global considerations within
a paragraph.

ligatures; the special design of symbol
formed by the joining of two letters that
often appear to touch, for example, the
common ligatures for the letter ‘f are ff, fi,
fi, fii, fA.

lower-rail: a TTS code for selecting an
additional set of symbols in the typesetting
device; see upper-rail.

macro packages: a collection of computer
program macros that define formatting
attributes and operations for a document
compiler.

manuscript: the written form of a document
prior to publication, often in hand-written
or typewritten form.

master images: an image from which
reproductions are made.

mathematical composition: the preparing of
two-dimensional notation that contains
mathematical symbols; typically considered
difficult copy.

measure: the length of a line of type.

mechanicals: the production-quality artwork
for an illustration.

monospaced fonts: all characters in a typeface
are of equal width.

moveable type: the technique of printing by
assembling the letters on a page from a
collection of type; as opposed to

hand-written originals or hand-carved
plates.

note: remark that applies to the tabular
material [—, A Manual of Style, 1969, p
287].

number sign: the symbol #, used as a
reference mark.

page breaks: the separation of a document
into pages; the places where pages are
separated.

page dummies: sample pages that represent
the finished document; see dummy.

page layout: the procedure of arranging all
the components on a page.

page repros: abbreviation of reproduction
pages.

pagination: the process of performing page
layout.

Painter’s algorithm: an algorithm for
rendering objects from back to front so the
last object rendered is visible.

paragraph mark: the symbol {, used as a
reference mark.

parallels: the symbol ll, used as a reference
mark.

peculiars: characters which are additional to
the normal font [Phillips, Handbook, p
188]; see sorts.

penalty copy: see difficult copy.

phototypesetter: a typesetter device that
exposes each letterform through a CRT
onto photographic material (film or paper).

photomechanical transfer: a photographic
process for preparing printing plates that
uses a large-format camera.

pi character: a symbol from a jumbled
collection; often but not necessarily
associated with a particular typeface.

pi font: a collection of pi characters, usually
designed to accompany a particular
typeface.

pi sorts: a jumbled collection of pi characters.

pica: a typesetting measurement equal to 12
points; a typewriter spacing system with 10
characters per inch; see elite.

PMT: abbreviation for photomechanical
transfer.

point: a typesetting measurcment equal to
0.013837 inch, approximately 1/72 of an
inch; common unit for type size.



it

g

it o T 0 5 e

[ SO

GLOSSARY G-6

portrait: the orientation with the long
dimension vertical and short dimension
horizontal; see landscape.
printing plates: the metal, plastic, or paper
sheet from which impressions are taken;
see signature, imposition.
production editor: the person responsible for
overseeing all the stages of producing a
document.
publisher: the organization responsible for
producing and disseminating a document.
publishing house: a reference to a publisher’s
establishment, no longer called houses.
quadded: the process of inserting space to
justify a line of text.
reference mark: symbol that connects the
reference information with its application
in the table; for words, may use numbers,
for numeric entries, use symbols [—, A
Manual of Style, p 287].
recto: the right-hand page of two facing
pages; see verso.
reproduction pages: the form of finished
pages of a document ready for printing; see
camera-ready copy, also page repros.
row: a collection of table entries arranged
side-by-side.
rule: 1) a style rule, 2) a typographic rule.
rules: see typographic rules.
running feet: the identifying material at the
bottom of each page in a chapter or
section; may include the page number or
folio. _
running heads: the identifying material at the
top of each page in a chapter or section;
usually includes the page number or folio.
runover: another name for a turnover
[—. A Manual of Style, 1969, p 281].
sample pages: pages produced to review the
design of a document, the formatting
specifications, or the capabilities of a
formatting system; see dummy.
sans-serif: a letterform design without a serif;
sec serif.
scabbard: whitespace, half a line high, that
surrounds a vertically centered heading
with an even number of lines; like a knife
sheath; to be avoided since the heading
lines of adjacent columns will be on
different baselines [—, GPO, p 189]
section mark: the symbol §, used as a
reference mark.

serif: the short line or widening at the end of
strokes in a letterform design; see
sans-serif,

shift-codes: TTS codes for shifting between

+ upper- and lower-case character codes.

signature: the impression from one printing
plate that contains several pages; see
imposition.

single rule: a single typographic rule; see
double rule.

small caps: the letterform for the capital
letters reduced in height; originally these
were designs, distinct from the capital
letters, that preserved the width of strokes,
but they are now commonly produced on
phototypesetters by reducing the type size
of capital letters.

solid: positioning adjacent lines of text with
no additional leading between them.

sorts: a collection of odd symbols in foundry
type, typically tossed into a large tray; a
symbol was found by sorting through the
collection.

source note: credit placed at the bottom of a
table indicating the source of the tabular
data
[—. A Manual of Style, 1969, p 286].

space: the distance between two objects; see
em space, en space, letterspace, wordspace,
whitespace.

spacebands: the adjustable-width spaces
between words used to justify a line of
type; originally, these were wedges
mechanically expanded until the type fit
the measure.

star: the symbol *, used as a reference mark.

stub: first column of a table containing the
row headings. [—, A Manual of Style, 1969,
p 278].

style: a way of doing something. 1) house
style, 2) writing style, 3) document style, 4)
graphical style.

subtotal: sum of some values in a column.

super-shift: a TTS code for extending the
meaning of the following code in a similar
way that a shift-code makes a lower-case
letter into an upper-case letter.

table: an orderly arrangement of information,
typically as a rectangular array of rows and
columns.

table entry: a cell at the intersection of a row
and column.



A.

R s ko, |

GLOSSARY G-7

table parts: boxhead, stub, panel.

tabular composition: the preparation of
material arranged in a table; see difficult
copy. :

text editor: a computer program for
modifying a manuscript stored as a
computer file.

total: sum of values in a column.

TTS: tele-typesetting-system; a coding
system, initially appropriate for 5-, 6-, 7-,
or 8-level punched paper-tape devices, used
for conveying both text content and
formatting directives to typesetters.

turnover: text set on the second and
subsequent lines of a table entry [—, A
Manual of Style, 1969, p 281].

type: a small block of wood or metal that
contains the raised design of a letter or
symbol; a collection of printed or
typewritten symbols.

typeface: a collection of symbols of a
particular type family (Helvetica, Times
Roman) in a common style (regular, italic),
in a particular weight (light, medium,
beld), with a particular spacing (condensed,
expanded), and possibly at a particular siz¢
(10 points, 36 points); modern digital
typesetters can create many variations of
typefaces through electronic techniques
(zooming, slanting, independent x and y
scaling).

typesetter: a device for producing type; a
person who operates a typesetting device;
see phototypesetter, digital typesetter.

typographic rule: a thin line drawn
horizontally or vertically within a
document; usually to separate rows or
columns within a table, or to separate
different kinds of document content, for
example, a figure and caption from the rest
of a page.

typography: the art of composing printed
material from moveable type.

typographer: person skilled in the art of
typesetting text; may specialize in font
design, type layout, lettering design.

upper-rail: see lower-rail; a TTS code for
selecting an additional set of symbols in
the typesetter.

verso: the left-hand or back page of two
facing pages; see recto.

vertical alignment: sce vertically aligned.

vertically aligned: the arrangement of two or
more objects above one another along a
common vertical line; sce horizontally
aligned.

vertical rule: a rule that is oriented vertically;
awkward for typesetting systems that
generate lines of type.

vertical table: a table with its columns
designed to run parallel to the long
dimension of the page; see broadside table
[—. A Manual of Style, 1969, p 273].

whitespace: the space that contains no type or
illustration; usually the margins
surrounding a page or a table entry.

wordspace: the width of the normal space
between words.

writing style: a manner of writing using
particular spelling rules and grammar rules.

WYSIWYG: ‘what you see is what you get’
referring to displaying what will be
printed; coined by Doug Engelbart;
pronounced ‘whizzy-wig.’



L TR

References

[—. A Manual of Style, 1969] —. 4
Manual of Style. The University of
Chicago Press, 12th edition, 1969.

[—., APLs66)] —. 4PL/%6 User’s Guide.
Honeywell Information Systems, Series
60 (Level 66)/6000 DD78 Rev. 1,
November 1977.

[—. DCF] —. Document Composition
Facility User’s Guide. 1BM Corporation,
SH20-9161, April 1980.

[, Dictionary} —~. The American Heritage
Dictionary of the English Language.
Morris, Willam, editor. Houghton
Mifflin, 1978.

[—, oML —. Document Composition
Facility, Generalized Markup Language.
[BM Corporation, SH20-9188, April
1980.

[—, Interpress}) —. [Interpress Electronic
Printing Standard. Xerox System
Integration Standard, XSIS 048404, April
1984.

[—,JaM] —. JaM Manual. Unpublished
manuscript, December 1984.

[—,cPO} —. U.S. Government Printing
Office Style Manual. Government
Printing Office, 1973.

