Q000

EREAS &

E WAt
F WATERL

I
II¥§

S

IVERSITY OF WATERLOO C

uNIVER
UNIVER

A validation tool
for designing database views
that permit updates

Claudia Maria Bauzer Medeiros

Data Structuring Group
CS-85-44

November, 1985

A validation tool for designing database views
that permit updates

Claudia Maria Bauzer Medeiros

Data Structuring Group — Department of Computer Science
University of Waterloo
Waterloo, Ontario, N2L3G1
Canada

ABSTRACT

This thesis presents a new approach to analyzing view update
policies. Unlike all other approaches, the aim of the method
presented is to liberalize update translations, so that database
implementers need not be restricted to using a small set of valid
interpretations (e.g., in the model underlying insertions can be used
to delete view tuples).

The major contribution is in the presentation of a predictor
algorithm that checks the validity of any update translation pro-
posed by a view designer. This allows the designer to analyze and
document the meaning of any update request by indicating the asso-
ciated update translation as well as actions to be taken when excep-
tions occur. The output from executing the algorithm indicates
whether the desired update is actually reflected in the view, and
it describes all possible side effects to the proposed operation (as
well as the database states for which each type of side effect can
occur).

The algorithm subsumes the results obtained by other view
design tools, and generalizes their use to encompass a larger class
of views. Furthermore, updates that have traditionally been
disallowed can be acceptably specified and algorithmically verified
to have the intended effects on the view. Finally, whereas most
update mappings have been analyzed in the presence of functional
dependencies alone, the 2lgorithm encompasses integrity con-
straints that include simple typed template dependencies as well.

C. M. B. Medeiros

to

Acknowledgements

I consider myself very fortunate in having had Frank Tompa as my supervi-
sor, and am grateful for his encouragement, feedback and endless patience at all
stages of my research. I also wish to thank the members of my thesis committee,
Alan Adamson, Per Larson, Alberto Mendelzon and Ian Munro, for their
comprehensive reading of my thesis and their insightful comments.

Special thanks should go to Jose Blakeley-Perez for having provided many
comments which have resulted in a more readable final version of this thesis.
Esmond Ng and Mark Mutrie must be commended for their courage and patience
in having bravely withstood years of sharing an office with me.

The secretarial staff of the Department of Computer Science, especially
Debbie Clermont and Anne Harris, deserve many thanks for having helped me
jump over all bureaucratic obstacles. 1 would also like to thank all the people
who made my stay in Waterloo a rewarding experience, due to their friendship
and encouragement, in particular Nancy and Bruce Char, Kay and Neil Coburn,
Linda Duxbury, Marta and Gaston Gonnet, Lorna Hall, Rolf Karlsson, Judy and
Eva Kovacs, and Cathy and Howard Johnson.

These acknowledgements must include my parents, Ethel and Jorge
Medeiros, who used love by remote control to keep me happy and secure.

Finally, I would like to acknowledge the financial support of CNPq - Brazil
(Consetho Nacional de Desenvolvimento Cientifico), and of the Department of
Computer Science of the University of Waterloo.

Table of Contents

Chapter 1
INEPrOdUCEION ..ottt 3
1.1. Some common update problemsccccccciiriiniiinnn 3
1.2. Approaching database consistency ... 4
1.2.1. Updates to databasescccooceiiiiiiniiiiiniiicni e 4
1.2.2. Updates through views ... 5
1.3. Formalizing the approaches to the view update problem 8
1.3.1. The functional mapping approach ... 8
1.3.2. The complement mapping approachcccooeiiiiiiiiiiniicinniieee. 9
1.3.3. The operational approachcccccrrcciircnnnnee, ereneeereerate e aeeenenaas 10
1.3.4. The abstract data type approach ...t 12
1.3.5. The deductive database approachccccocvviiiriicriiiniiiinnnireenenenne 12
1.4. Update analysis as a byproduct of other design considerations 13
1.5. Purpose and organization of the thesis ..., 14
Chapter 2
Tableaux and template dependencies ..., 16
2.1. Relations and schemesccccoiiiiiimiiiinnmn e 16
2.2, TableauxXccoooiiieiiiiiieiecie et e s e 16
2.3. Data dependenclescoooiiiiciriieee it et 17
2.4, T2bleau ChASESccooovweiveeveereeeeeeeeseeesseeessesssssssessessssssssrsseessesessrsssnens 20
2.5. Tableau QUEerIesccoiiiiiiiiiiie e e 21
2.8. Basic notation and assumptions ... 22
Chapter 3

The update validation algorithm ... 23

i C. M. B. Medeiros

3.1. Basic framework ...t ee e s ta et ee e 23
3.1.1. Partitionable BCNF ...t 23
3.1.2. Update translationsccoocciiiiiiiiiii e 24
3.1.3. Forced and conditional updatesccccccciiiiiiiiiiiiiniccccceen 24
3.1.4. Symbolic tuple expressions R SR 24
3.1.5. Matching and equivalence ..., 26
3.1.8. Symbolic valuation of a template dependencycccccoevvcrennnnn. 27

3.2. Complete example ... 27

3.3. The update validation algorithm - functional description 30

3.4. Rules for executing the algorithm ..., 32
3.4.1. Generation of the underlying modification table 32
3.4.2. Valuation of system-generated variablesccccccivcininnnnnen. 38
3.4.3. Generation of the initial tableau T')cccccoornennrcciicrcee 39
3.4.4. Initialization of the database state tableccccciiiies 39
3.4.5. Rules for execution of the view generating function 42

3.5. Complete example revisited ... 44

3.8. The update validation algorithm and update chains 46

3.7. Summary outline of the validation algorithm ... 48

Chapter 4

Correctness and complexity of the update validation algorithm 49

4.1. Basic concepts and definitions ... 49

4.2. Proving the correctness of the validation algorithm 50

4.2.1. Outline of the proofstepscccceciriiiiniiiiiiiicicee v 50

4.2.2. Proofs of Lemmas and Theorems ..., 52

4.3. Complexity analys8is ..ot e e s 75
Chapter 5 '

Extending and unifying related work ... 78

5.1. Examining some policies proposed by other authorso............
5.2. Detecting clean Bourcesccceiviimmiiiinecciiee e
5.3. Forcing updatesccooocoiiiieiiiieere et e e e
5.4. Analyzing effects on other viewsccovvviiiiiniiiicee e,
5.5. The updatable view - supporting multiple translations

Chapter 6
Summary and directions for future work ...

B.le SUIMIMATY ..ottt e e esee e e st e e et se e ae e eestssssasssnestnesmeesnnnesns

8.2. Extending the update validation algorithm to automate the check
for the desired update outcomeccccoiiiiiiiiii e

6.3. Improving the execution time of the update validation algorithm
6.4. Extending the analysis to other normal formscccccovinne.

8.5. Extending the analysis to other types of template dependency
6.5.1. Handling deletions for any type of template dependency
8.5.2. Analyzing insertion chains for more general classes of template

dependencies ...t

8.6. Extending the update validation algorithm to support universal
relation databases ... e

B8.7. Other extensIOnScccciiviiiiiiiiiiie e ee v ve e e e e e s s e s s s e aas

B8.8. ConCIUSIONScooiiiiiiice et ees
‘The update validation algorithm as a design tool
Some other open topics in the view update problem

Bibliography

A validation tool for designing database views that permit updates 3

Chapter 1
Introduction

1.1. Some common update problems

In order that a database reflects changes in the enterprise it is modelling, it
must accurately support requests for modifications in the data. The effects of
database updates have been analyzed under different perspectives, both at the
logical level (e.g., design of the conceptual schema and path analysis) and the
physical level (e.g., space allocation and file characteristics). Related research
deals with authorization mechanisms, serializability and, in distributed databases,
transaction recovery and data migration. Yet another concern is that of interpret-
ing the meaning of an update request, which may involve natural language
interpretation and formal semantic analysis.

Update operations must preserve the database integrity requirements (rules
that describe all legally permissible extensions of a schema [DAY82]). At the logi-
cal level, integrity violation, as observed by Date [DAT83], can occur in two dif-
ferent contexts. The first — interference — concerns the fact that two indepen-
dently correct applications can interact destructively; this is analyzed under con-
currency models. The other — which is the main concern of this thesis — refers
to the correctness of an isolated update request, given the database consistency
criteria.

Update processing requires the establishment of mapping rules between the
database design levels: operations requested at the external level are transformed
into their conceptual schema equivalents and are then mapped into the desired
internal level modifications. The problem lies in associating the database state
change, as specified by the user, with a set of operations performed on the under-
lying database: the interpretation of the request must correspond to what the user
intends.

This means that, given the old and new external states, and a set of rules
for mapping the conceptual into the external level, one must be able to find the
sequence of transformations that will cause the underlying relations to change, in
order to obtain the desired final external state. In particular, the requested
update should be made with no unrelated data changes. As an additional con-
cern, the database final state must be semantically consistent (i.e., it must satisfy
all integrity constraints). The sequence of underlying transformations that per-
forms the external update requested is called the translation of the update
request. A given translation algorithm will also be called a mapping policy, or an
update policy.

Thus, the update problem consists of determining the update translation
that 1) actually reflects the update; 2) causes as few side effects as possible; and
3) results in a final consistent database.

The discussion that follows will focus on these issues at the conceptual level
for a relational database model. All the situations analyzed in this‘thesis rely on
the assumption that appropriate procedures exist that will perform the

4 C. M. B. Medeiros

translation from the conceptual into the internal level. Moreover, there will be no
analysis of authorization concerns, and the existence of a concurrency control
mechanism to serialize update operations is assumed.

1.2. Approaching database consistency

1.2.1. Updates to databases

Among the current database design models, the relational model has been,
in general, the ouly onme to be subjected to a theoretical study of update
anomalies. Dayal and Bernstein’s [DAY82a] extension of their theory of the upda-
tability of relational views to the network model is one of the few formal treat-
ments of another model.

Existing approaches to the update problem can be roughly classified into
three levels: 1) preventing inconsistencies during the design stage, 2) checking for
their presence at execution time, and 3) allowing them to exist for limited periods
of time. Prevention of anomalies is implemented through imposing, at the design
stage, a set of integrity constraints to be enforced, and limiting the ways in which
the database components can be built (e.g., by projection), thereby defining the
set of allowed changes as early as possible. One of the most restrictive (and com-
monly adopted) rules is that the only allowable updates are those on relations
whose structures coincide with the structure of part of the stored representation.
In the preventive approach, an update is allowed only if there is assurance that no
constraint violation will occur. An example of this type of approach is Simon and
Valduriez’s [SIM84] extendible integrity subsystem.

Checking for potential inconsistencies is done at execution time, as it
involves a dependence on the database state (one should not, for instance, insert
already existing tuples) and on the actual values of the updated fields (range
specifications should be obeyed). Update requests generate a series of tests on the
contents of the database, to verify whether the update makes sense {(given the
present state), and whether the desired state will keep the database consistent.
This is done by analyzing the scheme ertension (an instance of a relation),
together with all the integrity constraints imposed on it. Cremer and Domann’s
AIM system [CRE83] exemplifies the class of detection techniques.

Maintaining temporarily inconsistent databases is an approach similar to
that of processing transactions pending commit and rollback decisions. The result
of performing sets of updates is placed in temporary storage. An example of this
type of approach is presented by Neumann and Hornung [NEUS82]: the database is
checked at certain time intervals, when the decision is taken as to which updates
should be accepted and which rejected.

Update operations usually pass through the first two levels of control
(prevention and checking), and most authors restrict themselves to analysis of
these. The third approach however must also be considered, since some updates
do not make sense if executed independently: they have to belong to a transaction
composed of a set of operations. In such cases, consistency checks are meaning-
less before the transaction can complete. For instance, given the relations
R,:(Dept, Number_of_employees), and R,:(Dept,Employee), when an employee is
hired by the department, either R; or R, is updated first, but not both at once,

so that a temporary inconsistency is allowed to occur.

Both prevention and detection techniques have been studied under static
and dynamic models. Dynamic analysis of the validity of update operations
depends on a database’s history: the consistency criteria have to include decisions
that involve the database’s previous states, rather than only the present one. The
work in this area has focused mainly on defining classes of dynamic constraints
with the help of logic.

Static analysis, on the other hand, defines a priori rules for update con-
sistency, without taking the state transition into account (although the rules can
be enforced dynamically). Authors usually restrict themselves to static update
analysis, even though some [FUR79, KEL82] also describe some of the problems
which arise in the dynamic case. Vianu [VIA83], for instance, proposes an
approach to investigate the effects of dynamic constraints on database evolution,
interpreting temporal changes through inferring static constraints from the
dynamic ones.

1.2.2. Updates through views

A relevant factor that contributed to intensifying research in the database
update area was the appearance of the concept of views. The problem of data-
base consistency arose early in the research concerning database design models
and techniques. When analyzed under the relational model, this problem
motivated the development of a theory of normal forms [COD70, FAG77,
COD79]. With the appearance of large and distributed systems, there was a grow-
ing need to take individual applications into consideration. Thus, most of the
recent literature concerning updates in databases refers to view implementations
and discusses connected issues (such as independence, integration, interference
and equivalence). Some researchers develop special tools to help define their view
models (for example, the algebra of quotient relations of Furtado and Kerschberg
[FURT77|, and the structural model of El-Masri and Wiederhold [ELM80]); others
take advantage of widely used formal notions, such as logic [FAG83] or boolean
algebra [HEG84].

Paraphrasing Keller [KEL82], a view can be regarded as a temporary rela-
tion against which database requests may be issued. Views are thus images of the
database as seen by queries, which in turn reflect what subsets of data are
relevant for each user application.

Views are generated by means of operations (e.g., select) performed on the
underlying relations. The composition of operations that form a particular view
is often called a view generating function. Theoretical analyses of such functions
contribute to the study of the preventive approach, in that they investigate how
to limit the ways in which relations can be combined to form views. For instance,
Carlson and Arora consider views whose functional definition is obtained by equi-
joins, projections and selection/restriction [CAR79], as well as projections and
natural joins [CARS0]; Keller [KEL82, KEL85] compares views generated
exclusively by projections agzinst those generated by natural joins, selections and
projections, on which the properties of El-Masri’s structural model hold; Shmueli
and Itai [SHM84] consider tree hierarchies of materialized views obtained by pro-
jections and equijoins. :

6 C. M. B. Medeiros

The concept of views enhances the separation of applications (since most
database transactions will not affect all the views), thereby providing some
immunity from data reorganization. By the same token, the existence of different
views helps the enforcement of data protection and privacy policies, besides sim-
plifying the task of defining user interfaces. The coexistence of different views,
however, raises several considerations as far as updates are concerned. If a view
is created through joins of two relations, for instance, one must analyze which —
and how many — tuples of each source relation must change, in answer to a view
update request.