[—. PostScript] —. PostScript Language
Manual. Adobe Systems, First edition,
revised. September 1984.

R-1

[—, SCRIBE] —. SCRIBE Document
Production System. UniLogic, Fourth
Edition, April 1984.

[—, TELE-A-GRAF] —. TELE-A-GRAF User's
Manual. Integrated Software Systems,
1984.

[—, The Chicago Manual of Style, 1982] —.
The Chicago Manual of Style. The
University of Chicago Press, 13th
Edition, 1982.

[aaUP, One Book/Five Ways] Association
of American University Presses. One
Book/Five Ways. William Kaufmann,
1978.

[Alexander, Editor Aids] —. “Computer
Aids for Authors and Editors,” The
Seybold Report on Publishing Systems 13
10. February 13, 1984, 3-18.

[Alexander, Micros] George A. Alexander.
“Micros in Publishing: The Push is On,”
The Seybold Report on Publishing
Systems 13 16. May 14, 1984,

[Alexander, Tyxset] George A. Alexander.
“TEX on a Micro: The Tyxset
Typesctting System,” The Seybold Report
on Publishing Systems 14 4. October 29,
1984, 9-14.

[Allman, -me] Eric Allman. -me Reference
Manual. Unpublished manuscript, 1983.



St 2 b

REFERENCES R-2

[aNsI, GkS] ANSI Technical Committee
X3H3 — Computer Graphics.
“Graphical Kernel System,” Computer
Graphics. Special GKS Issue, February
1984.

{Aspvall&Shiloach, Linear Inequalities]
Bengt Aspvall and Yossi Shiloach. “A
Polynomial Time Algorithm for Solving
Systems of Linear Inequalities with Two
Variables per Inequality,” SIAM Journal
of Computing 9 4. November 1980,
827-845.

[Baker, 5/4 Algorithm] Brenda S. Baker,
Donna J. Brown, and Howard P. Katseff.
“A 5/4 Algorithm for Two-Dimensional
Packing,” Journal of Algorithms 2 4.
December 1981, 348-361.

[Baker, Packings] Brenda S. Baker, E.G.
Coffman Jr., and Ronald L. Rivest.
*Orthogonal Packings in Two
Dimensions,” SIAM Journal of
Computing 9 4. November 1980,
846-855.

. [Barnett, Computer Typesetting] Michael P.

Barnett. Computer Typeselting:
Experiments and Prospects. MIT Press,
1965.

[Baudelaire&Stone, Griffin] Patrick
Baudelaire and Maureen Stone.
“Techniques for Interactive Raster
Graphics,” Computer Graphics 14 3.
July 1980, 314-320.

[Baudelaire, Draw] Patrick C. Baudelaire.
“Draw Manual,” Alto User's Handbook.
Xerox PARC, 1979, 97-128.

[Beach&Stone, Graphical Style] Richard J.
Beach and Maureen Stone. “Graphical
Style — Towards High Quality
Mustrations,” Computer Graphics 17 3.
July 1983, 127-135.

[Beach, Computerized Typesetting] Richard
J. Beach. Computerized Typeseiting of
Technical Documents. University of
Waterloo Computer Science Technical
Report CS-77-38, June 1977.

[Beach, CS740 project] Richard J. Beach. 4
Data Structure for Formatting
Hierarchical Tables. Unpublished
manuscript, December 1983.

[Beach, Paint] Richard J. Beach, John C.
Beatty, Kellogg S. Booth, Eugenc 1.
Fiume, and Darlene A. Plebon. “The
Message is the Medium: Multiprocess
Structuring of an Interactive
Paint Program,” Computer Graphics 16 3.
July 1982, 277-287.

[Beach, PROFF] Richard J. Beach. Photon
ROFF Text Formatter (PROFT).
University of Waterloo, Computer
Science Research Report, CS-76-08,
April 1976. :

[Beach, Typeset] Richard J. Beach. Type
Reference Manual. Unpublished
manuscript, 1981.

[Beatty, Picture] John C. Beatty, Janet S.
Chin, and Henry F. Moll. “An
Interactive Documentation System,”
Computer Graphics 13 2. August 1979,
71-82.

[Bell, Sc.Am. illustration] Edward Bell.
Personal communication concerning the
many iterations needed by illustrators to
meet the Scientific American style and
quality expectations. 1983.

[Berg, Composition] N. Edward Berg.
Electronic Composition. Graphic Arts
Technical Foundation, 1975.

[Biggerstaff, TABLE] Ted Biggerstaff, D.
Mack Endres, and Ira R. Forman.
“TABLE: Object Oriented Editing of
Complex Structures,” [EEE Conference on
Software Productivity. 1984, 334-344.

[Booth&Gentleman, Anthropomorphism]
K.S. Booth, W.M. Gentleman and
Jonathan Schaeffer. “Anthropomorphic
Programming,” Conference on Issues for
Large Scale Computing. Salishan Lodge,
Oregon, March 1982. Also available as
University of Waterloo Computer
Science Research Report, CS-82-47,
February, 1984.



REFERENCES R-3

[Borning, Thinglab] Alan Borning.
Thinglab — A Constraint-Oriented
Simulation Laboratory. PhD thesis,
Stanford University, 1979. Also available
as Xcrox PARC Technical Report
SS1.-79-3, 1979 or Stanford Computer
Science Department Report
STAN-CS-79-746, July 1979.

[Brader, Incremental Formatter] Mark
Stuart Brader. An [ncremental Text
Formatter. University of Waterloo,
Computer Science Research Report,
CS-81-12, April 1981.

[Cargill, Views] T.A. Cargill. A View of
Source Text for Diversely Configurable
Software. University of Waterloo,
Computer Science Technical Report,
CS-79-28, 1979.

[Carmody, Hypertext] S. Carmody, W.
Gross, T.E. Nelson, D. Rice and A. van
Dam. “A Hypertext Editing System for
the /360, in Pertinent Concepts in
Computer Graphics [Faiman, Pertinent
Graphics]. 1969.

[Chamberlin, JaNUS] D.D. Chamberlin, et
al. “JANUS: An interactive document
formatter based on declarative tags,”
I1BM Systems Journal 21 3. 1982,
250-271.

[Cherry, Writing Tools] Lorinda L. Cherry.
“Writing Tools,” IEEE Transactions on
Communications 1. January 1982,
100-105.

[Coffman, 2D Packing] E.G. Coffman Jr.,
M.R. Garey, D.S. Johnson, and R.E.
Tarjan. “Performance Bounds for
Level-Oriented Two-Dimensional
Packing Algorithms,” S{AM Journal of
Computing 9 4. November 1980,
808-826.

[Corliss&Bozman, NBSS3] C.H. Corliss and
W.R. Bozman. “Experimental
Probabilities for Spectral Lines of
Seventy Elements,” NBS Monograph 53.
July 20, 1962.

[Crow, Image Environment] F.C. Crow. “A
More Flexible Image Generation
Environment,” Computer Graphics 16 3.
July 1982, 9-18.

[Dantzig, LP] G. Dantzig. Linear
Programming and Extensions. Princeton
University Press, 1963.

[Davis, Tabular Presentation] James A.
Davis and Ann M. Jacobs. “Tabular
Presentation,” International FEncyclopedia
of the Social Sciences. 1968, 497-509.

[Dyck, Computing] V.A. Dyck, J.D.
Lawson, J.A. Smith, and R.J. Beach.
Computing: An Introduction to
Structured Problem Solving Using
PASCAL. Reston, 1982.

[Dyck, FORTRAN77] V.A. Dyck, J.D.
Lawson, and J.A. Smith. FORTRAN 77:
An Introduction to Structured Problem
Solving. Reston, 1983

[Dyck, pascar] V.A. Dyck, J.D. Lawson,
J.A. Smith, and R.J. Beach. Computing:
An Introduction to Structured Problem
Solving Using PASCAL. Reston, 1982

[Dyck, wATFIV-Ss] V.A. Dyck, J.ID. Lawson,
and J.A. Smith. [Introduction to
Computing: Structured Problem Solving
Using WATFIV-S. Reston, 1979

[Dyment, Corkscrew] Doug Dyment. “A
Corkscrew for the Software Bottieneck,”
Micros 1 2. October 1982, 21-24.

[Engelbart, NLS] Douglas C. Engelbart and
William K. English. “A research center
for augmenting human intellect,” AFIPS
Conference Proceedings 33. 1968,
395-410.

[Engelbart, Terminals] Douglas C.
Engelbart. “Design considerations for
knowledge workshop terminals,”
Proceedings of the National Computer
Conference. June 1973, 221-227.

[Faiman, Pertinent Graphics] M. Faiman
and J. Nievergelt (eds). Pertinent
Concepts in Computer Graphics.
University of Illinois, 1969.

{Furuta, Survey] Richard Furuta, Jeffery
Scofield, and Alan Shaw. “Document
Formatting Systems: Survey, Concepts,
and Issues,” Computing Surveys 14 3.
September 1982, 417-472.



[,

REFERENCES R.4

[Garey&Johnson, NP]  Michael R. Garey
and David S. Johnson. Computers and
[ntractability: A Guide to the Theory of
NP-Completeness. W.H. Frecman and
Company, 1979.

[George&Liu, Sparse Matrices] Alan George
and Joseph W-H. Liu. Computer
Solution of Large Sparse Positive Definite
Matrices. Prentice-Hall, 1981.

[Goines, Alphabet] David Lance Goines. A
Constructed Alphabet. David R. Godine,
1982.

[Good, Etude interface] Michael. Good.
“Etude and the Folklore of User
Interfaces,” SIGPLAN Notices 16 6.
June 1981, 34-43.

[Gruhn, YFL] Ann M. Gruhn. The
Yorktown Formatting Language. 1BM
Computer Science Research Report,
RC6994, June 1, 1978.

[Hall, Tabular Presentation] Ray Ovid Hall.
Handbook of Tabular Presentation.
Ronald Press, New York, 1943.

[Hammer, Etude] Michacl Hammer, et al.
“The implementation of Etude, an
integrated and interactive document
production system,” SIGPLAN Notices
16 6. June 1981, 137-141.

[Hurlburt, The Grid] Allen Hurlburt. The
Grid. Van Nostrand Reinhold, 1978.
[llson, Etude] Richard Ilson. An Integrated

Approach to Formatted Document
Production. Masters thesis,
Massachusetts Institute of Technology,
August 1980.

[Johnson, cacM] Stephen C. Johnson.
Private communication concerning
typesetting journal articles within Bell
Laboratories, 1984.

[Johnson, JacM style] Stephen C. Johnson.
Personal communication concerning the
difficulties when typesetting journal
articles for JACM. 1984.

[Kahn&Hewitt, Actors] Kenneth M. Kahn
and Carl Hewitt. “Dynamic Graphics
Using Quasi Parallelism,” Computer
Graphics 12 3. August 1978, 357-362.

[Kernighan&Cherry, eqn]  Brian W.
Kernighan and Lorinda Cherry. “A
System for Typesetting Mathematics,”
Communications of the ACM 18 3.
March 1975, 151-157.

[Kernighan, ditroff] Brian W. Kernighan. A
Typesetter-independent TROFF. Bell
Laboratories Computing Science
Technical Report, 97, March 1982.

[Kernighan, pic] Brian W. Kernighan.
“PIC—A Language for Typesetting
Graphics,” Software— Practice and
Experience 12 1. January 1982, 1-21.

[Khachiyan, tP] L.G. Khachivan. “A
Polynomial Algorithm in Linear
Programming,” Doklady Akademiia nauk
SSSR Novaia Seriia 244. 1979,
1093-1096. [English translation in Soviet
Mathematics Doklady 20, 1979, 191-194.]

[Kimura, thesis] Gary D. Kimura. A
Structure Editor and Model for Abstract
Document Objects. PhD thesis,
University of Washington, July 1984,
Also available as Technical Report
84-07-04, Department of Computer
Science, University of Washington.

[Kimura&Shaw, Abstract Documents] Gary
D. Kimura and Alan C. Shaw. “The
Structure of Abstract Document
Objects,” SIGOA Newsletter 5 [-2. June
1984, 161-169.

[Knuth, amS lecture] D.E. Knuth.
“Mathematical typography,” Bulletin
(New Series) of the American
Mathematical Society 1 2. March 1979,
337-372. Reprinted in TEX and
METAFONT: New Directions in
Typesetting. American Mathematical
Society and Digital Press. 1979, Chapter
L.



cwrat

e a e e e

A7 P A, Mo T

REFERENCES R-5

[Knuth, Line Breaking] Donald E. Knuth
and Michael F. Plass. *Brecaking
Paragraphs into Lines,”

Sofiware— Practice and Experience 11,
1981, 1119-1184.

[Knuth, METAFONT] D.E. Knuth.
“METAFONT, a system for alphabct
design,” TgX and METAFONT: New
Directions in Typesetting. American
Mathematical Society and Digital Press,
1979, Chapter 3. v

[Knuth, The TgXbook] Donald E. Knuth.
The TpXbook. Addison-Wesley, 1984.

[Lamport, L2TEX] Leslie Lamport. The
LT X Document Preparation Systeni.

- Unpublished manuscript, February 11,
1984.

[Lampson, Bravo] Butler W. Lampson.
“Bravo Manual,” Alto User's Handbook.
Xerox PARC, 1979, 31-62.

[Leith, Metal type] Robert Leith. Private
communication concerning typesetting
customers insisting on metal type for
legal documents to avoid the potential
for errors in electronic compositions
sytems using phototypesetters, 1981.

[Lesk, -ms] M.E. Lesk. Typing Document
on the UNIX System: Using the —ms
macros with Troff and Nroff. Bell
Laboratories Internal Memorandum,
October §, 1976.

[Lesk, refer] M.E. Lesk. Some Applications
of Inverted Indexes on the UNIX System.
Bell Laboratories Computing Science
Technical Report, 69, June 1978.

[Lesk, tbl]] M.E. Lesk. Tbl- A Program to
Format Tables. Bell Laboratories
Computing Science Technical Report, 49,
September 1976. _

[Liang, Hyphenation] Frank Liang. “Word
Hy-phen-a-tion by Com-put-er,” PhD
thesis, Department of Computer Science,
Stanford University, 1983. Also available
as Stanford Computer Science
Department Report STAN-CS-83-977,
1983.

[Lipkie, Star Graphics] Daniel E. Lipkie,
Steven R. Evans, John K. Newlin, and
Robert L. Weissman. *“Star Graphics:
An Object-Oriented Implementation,”
Computer Graphics 16 3. July 1982,
115-124.

[Lusignan, ICCH3] Serge Lusignan and John
S. North (eds). Computing in the
Humanities: Proceedings of the Third
International Conference on Computing
in the Humanties. University of
Waterloo Press, 1977.

[Macdonald, Writer's Workbench] Nina H.
Macdonald, Lawrence T. Frase, Patricia
S. Gingrich, and Staccy A. Keenan.
“The Writer's Workbench: Computer
Aids for Text Analysis,” IFEF
Transactions on Communications 1.
January 1982, 105-110.

[Monier, Scribe math] Louis Monier.
Private communication concerning
implementing mathematics formatting for
Scribe, 1984.

{Miller-Brockman, Grid Systems] Josef
Muller-Brockman. Grid systems in
graphic design. Hastings House
Publishers, 1981.

[Myers, Incense] Brad A. Myers. “lIncense:
A System for Displaying Data
Structures,” Computer Graphics 17 3.
July 1983, 115-125.

{Knott, Napier commemorative] Cargill
Gilston Knott, editor. Napier

Tercentenary Memorial Volume,
Published for the Royal Society of
Edinburough by Longmans Green and
Co., London, 1915.

[Nelson, Juno] Greg Nelson. “Juno, a
constraint-based graphics system,”
Computer Graphics 19 3. July 1985.

[Nelson, Program Verification] Greg Nelson.
Techniques for Program Verification.
Xerox PARC Technical Report
CSi.-81-10, 1981.




npm b e iy T gt g

L et e e e

REFERENCES R-6

[Nelson, Literary Machines] Ted Nelson.
Literary Machines. Ted Nelson,
Swarthmore, PA, 1981.

[Nelson, Xanadu] Theodor H. Nelson.
“Replacing the Printed Word: A
Complete Literary System,” /nformation
Processing 1980, IFIPS. 1980,
1013-1023.

[Newman&Sproull, Computer Graphics]
W.M. Newman and R.F. Sproull.
Principles of Interactive Computer
Graphics, Second edition. McGraw Hill,
1973.

[Newman, Markup] William M. Newman.
“Markup Manual,” Alto User’s
Handbook. Xerox PARC, 1979, 85-96.

[Ossanna, troff] Joseph F. Ossanna.
NROFF/TROFF User's Manual. Bell
Laboratories Computing Science
Technical Report, 54, October 1976.

[Ousterhout, Corner Stitching] John K.

* OQusterhout. Corner Stitching: A Data
Structure Technique for VLSI Layout
Tools. University of California,
Berkeley, Computer Science Division
Report UCB/CSD82/114, December
1982.

[Peck, Chaucer] Russell A. Peck (ed).
Chaucer’s Lyrics and Anelida and Arcite.
University of Toronto Press, 1983.

[Phillips, Computer Typesetting] Arthur
Phillips. Computer Peripherals and
Typesetting. Her Majesty’s Stationery
Office, 1968.

[Phillips, Handbookd]  Arthur H. Phillips.
Handbook of Computer- Aided
Composition. Marcel Dekker, 1980.

[Phillips, Tabular Composition] Arthur H.
Phillips. “Tabular Composition,” The
Seybold Report 8 23. August 13, 1979.