Typically, views do not have an independent physical existence in a data-
base, but rather operate through a conceptual definition and the corresponding
mapping into storage. The structure of a view is defined by a sequence of opera-
tions on the conceptual schema. Thus, any transaction requested by a view is
actually performed on the conceptual schema extension. A view update request is
translated through appropriate functions into a database update request. Once
the change is effected, an inverse translation may be needed to show the user the
result achieved.

Retrievals are always easier to handle than updates, since they only require
mapping of the schema extension into the view extension. This can be done either
by building the view extension for each query (applying the view definition to the
schema extension) or by modifying the query (so that it contains information
about the view definition), and applying it directly to the schema extension.
Since no changes are requested, any mapping that correctly retrieves the desired
information is acceptable.

Since several views may access the same information in different ways, it is
possible that an update operation as requested by one view may cause a (poten-
tially undesirable) side effect on what is seen by other views. Side effects can in
fact occur whenever there is more than one user accessing the same data, but the
problem is usually studied under the view framework. As remarked elsewhere
[e.g., FUR79, DAY82, KEL82, CAS84], the view update problem consists therefore
in choosing or defining view update translations which 1) achieve the desired view
modification with 2) as few side effects as possible, and 3) do not violate integrity
constraints.

Some of the problems that may occur while processing updates are:

a) non-unique translation: there may be more than one sequence of logical opera-
tions that will perform the update required (so that there must also be rules for
choosing an appropriate one). This is a situation in which the new external state
may correspond to several database states;

b) appearance of side effects: the new database state may not map back into the
expected external state (e.g., extra tuples may have been created).

c) absence of correct translation: there is no consistent database state that maps
into the new external state (constraint violation). The final state may violate glo-
bal integrity constraints (that apply to the entire underlying database), or local
integrity constraints (that apply to an external portion — or view — of the data-
base). This may affect the application that requested the update or, in the more
complex case, another application;

d) ambiguity of interpretation: there may be more than one correct

interpretation for a given update request, resulting in several possible external
states.

Example: Consider the database with relations
R,=(Employee,Department) and R,=(Department,Manager), subject to the
functional dependencies E-D and D-M. Let two views V, = R/ XR, =
(Employee,Department,Manager) = and V, = IgyRXR, =
(Employee,Manager) be defined for this database.t Consider the following
instances of the relations, and the resulting views

Employee Dept Dept Manager
Yang Food Food John
Fletch Food Toys Bill
Powell Toys Sports Linda
Hart Sports Clothes John
Hoyt Cars
Empl Dept Manager Empl Manager
Yang Food John Yang John
Fletch Food John Fletch John
Powell Toys Bill Powell Bill
Hart Sports Linda Hart Linda

a) non-unigue translation: A request for changing (YangFood,John) in V; to
(Smith,Food,John) can be achieved either by changing (YangFood) to
(Smith,Food} in R;, or by inserting (SmithFood) in R; and changing
(Yang,Food) to (Yang,NULL) — where NULL denotes some marked null value.

b) side effects: A request for insertion of (Smith,Cars,Jane) in view V|, which can
be performed by inserting (Smith,Cars) in R, and (Cars,Jane) in R,, but this will
also insert (Hoyt,Cars,Jane) in the same view.

c) constraint violation: A request for insertion of the similar tuple
(Smith,Clothes,Jane) in V; cannot be honored, even though it requires exactly the
same type of translation proccdure as (b), because there already exists a record
(Clothes,John) in R,, and this would violate the functional dependency D~M.

d) ambiguous interpretation: A request for deletion of (Yang,john) in view V5 can
be achieved either by deleting (Yang,Food) from R, or by deleting (Food,John)
from R,, or both. In the last two cases, this also deletes (Fletch,John) from the
view,

t Throughout this thesis, the symbol (X) stands for natural joins.

8 C. M. B. Medeiros

1.3. Formalizing the approaches to the view update problem

Casanova and Furtado [CAS84] divide formal approaches to the view
update problem into two categories: treating the view as an absiract data type
versus defining general translation procedures. This thesis proposes a new classif-
ication, which includes at least the following categories:

. the functional mapping approach, in which rules are set for defining functions
for mapping an update requested at the external schema (or individual view) level
into the underlying internal structure (and vice-versa);

. the complement mapping approach, in which these mappings are handled
according to how they affect a view's complement;

. the operational approach, in which views are analyzed and hierarchically classi-
fied according to the operations that may be performed on them;

. the abstract data type approach, in which views are defined together with the
operations they allow, and the translation for these operations;

. the deductive database approach, in which the database is considered as a first
order theory, and updates are treated as changes in the theory sentences.

The two first categories belong to the group of general translation pro-
cedures; the third approach is a transition between general translation procedures
and the abstract data type approach. The deductive approach does not neces-
sarily take views into consideration, and does not fit the classification of [CAS84].

1.3.1. The functional mapping approach

The central characteristic of the research in this category is that it tries to
specify desirable properties of view generating functions in order to determine
which views can be updated. Integrity constraints are used to restrict the set of
possible translations.

Even though prior attempts had been made to establish formal definitions
of inter-schema mappings (e.g. Paolini and Pelagatti [PAO77]), ore of the first
comprehensive papers to formalize the notion of correct translatability is the one
presented by Dayal and Bernstein [DAY78]. They propose theorems to define
situations in which view updates (of type insertion, deletion or replacement) can
be allowed in the relational model. The theorems are expressed in terms of view
extensions, and the constraints are restricted to functional dependencies and
keys. They analyze the process of mapping view updates to updates on the under-
lying extension, with the development of correctness criteria for these mappings.
The central result is that an update on a view is translatable if it can be
expressed by a unique series of update operations on the schema extension, so
that there are no additional updates, no side effects, and semantic consistency is
preserved. A restriction on this unique update sequence is that it can only be
composed of updates of the same type as the original one (i.e. a sequence com-
posed exclusively of insertions, or of deletions, or of replacement operations). As
is the case in all other similar analyses, update operations are, in reality,
requested on a relation. The authors later extended this work [DAY82] to include
subset constraints, but the basic results were kept.

Furtado, Sevcik and Santos [FUR79] use the algebra of quotient relations
[FUR77] (by means of which their conceptual view model is defined) to build the
transformations between an update request and the corresponding conceptual

modification. Their mapping functions are more complex than those of Dayal and
Bernstein [DAY82], being computed through an iterative process: a view can be
built from other views. Any update on it will be first translated into updates on
its source views, and thereafter into the relations that criginated these source
views. This backtracking can, theoretically, go through an arbitrary number of
levels, provided this stepwise process of view building is derived using just one
operation of the quotient algebra per iteration. Some special composition
processes (such as projection of a restriction) are treated using simplified mapping
rules.

Masunaga [MAS84| provides general translation rules using the same itera-
tive process of [FUR79]. He analyzes insertions and deletions in terms of the view
definition function (which can be composed of a series of union, difference, select,
project and product operators). Even though he describes different alternatives
to a translation, his model is not concerned with integrity constraints. Unlike
other approaches in this area, where integrity constraints help determine the
“correct” translation, the translatability of an update depends uniquely on the
view generating function.

Keller [KEL85] presents a set of algorithms that translate updates through
views when these views can be expressed as a set of select operators, followed by
a set of projects, followed by a natural join. The only constraints allowed are
functional dependencies, and — like Dayal and Bernstein’s [DAY82] updatability
criteria — all relation keys and join attributes must be present in the view (in
fact, all joins must be extension joins over relation keys). The criteria his algo-
rithms must satisfy to be considered as adequate translations are: side effects can-
not occur; each database tuple can only be affected once by a given update; and
the translation must be minimal. His minimality requirements are that no
unnecessary changes need occur, and that there cannot be insertions and deletions
in a relation at the same time (they should be transformed into changes).

Brosda and Vossen [BRO85| describe general conditions for which an inser-
tion or a deletion through a universal relation view can be accepted. Their results
aim at preserving the correctness of the representative instance (see Chapter 6),
and the constraints consist exclusively of functional dependencies. Furthermore,
the tuples affected by the update cannot contain any nulls.

1.3.2. The complement mapping approach

Spyratos [SPY80] and, later, Bancilhon and Spyratos [BAN81] study update
mappings according to the effect they have on view complements. A view comple-
ment is a second (virtual) view from which all the database information omitted
from the first one can be deduced. Thus, any database state can be computed
from a view and its complement. According to this definition, a view can be con-
tained in its own complement {even though, in this case, the complement alone
will characterize the whole database, and not just the information absent from
the view).

The update operations that interest them are those that can be cancelled
(i.e., undone). This means that there exists for every update an inverse operation,
that returns the view to the original state. Furthermore, the composition of
update operations must have the same result as applying them separately

10 C. M. B. Medeiros

(allowing the same sort of backtracking as described in the previous section). The
only updates they allow, among those that satisfy these requirements, are those
that do not affect the view complement.

The central idea relies on the observation that a view update request has a
unique translation if the request can be translated maintaining the complement
invariant. The choice of an update policy is in fact dictated by first determining
the desired complement, and then the update that leaves it invariant (which will
then be unique under their model). In other words, once the complement is fixed,
there is a single way of changing the view without modifying its complement.

An objection to this type of treatment is the fact that the process of obtain-
ing a complement is not clear. Besides, the policy of predefining the complement
so as to obtain a unique update mapping means that the user knows how each
requested operation will affect the entire database. This, as observed by Fagin,
Vardi and Ullman [FAG83], is very rarely the case.

Cosmadakis and Papadimitriou [COS83] extend the above work by analyz-
ing the complexity of algorithms that implement updates according to the
invariant-complement notion. They show that finding a minimum complement is
NP-complete and demonstrate that for a view generated by projections, where
the constraints are functional dependencies, finding a complement that renders an
update translatable is polynomial in terms of the number of functional dependen-
cies and size of the view extension. Other researchers who have considered this
type of approach for studying update mappings are Hegner [HEG83, HEG84], who
describes classes of views that maintain complement invariance, and Keller and
Ullman [KEL84], who analyze properties characterizing view independence, where
two views are independent if updating one of them does not modify the other.

1.3.3. The operational approach

This approach is connected with analyzing the extent to which database
transformations preserve information, and ordering these transformations accord-
ingly. Carlson and Arora [ARO78, CART79] direct their research towards classify-
ing views according to the operations they support. A central result of their for-
mal model [CARS80] is that views that support insertions also support deletions
(and thus that updatable views are those that support insertions). Their classifica-
tion is used in analyzing conditions for schema modification and translation, as
part of the view integration process.

Another example of this type of approach is found in Ling’s thesis [LIN78].
Not only does it establish general translation rules for mappings between the con-
ceptual and the external schemas — which would place his work in the functional
mapping category — but it also defines and classifies general situations under
which a view is updatable (update viable), when the constraints are functional
dependencies. The classification separates unconditional or conditional update
viability. Unconditional viability means the view can always accept the update
proposed, since no undesired effects will occur — e.g., a view supports deletions
unconditionally if its key is also the key of some underlying relation. Conditional
viability means that the given view update may sometimes fail to be performed,
depending on several factors including the database state when the update is
requested and integrity constraints. Unconditional viability corresponds to Dayal

11

and Bernstein's [DAY78)] definition of clean sources: a relation is a clean source
for a view update if updating the relation has exactly the desired effect on the
view.

Whereas Carlson and Arora’s and Ling’s research classify updates according
to their effect on the view itself, Klug [KLU78| classifies the type of view update
translation according to its effect on other views. He shows there may be several
mappings to translate a given view update request, and he suggests that update
requests be associated with their translations, which he describes by a mixture of
pseudo-code and first order logic clauses. His classification divides update effects
into those with independent semantics (when the update has the exact effect
desired) and dependent semantics (when other effects may occur). Dependent
semantics may be strong, medium or weak, according to the type of effect the
update has on other view tuples. Klug defines several correctness criteria for
update translations and constructs formulas in predicate calculus that correspond
to these criteria, but the validity of these formulas is undecidable in most cases.

One interesting aspect of Klug’s model is that it considers both queries and
updates to be operations that change view states, by defining the answer to a
query as part of the view state. Thus, the state resulting from a query is com-
posed of the view state at query time and the answer to the query. The state
resulting from an invalid update request is the view state at update request time,
together with the appropriate error message. Finally, the state resulting from a
valid update is the view state after the update is performed.

The operational approach is also taken by Spyratos [SPY82], who defines
views in terms of the operations performed therein: a view specification becomes a
set of allowable updates on a subset of the database. The attributes and relations
on which these updates operate are indicated indirectly: each possible tuple (and
tuple combination) is assigned a different identifier, and an update is represented
as a set of pairs [old identifier, new identifier]. This is a way of indicating how
the database changes from one state into another. The database is divided into a
set of view equivalence classes (named definiiion sets), according to the set of
updates they support. A definition set is composed of all views on which a given
{fixed) set of identifiers is mapped into the same set, after an update is per-
formed. The complement of a class is the set of identifiers that do not change
under those updates.

This means that the updates themselves are partitioned according to their
interpretation (as to how they affect a class, and to which classes they can be
applied). Allowable updates are those that do not interfere with the set partition.
Similarly to the other authors in this section, Spyratos uses this classification to
order views with respect to the operations allowed, besides defining properties
such as equivalence and independence of views.

12 C. M. B. Medeiros

1.3.4. The abstract data type approach

This is the approach taken in designing databases in modules (usually views
themselves) that are similar to abstract data types. Rather than forbidding
updates because they do not obey pre-defined rules, this type of approach blocks
invalid requests at the design stage by predefining which are the operations
accepted by each module.