[Pierson, PAGE-1] John Pierson. Computer
Composition using PAGE-].
Wiley-Interscience, 1972.

[Plass, Optimal Pagination] Michael F.
Plass. Optimal Pagination Technigues for
Automatic Typesetting Systems. Xerox
PARC Technical Report, [SL-81-1,
August, 1981.

[Plass, pagination] Michael F. Plass.
Optimal Pagination Techniques for
Automatic Typesetting Systems. Xerox
PARC Technical Report, ISI.-81-1,
August, 1981.

[Reid, Scribe thesis] Brian K. Reid. Scribe:
A Document Specification Language and
its Compiler. PhD thesis, Carnegie
Mellon University, October 1980.

[Ritchie, Turing Lecture] Dennis M.
Ritchie. “Reflections on Software
Research,” 1983 ACM Turing Award
Lecture, Communications of the ACM 27
8. August 1984, 758-760.

[Rosenthal, Graphical Resources] David
S.H. Rosenthal. “Managing Graphical
Resources,” Computer Graphics 17 1.
January 1983, 38-45.

[Saltzer, RUNOFF] J. Saltzer. “*Manuscript
typing and editing: TYPSET, RUNOFFE,”
The Compatible Time-Sharing System: A
progranuner’s guide. MIT Press, 19695,
Section AH.9.01.

[Seybold, Fundamentals] John W. Seybold.
Fundamentals of Modern
Photocomposition. Seybold Publications,
1979.

[Seybold, MacWrite] Seybold, Jonathan.
“Macintosh Publishing Systems,” The
Seybold Report on Publishing Systems 14
9. January 28, 1985.

[Seybold, Xerox’s Star] Jonathan Seybold.
“Xerox's Star,” The Seybold Report 10
16. April 27 1981.

[Shand, CornerStitching] Mark Shand.
CornerStitching. Unpublished
manuscript, December 1984.

[Smith, Star Interface] David Canficld
Smith, Charles Irby, Ralph Kimball, and
Eric Harstem. “The Star User [nterface:
An Overview,” Proceedings of National
Computer Conference. June 1982,
515-528.




S g

S PNN

REFERENCES R-7

[Stevens, NBS99] Mary Elizabeth Stevens
and John L. Little. “Automatic
Typographic-Quality Typesetting
Techniques: A State-of-the-Art Review,”
NBS Monograph 99. April 7, 1967.

[Strachey, GpMm]  C. Strachey.
“General-Purpose Macrogenerator,”
Computer Journal. October 1965.

[Sutherland, Sketchpad] LE. Sutherland.
“SKETCHPAD: A Man-Machine Graphical
Communication System,” S/JCC. 1963,
329.

[Teitelman, Cedar] Warren Teitelman. The
Cedar Programming Environment: A
Midterm Report and Examination. Xerox
PARC Technical Report, CSL-83-11,
June 1984.

[Thomas, Graphics Parameters] Elaine L.
Thomas. “Methods for Specifiying
Display Parameters in Graphics
Programming Languages,” ACM
SIGPLAN/SIGGRAPH symposium on
Graphic Languages. April 26-27, 1976,
54-56.

[Tilbrook, NEWSWHOLE] David M. Tilbrook.
A Newspaper Pagination System.

Masters thesis, Computer Science

Department, University of Toronto, 1976.

[Updike, Printing Types] Daniel Berkeley
Updike. Printing types, their history,
forms, and use: a study in survivals, 2nd
edition. Harvard University Press, 1937.
Reprinted by Dover, 1980.

[van Leunen, Handbook] Mary-Claire van
Leunen. A Handbook for Scholars.
Alfred A. Knopf, 1978

[van Leunen, One Document] Mary-Claire
van Leunen. How [ Wrote One
Document. Unpublished manuscript,
February 2, 1984.

[van Wyk, ideal] Christopher J. van Wyk.
“A Graphics Typesetting l.anguage,”
SIGPLAN Notices 16 6. June 1981,
99-107.

[Warnock& Wyatt, CedarGraphics] John
Warnock and Douglas K. Wyatt. “A
Device Independent Graphics Imaging
Model for Use with Raster Devices,”
Computer Graphics 16 3. July 1932,
313-319.

[White, Picc] Alex R. White. Picc — A4
C-based Illustration Language. Masters
thesis, Department of Computer Science,
University of Waterloo, 1981.

[Williamson, Book Design] Hugh
Williamson. Methods of Book Design.
Oxford University Press, 1966.

[Winograd&Paxton, TgX Indexing] Terry
Winograd and Bill Paxton. “An
Indexing Facility for TgX”, Tugboat
(TEX users’ group newsletter), 1 1,
October 1980, Appendix A.

[Witten, Traps] Ian H. Witten, Mike
Bonham, and Evelyne Strong. “On the
Power of Traps and Diversions in a
Document Preparation Language,”
Software— Practice and Fxperience 12.
1982, 1119-1131.

[Zabula-Salelles, GOB] Ignatio Andres
Zabula-Salelles. [nteracting with Graphic
Objects. Stanford Computer Science
Department Report, STAN-CS-82-960,
December 1982.

[Zeisel, Figures] Hans Zeisel. Say [1 With
Figures. Harper & Row, Fourth edition,
1957.



R Y e gl

EEpaee,

Index

A

abstract document object model, 2-39, 6-2
acquisition editor, 2-8, G-1

~Adobe Systems Inc., 2-14

aesthetics, 1-9, 4-2, 4-4, 4-7, 4-19, 5-5, 5-8,
5-20, 6-3, 6-5

Alexander, George A., 2-8, 2-26, 2-32, R-1

algorithm

dynamic programing, 2-31

enumerate area, 5-30, 5-31—5-32, 5-33,
5-45

graphics rendering, 3-15, 3-16

hit testing, 5-32—5-33

hyphenation, 2-30

incremental formatting, 2-32

Janus packer, 2-35

line breaking, 2-30, 2-31, 2-34, 3-5, 5-19

minimal repainting, 6-2—6-3

optimal page breaking, 2-30, 2-31, 4-14

page breaking, 2-21

painter’s, 5-29

Simplex method, 5-37

table entry deletion, 5-32, 5-33—35-35, 6-2

table entry insertion, 5-32, 5-35, 6-2

table layout, 5-30, 5-32, 5-44-5-45

table rendering, 5-30, 5-32

alignment, 4-7

baseline, 3-16, 4-9, 5-18—5-19

bottom baseline, 5-16, 5-18

centered, 3-16, 5-16 —5-18, 5-24, 5-39, 6-3
centered baseline, 5-16, 5-18

character, 5-17, G-1

-1

alignment (continued)

constraints, 5-38

decimal point, 4-3, 4-8, 5-8, 5-16, 5-17,
5-19, G-2

flush bottom, 3-16, 4-8 —4-9, 5-16—5-18,
G-3

flush left, 3-16, 4-8, 5-16—5-18, 5-39, G-3

flush right, 3-16, 4-8, 5-16—5-18, 5-39, G-3

flush top, 3-16, 4-8—4-9, 5-16—5-18, G-3

horizontal, 4-7, 5-11, 5-17, 5-37, G-4

mathematical equations, 4-8
point, see alignment point
tab stops, 4-17
top baseline, 5-16, 5-18, 5-24
vertical, 4-7, 4-8, 5-11, 5-37
whitespace balancing, 5-19

alignment point, 5-9, 5-11, 5-14, 5-27, 5-30,
5-37, 5-39

Allman, Eric, 2-26

AMS lecture by Knuth, 2-31

ANSL, 3-6, R-2

anthropomorphism, 2-6

APL/66, 1-6, R-1

archiving tools, 1-5

ARPANET, 2-29

arrows, 3-3. 3-17

artist procedure, 5-9

ArtworkClass property, 3-9—3-12, 3-19,
5-21
ArtworkFileName, 3-12
ArtworkImage, 3-12
ArtworkNode, 3-10
ArtworkPath, 3-12
Table. 5-21