One of the first proponents of this approach is Clemons [CLE78], who
points out that general mappings impose too many restrictions on views and pro-
poses bypassing this problem by defining views together with all the operations
they support, and their translations. Tucherman, Furtado and Casanova
[TUCS83] specify databases in terms of modules, which characterize all possible
applications as abstract data types. These modules are composed of descriptions
of the underlying schemes, constraints and operations, as well as the views
allowed therein, and the operations attached to the views. The modules are
nodes of a digraph, where the edges define a generation hierarchy: thus, new
views can be formed from old ones, allowing operations permitted by their ances-
tors. One drawback to this type of approach is that there are no guidelines as to
how appropriate translations should be determined.

The approach taken in this thesis to analyze update mappings can be classi-
fied as a mixture of concepts taken from both the abstract data type and the
operational approaches.

1.3.5. The deductive database approach

This is the approach taken when databases are considered from the
viewpoint of logic. A relational scheme is treated as a first order logic theory (a
set of statements in first order logic), with a set of integrity constraints, and a
database is a model of the theory’s axioms. Atomic facts, integrity constraints
and derivation rules are all expressed as sentences in logic without function sym-
bols. The deductive database is considered to be a logic program that produces
facts, and whose integrity constraints are program properties. Database updates
correspond to program modifications that cannot destroy these properties. The
two approaches to the problem — considering the database either as an interpre-
tation of a first order theory or as s theory itself — are described at length by
Gallaire, Minker and Nicolas [GAL84]. In the first case (which corresponds to
conventional databases), queries and integrity consiraints are formulas that are to
be evaluated on an interpretation using the semantic definition of truth. The
second case corresponds to a syntactic approach: queries and integrity constraints
are theorems to be proved. The so-called logic databases correspond to this
second viewpoint.

As Gallaire et al. point out, because of the combinatorial complexity of
inferencing in logic databases, the application of logic to databases is usually res-
tricted to the conventional framework. The work described in this section can be
applied to either type of database, but only the conventional interpretation will
be considered in this thesis. Expressing database integrity constraints as logic
clauses is becoming increasingly popular, and is by no means restricted to logic
models of databases [e.g., TUCS83].

13

Nicolas and Yazdanian [NIC78] show how to insert or delete facts from
relations expressed in terms of logic clauses, so as to obey their integrity con-
straints. Fagin, Ullman and Vardi [FAG83] (whose work was later extended by
Kuper, Ullman and Vardi [KUP84]) attack the problem of semantics of updates in
databases which are arbitrary theories. These theories are updated by modifying
the set of sentences that characterize them. The authors consider how to change
theories, and which set of operations to choose so as to keep the change minimal
in size (since several different theories can represent the updated version). If
there is more than one theory that accomplishes the update minimally (i.e., the
update can result in different states), then the updated theory (new state)
becomes the union of all such theories (of all possible alternative states).

The basic premise of their work relies on a novel approach: no updates
should be rejected. (This type of procedure is also suggested in [NIC78], but is
not analyzed at length therein.) Unlike the standard deductive approach, Fagin et
al. even accept changes to the integrity constraints themselves. They also demon-
strate that, even though the existence of views is blamed as the origin of all
update anomalies, one can still have problems if the views are not considered.

The deductive approach is also used in aid of integrity checking. Several
authors use this type of formalism to propose ways of simplifying the set of con-
straints that must be checked in order to ensure that a given database is con-
sistent. Reiter [REI81] shows how to reject updates which violate type (i.e.,
domain) constraints. Nicolas [NIC82] simplifies integrity checking on some sub-
sets of an updated database by instantiation of variables in the clauses that
represent the integrity constraints. Kobayashi [KOB84|] uses many-sorted predi-
cate logic to show how to find validating procedures for update requests.

1.4. Update ‘analysis as a byproduct of other design considerations

Section 1.3 reports work centered on database updates themselves. Updates
have however also been analyzed in several other contexts, some of which are
briefly mentioned in this section. Even though not the prime issue in discussion,
they are studied in the database design and conversion processes. For example,
equivalence of schemes, view integration and conversion, and schema separability
are instances of ways in which the semantics of update operations is considered in
the literature.

For a set of update requests corresponding to a view, analysis of the view
scheme indicates which relations are affected (and thus how the database is per-
turbed). Given two view data models, and a set of update operations to be per-
formed on both, the models are considered equivalent if affected in a similar way.
This means, essentially, that both will have the same set of views at the end of
the update execution. The operations requested by different views are examined
in the context of equivalence of views. This issue is also raised in the view integra-
tion process [ELM80, MOTS81], especially when these operations alter the data-
base state [GAD82].

Wong and Katz [WON8O] use update anomalies to detect inconsistencies in
data models when converting a schema expressed in terms of the Entity-
Relationship model into a relational or network model. Update independence
motivates research into independence of schemes: if the relation schemes in a set

14 C. M. B. Medeiros

{R; - - - R,} are independent, an update to a relation r; does not affect the
other relations {r, - - - r,}. This type of analysis is performed, for instance, by
Chan and Mendelzon [CHA83] and Honeyman and Sciore [HON83], who define
different criteria for independence.

1.5. Purpose and organization of the thesis

In spite of the extemsive work on database updates, most view update
models are usually subject to very rigid rules. One such rule concerns the set of
constraints under which view updatability models are studied. There are several
descriptions of implemented systems that enforce a number of integrity con-
straints (e.g., from Stonebraker’s [STO75] description of prevention of inconsisten-
cies by query modification to Simon and Valduriez’s [SIM84] enforcement of
referential integrity and temporal assertions). Most formal analyses, however,
assume that the only allowable integrity constraints are functional dependencies,
since other types of constraints (such as multivalued dependencies) usually cause
more ambiguity and are as such harder to analyze formally. Other basic assump-
tions which have limited the lines of research are: views are formed only through
projection/joins of relations; the database (and views) must always correspond to
a single relation; all attributes of the source relations are present (e.g. there is no
projection); change operations are equivalent to an atomic transaction of type
<single insertion, single deletion>>; and updates must be requested only on single
tuples of a single relation. The effects of relaxing some of these constraints, or of
analyzing update consistency under a different set of constraints, have not yet
been investigated. '

Update translations into underlying operations are also subject to very
strict rules — e.g., view deletions can only be translated to underlying deletions.
Klug [KLU78| remarks on this and even shows how view deletions can be effected
by underlying changes. He does not, however, pursue this line of thought, and in
fact ignores changes and limits view insertions to insertions of a single tuple in
each underlying relation (though he accepts that some view deletions can only be
accomplished if several underlying tuples are deleted). Keller's recent proposal
[KEL85] considers the possibility of coexistence of insertions and deletions in dif-
ferent relations, but still subject to very stringent criteria (e.g., minimality of
change).

Another problem (whose existence has been, up to now, tacitly accepted and
avoided, save by Fagin, Ullman and Vardi [FAG83] and Keller [KEL85)) is that of
Jorcing the acceptance of all update requests. The reasoning behind this is that
the new data may be more accurate than the information already in the database.

The rigidity of the framework used for analyzing update translations results
in few views being considered to be updatable and in a paucity of alternative view
update policies. This is aggravated by the assumption that, in most cases, there
is no possibility of predicting which side effects may occur.

This thesis presents a new approach to analyzing view update policies under
a static model. It assumes the existence of a view designer, whose main concern
is to design views according to user specifications. Unlike all other approaches,
the aim of the method presented here is to allow these designers to liberalize the
translation policies, rather than to remain restricted to a small set of valid

15

interpretations. Thus, they can take advantage of the system’s characteristics to
define any update mapping desired, most of which are forbidden by traditional
approaches. An immediate consequence is that one can update views which have
been until now considered as unable to support update operations.

This liberalization is supported by a predictor algorithm — the update vali-
dation algorithm — that checks the validity of any update translation proposed.
It allows the view designer to analyze and document the meaning of any update
request, by indicating the associated update translation, as well as actions to be
taken when exceptions occur. As a result, update requests lose their ambiguity,
since the update’s effect is stated by means of the associated translation. Not
only can the validation algorithm indicate whether the desired update is actually
reflected in the view, but it also describes all possible side effects to the proposed
operation, as well as the underlying database states in which each type of side
effect can occur. This algorithm is a tool to be used by the database designer
and, especially, by those responsible for designing views.

Besides enhancing the set of valid update translations, the algorithm
extends the traditional framework of previous analyses. Not only does it consider
individual insertion and deletion requests, but also validates sets of such requests,
and treats tuple replacements as atomic operations different from insertions or
deletions. Furthermore, whereas most update validation tools restrict themselves
to dealing exclusively with functional dependencies [e.g., LIN78, ARO78, KELS85,
BROS85), the algorithm proposed also extends the set of constraints manipulated
to encompass the class of jcin dependencies, which will be processed as typed
template dependencies [SAD82]. These liberalizations come as a consequence of
the algorithm taking into account factors which are considered unacceptable by
most update validation tools (e.g., the contribution to the view of ‘“dangling
tuples” or of attributes that have been eliminated by means of projections).
Some of these factors have been previously suggested as necessary for a more
complete analysis, but they are consistently ignored, since it is claimed that they
add too many degrees of freedom to the problem and are not amenable to effi-
cient analysis [e.g., CAR79, KEL82].

Since the algorithm can be used to process both general update translators
and specific view update policies (see Section 1.3), it provides a much needed uni-
fying framework under which previous view design approaches can be treated.

The outline of the thesis is as follows. In order to allow a better understand-
ing of the validation method proposed, Chapter 2 gives a summary of some tools
that are used in subsequent chapters. Chapter 3 describes the update validation
algorithm and the interpretation of its symbolic output. Chapter 4 contains a
formal analysis of the algorithm, proving its correctness and analyzing its com-
plexity. Chapter 5 shows how the present approach generalizes and encompasses
specific view design tools proposed by other researchers. Chapter 6 contains a
summary of the thesis, and directions for future work.

16 C. M. B. Medeiros

Chapter 2

Tableaux and template dependencies

In the chapters that follow, a combination of modified tableaux and tem-
plate dependencies is used as the means of representing update mappings, inter-
preting queries and deriving side effects of view updates. For this reason, this
chapter contains a brief description of these concepts. Most of the material on
tableau manipulation is based on Maier’s book [MAI83]. The last section of this
chapter describes basic assumptions used throughout the thesis.

2.1. Relations and schemes

A relation scheme R; is a set of attribute names {A,-j}, each of which
corresponds to a domain of possible values, represented as dom(A,".). A relational
database scheme is a set of relation schemes, R={R;}. A tuple defined on scheme
R; is a function that maps each attribute in R; to a value in the attribute’s
domain. A relation r; on R; is a finite set of tuples defined on R;. A state of a
database scheme is a function that maps every relation scheme E; to a relation r;
on R;. The set of constraints C' for the scheme R defines the legal database
states: a state is legal if all relations in the database satisfy every constraint in
the set C. An instance, or extension, of a database is a set of relations in one
legal state of the database scheme.

2.2. Tableaux

Tableaux are traditionally employed in connection with lossless decomposi-
tion of relations, under the universal relation instance assumption. A relation r
decomposes losslessly into scheme R={R, ‘- ' R,} if
r=1IIp(r)X - - XIIg(r). This expression is called a project-join mapping.

Among other applications, tableaux are used as a means of representing
project-join mappings, deriving properties of relation schemes, and representing
special classes of queries. Different forms of tableaux appear, for instance, when
determining equivalence, optimization and modification of queries [MAI83,
chapter 11], establishing dependency satisfaction [GRA82}, or deriving implica-
tions of dependencies [MAI84].

In standard applications, a tableau is considered as a matrix that represents
a relation. Instead of actual values, the matrix rows contain distinguished vari-
ables (usually denoted by subscripted a's), and non-distinguished variables
(denoted by subscripted b’s). Each tableau row represents one or more tuples in
the corresponding relation. Tableau variables do not appear in more than one
column, and each column can have at most one distinguished variable.

Let R; be a relation scheme with attributes {A,-,.}, T be a tableau, {§}; be
the set of variables appearing in T and D=Udom(4;). Let {; € {€}; represent
a variable appearing in the column correspcj)nding to A;. A valuation for ele-
ments in tableau T is a mapping & from {£}; to D such that o(§;) € dom(4,).
Valuations are extended to sets of rows and to the entire tableau, as follows. Let
w be a row in T, of the form w= (£, * - - £,). The valuation o(w) is given by

o(w)=(o(§;) - - - o(€,)); the tableau valuation o(T') is given by {o{w)| w is a

17

row in T}.

Example: Applying valuation o{a;)=1, o(a,)=3, o(b;)=2, a{(b,)=2 to
the tableau on the left results in the tableau valuation at the right:

T(A; A o(A; Ap)
a,y bl 1 2
62 as 2 3

This valuation can be interpreted as “the relation whose extension is {(1,2),(2,3)}
can be described by the tableau T.” Thus, a tableau T for scheme R; can be
interpreted as a function on relations with scheme R;. If w; is a row composed
exclusively of distinguished variables, not necessarily in T, and r; is an instance

of R;, then

T(r;) = {o(wy)|o(T)C r;}.
This means that if a valuation o takes every row in T to a tuple in r;, then
o(wy) is in T(r;).

The concept of tableaux as mapping functions is used in special cases by
algorithms for determining equivalence of schemes. These algorithms are based on
defining a tableau for each relation scheme, reducing these tableaux and compar-
ing their characteristics. Tableau reducing operations rely on the concept of cov-
ering, or subsumption. Let w; and w, be rows in a tableau T for scheme R;. If
the fact that w, has a distinguished variable for attribute A;, implies that w, has
the same variable, then w, subsumes (or covers) w;.

Example: In the tableau below, the second row subsumes the first row.
A, Ay Ag
a; bl b2
a; by ay

2.3. Data dependencies

The integrity constraints most frequently mentioned in this thesis are func-
tional dependencies and join dependencies. A set of tuples {t} (relation) satisfies
the functional dependency X-A if

v tl,t2 € {t} thl thQ =HAtl HAt2
A relation r satisfies the join dependency *[R; * * * R,] if
r= Her)x s XHRn(f)

Given a set of functional dependencies F, there are inference axioms that
can be used to infer all functional dependencies implied by F. The closure of F,
denoted F* , 1s the smallest set containing F such that these axioms cannot be
applied to yield any functional dependency not in the set. If a relation scheme is
subject to a set of functional dependencies, this set will be assumed to be a non-
redundant set, where all dependenc1es are full. A functional dependency X-Y €
F¥is full it ¥V X'C X, X'=Y € F* = X'=X. A set of functional dependencies F
is nonredundant if F does not contain a proper subset F/, such that F=F',

Relation schemes are normalized — i.e., decomposed by special projections
— to eliminate some types of redundancy and solve some update problems. The
only normal form referred to in the thesis is Boyce-Codd Normal Form (BCNF).
A relation scheme R; is in BCNF if

18 C. M. B. Medeiros

(R; is subject to X~A and A £ X) = X-R,,
i.e., all left hand sides of non-trivial dependencies determine the whole scheme.

Template dependencies [SAD80, SAD82| generalize join dependencies, and
are represented in a tableau-like format, being composed of two parts: a set of
hypothesis rows, followed by one conclusion row. The conclusion row is
separated from the hypotheses by a horizontal line. Each row consists of abstract
symbols representing attributes. If at most one symbol is repeated in each
column, each such symbol is considered by some authors to be a distinguished
variable (e.g., [AHO79]); others assume that there is no distinction between types
of variables (e.g., [SAD80]). For a relation to satisfy a template dependency,
whenever there is a valuation that maps hypothesis rows to tuples in the relation,
the valuation must also map the conclusion row to a tuple in the relation. Tem-
plate dependencies can be considered as similar to logic clauses, being interpreted
as "if a relation contains a set of tuples that correspond to a valuation of the
hypothesis rows, then the relation is consistent only if it comtains a tuple
corresponding to the same valuation applied to the conclusion row".

Template dependencies can be typed (in which case a symbol cannot appear
in more than one column) or untyped (when a symbol can appear in several
columns). Full template dependencies occur when every variable in the conclusion
row also appears in some hypothesis row; partial dependencies are characterized
by the fact that the conclusion row contains symbols that do not appear in any
hypothesis row. Partial template dependencies correspond to embedded con-
straints. If the dependency corresponds to an embedded constraint over the set of
attributes X it is also called X-partial.

Example: Let X=(ABC), and consider the X-partial dependency that fol-
lows. :

A B C D

a; bl Co dl

a; by ¢ dy

ay b2 Co d3
This template corresponds to an embedded multivalued dependency over attri-
butes (ABCD), denoted A--B|C. Template dependencies will be denoted by
(wy -+ - w,)|wy+,;, where the bar separates the conclusion row from the
hypotheses.

A template is called simple if each column has at most one repeated vari-
able [AHO79).
Example: The template dependency to the left is simple; the one on the right is
not.

A B C A B C
a, b, ¢ a; b, ¢
a; by co a; by ¢
ay by ¢ a; by ¢
ap by ¢ a; b, ¢

Sagiv [SAG85] has proved that simple full template dependencies correspond to
join dependencies.

19

Sadri and Ullman [SAD80, SAD82] derived a set of inference rules for tem-
plate dependencies which is complete and sound for infinite relations. Of these,
the following rules will be used in the thesis:

a) The trivial template dependency

The dependency w, | w, is true for any row w,.

b) Renaming (or substitution)

Let 0 be a mapping that maps a template row (a, - - - a;) to (b, - - - b;). The
template dependency (w; - - - w,)|w, +, implies (o{w,) - - * o(w,))lo(w, +,) if
(1) given attributes A and B such that A#B, then o(w;(A))# o(w;(B)), ie., o
cannot map two different symbols to the same symbol;

(2) o does not identify a symbol that appears only in the conclusion row with any
other symbol.

Example: In the partial template dependency shown previously, if the first
row is mapped into the row (abcd), the template after substitution rules are
applied becomes

A B C D
a b c d

a 62 (3] d2
a b2 c d3

A tableau T1 contains a tableau T2 over the set of instances to which they
apply (T2 € T1) if, for every instance ¢ in the set, 72(s)CT'1(s). A homomor-
phism A from T1 into T2 is a mapping - called a containment mapping - of the
variables of T1 into those of T2 that preserves the matching of distinguished vari-
ables that exists among the template rows. If there is a homomorphism from T'1
into T2, then T2CT1 [AHOT79]. Template rows can be eliminated whenever
there is a containment mapping from a template dependency into itself whose
image does not include all the hypothesis rows of the dependency. A template
dependency is said to be minimal if no row can be eliminated by some contain-
ment mapping.

Example: The template dependency on the left can be reduced to the one
on the right, which is minimal (and represents the dependency A--B|C).

A B C A B C
ay bl Cl a, bl €1
a; by co a; bg ¢

a; by ¢y
e,y bl Csy
@, bl C3

20 C. M. B. Medeiros

2.4. Tableau chases

Several properties of relation schemes are derived by executing a process
called chase. Chasing a tableau means applying a set of rules that simulate
enforcement of functional dependencies (F-rules) and join dependencies (J-rules)
over the relation scheme which is represented by the tableau. The chase gen-
erates a sequence of tableaux T - - - T, which ends when no more tableaux are
generated (ie., B k,j | T, #T; A k>j). Chase rules are defined as follows:

a) F-rule

F-rules are applied for every functional dependency X-A. Let tableau T have
rows w; and w, such that w(X)= wy(X), w,(A)=¢§;, and wo(A)=¢,, and
suppose ;# £,. The F-rule is applied by unifying the variables £; and §,, which
creates new rows and forms a new tableau. This unification is done by choosing
one of the variables as the final result. If either §; or §, is a distinguished vari-
able, then the result is that distinguished variable (since only one distinguished
variable is allowed per attribute); otherwise, the unification chooses the non-
distinguished variable with the smaller subscript.

Example: Application of the F-rule A;+A, to the tableau on the left
results in the tableau to the right:

A A, A, A A, Ag
a; b, by U3 a, b,
by b, as by a; a3
a, a; by a; a, by

J-rules are not used in this thesis, and their description can be found in Maier’s
book [MAI83, pp. 163]. This chapter describes instead T-rules, which are similar
to J-rules and refer to chasing with template dependencies.

b) T-rule
Let TD=(w, * - - w,)|w,+, be 2 full template dependency on scheme R, and T’
be a tableau on R. If there exists a valuation p such that p(w, - - - w,) C T

but p(w,+,) is not in Ty, add p(w,+,) to Ty.

Example: Let TD be the template dependency on the left, and T, the tableau on
the right. Chasing T’} with TD generates the rows (abe) and (adc).

A B C A B C
ay bl Cy a b C
a, b2 Co a d

a; by e

The chase computation with F-rules and J-rules is a finite replacement sys-
tem with the Church-Rosser property [MAI83]. That is, for an initial tableau and
a set of dependencies, I and J-rules can be applied in any order, and the final
tableau will always be the same up to renaming. Finite chases do not include
embedded join dependencies, since in such a case there would be a need for creat-
ing new variables every time a new row is added to the tableau, eliminating the
guarantee of a finite chase process. (The proof of finiteness uses the fact that no
new symbols are generated). For some cases, it is convenient to consider infinite
relations as the result of chasing embedded join dependencies [e.g., MAI84].

21

2.5. Tableau queries

Since views are usually considered to be single-relation images of queries,
their creation can sometimes be simulated by tableau operations. The only
queries that can be modelled by tableaux are those involving select on equality,
project, and join operators. Select can be extended to inequalities by using addi-
tional tablees (see Ullman [ULL82]). In special cases, union and difference opera-
tors can be considered as well. Queries by tableaux are used to optimize query
evaluation, minimizing the number of joins. Furthermore, they can also be modi-
fied to obey some special dependencies.

Tableau queries, which are a modified version of tableaux, can either be
processed against a single rglation, or against several relations. The latter can
only be implemented if all relations are projections of a common instance (which
is an underlying assumption in the universal relation model). Besides having dis-
tinguished and non-distinguished variables, tableau queries also contain constants
and blanks. Furthermore, each tableau is preceded by a special row — the sum-
mary row — which describes the general format of the tuples answering the
query. Variables in a tableau query cannot appear in more than one column, and
only summary rows can contain blanks. Any distinguished variable that appears
in a column must also appear in the summary row, which cannot contain non-
distinguished variables.

Example: For R;=(AB), R,=(BC), the query II,~R;X R, is represented by
the tableau

A B C
a, as
a; by b,

by by ay
The first row is the summary row, the second and third rows stand for tuples in
R, and R,, respectively. The query 0g=qR; X R, is represented by

A B C
a; 0 ay
a, 0 62
b3 0 as

Tableau queries can be chased in a manner similar to traditional tableaux, and a
variant of the row subsumption concept is used to derive some of their properties.
Tableau queries can be modified so that they are no longer based on the assump-
tion that all relations used to form the query are projections of a common
instance. In this case, each row is tagged with indication of the relation scheme it
represents, and the row contains blanks for attributes not in the scheme.
Example: Let R={R;<ABC,{A-B}>, R,<ABD,{A-B}>}. The query

ITcp Ry X R, is translated into the tagged tableau

A B C D (Tag)

a3 G4

bl . b2 Qs (ABC)

bl 62 ay (A.BD)
whereas IIop (II4c Ry X II4pR,) is translated into

22 C. M. B. Medeiros

A B C D (Tag)
Qs ay

b, b, a; (ABC)

bl b3 ay (ABD)
These queries do not necessarily result in the same set of tuples, since there is no
condition that the dependency A-B for R, must denote the same function as the
dependency A-B for R,. For instance, for the extensions r;={(1,2,5) (2,3,4)} and
r,={(1,3,7) (2,3,8)} (which cannot be processed by non-tagged tableau queries)
the first query would result in the tuple (4,8), whereas the second would result in
the set {(5,7) (4,8)}.

If the last tableau were instead 2 non-tagged query, it could be chased with
F-rules, and the chase would yield b3=b,. For tagged tableau queries, chase rules
— usually F-rules only — can only be applied over rows with the same tag (i.e.,
referring to the same relation scheme).

The chase computation can also include rules for template dependencies
(T-rules), but in this case it may not be finite [FAG83a]. In some special cases,
the implication problem for template dependencies results in a finite chase pro-
cess. The chase is finite, for instance, if the set of constraints C' to apply consists
of a single dependency, or if the dependencies involved are full. A set of template
dependencies cannot be always combined into a single template (unless they are
all full [FAG83a]). In fact, the conjunction of a finite set of template dependen-
cies (not necessarily full) may not be equivalent to any single template depen-
dency.

2.6. Basic notation and assumptions

In this thesis, a relation scheme will always be considered together with the
set of constraints that apply to the scheme, and does not necessarily obey the
universal model. Inter-relation constraints will not be considered. Therefore,
unless otherwise specified, “‘relation scheme” and “database scheme” will in real-
ity refer to sets of attributes and constraints, denoted R={R; <{A,-!.},{C,~n}>},
where {A’} represent the attributes of R;, and {C; } the constraints of R;. All
attribute domains will contain at least two elements — empty domains have no
meaning and a singleton domain for some attribute A corresponds to imposing
the functional dependency (U)<A on the database scheme, where (U) represents
the set of attributes of the universe. A view is defined as

V=R, gq,)
where g, is the view generating function which, applied to R, will result in the
desired query image. The generating functions analyzed will be assumed to be
monotonic (i.e., if r C s then g,(r) C g,(s)) and formed by selection (o), projec-
tion (II) and naturzal join (X) operators. Any view that satisfies these require-
ments will be referred to as an SPJ view.

The template dependencies considered in this thesis will be all those that
belong to the class of embedded join dependencies (e.g., multivalued dependen-
cies). Such templates may be manipulated as simple, typed and minimal tableaux
(each of which represents some join dependency).

23

‘Chapter 3

The update validation algorithm

This chapter describes the update validation algorithm, a general algorithm
to validate individual update policies at design time. The algorithm indicates
whether there can be any side effects to a policy, allowing the view designer to
determine when a desired update will, in fact, occur in the view. It is assumed
that view access mechanisms (such as authorization and serialization of opera-
tions) are handled elsewhere by the system, and view interference will not be con-
sidered.

This chapter consists of two parts. The first contains the basic framework
and definitions used throughout the thesis. The second part analyzes the pro-
posed algorithm in a top-down fashion, and consists of a general overview fol-
lowed by a detailed description of each of its stages. An example at the end of
the chapter illustrates the execution of the algorithm.

3.1. Basic framework

A view V=(R,q,) will be defined over a relational database scheme R={R;
<{A‘-J.},{C,-"}>}, where {C; } is assumed to be composed of a set of full func-
tional dependencies and at most one minimal typed simple template dependency.
There will be no further integrity constraints imposed by the view; the only con-
straints allowed in this model are those referring to the underlying relations.

To avoid the complexity inherent in inference problems for template depen-
dencies [FAG83a, see also Chapter 2], it is assumed that templates cannot span
relation schemes, and that there is at most one template dependency for any
underlying relation scheme (although there is no limitation on the number of
functional dependencies allowed). Inter-relation constraints will not be con-
sidered. Thus, the schemes analyzed are independent in the sense that local (rela-
tion) consistency implies global (database) consistency.

3.1.1. Partitionable BCNF

Chapter 6 shows that there are cases in which functional dependencies
interact in such a way that certain updates may not be performed. The concept
of BCNF partitions, used throughout the thesis, is needed to prevent this type of
situation.

R; <{A; }{C; }> (as restricted above) is said to be in Partitionable BCNF
if there exist sets of attributes {P;} such that

{A;} = {PYULP;} - - - U{P}

V k,j {P}N{P;} = & and
V XA [(Xa~Ag) €101 = B i | X,ACLP} A X;-{P;)]
In words, R; is in Partitionable BCNF if its attributes can be partitioned into
BCNF slices (or partitions), where the set of functional dependencies given for
the attributes of each slice is local to that slice (no functional dependency con-
nects any two slices). A partition will be said to be trivial if no functional depen-
dencies apply to its attributes.

where

24 C. M. B. Medeiros

Example: Consider R; <ABCDEFG, {A-B,C-DE E-C, TD}>, where TD is a
simple minimal template dependency, whose interaction with the other con-
straints in this scheme is not taken into consideration for determining the parti-
tions. R, is in Partitionable BCNF, with partitions {(AB), (CDE), (FG)}. Note
that {FG} is a trivial partition. As a second example, R,<ABCD,
{A-BCD B-A}> is in BCNF and thus in Partitionable BCNF. On the other
hand, R3<ABCDE, {A-B,B~C}> is not in Partitionable BCNF: even though
(DE) is a trivial partition, (ABC) cannot be partitioned into BCNF slices that do
not interact.