INDEX

Aspvall, Bengt, 5-37, R-2

author's alteration, 1-3, 2-38, G-1

author, 1-2, 2-2, 2-4, 2-7, 2-8, 2-10, 2-11, 2-22,
2-27, 2-38—-2-39, 3-2, G-1

B

Bézier parametric cubic curves, 3-12, 3-13

back matter, 2-3, G-1

background tints, 4-12, 4-13, 5-2, 5-22, 5-23,
5-24, 5-27, 5-28, 5-31, 5-46

backslash character, 2-20, 2-24

Baker, 5-4, 5-6, R-2

balancing whitespace, 5-19, 5-20, 5-40, 5-43,
6-3

Barnett, Michacl P., 2-19, 4-3, R-2

baseline alignment, see bascline alignment

Baskerville typeface, 2-18, 2-38

batch processing, 1-8, 4-19

Baudelaire, Patrick, 3-5, R-2

Beach, Richard J., 1-5, 1-9, 2-6, 2-19, 2-20,
2-21, 2-28, 3-1, 3-17, 3-18, 5-12, R-2

bearoff distance, 4-10, 4-13, 5-3, 5-16, G-1

" Beatty, John C., xi, 3-5, R-2

Bell, Edward, 1-10, R-2

Bell Laboratories, 2-23, 2-26

Berg, N. Edward, 2-19, R-2

bibliographic references, 2-25, see also
troff, refer

Biggerstaff, Ted, 2-27, 4-19, 4-20, R-2

BIN PACKING PROBLEM, 5-5

binder, 2-14

binding gutter, 4-15

bitmap illustrator, 3-5

blank lines, 4-4

blue and white technical reports, 3-9

blue lines, 2-13, G-1

bold typeface, 4-10, 5-17

book designer, 3-3

Booth, Kellogg S., xi, 2-6, R-2

border patterns, 3-17. 4-12, 6-2

Borning, Alan, 5-35—5-36, R-3

bounding box, 3-16, 3-1§

box head, 4-4, 4-5, 4-16, 4-18, G-2

boxes and glue model, 2-30, 2-31, 4-19, S-9,
G-2

Bozman, W.R., 2-19, 4-3, R-3

braces within tables, 4-12

Brader, Mark S., xii, 2-20, 2-24. R-3

Bravo text editor, 2-37, R-5

breaking tables, 4-14

broadside tables, 4-15, G-2
brought forward totals, 4-15, 6-3, G-2
busincss graphics, 3-5

C

C programming language, 3-5

Cargill, Tom, 2-18, 2-40, R-3

Carlsen, Chester, 5-10

Carmody, S., 1-4, R-3

carried forward totals, 4-15, 6-3, G-2

Cedar, 1-2, 2-17, 2-37, 3-1, 3-7, 3-12, 5-20,
5-25. 6-1, R-7

CedarGraphics, 3-1, R-7, see also device
independent graphics package

centering, 4-16, G-2

Chamberlin, David, 2-35, R-3

Chaucer’s Lyrics and Anelida and Arcite, 1-5,
R-6

chemical formulae, 1-4

Cherry, Lorinda L., 2-5, 2-25, 2-28, R-3, R-4

Chicago Manual of Style, The, 1-10, 2-2. 2-5,
4-2, 4-11, R-1

coder, 2-12

Coffman, 5-6, 5-7, R-3

color printing, 2-14, 2-18, 6-2

color separations, 2-14

column headings, vertical, 4-15

column hierarchy, 5-12—5-13

column structure, 4-4, 5-2

column style, 4-10

column width, 4-4

command character, 2-24

commercial typesetting, 2-21, 2-26

Communications of the ACM, 2-26, 5-2

complexity of table formatting, 5-3—5-9

compositor, 2-11, 2-12, 2-15, 2-16

compressed typeface, 4-13

Computer Graphics Laboratory, xi

computer programs, typesetting of, xii, 1-6,
2-8, 3-2

computerized typesetting, 1-9, 2-19

Computing, 3-3, R-3

consistency among illustrations, 2-12, 3-1, 3-4,
3-19

constraint satisfaction, 5-16, G-2

constraint solver, 2-31, 5-1, 5-14, 5-30,
5-37~5-42, 6-1, 6-4. G-2
lincar constraints, 5-36
nonlincar constraints, 5-36
objective function, 5-38, 5-40



INDEX

constraints, in table prototype, 5-22

continuation headings, 4-14—4-15, 4-18

copy editor, 2-2, 2-4, 2-8, 2-10, 2-11, 2-15,
2-16, G-2

copy fit, 2-12, G-2

Corliss, C.H., 2-19, 4-3, R-3

corner stitching, 5-24—5-28, 6-2, R-6
Cedar implementation, 5-26, 5-32
coordinate system, 3-26
data structure, 5-24—5-28
enumeration algorithm, 5-31
neighbor finding algorithm, 5-32
point finding algorithm, 5-32
tesselations, 5-26, 5-27
tiles, 5-26, 5-27

corrections, 1-8

cross references, 1-3, 1-4, 1-8, 2-10, 6-2

Crow, Frank, 3-5, 3-19, R-3

D

Dantzig, G., 5-37. R-3

. data structure, 2-24, 2-28, 2-35, 2-40, 3-2, 5-2

database, 1-4, 2-29, 2-30, 2-40, 4-3

DCF (Document Composition Facility), 2-35,
R-1

debugging, 2-23

DEC PDP-11, 2-27

decimal point alignment, see alignment,
decimal point _

decorations, 5-2, 5-14, see also ornaments

delimiters, 2-24, 2-25

design, 2-22

device resolution, 2-18, 2-38, 5-11, 5-31

device-independent graphics package, 5-11,
5-30

device-independent troff, 2-24

diction analysis, 1-7, 2-11

difficult copy, 2-5

display screen, 2-18, 2-23, 2-38, 3-6, 5-11,
5-31, 5-32

displayed equations, 2-25

ditroff, 2-24

diversions, 2-27, 2-28, see also traps

document compilers, 1-9, 1-10, 2-22, 2-23,
2-24, 2-28, 2-29, 2-35—2-37, 2-38, 3-1, 3-3.
3-6, 3-9, G-3

Document Composition Facility (DCH), 2-35

document formatter, 2-20, 2-22, 2-25, 2-30,
2-31. 3-4

document interchange, 5-21

document layout, 2-31

document models, 2-1, 2-39, 5-46, 6-1, G-3

document object, 3-10, 5-3, 5-9, see also
layout procedure, and rendering procedure

document structure, 2-34, 2-39, 5-3, G-3

document style, 1-7, 1-9-1-10, 2-22, 2-26,
5-1, G-3

documents, 1-2, 2-22, G-2
clectronic, 1-1

dot lcaders, see leaders

draft manuscripts, 2-8. 2-9, see also
manuscripts

draftsman, 1-8, 3-2, 3-3

Draw illustrator, 3-5

drop shadows, 3-17—-3-18

Dyck, V.A., xii, 1-5, 3-2, 3-3, R-3

Dyment, Doug, 2-6, R-3

dynamic programming, 5-5

E

editing, 2-24, 2-35, 2-37, 2-40, 3-6
editor, G-3
acquisition, 2-8
aids, 2-8
Bravo, 2-37, R-5
editor (continued)
copy, see copy editor
journal, 2-8
production, 2-2, 2-4, 2-8, 2-9
text, 2-8
Tioga, see Tioga
electronic composition tools, 1-2, 1-5
lack of integration, 1-5, 2-5
electronic documents, 1-1, 5-1
Engelbart, Douglas C., 1-4, 2-20—2-21, 2-32,
2-40, 3-7, R-3
eqn. 1-6, 1-7, 2-25, 2-26, 3-2, 4-18, 4-19, 5-9,
5-17
neqgn, 2-26
syntax checker, 2-23
equal width columns, 4-7, 4-9, 5-20, 5-22,
5-40, 6-3
cquation solver, see constraint solver
Etude, 2-1, 2-34, 2-35, 2-39, 3-9, R-4
cxpert systems, 1-10, 6-1, 6-5

F

facing pages, 2-16, 4-15
figurc caption, 4-6



INDEX

filter/pipe model, 2-25

final pages, 1-8, see page repros

fixed width characters, see monospaced fonts

flowing between table cntries, 4-6

flush bottom alignment, see alignment, flush
bottom

flush left alignment, see alignment, flush left

flush right alignment, see alignment, flush
right

flush top alignment, see alignment, flush top

folding table entries, 4-6, 4-9, 4-14, 4-17,
4-18, 5-17, 5-20, 5-43, 6-3

foldout plate, 4-15, G-3

footnotes, 1-8, 2-16, 2-18, 2-27, 6-2, G-4
in tables, 4-7, 4-10, 4-12—-4-13

foreign languages, xii, 1-4, 2-10

form versus content, 1-1, 1-10, 2-29, 2-30,
2-34, 3-7

format codes, 2-12, 2-15, G-3

formatting commands, 1-5, 2-22, 2-36, 2-39,
3-6, 3-9

formatting rule, 4-6

formatting tags, , 2-22, 2-23, 2-24, 2-36

FORTRANT77, 1-5, R-3

foundry type, 2-13, G-3

fractions, 2-26

front matter, 2-3, 2-8, G-3

Fundamentals of Modern Photocomposition,
2-19, 2-21

furniture, 2-13, G-3

Furuta, Richard, 1-9, 2-18, 2-20, 2-24, R-3

G

galleys, 1-3, 2-8, 2-21, G-3

Garamond typeface, 2-18, 2-38

Garey, 5-4, 5-5, R-4

Generalized Markup Language, see GML

Gentleman, Morven W., xii, 2-6, R-2

geometric representation, 3-12—3-15, 3-17,
3-18

geometry, 5-3

George, Alan, 1-7, 3-2, R-4

GKS (Graphical Kernel System standard),
3-6, R-2

gloss, 4-10, G-3

glue, 3-10

GML (Generalized Markup Language), 2-35,

R-1
GoB illustrator, 3-5, 6-2, R-7
Goines, David Lance, 5-15, R4

Good, Michael, 2-34, R-4

GPM (General Purpose Macroprocessor), 2-28,
R-7

graphic artists, 1-3, 3-20, G-3, see also graphic
dcesigner

graphic arts, 1-3. 2-28, 2-35 2-40, G-3
standards of quality, 1-3, 1-4, 1-6, 1-8, 1-9,