3.1.2. Update translations

Let V=({R, * * + Rn}, q,) be a view and U, an update requested through
this view. The complete update translation or complete policy u,={u;}; =1 , is
the translation of U, into a set of underlying or tsolated update operations u; on
relations r;. Let u;(r;) represent the updated relation r; and A, is the set of
modifications in r; due to update u;,. The updated view can be computed as
g,(tt,(ry) - - - u,(r,)). The isolated contribution to the view of updating r; is
computed as q,{(r; - A; - - - r,).

3.1.3. Forced and conditional updates

This thesis allows each isolated update in a complete policy to be executed
according to a pre-defined action: force or conditional. Forcing an update means
that the update must be performed, and that edditioncl updates may have to be
executed as well, in order to achieve a consistent final state. Conditional updates
are executed only if no additional updates to the underlying database are needed,
and correspond to the traditional approach to updating relations. Forcing
updates rather than forbidding them follows the suggestion of Fagin, Vardi and
Ullman [FAG83]. However, unlike Fagin et al., who also accept changing
integrity constraints, the present work restricts additional updates to the exten-
sional level, and the integrity constraints are assumed fixed.

Example: If R,=<(Name,Dept), {Name-Dept}> contains the tuple
(Ethel,CS), a request for conditional insertion of (Ethel,Math) is rejected, since it
cannot be performed without deleting the tuple (Ethel,CS). A request for forced
insertion of the same tuple, however, can be accepted (under the presumption
that it provides information on the real world which is "more correct” than the
database’s contents). The result of such an insertion would then be the replace-
ment of the existing tuple by (Ethel,Math).

3.1.4. Symbolic tuple expressions

Instead of actual tuples, the update validation algorithm manipulates sym-
bolic tuple erpressions over variables \;, where each variable is designated as
either parametric or placeholder. Let T be a set of tuples defined over a set of
attributes {A;}. A symbolic tuple expression {t} for {A;} is an ordered string of
variables {\; : * - A\, } such that each \; represents an attribute A;. A wvalid
valuation ¢ of {t}, denoted #({t}), is 2 mapping that transforms each symbol X;
into a value ¢()\;) € dom(A;). {t} describes a tuple t; € T if there exists a valid
valuation @({t}) such that ITg d({th) = IT(43t,. {t} describes a set of tuples T

25

if there exists a set of valid valuations of {t} such that each tuple in T can be
mapped into {t} by a valuation in this set and the projection of the set of valua-
tions on the attributes represented by the parametric variables results in a single
tuple. In particular, the symbol {t}; denotes a symbolic tuple expression that
describes a set of tuples to be updated for scheme R;.

Example: Let (AbC) be a symbolic tuple expression, where the capital
letters stand for parametric variables and each attribute is defined over a set of
digits. (AbC)={(123), (143)} is a set of valid valuations, since all tuples have the
same value for A and C. However, (AbC) does not describe {(123), (148)} because
there are two different valuations for parametric symbol C.

Symbolic tuple expressions are manipulated by the update validation algo-
rithm as if they were real tuples. The algorithm determines, at design time, the
description of a set of tuples which result from an update; at execution time, valid
valuations of these expressions yield actual tuples. Note that ezecution time, or
run time, in this thesis, refers to the stage in the database lifecycle where the
view has already been designed, and is being actually queried/updated by the
user, as opposed to the design time when the update validation algorithm is exe-
cuted.

As noted earlier, each expression involves parametric and placeholder vari-
ables. Parametric variables (denoted by uppercase characters) represent specific
attribute values at execution time, and placeholder variables (in lowercase charac-
ters) represent all other attributes. Constants are a special case of parametric
variables.

Example: Let R;=(Parent, Child, Dept) bave an instance
{(John,Mark,CS), (John,Lind2,CS), (Mary,Paul,Math)}. (John,*,CS) refers to the
first two tuples of this instance. The corresponding symbolic expression is
{t};=(PcD), i.e., the set of tuples with specific values for attributes Parent and
Department to be given at execution time. Notice that this expression may also
describe the tuple (George,* Biology), etc. Update requests can thus be specified
in terms of symbolic expressions. For example, the request to delete (John, *, CS)
is an instance of deletion via the tuple expression (PcD), which includes the dele-
tion of tuples of type 3 x | (John, x, CS) € ry, when John and CS are substituted
for the parametric variables P and D.

Parametric variables can represent two types of values: user-entered or
system-generated; all valuations of placeholder variables are system-generated.
User-entered parametric variables correspond to attributes whose specific value
(valuation) will be provided by the user at execution time. System-generated
variables correspond to attributes that have their value determined by the system
at execution time. All system-generated variables have indices, which originate
directly from the expressions manipulated by the algorithm. The effect of assign-
ing a parametric value to a variable is that of restricting the range of values the
corresponding attribute may have. When the value of an attribute changes, the
(parametric) variable representing the old value is marked, to differentiate it from
the new value. Different parametric symbols stand for separate attribute values
at execution time.

26 C. M. B. Medeiros

The symbolic expressions that may appear in the algorithm’s output con-
tain, therefore, for an attribute A
a, - any attribute value
A - a specific user-entered value
A’ - a specific value denoting the old value of A, different from the new value
A.
A; - a specific system-generated value, determined by a functional dependency,
or a range of values, determined by a select operator.
A’; - a specific value (system-generated) denoting the old value of A;, different
from the new value A;.
A-B; - the specific value B; is determined by the specific value of A, for a func-
tional dependency A-B .

Input expressions that consist exclusively of parametric variables refer to a
single tuple, e.g., {t},=(ABC) refers to a tuple with specific values for attributes
A, B and C at execution time. For the purposes of the update validation algo-
rithm, insertions can only be specified one tuple at a time (i.e., through
parametric symbolic expressions), which is similar to the approach of Furtado et
al. [FUR79]. Input expressions consisting of both parametric and placeholder
variables can be accepted for deletion or change operations, where the set of
values to be assigned to the placeholder variables depends on tuples that already
exist in the database. A request for deleting a tuple (AbCD) from view V, for
instance, is interpreted as a request for deleting all tuples of the form 3 b
(AbCD) € V.

In this thesis, the sentence “‘the set of tuples described by an expression {t}
is deleted(inserted)” is often shortened to “{t} is deleted(inserted)”’, when the con-
text is clear.

3.1.5. Matching and equivalence

Let a template dependency be defined as w; - - - w,| w,+,. Row w;
matches row wy over a set of attributes {a,s} if the template contains the same
symbols for these attributes in both w; and wy. In other words, w; matches wy
over {a,s} if any valuation will assign identical values to the attributes {as} in
w; and wi. Similarly, given a set of attributes Y, two symbolic expressions
match over Y if both have the same symbols for Y, and two tuples {; and ¢,

match over Y if ITyt,=IIyt,.

Consider the functional dependency X-A, and let {t} and {w} be symbolic
tuple expressions defined over the same set of attributes, describing sets of tuples
T and W, respectively. {t} and {w} agree over XA if (TUW) satisfies X~A. {t}
and {w} disagree over XA if (T U W) violates X~A. {t} is equivalent to {w} ({t}
= {w}) whenever both describe exactly the same set of tuples. In other words,
the set of valid valuations for {t} is exactly the set of valid valuations for {w}. {t}
is subsumed by {w} ({t} C {w}) whenever the set of tuples described by {t} is a
subset of the tuples described by {w}.

Example: Consider analyzing the equivalence of the expressions (a,B;¢c,)
and (a,Byc3). Assume all system-generated placeholder variables, for each attri-
bute, range over the same set of values. If the set of valid valuations for these
expressions determines that B is such that B;>10 and B,>10, these

27

expressions are equivalent. However, if B; >10 and B, <10 they are no longer
equivalent. Finally, if B;=10 and B,>10, then the first expression subsumes
the second.

3.1.6. Symbolic valuation of a template dependency

A template dependency w, * * * w,| w,+; over scheme R, can be seen as a
logic sentence w;A *** Aw, = W,+;. In the context of deductive logic data-
bases, similar structures are treated as recursive axioms (e.g., Minker and Nicolas
[MIN83]). A symbolic valuation of a template dependency occurs when a sym-
bolic tuple expression (or set of expressions) replaces a row (or set of rows) of the
template, and substitution inference rules are applied. The result is denoted
() * * * W,)|(W,+1), where each w; is a symbolic tuple expression. This can also
be seen as a logic sentence w A * * * Aw, =>w, 4, which is true if there exists a
valid valuation @ such that A [#(w,)€r;]. The term (w,€r;), often used by the

]

validation algorithm, represents a condition which is true if there exists a valid
valuation ¢ such that ¢(w,)€r,.

3.2. Complete example

The update validation algorithm processes symbolic tuple expressions. In
order to help understand the sections that follow, this section simulates the execu-
tion of the algorithm using actual instances instead of symbols. Consider the
attributes C=Course, M=Meet_time, S=Student, P=Prof. Let R=
{R,<(C,M,S){C~=M|S, (MS)~C}>, R,<(C,P), {C~P}>}, and a view defined by
g, = R X R,. Consider the instances

C M S C P
Phys Mon 10 James Phys Profl
Phys Mon 10 Paul Biol Prof2

Phys Wed 10 James

Phys Wed 10 Paul

Biol Mon 10 Mark

Biol Mon 10 John

Biol Tue 18 Mark

Biol Tue 18 John

Chem Fril5 Mark
Suppose the tuple (Chem, Mon 10, James, Prof2) is to be inserted into the view,
and the associated complete translation is «,= { 4; = Force insertion of (Chem,
Mon 10, James) into R;; u, = Insert (Chem, Prof2) into R, conditionally}.
After syntax verification, the first action taken by the algorithm is to check what
modifications A; each relation must undergo in order to support the isolated
updates requested.

Computing 4, for relation r,

Forcing indicates that the insertion must be performed, even if it means
changing information already in the database.
: (Chem, Mon 10, James) can only be inserted if t; = (Phys, Mon 10, James) is
deleted, because MS-C.
: Since (Chem, Fri 15, Mark) is in ry, and C--M]|S, the requested insertion also

28 C. M. B. Medeiros

requires insertion of (Chem, Fri 15, James) and (Chem, Mon 10, Mark).

: However, this last insertion can only be performed if t, = (Biol, Mon 10, Mark)
is deleted, again to satisfy MS-C.

: Finally, deletion of ¢; and {, cannot be accomplished because there are other
tuples with C=Phys and C=Biol that require the existence of ¢{; and ¢,, to
satisfy C=-=M|S. Deletion of t; can be achieved if either (Phys, Wed 10, James)
or (Phys, Mon 10, Paul) is also deleted; deletion of {; can be achieved if either
(Biol, Mon 10, John) or (Biol, Tue 18, Mark) is also deleted. Suppose that some
pre-defined translation rule (see Section 3.4.1.c) determines that (Phys, Wed 10,
James) and (Biol, Mon 10, John) should be chosen for deletion.

The final set A, of insertions and deletions is thus

insertions:
(Chem, Mon 10, James) - requested
(Chem, Mon 10, Mark) (JD)
(Chem, Fri 15, James) {JD)
deletions:
[(Phys, Mon 10, James)] (FD)
[(Phys, Wed 10, James)] (JD)
[(Biol, Mon 10, Mark)] (FD)
[(Biol, Mon 10, John)] (JD)

where (FD) and (JD) indicate whether the functional dependency or the join
dependency, respectively, caused the tuple to be inserted (deleted). These addi-
tional updates occur only because of the relation’s initial state. If, for instance,
Mark did not take Biology at 10 on Mondays, there would be no need to delete
(Biol, Mon 10, John). For this reason, each underlying update is associated with
the initial state under which it will occur (called relation state description).

Computing A, for relation r,

Conditional insertion of (Chem, Prof2) can be performed since it does not
violate C<P. Had there already been some other professor in Chem, however,
this update would not have been allowed.

At this point, the modifications A; and A, have been computed, and
stored in a table called underlying modification table. The next part of the algo-
rithm computes the changes that happen to the view given these changes in the
underlying relations. In fact, the changes due to each relation are processed
separately as if the other relations had not changed — i.e., the isolated contribu-
tion of each relation to the view is computed. This is done in a way similar to
query computation.

Contribution of A,

The view will contain the new tuples

(Chem, Mon 10, Jaines, P;)

(Chem, Mon 10, Mark, P;)

(Chem, Fri 15, James, P,)

while the tuples

(Phys, Mon 10, James, P,)

(Phys, Wed 10, James, P,)

(Biol, Mon 10, Mark, P;)

29

(Biol, Mon 10, John, P3)

are deleted. P, P,, P; are system-generated parametric variables which will be
assigned values from relation ry, i.e., Py=P; = Prof2 and P, = Profl. These
insertions and deletions result from the original insertions and deletions in A,
only because tuples {(Chem, Prof2), (Phys, Profl), (Biol, Prof2)} exist in r,.
Thus, the changes in the view are conditional to some database state. Such a set
of conditions associated with each view update is called the database state
description, which is computed and stored in the database state table.

Contribution of A,

The view will contain new tuples {t}, where IIop {t} = (Chem, Prof2), and
the values for attributes M and S are taken from tuples in r; that contain
C=Chem, and which are not deleted in A,, since deleted tuples cannot contri-
bute to view insertions. Thus, besides the insertion of the tuples already men-
tioned, A, additionally causes (Chem, Fri 15, Mark, Prof2) to appear in the view.

Set of possible updates

The set of all possible updates that can occur to the view given the com-
plete policy specified is thus given by combining the set of isolated contributions
of each relation to the view, i.e.

Contribution of both A; and A,

Insertion of (Chem, Mon 10, James, Prof2), (Chem, Mon 10, Mark, Prof2), and
(Chem, Fri 15, James, Prof2).

Contribution of A, only
Insertion of (Chem, Fri 15, Mark, Prof2)

Contribution of A, only
Deletion of (Phys, Mon 10, James, P,), (Phys, Wed 10, James, P), (Biol, Mon 10,
Mark, Pj) and (Biol, Mon 10, John, P;)

Reviewing what has been shown in this example, the algonthm is processed
along the following lines
1) Validate input
2) Determine changes A; to each relation, given the translation proposed, and
the relation state for which each change occurs. Store changes in the underlying
modification table.
3) Produce as output the isolated contribution of each A; to the view, and the
database state description for which the contribution may occur.