3-2

graphic design, 2-1, 2-2, 3-4, 6-4, G-3

graphic designer, 1-6, 2-2, 2-6, 2-8, 2-10, 2-11,
2-12, 2-13, 2-15, 2-16, 2-22, 3-3, 3-4, 3-20,
G-3

Graphical Kernel System standard {(GKS), 3-6,
R-2

graphical resources, 2-27, 2-36

graphical style, xi, 3-1, 3-6, 3-17, 3-19, 3-20,
6-1, G-3

graphics package, 5-11

graphics parameters, 3-6

grid coordinate system, 5-13, 5-14, 5-21, 5-24

grid design, 5-1, 5-14, 5-15, 6-2, G-3

grid overlay, 5-22-5-23

GRID PACK, 5-4, 5-8

grid systems, 5-14, 5-46, 6-1

Griffin illustrator, xi, 3-3, 3-5, 3-6, 3-14, 3-18,
3-19, 5-10, 6-2

grouping data, 4-10, 4-13

Gruhn, Ann M., 2-26, R-4

gutter, 4-10, 4-12, 4-15, G-3

H

hairline rule, 4-11, G-4

halftone, 2-6, 2-13, 2-19, G4

halftone screens, 2-6, 2-13, 4-12

halign, in TgX, 4-19

Hammar, Michael, 2-34, R-4

Handbook of Computer-Aided Composition,
1-6, 2-19

Helvetica typeface, 3-15, 4-13, 5-17

Hewitt, Carl, 5-9

hierarchical data structure, 2-34, 2-39 —2-40,
3-7-3-11, 3-13, 3-16—3-18, 3-19, 5-12

hicrarchical document models, 1-4, 5-13

high-quality illustrations, 1-1

high-spced typesetters, 2-21

horizontal alignment, see alignment,
horizontal

horizontal rule, 4-6, 4-11. 4-18, 4-19. 5-7,
5-14, 5-28. see also typographic rules

hot metal, 2-5, 2-19. G-4



INDEX

house style, 2-2, 2-10, G-4

human vision, 4-7

Hurlburt, Allen, 5-15, R-4

Hypertext, 1-4, R-3

hyphenation, 2-16, 2-23, 2-30, 2-31. 4-7, 5-20,
G-4

I/

IBM 1130, 2-19

IBM 709, 2-19

IBM 7090, 4-3

IBM research, 2-34

ICCH3 (International Conference on
Computing in the Humanities, 1977), xii,
1-6

ideal, 2-25, 2-26, 2-27, 3-1, 3-5, 5-36, R-7

idiomatic graphics, 3-5

illustrations, xii, 1-8, 2-24, 2-25, 2-27, 2-29,
2-30, 2-35, 2-36, 2-39, 3-1-3-7, 3-9-3-12,
3-15, 4-6, 5-2
hierarchical structure, 3-10
high quality, 1-1, 1-8

line drawings, 1-1, 1-3, 1-4, 2-8, 2-12, 2-23,

2-26, 2-27, 2-34, 2-35, 2-37, 3-1, 3-2.
3-6, 3-18, 5-10
photographs, see illustrations, scanned
scanned, 1-1, 1-3, 1-4, 2-23, 2-30, 2-33,
2-35, 2-37, 3-1, 3-12, 3-19, 5-10
sketches, 2-11, 3-12—3-13 '
spelling checker within, 2-7
in tables, 4-6, 5-9, 5-10
three-dimensional, 3-1
illustrator, 2-8, G-4
bitmap, 3-5
Draw, 3-5
GOB, 3-5, 6-2
Griffin, see Griffin illustrator
Juno, see Juno illustrator
Markup, 3-5
Pice, 3-5
Picture, 3-5
Ilson, Richard, 2-34, R-4
image environment, 3-5, 3-19, R-3
imaging model, 5-30, see also
device-independent graphics package
imposition, 2-13, G-4
imprint page, 2-3, G-4
Incense graphical debugger, 5-9, 5-36
incremental formatter, 2-20, 2-24
indexer, 2-8, 2-11, G-4

indexing tools, 2-11

indicies, 1-8. 2-3, 2-8

inputter, 2-12

integrated document composition, 1-9,
2-33-2-37, 6-1

interaction issucs, 2-34, 6-4—6-5

interactive design tools, 2-27, 2-35, 4-4, 4-19,
6-1. 6-2, 6-4—6-5

interactive table formatter, 4-19, 5-33, 6-4

Interpress, 2-14, R-1

intersecting rules, 5-28 —5-29

ISSCO, 3-5

italic typeface, 1-11, 4-10, 5-17, G-4

J

jacket, 2-3, 2-10, 2-14, G-4

JACM style, 1-10

Janus, 2-1, 2-33, 2-34, 2-35, 2-39, 3-9, R-3
job docket. 2-2, 2-10

Johnson, S.C., 1-10, 2-26, R-4

journal editor, 2-8, G-4

Juno illustrator, 3-5, 3-20. 5-36, 6-2, R-5

K

Kahn, Kenneth M., 5-9, R-4

Kernighan, Brian W., 2-5, 2-24, 2-25, 2-28,
3-5, 5-36, R-4

kerning, 2-13

keyboarder, 2-12, G-5

Khachiyan, L.G., 5-37, R-4

Kimura, Gary, 2-39, 6-2, R-4

Knott, Cargill Gilston, 4-13

Knuth, Donald E,, 2-24, 2-30, 2-31, 2-32,
3-12, 3-15, 4-4, 4-19, R-4, R-5

L

lack of integration, 2-7

[.amport, 2-31, 4-19, R-S

Lampson, Butler W., 2-37, R-5

lanuage usage, 2-10, 2-11, 2-16

large tables. 4-10, 4-13—-4-16, 5-43—5-44,
5-46

laser printers, 2-24. 2-38. 4-11. 4-12. 5-31

PATEXL 2-31 4-19, R-5

lavout procedure, 3-10, 3-16. 5-
5-20, 5-22. 5-30, 5-44, 5-45

leaders, 4-7. 4-12, G-5

3, 5-9.5-11,



INDEX

Leith, Robert, 2-13, R-5
Lesk, M.E., 1-9, 2-25, 2-26, 4-17, R-5
letter form design, 5-15, G-5
letterspacing, 2-16, G-5
Liang, Frank, 2-30, R-5
Library of Congress, 2-3
lifetime of illustrations, 3-4
line breaking algorithm, 2-30, 2-31, 5-19, G-5
line breaks, 4-7
line drawings, see illustrations, linc drawings
line length hint, 5-20
line printer, 4-7, 4-16
line weight, 2-12
linear inequalities for table layout, 5-36
LINEAR INFQUALITY problem, 5-37, R-2
linear inequality solver, see constraint solver
linear optimization, 2-31
LINEAR PROGRAMMING problem, 5-37
lineup, 5-17
Linofilm phototypesetter, 4-3
Linotype, 4-11
Lipke, Daniel E., 2-36, 3-6, R-5
Liu, Joseph W-H., 1-7, 3-2, R-4
Lusignan, Serge, 1-6, R-5