A few other keypoints should be mentioned. Notice that an underlying
forced insertion (e.g., in r;) may cause tuple deletions from the view. Further-
more, isolated contributions, alone and in combinations, yield all side effects. By
analogy, given the algorithm’s symbolic output, the set of valid valuations of the
(symbolic) isolated contributions yield the set of all possible side effects that may
occur in response to a given translation (see proof in Chapter 4). Finally, view
updates are conditional on the initial relation’s states. The sections that follow
formalize these notions. ‘

30 . C. M. B. Medeiros

3.3. The update validation algorithm - functional description

Whereas most authors consider requests for tuple replacement to be
equivalent to a transaction of type <single deletion, single insertion>, here
replacements will be treated as separate atomic operations, here called changes.
The algorithm can thus be used to validate insertions, deletions, and requests for
tuple replacements.

Previous researchers have assumed that valid view deletions are those that
are translated into deletions of the umderlying relation tuples, and valid view
insertions are those that are translated into either insertions of tuples into the
underlying relations, or replacements of null by non-null values in some underly-
ing tuples [LIN78, DAY82]. Following again the thesis’ basic premise that the set
of admissible updates should be as little restricted as possible, the focus of con-
cern will be that of composition of underlying updates, but no restriction is
imposed on the types of operation requested. Thus, a given view update can be
translated into a series of forced and conditional changes, insertions and deletions,
and it is possible to effect a deletion or a replacement by an underlying set of
insertions, as was shown in Section 3.2.

The update validation algorithm receives as input the database scheme, the
view generating function, the desired view update and the complete update trans-
lation for this update. The output predicts the effects the translation has on the
view, as a function of the initial database state. As such, it can be seen as a
transformation that takes the desired view update and a complete policy into the
set of all possible effects this policy may have on the view. Both input and out-
put are specified in terms of symbolic tuple expressions.

The input to the algorithm is a pair <R,q,>, representing view formation
and consistency information; and an update rule to be validated. A syntactic res-
triction imposed on the database scheme is that each of its component relations
should be presented in Partitionable BCNF. Each update rule can be considered
to be a procedure of the form <view update desired{isolated operations}>,
which is activated at run time by a specific update request. View update desired
describes the update operation to be performed, and plays the role of procedure
header. The set isolated operations is the executable body, and forms a complete
policy.

Each isolated operation is specified as the 4-tuple

<Op, tuples affected, underlying relation R;, exception action>.

Op indicates the type of operation, which can be In (insertion),De (deletion) or
Ch (change);

tuples affected is {t}; or {t,t"}
(the latter format is used when the operation is a change: {t}; replaces
{t'})

exception action indicates the type of action to be taken if the operation violates
a constraint, and may be "force” or "cond” (conditional), which is the default.

The algorithm first checks the input to see if it is syntactically correct (see
details in subsequent sections). Next, it computes what are the updates that
must be performed at each scheme R; (e.g., 4; and A, in Section 3.2). These
updates are denoted A;, and consist of a set of symbolic tuple expressions. These
expressions describe tuples to be inserted or deleted in each relation in order that

31

the update requested at the translation, u,=(Op; {t}; R; exzception), be per-
formed, and each final relation state satisfies {C; }. The underlying modifica-
tion table is a table that contains all sets A;.

The execution of the (set of) updates described by each expression in 4; is
conditional on the relation state before the update — the relation state descrip-
tion. This state is described in terms of existence of symbolic tuple expressions,
and the rules for determining it are denoted State(Op;).

Next, the isolated contribution to the view of the updates described in A; is
computed, for each scheme E;. This is achieved by means of applying the view
generating function g, to the expressions in the underlying modification table,
creating for each scheme R; a tableau sequence Ty, - - Ty, Tableau T, con-
tains the expressions in A;, as well as one symbolic expression for each relation
scheme R;x,;. Each tableau T, in the sequence is obtained by applying one
operator (X ,I1,0) of g, to the rows of T(;-1); and checking functional dependen-
cies. Each row of tableau T}, consists of a symbolic tuple expression that
describes a set of view updates (tuples) that may occur as a result of the underly-
ing updates to I, described in 7';,. In other words, the rows of T}, represent the
isolated contribution of R; to the view.

Each tableau sequence is associated with a database state table. Initially,
this table contains the relation state description (for R;) determined according to
rules State(Op;). This table is modified during the creation of the associated
tableau sequence, in order to reflect the conditions under which each transition
from T(j-1) to Tj; can occur. Each row of the final database state table is asso-
ciated with one row W of T}, and contains a conjunction of variable valuations
and symbolic expressions. These expressions describe a class of initial database
states for which the set of view updates described in W will appear in the view.
Each database state in the class corresponds to a valid valuation of W. Each row
of the table is said to contain a database state description.

Example: Let gy = 04510 (By X Ry), R={R,<AB/({}>,
R,<BC,{B~C}>}. For A;="‘ab’, and A,='Bc’, the result of the update valida-
tion algorithm will be seen to be {t},,=A;BC,, which limits the set of valid
valuations for view tuples to those with specific (sets of) values for A, B and C.
Besides indicating what are the conditions for generating A; and A,, the data-
base state table entry for {t},, records:

[b=B] (determined by the join operator);

[c=C,] (the functional dependency determines that the attribute must have a
specific value, since B-C and the symbol B represents a particular value);
[a=A,>10| (determined while executing the selection operator). A parametric
value A, is assigned to this variable to indicate that the selection limits the range
of the corresponding attribute.

Both A and C are assigned indices to denote that the corresponding values are
not directly determined by the user.

Thus, given the complete policy u, = {u;=(Op, {t}; R, ezception)}; =1 ,,
the complete output is the set of rows in ,

{T, U database state table for sequence i };m; .
Therefore, the update validation algorithm is a function that transforms an

32 C. M. B. Medeiros

incompletely specified view uwpdate and its translation u, into the precise func-
tional definition of this translation in terms of its effects in the view.

The next section shows how underlying modification and database state
tables are built, and describes the rules for generating a tableau sequence, denoted
Ex(q,). Since tableau sequences are independent of each other and processed
separately, any sequence will be from now on denoted T * - - T;. The reader
should keep in mind, however, that there are n such sequences, one for each of
the relation schemes updated in the complete policy.

3.4. Rules for executing the algorithm

3.4.1. Generation of the underlying modification table

Each underlying update u; =(Op;,,{t}, R, exception) is processed so as to
derive the set of expressions in A;, stored in the underlying modification table,
that describe all inserted, changed and deleted tuples in the underlying relation
r;. The set of rules that defines how each A; is generated is denoted
Op({t};,R; exception), where Op is In, De or Ch. Nulls will be interpreted as
indicating the existence of an attribute whose value is not known, and will be
treated as any other variable. Underlying operations of changing null to non-null
values are therefore a special case of changing non-nulls to other non-null values.

The following notation will be used in the remainder of the thesis. The
expression [t] denotes that the tuples described by {t} are being deleted from the
relatior. Pairs of expressions of the form (t,{t']) denote that the tuples described
Ly {t} replace those described by {t'} in the underlying relation. The symbol w;,
denotes the i-th row of a template, and w; denotes a symbolic valuation of the
same row. When {t}; replaces any template row w;, all placeholder variables in
{t}; are assigned the indices of the corresponding variables in w; (e.g., if
{t};=(AbC) and w;=(ab,c,), replacing w, by {t}; results in 1;]-=(A510)).

References to the updating or the existence of a template row will actually
refer to the updating or the existence of the tuples described by that row. For
instance, the statement ‘(Ab,;C) is deleted if (ABc,) exists’” means that “all
tuples in scheme R=(ABC) described by the expression 3 b, | (Ab;C) € r are
deleted if this reiation contains tuples described by 3 ¢, | (ABcg) € ¢ ™.

If the exception action is "cond" the update cannot cause any other
updates, and thus
In({t}; ,R;,cond): A; ={t};;
Dc({t},-,R,-,cond) N A,‘ =[{t},],
Ch({t’t'}i ,R,-,cond) : Ai =({t}i’ [{t'}il)'
This action is the one assumed by most authors. The rules that follow are for
Op({t}, ,R;, force), where underlying updates other than the requested ones are
also generated.

a) R, 18 not subject to any integrity constraints

Insertion or deletion of {¢ },- does not violate any constraints, and no extra
updates are needed. Therefore,

[’n({t},',R,',fOfCC) : Ai ={t}n

De({t};,R;, force) : A; =[{tk];
Ch({t,t"},R;, force) : A; =({t};, [{t"}]).

b) R; is subject to functional dependencies only
Deletion of tuples cannot violate a functional dependency, so

Dc({t},‘,R",fOfCC)':[{t}.'].

For every functional dependency X-A that can be violated, both forced
insertions and changes may require elimination of some tuples. This is achieved
by specifying an expression {w} for attributes in the relation, where {w} consists
of placeholder variables only. Based on this expression, a set of change pairs
denoted {(wyq,[w'4))} is created such that (wyy) agrees with {t}; over XA, and
w' 4 describes the tuples that should be deleted:

waﬂ wa d—HX{t}

sz d'_’ Z w}, sz fd> where Z=(R,'- (X U A))

IT AW fd =]JI A{t
For insertions, I1 Aw fd-A where A’ is a variable different from A.
For changes, [T, w fd—HA{t k.

Other attributes in wy; may become system-generated parametric variables
as a result of checking the dependencies in the partition to which X-A belongs.
The set of deletions {w's;} is denoted AD(tpp); the set of insertions {w s} is
denoted Al{tzp).

Thus, In({t},-,R,-,forcc) : A,' = {(wfd,[w’fd])} U {t},' = {t},' U AI(tFD)
- AD(tpp);
Ch({t,t'},R;, force) : A; = {(wg,|w'pg} U ({th {t'L]) = ({th[{t'L]) U
Al(tpp) - AD(tpp).
Example: Let R; <ABCDE,{A-B , C-~D}>, which yields the partitions are
[AB], [CD] and [E]. Let the expression to process the updates in this relation be
{w}=(a;b,c,d e;). Forced insertion of (ABCDE) is translated into the set
A B C D E |[A B C D E
(A B cq dl €, [A B' Cq dl 61]) (fix A"B)
(al bl C D €y, [al bl C D, cl]) (ﬁx C"D)
A B C D E (insert tuple)
The request (Ch, (ABCDe,ABCD'e), R, ,force) is translated into
A B C D E [A B C D E
(A B Cy dl €1, [A B' Ccy dl 61]) (fix A"'B)
(a, b C D e, |la; b, C D' ¢ (fixC-D)
(A B C D ¢, [A'" B C D' e¢] (change tuple)
Example: If B, <ABCD,{AB~CD}>, and the expression used to process
updates in R; is (a;b,c,d,), then forced insertion of (ABCD) creates the pairs
(ABCD,,|ABC'd,]) and (ABC,D,|ABc, D']).

¢) R, is subject to a tefnplate dependency only

34 C. M. B. Medeiros

If a template dependency wy - * - w, | w,+, is interpreted as an implication
clause W AwsA * * * AW,=>wW, 41, tnsertion of tuples is equivalent to modifying
the set of hypotheses w, * - - w, [NIC78]. Insertion effects are tested separately
for each hypothesis row w; in the template, replacing it by {t}, and applying sub-
stitution inference rules to the whole template. Each substituted conclusion row,
denoted (w, +);, indicates which additional insertions may be needed to keep the
clause valid. The modified hypothesis rows wy w;, constitute the relation state
description for which insertion of (w,+,); is needed, if {t}; is inserted. For each
substitution, {t}; may play multiple roles (i.e., the state description includes
expressions that may correspond to {t}; as well).

X-Partial templates over a scheme R=(XY) represent embedded con-
straints, and can be seen as composed of an (embedded) template over X plus a
set of columns that refer to the attributes (Y) not subject to the constraint. The
value of the attributes in Y for each additional insertion (w, +;), cannot be deter-
mined from the hypotheses, and must therefore be taken from some designer-
defined set of values (e.g., marked nulls). Such attributes are therefore accorded
system-generated parametric symbols (uppercase characters with indices).

This process of generating additional insertions is equivalent to computing
all symbolic valuations for which {t}; describes tuples in the relation. In this
thesis, the process of applying substitution rules starting from a hypothesis row is
also referred to as pushing {t}, down the template. The symbolic valuation that
results from replacement of a template row w; by a symbolic expression {t} will
also be referred to as the mapping generated by the replacement w; « {t}.

In({t}; R;, force) : A; = {t}; U {(w,+,);}, where {(w, +,);} is the set of
symbolic valuations of conclusion rows obtained in the set of mappings generated
by {w; « {t};};=1 , (describing the tuples that may have to be inserted to main-
tain the database consistency).

Example: Let R; <ABCD,{A~-B|C}>, whose ABC-partial template is

A B C D

a by ¢y d

a; by ¢ dy

ay b2 Co d3
Forced insertion of (ABCD) results in a set with rows: (ABCD) itself; (Ab,CD,) -
when (ABCD) replaces the first template row; and (ABc,D,) - when the substitu-
tion occurs for the second row. D; and D, are not subject to any constraint,
and thus their values are to be chosen by the system.

Deletion rules are also based on symbolic template valuations. Let again
R=(XY) be subject to an X-partial template dependency, and consider the rela-
tion after deletion of {t},. If this new relation contains a set of tuples described
by {t,erm} such that IT{t},=ITy{t,.,} (i.e., the relation still satisfies the depen-
dency after the deletion), then deletion of {t}; does not require any further dele-
tions. (Notice that if Y= this can never happen, since deletion of {t}; makes
{trem }=2)

If {t,.,,}=, then {t}; must be checked against the template dependency.
It initially replaces the conclusion row [NIC78], and again substitution inference
rules are applied to the rest of the template. This mechanism of applying

35

substitution rules starting from the conclusion will also be referred to as pushing
{t}; up the template. If the expression represented in the conclusion row sub-
sumes some hypothesis row w;, then deletion of {t}; also causes deletion of all
tuples described by w;. If at least one such w; can be found, then {t}; is effec-
tively deleted. If no such row exists, another row may need to be eliminated to
invalidate the set of hypotheses. Without loss of generality, this additional row is
chosen to be the first substituted hypothesis row that contains at least one
parametric variable (or the first row, if no parametric variables appear), and
which will be denoted by w;,;. The modified hypothesis rows indicate the condi-
tions under which deletion of w4 is needed. The first row is chosen because it is
assumed that each template is generated by the view dcsigner in such a way that
row matching can be pre-determined. Therefore, the run-time characteristics of
w4 can be specified at design time — see discussion of this problem at the end
of the example in Section 3.2.