M

Macdonald, Nina H., 2-8, R-5

macro packages, 1-9, 1-10, 2-26, 2-28, 2-29,
2-35, G-5, see also troff, -me and
troff, -ms

macro processor, 2-22, 2-27, G-5

macros, 2-24, 2-25, 2-27, 2-31

MacWrite, 2-38

manuscripts, 1-2, 2-8, G-5

mark, 5-17

marking up, 2-22

Markup illustrator, 3-5, R-6

master image, 2-13, G-5

mathematical composition, 2-5, 2-23, 2-24,
2-26, 2-28, 2-35, 2-36, G-5

mathematical notation, xii, 1-2, 1-4, 1-5,
1-6—-1-7, 2-6, 2-33. 2-34, 3-2, 3-12, 4-1, 4-6
alignment of, 4-8, 5-17, 6-4
formatter, 2-25, 2-28, 2-30, 2-31
in tables, 4-6, 4-18, 4-19, 5-2, 5-17
two-dimensional nature, 5-11
typesetting, 2-12. 2-31

matrix notation, 2-28, 3-3, 6-4

mechanical artwork, 2-13, G-5

media, using different, 3-1, 3-4, 3-19, 6-2

METAFONT, 2-31, 3-15, R-5

metal type, 2-13

micros, 2-26

MIT Press, 2-2

MIT, 2-19, 2-34

Monier, Louis, 2-30, R-5

monospaced fonts, 1-6, 2-8, 2-24, 3-2, 4-7,
4-16, G-5

Monotype, 2-5, 4-11

moveable type, 1-2, G-5

Miiller-Brockman, 5-15, R-5

" Myers, Brad, 5-9, 5-36, R-5

N

NBS, 2-19, 4-3

Nelson, Greg, 3-5, 3-20, 5-36, R-5

Nelson, Ted, 1-4, R-6

neqn, 2-26, see also eqn

Newman, William M., 2-3, 3-5, R-6

NEWSWHOLE, 5-16, 6-4, R-7

NLS, 1-4, 2-20, 2-21, 2-33, 2-37, 2-39, 2-40,
3-7, 39, R-3

nonhierarchical tables, 5-12, 5-13

nonlinear constraints, 5-36

NP-complete, 5-4—5-5

nroff, 2-24, see also troff

0

object-oriented programming, 3-10, 4-19, 5-1,
5-9, 5-10, 5-21

office documents, 3-6

offsct shadows, 3-17—3-18

One Book/Five Ways, 2-2, 2-4, 2-5, 2-16, R-1

ornaments, 4-12, 5-29

Ossanna, Joseph F., 2-20, 2-24, R-6

Ousterhout, John K., 5-25, 5-33, R-6

overhead transparencies, 3-4

overlapping table entries, 5-28 —5-29, 5-46

P

page breaking, 2-21, 2-27, 2-31, G-5

page dummices, 2-6, G-5

page layout, 2-6, 2-21, 2-24, 2-27. 2-35, 4-1,
4-6, 4-12, 4-15, 5-1, 5-11, 6-2, 6-4, G-5

page makeup, 2-16, 4-4, 4-11, 4-12

page proofs, 2-11

page repros, 2-3, G-5



INDEX

PAGE-1, 2-21, 2-28, R-6

pagination, 1-8, 2-23, 2-24, 2-28, 2-30, 2-31

paint program, 2-6, 3-18, R-2

painter’s algorithm, 5-29, G-5

panel, of table, 4-5

paragraphs within tables, 5-19

parallel processes, 2-6

PARTITION PROBLEM, 5-4—5-5

PASCAL, xii, 1-5, 2-35, 3-2, R-3

paste-up artist, 2-13

paste-up, 2-21, 3-19

Paxton, William, xi, xii, 2-11, R-7

Peck, Russell A., 1-5, R-6

pen plotters, 3-2

penaity copy, 2-5, G-5

Phillips, Arthur H., 2-19, 4-1, 4-2—4-3, 4-4,
4-14, R-6

photographs, 2-13, 5-4, 5-10, see also
itlustrations, scanned

Photon 560, 4-3

Photon 737, 2-19, 2-21

Photon Econosetter, xii, 2-21

phototypesetters, 2-5, 4-11, 4-12, G-5

. pie, 2-25, 2-26, 2-27, 3-1, 3-5, 4-18, 5-36

Pice, 3-5, R-7

picture description languages, 3-5

Picture illustration system, 3-5, R-2

Pierson, John, 2-21, 2-28, R-6

Plass, Michael F., xii, 2-30, 2-31, 4-5, 4-14,
R-6

polynomials, alignment of, 4-8

PostScript, 2-14, R-1

pregnant pause syndrome, 1-8

preprocessors, 2-25, 2-26, 2-28, 2-30, sce also
troff

Press print file format, 2-37

Principles of Interactive Computer Graphics,
2-3, R-6

printing plates, 1-2, 2-13, G-6

printing systems, 1-2

process camera operator, 2-13

production difficulties, 1-8

production editor, 2-2, 2-4, 2-8, 2-9, G-6

PROFF, 2-19, 2-21

proofreading, 1-5, 1-6

property sheet, 3-6, 6-2

prototype
TABLE, see TABLE intcractive formatting

prototype

table, see table, formatting prototype
TiogaArtwork, see logaArtwork

punctuations, 2-16

R

RANDOM PACK, 5-4—5-5, 5-6

raster images, see illustrations, scanned

RCA Videocomp, 2-21

rcadability, 4-4, 4-7, 4-13, 4-15, 5-5, 6-3

recomputing constraint system, 5-36

refer, 2-25

rcferecs, 2-9

Reid, Brian, 1-9, 2-22, 2-29, R-6

rendering procedure, 3-10, 3-16, 5-3, 5-9,
5-11, 5-28, 5-30—-5-31

reproduction pages, 2-3, G-6

resolution
device, 2-18, 2-38, 5-11, 5-31
typesctters, 4-7

Reston Publishing Co., 3-3, 3-20

revicwers, 2-9

Ritchie, Bob, xi

Ritchie, Dennis, 2-24, R-6

Rosenthal, David, 2-27, R-6

row depth, 4-4

row hierarchy, 5-12—5-13

row structure, 4-4, 5-2

row style, 4-10

rules, see typographic rules

running head, 1-7, 2-13, 2-21, 6-2, G-6

RUNNOFF, 2-20, 2-21, 4-17, R-6

S

Saltzer, J., 2-20, R-6

sample pages, 1-10, 2-6, 2-16, G-6

scanned images, see illustrations, scanned

scholarly publishers, 4-11

Scientific American illustrations, 1-10, R-2

Scribe, 1-9, 2-1, 2-20, 2-22, 2-24, 2-28, 2-29,
2-34, 2-39, 4-16, R-1, R-6

selection hierarchy, 5-2, 5-12—-5-13, 5-24,
5-46

sclection mechanism, 4-20, 5-1, 5-2

scparations, 2-14

Seybold, John W, 2-19, 2-21, 2-36, 2-38, 4-7.
R-6

shadows, 3-17—3-18. 6-2

Shand, Mark, 5-25. 5-32, R-6

Shaw, Alan C., 2-39, R-4

shift codes, 2-19

Shiloach. Yossi. 5-37, R-2

SIGGRAPII'83, xi, 3-1

signatures, 2-13, 2-14, G-6




INDEX

Simplex method, 5-37
Sketchpad, 5-35, R-7
slack variables, 5-36
Smith, David Canfield, 2-36, R-6
spanning heads, 4-5, 4-7, 4-9, 4-10, 4-13, 4-16,
4-17, 5-2, 5-8, 5-12, 5-14, 5-21, 5-24
sparse matrices, 1-7, 3-2
special scttings, 2-16
specification sheet, 2-10
spelling checker tools, 1-7, 2-7, 2-9, 2-11,
2-25, 2-40
spelling, 2-10, 2-17
Canadian versus American, 2-17
spreadsheets, 1-7, 4-3, 4-15, 4-16, 6-3
Sproull, R.F., 2-3, R-6
square table entries, 5-15, 5-43, 6-3
statistical tables, 4-14
Stevens, Mary Elizabeth, 4-3, R-7
Stone, Maureen, xi, 3-1, 3-5, 3-17, 5-10, R-2
Strachey, C., 2-28, R-6
stripper, 2-13
stub heads, 4-14, 4-16, G-6
STUB PACK PROBLEM, 5-6—5-8
. style, 1-2, 1-9, 2-16, 2-17, 2-24, 2-25, 2-26,
2-27, 2-9, 2-35, 2-36, 3-5, 3-9, 3-20. G-6
analysis aids, 2-11
book, 1-6, 2-16, see also style, manual
control, 2-28
consistency, 2-12, 3-1, 3-4, 3-19
definition of, , 2-22
dictionary of style rules, 3-8, 3-18, 3-20
document, see document style
graphical, see graphical style
guidelines, 3-4
house, 2-2, 2-10
lifetime, 3-4
machinery, 5-3
manual, 1-10, 6-5
publisher’s, 2-16
rules, see style rule
sheet, 2-10, 2-12, 2-22, 6-4
for tables, 4-10, 4-18, 5-16—5-19
style rule, 3-12, 4-6, 5-3, 5-16
scarch path for applying to table, 5-16
subscripts, 2-26
superscripts, 2-26, 4-13
Sutherland, LE., 5-35, R-6
symbolic algebra. 1-7
syntax checker for eqn, 2-23
systems of equations, alignment of, 4-8

T

tab stops, 4-16—4-17
table, 4-1, G-6
alignment, 5-2
box head, 4-5, 4-6
broadside, 4-15
entry, see table entry
formatting of, 2-24, 2-25, 2-27, 2-28, 2-30,
2-33, 2-34, 2-35, 2-36, 2-39, 3-12, 3-19,
4-3, 4-4, 4-17—-4-18, 4-19, 6-1
formatting prototype, 5-10, 5-13, 5-45, 6-1,
6-2
geomectry, 4-4, 5-46
layout, 4-4, 5-1, 6-4
manuscript preparation, 2-3
nonhierarchical, 5-12, 5-13
object representation, 5-22—5-23, 5-26,
5-27
panel, 4-5, 4-6
reduced typesize, 4-13
spanning heads, 4-5, 4-6
stub, 4-5, 4-6
style, 4-18, 5-2
topology, 4-4, 5-13, 5-14, 5-21, 5-25, 5-33
upright, 4-15
vertical rules in, 2-5
table entry, 4-6, 4-18, 5-33, G-6
data structure, 5-28
overlapping, 5-28 - 5-29
TABLE interactive formatting prototype, 2-27,
4-19—-4-20, R-2
tableau of constraints, 5-36
tables of contents, 1-3, 1-7
tables of numeric data, 1-7, 4-2, 4-3
TABPRINT, 4-3—4-4
tabular composition, 1-7—1-8, 2-23, 2-31, G-7
tabular information, 1-1, 1-2, 1-4
tag definition, 2-22
tags, formatting, see formatting tags
tbl, 2-25—2-27, 2-33, 4-17—4-18, 4-19, 4-20,
5-8, 5-12, 5-19, 5-20, R-5
Teitelman, Warren, 1-2, 2-37, 3-1. 3-7, R-7
TELE-A-GRAF, 3-5, R-1
terminals, 1-4
tesselations, see corner stitching, tesselations
TeX, 1-6, 2-1, 2-21, 2-24, 2-31, 2-34, 2-35.
2-40, 4-19, 5-9, R-5
Tr-Xbook, The, 2-30, 2-32, 2-33, 2-34, 3-12.
R-5
text compostion, 2-16
text editor program, 2-8. G-7



INDEX

Thinglab, 5-35—5-36, R-2
Thomas, Elaine L., 3-6, R-7
three-dimensional images, 3-1
Tilbrook, David M., 5-15, 6-4, R-7
Times Roman typeface, 2-22, 2-38, 3-15, 5-17
Tioga, xii, 1-2, 2-37, 2-40, 3-8, 3-9, 5-46, 6-1
document model, 1-2, 3-7—3-9, 5-3, 5-20,
5-45
node properties, 3-9
style machinery, 1-2, 3-7, 3-15, 5-3, 5-45
text editor, 5-21
TiogaArtwork, 3-1, 3-6—3-7, 3-10, 3-13. 3-10,
3-13, 3-14, 3-15, 3-17, 3-18, 3-19, 3-20
topology, 4-4, 4-19, 5-3, 5-21
totals, 4-10, 4-14—4-15
touch-ups, 1-8
traditional graphic arts process, 2-1, 2-2—14
trajectorics, 3-12
transfer lettering, 3-4, 4-12
transformations, 3-10, 3-12, 3-13, 3-14, 3-16,
3-17, 3-18, 3-19, 3-20
transposing tables, 4-13—4-14, 5-2
trapezoidal rule illustration, 3-12—3-13,
o 3-18—3-20
traps, 2-27, 2-28, see also diversions
troff, 1-9, 2-1, 2-20, 2-23, 2-24-2-29, 2-30,
2-35, 2-39, 3-5, 4-17, 4-18
bibliographic reference formatter, see
refer
device-independent, 2-24, 2-28
ditroff, 2-24
equation formatter, see eqn, negn
illustrations, see pic, ideal
limited registers, 2-27, 4-18, 4-20
macro packages, 1-9, 2-26
-me macro package, 2-26, R-1
-ms macro package. 1-9, 2-26, R-5
nroff, 2-24
performance issues, 4-20
porting to other devices, 2-24, 2-29 -
preprocessor interaction, 4-18, 5-9
table formatter, see tbl
Turing lecture, 2-24, R-6
two-dimensional layout, 4-1, 4-5—-4-6, 4-7,
5-1, 5-2, 5-3
TWO-DIMENSIONAL PACKING problem, 5-4,
5-6, R-2
two-page spread, 4-15
typeface, G-7
Baskerville, 2-18, 2-38
bold typeface, 3-16, 4-10, 5-17
compressed, 4-13

typeface (continued)
Garamond, 2-18, 2-38
Helvetica, 3-15, 4-13, 5-17
italic, 1-11, 3-16, 4-10, 5-17
Times Roman, 2-22, 2-38, 3-15, 5-17
TYPESET, 1-5, 2-20, R-2
typewriter, 2-8, 4-7, 4-16
typist, 2-8
typographic grids, 5-13, 5-15
typographic rules, 4-6, 4-7, 4-10—4-11, 4-18.
5-2, 5-14, 5-21, 5-24, 5-25, 5-28, 5-30, 5-46
typography, 1-9, 4-2, G-7
Tyxsct, 2-32. R-1

U

undo constraints, 5-36
undo, 6-2
University of Chicago Press, 2-2, 2-5. 4-11
University of North Carolina Press, 2-2
University of Texas Press, 2-2
University of Toronto Press, 2-2, 2-16
University of Waterloo, xi, 2-19, 2-21
UNIX, 2-24, 2-25

filter/pipe model, 2-25

stream model, 5-12

troff, sce troff

writer's workbench, 2-8
Updike, Daniel Berkeley, 1-9, R-7
user interface, 2-39, 6-1

4

van Leunen, Mary-Claire, 1-6, 2-17, 2-40, R-7

van Wyk, Christopher 1., 2-25, 3-6, 5-36. R-7

variable width characters, 2-24

vertical alignment, see alignment, vertical

vertical rule, 2-5, 2-16, 4-6, 4-10, 4-12, 4-18,
4-19, 5-14, 5-24, 5-28, G-7, see also
typographic rules

views, 2-10, 2-18, 2-21, 2-40, 6-2, R-3

VLSI layout, 5-25

W

Warnock, John, 3-1, 3-7, 5-30, R-7

Waterloo Computer Typography, see
WATTYPL

WATEIV-S, xii, 1-5, R-3




INDEX

WATTYPE (Waterloo Computer Typography),
xii, xiii, 1-5, 1-7, 1-8, 2-28

waxing machine, 2-13

weight of rule, 4-11

‘what you sce is almost what you get’, 2-38

‘what you see is what you get’, see WYSIWYG

White, Alex R., xii, 3-5, R-7

whitespace, 2-22, 2-23, 2-30, 4-7, 4-8, 4-10,
4-13, 5-4, 5-8, 5-19, 5-20, 5-40, 6-3, G-7

wide tables, 4-15—4-16

widows, 2-23

Williamson, Hugh, 1-9, 2-5, 3-2, 3-4, 4-11.
4-13, 4-15, 5-15, R-7

Winograd, Terry, 2-11, R-7

Witten, [an H., 2-27, R-7

wordspaces, 5-20, G-7

writer's workbench, 2-8, 2-29, R-5

writing tools, 2-8

Wyatt, Doug, xii, 3-1, 3-7, 5-30, R-7

wYSIWYG, 1-7, 1-9. 2-20, 2-33, 2-34, 2-36,

_2-37, 2-38, 2-39, 3-10, 3-18, 4-19, 5-1, 5-11,
5-16, 5-21, 5-31, 5-46, G-7

X

Xanadu, 1-4, R-6

Xenix, 2-32

xerography inventor, 5-10

Xerox, 2-14

Xerox PARC, xi, 1-2, 2-4, 2-33, 2-37, 3-1, 3-5,
3-9, 3-19, 5-10, 6-1

Xerox Star, 2-1, 2-33, 2-36, 2-37, 2-38, 3-2,
3-6, 3-7, 3-20, 6-2
graphics, 2-36, 3-6, R-5
interface, 2-39

Y

Yorktown formatting language (YFL), 2-26,
R-4

Zz

Zabula-Salelles, Ignatio Andres, 3-5, R-7
Zeisel, Hans., 4-14, R-7

1-10



Colophon

This thesis was formatted and printed at Xerox PARC. Multiple original
copies were printed on a Xerox XP-12 laser printer, which was modified to have
a resolution of 384 dots per inch and was configured as the Press printer named

~ RockNRoll on the Xerox Research Internet. The fonts were created at PARC as

384-dot-per-inch bitmaps from spline outlines. The type families include
TimesRoman, Helvetica, Xerox Book, Cream, Old English, Math, and Hippo
(Greek) in various weights (regular, bold, italic, and bold-italic) and in various
sizes (6, 8, 9, 10, 12, 14, 18, and 36 points). )

The manuscript of the thesis exists as many document files, one per chapter
plus ancillary illustration files. The manuscript was edited with the Tioga
document composition system running in the Cedar programming environment
on a personal Dorado high-performance workstation named Shangrila.
Formatting was accomplished with the Tioga typesetter and prototype
implementations of TiogaArtwork (illustrations) and the TableTool (tables). Line
drawing illustrations were created with the Griffin illustrator and included either
as TiogaArtwork illustrations or a preformatted Press files. Scanned images were
created by a server on the Xerox Research Internet using an Eikonix scanner and
were incorporated into the formatted document with TiogaArtwork.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