De({t},,R;,force) : A; = [{t}; U {w,4}]. For either partial or full tem-
plates, w4 is needed only in the case where no hypothesis row is eliminated as a
direct result of applying substitution rules, and all hypothesis rows are
represented in the instance.

Example: In the previous example, forced deletion of (ABCD) results in a
tableau with rows (ABCD) and w,4 = (Ab;Cd,). The latter only needs to be
deleted if no tuple of the form (ABCd;) exists and tuples of the form (ABe d,)
exist. On the other hand, deletion of (AbCd) would require no further deletions,
since it subsumes the (substituted) first row.

For changes, each template row w; is duplicated, resulting in
wje(w;,[w,]). The conclusion row thus formed is replaced by ({t},,[{t'}]),
which is pushed up the template, so that the variables in {¢}; will replace those in
w, and the variables in {t'}; will replace the corresponding variables in [w;]. If
no hypothesis row contains the same expression as the conclusion row, further
changes may be needed. This is simulated by using the first row (17,‘,[17';;]) for
which wy # w';, denoted by w,, = (w;.,[w']). If no such row exists, then the
change does not violate the constraint. This set of changes is followed by deriv-
ing insertions that may be needed as a consequence of the appearance of new
tuples described by {t}, and w,;,. Ch({t,t'};,R;,force): 4A; =({t}; ,[{t'}) U
(Elcr[(l;’lc]) U In({t},',Ri,forcc) U In("-b.lchirforce)'

Example: In the previous example, where R 1<ABCD,{A--B|C}, the
request (Ch,(ABcD,|AB'cD]),R, force) generates the substituted template

A B C D [A B C Dj

(A by ¢ dy, [A by ¢ dy))

(A B (3] d2, [A B, Cl d2])

(A B Co D, [A B' Co D])
where the second row corresponds to w;, = (wy,,[w';.]). Insertion of (ABcd,)
and {ABc,D) may require insertion of (AbycoD;) and (ABc,Dj). In fact, these
expressions describe tuples which already exist in the relation, due to the fact that
the relation must have been consistent with respect to the template dependency
before the update, and thus these insertions are not needed. Therefore, only the
second row and the conclusion row in the template need to be stored in the
underlying modification table.

36 C. M. B. Medeiros

d) R; is subject to functional dependencies and a template dependency

For deletions, since they do not affect functional dependencies, the rule is
performed as in (c), and thus De({t},,R;, force) : A; = [{t}; U w,4].

. For insertions or changes, the updates are assumed to be processed in the
order: preserve the functional dependencies first, and then preserve the template
dependency. With this processing order, if tuples are to be deleted in order to
preserve a functional dependency, they will not contribute to determining addi-
tional updates needed to satisfy the template dependency.

First, pairs (wsq,[w'g4]) resulting from forcing functional dependencies are
generated as described in (b) — for relations subject to functional dependencies
only. The initial expression used to check a functional dependency corresponds to
the conclusion row of the template dependency. The execution of the updates in
(w fd,[w'fd]) may then require an additional set of insertions and deletions in
order to maintain the consistency of the template dependency. Insertion rules for
template dependencies are applied for {t}; U {wy,}, and the resulting insertions
{(w,+1);} may require further deletions in case of disagreement over functional
dependencies. Finally, all deletions must be processed against the template
dependency.

For insertions and changes, the interaction between a simple (Y-partial)
template dependency and a set of functional dependencies that affect Y may
cause conflicting updates, where insertions disagree over some functional depen-
dency.

Example: Consider R;<ABCD,{BC~AD*[ABD, AC, CD]}>. The join

dependency corresponds to the template

A B C D

a, by ¢ d

a; b, ¢ dy

Qs bq Co dl

a, bl Co dl
Forced insertion of {t};=(ABCD) generates the pairs (ABCD,|A'BCd,]), and
(ABCD,[alBCD']) to preserve the functional dependency, and the expressions
(wy+1)j = {(ABe,D), (Ab,Cd,), (a,1,CD)} to preserve the template depen-
dency. Let the domain of each attribute be a set of digits, and (ABCD) = (0000),
and assume r, contained tuples {(0499), (5309), (0485), (6205)} before the inser-
tion. This means that (wgy[w'y]) =@, and that (Ab,Cd,)= {(0409) —
because of the two first tuples; and (0405) — because of the two last tuples}.
Thus both (0409) and (0405) must be inserted to satisfy the template dependency,
and yet together they violate the functional dependency. Hence, further informa-
tion would have to be provided to disambiguate the update requested. In fact,
rather than allowing for more input, cases such as these are not accepted as valid
update requests by the update validation algorithm.

As will be proved in Chapter 4, there are identifiable cases where this prob-
lem does not occur. Let X-A be a functional dependency whose attributes are
represented in the conclusion row of an Y-partial simple template dependency by
the symbols z a, where XA € Y. The allowed interactions between this tem-
plate dependency and functional dependency, for forced insertions and changes,

37

are in general those said to be in

class (HXA): at least one hypothesis row contains the symbols za

If there is at most one non-trivial BCNF partition, then the set of allowed
interactions is extended to include also dependencies in

class (A): all hypothesis rows contain the symbol a,

class (HX): the symbols in appear in at least one hypothesis row.

The rules In({t}, ,R;, force) are hence processed in the order
1. (Preliminary functional dependency housekeeping) Process the insertion as for
functional dependencies only — i.., through changes {(w fd,['w' fd])} =
(Al(tpp),AD(trp)). _
2. Push {t}; U AI(tpp) down the template, generating {(w,+,),}
3. If there is more than one non-trivial BCNF partition, the only interaction
allowed is class (HXA), which requires no further deletions. In this case, all
inserted tuples (17,4.1)]- are “Good” (in the sense of not requiring further dele-
tions). The set of good insertions is denoted {(w,+1), }.
4. If there is only one partition, and it interacts with the template dependency
under classes (A) or (HX) (which obviates the need to check for (HXA)), eliminate
from r; all tuples that cause functional dependency violation, given the insertions
{(ws+l)j}'
5. Push the deletions in (1.) and (4.) up the template to ensure these deletions are
effectively achieved.
The set of deletions performed in (4.) and (5.) is denoted {(w,+;),"} (i.c., those

+1)4
that cause “BAD” interactions between tuples to exist, given {(w,+);}).

In({i Ry foreg) = 4y = {thUAItm)Ui(®@,+),°} -
[AD(tpp)U{(w, +1);7 H-

Similarly, Ch({t,t’};,R,—,forcc) P Ay= ({t}i’[{t’}il) U (wlcr(w'lc]) U Ai'
U A;", where
In({t}; ,R;, force) : 4;' and
(In(ﬂ_ilc,R,‘,fOTCC)) : Ai"'

Example: Let B, <CMS,{C~-M|S, MS=C}> (this is the same scheme R,
of the example in Section 3.2), which exhibits the class(A) interaction (c; appears
in every row)

C M)
6y mMy &
&1 mp 8
Cq my 8,
Forced deletion of (CMS) generates the rows (CMS) and w4 = (Cm,S).

Forced insertion of (CMS) is processed as follows:
1. (wg,Jw’ 14]) = (CMS,[C'MS]) (N.B. in this case Al(tpp)={t});
2. (CMS) is then Brocessed as an insertion for template dependencies and the
insertions {(w,+,); } generated are (Cm,S) and (CMs,);
3. These additional insertions must be examined to see if the updated relation
violates the functional dependency. In other words, existing tuples of the form
(C" m, S) and (C™ M s8,) (where C",C™ # C) may have to be deleted.
4. Finally, (C'MS), (C" m, S) and (C™ M s,) alone may not be deletable
because of the template dependency. Therefore, these deletions are processed

38 C. M. B. Medeiros

using rules for template dependencies:
V m,,s, [C'mS] — deleted if (C'MS) is deleted and (C'Ms,) € ry; :
V my,s, [C" my S| — deleted if (C" m, S) is deleted (in 3.) and (C" m, s,) €
fl;
V m,,8, [C™ m, 8;] — deleted if (C" M 8,) is deleted (in 3.) and (C" M s,) €
T
The final set of entries in the underlying modification table is

C M 8 [C M]

€ M s [C M J9)

' m; ¥
C my, S [C" my, ¢
[C" m, S]

C M 8y [C"’ M 81]
[C" my e
and the corresponding database state table records the relation state description
for each update.

3.4.2. Valuation of system-generated variables

Run time valuation of placeholder variables presents no problems. Valua-
tion of system-generated parametric variables needs more attention, to ensure no
constraints are violated.

Parametric variables that result from select operators can be assigned any
value from the specified selection range. Similarly, in the case of additional inser-
tions where there are partial template dependencies, system-generated parametric
variables can be assigned any value from a pre-defined set, for example from a set
of marked nulls or system defaults. The coexistence of functional dependencies
and partial template dependencies creates the problem of determining the value
of system-generated parametric variables for additional insertions {(w,+,);} when
these variables are subject to functional dependencies. The procedure that fol-
lows shows one way in which the system can assign values to such variables at
run time so that no functional dependency is violated.

Consider a scheme E; in Partitionable BCNF. Let TRIV denote a trivial
partition, and consider a Y-partial template dependency (i.e., the attributes in
R;-Y are not subject to the template dependency). The template dependency
interacts with the functional dependencies if there exists some functional depen-
dency X~A such that YN(XA) # . Otherwise, no interaction occurs.

a) If there exists a determinant K such that K-X, and whose value is determined
by the template dependency, then K-+A and therefore the values of (XA) are
determined by the rules below but considering the dependency K-+XA. Otherwise,

b) If (XA) N'Y = &, choose some existing value for A and then choose some
existing X such that X-A.

¢) If R;-Y ¢ TRIV then values are assigned as if no functional dependency
existed since all values subject to functional dependencies are determined by the
template dependency (insertion rules for template dependencies);

Consider a functional dependency X-A that interacts with Y.

d) Case of

:X N (R;-Y) # & and A € R;-Y, choose A and then choose X;

39

:X N (R;-Y) # @ and A € Y, choose some existing X such that X~A;
: XA NY = X, and the value assigned to X by the template dependency already
exists, so choose A such that X-A; For the last two cases above, if the value of X
does not exist, choose a new value that does not violate the dependency.

3.4.3. Generation of the initial tableau T,

Having determined the change A; to each underlying relation r,, it is now
possible - to determine its effects on the view. Each underlying update
u; =(O0p; {t}; ,B; exception) is processed separately, to allow derivation of its
isolated contribution to the view. This is achieved by processing, for each under-
lying update, a sequence of tableaux T, - - - Tj. The first tableau T'; describes
the initial modifications caused by this update; the rows of the final tableau T}
indicate the isolated update’s possible effects on the view.

For each underlying opcration u;=(Op;,{t};,R; exception), the rows of
the tableau T'; are:
- the set 4A;, taken from the underlying modification table, and
- for each remaining scheme RJ-#, the conclusion row w, 4, of the template for
R]- or a placeholder expression if there is no template for RJ-.

The expressions for each relation scheme should be independent of those for other
schemes, with a different variable for each attribute, so that, for each attribute,
there should be as many different (sets of) variables as there are relation schemes
that contain that attribute.

Example: Let R,<AB{A-B}>, R,<BC{B-C}> undergo the set of
updates (In,AB,R, force) and (De BC,R,,cond). The underlying modification
table contains the entries

R: (AB,|AB')
RQZ [BC]
Thus the tableau T'; for isolated processing of the insertion in r, is
A B [A B C
A B [A B]
b2 Co
and the tableau T for the deletion in r, is
A B [B (]
a; b,

B C]

3.4.4. Initialization of the database state table

For each tableau T built from the underlying modification table, a new
database state table is generated, where each entry is associated with a tableau
row. The rules for generating these entries, State(Op,), indicate the conditions
for which each row in A, is inserted, deleted or changed, as well as which tuples
in Rj,,g,' can be combined with the expressions in A; to result in view deletions,
insertions or changes. It is assumed that no duplicate tuples will be inserted into
any relation. :

40 C. M. B. Medeiros

Let T, - -+ T} be the tableau sequence built to process the isolated out-
come of u; = (Op, At} R, exception). For each R, y,, if the entry for R; in the
underlymg modification table involves tuples of the form [{t};] (i. e {t};
describes a set of tuples that will be deleted from E;), then the database state
table entry associated with the corresponding row in Tl indicates that {t} can-
not contribute to any view tuple insertion. In other words, no view tuple can be
created using {t} since these tuples will be deleted during the execution of the
complete policy. In the previous example, for instance, the set of tuples (byc,) =
(BC) cannot participate in any view tuple insertion.

The rules S'tate(Op,) are defined as depending on the existence (or
absence) of a set of tuples in the relation. The database state table is initialized
with the relation state description. Its derivation is accomplished as follows.

Conditions needed for maintaining an X-partial template dependency

For forced insertions:

Repeat for each hypothesis row w;
a) replace w, by the expression describing tuples to be inserted (e.g., {t})
b) apply substitution inference rules to the template
c) the resulting conclusion row (w3+l)j must be inserted if all hypotheses
{fw; -+ wj—; wj4; - w,}hold at the same time (i.e., /\(w,)Er)

For conditional insertions:
Repeat for each hypothesis row w;
a) replace w; by the expression describing tuples to be inserted (e-g-, {t};)
b) apply substitution inference rules to the template
c) no additional row (@, +,), can be inserted (i.e., A(w;)€r = (w;+,); €
J

r)
Thus the condition for inserting {t}, is a conjunctive expression where each clause
is formed by the expressions obtained in (c) (i.e., no additional row is inserted).

For forced deletions
a) replace w, 4+, by {t}; and push {t}; up the template
b) the additional row w,; must be deleted if
(.a w | w € l‘-{t},' A waaﬂy{t},) A (/j\(’lF]Ef) A a]l Ejg{t},)

For conditional deletions
a) replace w, 1+, by {{}; and push {t}; up the template
b) {t}, is deleted if
@w|werfth AlIyw=Ix{th)v @il w;c{th)v(\]((";j gr)

)

For changes, impose the existence of the tuples to be changed, whose
marked attributes will be modified, and apply rules for deletion of {t'}, (and
w';.), followed by insertion of {t}, (and w,).

Conditions needed for maintaining functional dependencies

In case of conditional insertions (or changes), the functional dependency
X-A must not be violated (i.e., no tuple of the form (X A’z) may exist).

41

In case of forced insertions or changes given X~A, where some of the attri-
butes in XA have been assigned parametric variables, all tuples of the form 3 z |
(XA'z) € r, must be replaced by tuples of the form (XAz). For forced inser-
tions (or changes) when there exist functional dependencies and a template depen-
dency, performing additional insertions (w,+,); may require deletion of tuples
from r; if some valid valuation of (w,+); and some tuple in r; violate X~A. For
forced changes, w,, must agree with {t}; over XA.

Example: Let R, <ABCDE,{A~-~B|C, A-D}>. The dependencies can be

represented by

A B C D E

a; by e dy ¢

a; by ¢ dy e

a; b2 Co dl €3
As explained in Section 3.4.1, forced insertion of (ABCDE) requires insertion of
(Ab,CDE,) and (ABc,DE,) (where E; and E, are values assigned by the sys-
tem). These expressions are determined by replacing w; (and w,) by (ABCDE),
as follows

A B C D E A B C D E

A B C D E A b ¢ D e
A b2 (2] D €o B C D E
D

A
A b C D E| A B ¢
The associated relation database states are
(Ab2CDE1) (iS inserted if)' 3 62,01,62 l (AbQClDCQ)E r
(ABc,DE)) (is inserted if): 3 by,co,e; | (AbyicoDey)€ 1.

Furthermore, to ensure the functional dependency is not violated, these two
rows must be preceded by the entry (Abyc,Deg, [Abyc,D'es]), with the database
state description
3 b2,02,63,D’ I D#D, A (Ab262D'C3) € rl.

Conditional insertion of ABCDE uses the same set of template substitutions
and indicates

(ABCDE) (is inserted if):
V bQ,CQ,Cs,D' (D¢Dl = (AbQCgD’Ca) f rl) and
(3 boycq,e0,63) | (AbyeaDey) € ry)] = (AbyCDey) € ry and
{3 by,c0.0,€3) | (AbyeoDey) € ry)] = (ABeyDeg) € ry.
Deletion of ABCDE uses the substituted template
A B C D E
A bl C D €y
A B Cq D €o
A B C€C D E
Forced deletion of (ABCDE) may require deletion of w4, i.e.:
(ABCDE) (is deleted) and
V b;,e; (Ab;CDe,) (is deleted if)
(A es | (ABCDe3) € i) A (3 by,cy,e,e| ((ABe Dey) € ry A (Ab;CDe,) € ry)).

B,

42 C. M. B. Medeiros

Conditional deletion of {ABCDE) results in
(ABCDE) (is deleted if)

(3) es | (ABCDe3) € r1) vV (V €1,by, (Ab;CDey) € r1) v (V e3,¢;, (ABc Dey) €
ry)-

When functional dependencies and a template dependency interact and
there is more than one non-trivial partition, valid valuations of the database state
description cannot include tuples that have been eliminated in the preliminary
functional dependency housekeeping, and should include those which are inserted

at that stage. In other words, the database state description should refer to the
state r; U{t};UAI(trp) - AD(tgp) rather than to r; U{t},.

Example: Let R, <ABCD, {A-B, C-D, *[AB,BC,CD|}>, with the tem-
plate
A B C D
ap by ¢ d;
gy by ¢ d,
as b2 Co d3
aq bl Co d3
Forced insertion of (ABCD) generates the following changes due to functional
dependency housekeeping:
(ABCD,[AB'CD')) : 3 B'#B, D'#D | (AB'CD') € r,
(ABCQda,[AB'CQdQJ) -3 C2,d3, B’#B | (AB'C2d3) € r
(albICD,[albICD']) | al,bl , D'*DI (albICD’) € -
For instance, one of the insertions generated by pushing (ABc,d3) down the tem-
plate is _ _
(ABEd) : 3 GQ,E,dQ,as,bg,d I (G2BEd2) € ;1 A (asbgc_d) € ;1,
where ;1=f1U (ABCD) U (albICD) U (AB02d3) - (AB'CD') - (AB’C2d3) -
(a.b,CD").

Restricting the set of valid valuations to this intermediate relation state r,
guarantees that no additional insertion violates any functional dependency. Due
to the characteristics of the class (HXA) interaction, the same restrictions on r
can be equivalently described as_ _

(ach_a'2) € r A (0362561) € ry where (E=C = (d,d2=D)) A
(az=A = by=B).

This takes the preliminary functional dependency housekeeping into account, and
the database state description does not need to consider intermediate relation
states. This allows the output to remain in terms of valuations over r; U{t},.

3.4.5. Rules for execution of the view generating function

The Ex(q,) rules provide the transition from tableau T; to T4y, in the
sequence T * * - T}. This transition is achieved in two steps. First, one opera-
tion of the view generating function is simulated, mimicking actual project, select
and join operations over real tuples, in 2 manner similar to the rules applied when
processing tableau queries. This creates the transition from Tj to TV j+1- Thisis
followed by what is called functional dependency checking over the rows of the
new tableau T',~+1, in order to determine possible changes from placeholder to
parametric variables. This checking yields the tableau TJ-.H. The rules for

43

simulating an operation in g, are as follows.
1) Projection (I7x R)
Replace the rows representing R by rows where only the set of attributes X
appear, omitting the remaining attributes.
2) Selection (0'x, R) (where X is the range of values for the set of attributes X)
Replace the rows representing R by rows where each attribute appearing in X is
replaced by a system-generated parametric variable. Store this variable and the
corresponding range C in the database state table. If some attribute in X is
already represented by a parametric variable A;, its entry in the database state
table will be A;AC. '
3) Join (R, X Rp)
The rows to be joined can be of the types (w), [w’] or (w,[w’]).

a) Joining rows containing a single symbolic expression
Each pair of rows w, € R, and w, € R} is replaced by a single row w,;, where
the common attributes X = R, N R, are pairwise unified, and the remaining
variables Y,=(R, — X) and Y,=(R, — X) are copied from w, and w,.

b) Joining with a row containing a pair of symbolic expressions
These rows originate from either forced insertions or changes, and are of the
form w;=/(inserted tuples, [deleted tuples]). If w, contains a single expression
and w; consists of a pair of expressions, w,, consists of a pair of expressions,
resulting from joining each component of w; separately to the expression in w,.

Execution of the join operator involves two parts: determining the final
value for the unification, and modifying the database state description in the
database state table corresponding to the new tableau row. The unification
chooses a parametric variable over a placeholder variable, and a user-entered
parametric variable over a system-generated parametric variable; when joining
two placeholder variables (or two parametric system-generated variables), the one
with the lower index is chosen.

Let A, and A be the attributes to be joined into Ag;. The possible combi-
nations of variables and the resulting join are as follows (recalling that capital
characters stand for parametric variables, and lowercase characters denote place-
holder variables):

A, | Ay | A State description

ay ao a, ao= 0,

ay A A al=A

A |A | A A;= A (and all conditions for A,)

A | Ay | A A,= A, (and all conditions for A, and A;)

Once the value for each unified variable in w, X w, is defined, the entries
for w, and w, in the database state table are copied into a new entry describing
w,y, together with all conditions necessary for the join. This new entry is formed
by the conjunction of the entries from w, and w,, together with any value
assignments resulting from the join. If this conjunction results in an invalid logic
clause, any output expression that is associated with this clause corresponds to an
update which will not occur. If the operation being processed by the tableau
involves an insertion — i.., the initial tableau 7; is based on
In({t},,R; exception) or Ch({t,t'}; R; exception) — then the rows being
joined must be checked to eliminate the tuples that cannot contribute to a view

44 C. M. B. Medeiros

tuple insertion.

Finally, functional dependencies must be checked whenever they apply to
attributes that are assigned parametric variables by a join. Consider
R,-<{A,-J.},{C,-"}>, where (X-A) € {C;} If joining two rows assigns a
parametric variable to attribute X, then attribute A is also assigned a (system-
generated) parametric variable.

Example: Let R;<AB,{A-B}>, R,<BC/{B-C}> undergo the set of
updates (In ,AB,R, force) and (De,BC,Ry,cond). The underlying modification
table contains the entries

Rl: (AB’[AB'])
RQ! [BC]
Let g,=R;X R,. Processing (In,AB,R force) results in the tableau T,
A B [A Bl C
A B [A B
b2 Co
where the conditions associated with the second row are that tuple (byc,) = (BC)
cannot participate in any view tuple insertion. The condition for joining (AB) to
(boey) is by=B. The output predicts deletion of (AB'C’) (where B’ -C’,), and
insertion of (ABC,) if (BC; € ry A B=C{ A BC,# BC). This means, in fact,
that the insertion will not occur, because (BC) will be deleted by the operation in
R,. Thus, the only possible result of this insertion is to delete tuples of the form
(AB'C’{) from the view! The deletion of (BC) causes deletion of all tuples
(a,BC) from the view.

3.5. Complete example revisited

This section shows the same example as Section 3.2 in symbolic terms. Let

R= {R;<(CM,S){C~-M|S, (MS)~C}>, R,<(CP), {C~-P}>}, and a view
defined by q, = R;X R,. The request to be processed is
<In, CMSP, {(In ,CMS,R,, force), (In,CP,Ry,cond)}>.

The forced insertion in 2, is the example shown for forced insertion of a tuple in
a relation subject to a template dependency and a functional dependency interact-
ing according to class (A), in Section 3.4.3d, and will not be repeated here. Con-
ditional insertion of (CP) into r, can only be accomplished if this relation does
not contain a tuple (CP'). The final set of entries in the underlying modification
table is

C M S [C M S] P

(C M S c! M S))

(% m; S]
C mo S [C" my S]
IC" m, S]

C M 81 [C"’ M 31]
[c" my sy
C P

Isolated contribution of r,, for instance, uses the tableau T

45

C M S P

(2] my 84

C P
where (c,m,8,) is the conclusion row for the template dependency C==M|S. The
conditions associated with this expression are that it cannot describe the tuples
that are deleted from ry, e.g., (c;m4y8;) # (C'MS). The execution of the view
generating function joins these two rows into (Cm,s, P), which is the only row of
tableau T, =T, the last tableau of the sequence for updating r,. This join can
only be accomplished if ¢;=C. Thus, (Cm,s,P) appears in the view if the asso-
ciated entry in the database state table holds, i.e.,

{t} = (cym28,) € ry A (c,=C)

A {t} does not describe the tuples deleted from ry.
The isolated contribution of A, to the view is generated in a similar way, starting
from a tableau T'; that contains all but the last row of the underlying modifica-
tion table. This last row is replaced by (c,83), representing the tuples of r,.

The final set of output rows is

Isolated contribution of r

(CMSP;, [C'MSPy))

[C”lnISPQ]

(CmoSPy, [C" m,ySPy))

[C" m,SP;]

(CMSIPI, [C'" M81P4])

[C™ mys, Py

Isolated contribution of r,

(szslp)

where the database state descriptions associated with the deletion [C'm SP,), for
instance, are

:V my,8, (C'MS) € r; — i.e., (C'MS) must have been deleted

: (C'Ms,) € r, (both conditions correspond to the relation state description for
r1, computed by State(Op;));

The execution of the join in g, adds the state description

. (C’PQ) € o

Finally, functional dependency checking determines the last constraint on the
database state description

:C'=P,.

A valid valuation for (C'm{SP,) is (Phys, Wed 10, James, Prof1). For the
instance given in Section 3.2, there is no valid valuation for the deletions [C"
mySPs] and [C" mSP;]. These deletions correspond to a situation requiring
(Course# Chem, Fri 15, James) € r,.

46 C. M. B. Medetiros

3.8. The update validation algorithm and update chains

The update validation algorithm borrows some concepts from traditional
tableau manipulation. Non-distinguished and distinguished variables approxi-
mately correspond to placeholder and parametric variables, respectively; as in
tableau queries, blanks and constants are allowed. The final set of rows
represents changes to the view, and is obtained in a manner similar to that of
derivation of a summary row in a (tagged) tableau query. Unlike summary rows,
they do not represent all tuples in the view, and may contain placeholder (non-
distinguished) variables.

Checking of functional dependencies after each join is similar to applying
chase with F-rules, as it transforms placeholder (non-distinguished) variables into
parametric (distinguished) variables. Unlike traditional tableaux, a column can
contain more that one parametric (distinguished) variable, as long as each vari-
able is used in a set of rows that corresponds to different underlying conditions —
see example in Section 3.5.

The generation of A; expressions has an analogy with tableau chase com-
putation as well. Let R; be subject to a template dependency. Consider any
mapping o which maps template rows to an underlying relation. If this mapping
is a symbolic valuation generated by replacing some template hypothesis w; by a
symbolic tuple expression, the conclusion row obtained describes an insertion. If
this mapping is generated by replacing the conclusion by a symbolic expression,
the substitution corresponds to enforcing a deletion. If the template dependency
is not simple, the insertion expression (w,+1); or the deletion expression w,y
thus obtained must be checked against the template to ensure that there is no
valuation for which their insertion (deletion) requires in turn insertion (deletion)
of additional tuples. It is shown in Chapter 4 that this cannot happen with sim-
ple dependencies. This substitution mechanism is iterated until all possible inser-
tion (deletion) expressions are computed. Such a ripple effect will be called the
generation of an insertion (or deletion) chain. It will be assumed that each map-
ping generated in a chain is created over a new copy of the template dependency,
whose symbols have not appeared before in the chain.

The creation of a chain can be compared to chasing a tableau using tem-
plate dependency T-rules: in the update validation algorithm, the tableau being
chased is in fact a relation composed of symbolic tuple expressions, which is ini-
tially consistent with respect to the template dependency. An insertion intro-
duces a new symbolic expression, and the tableau (relation) is chased to determine
which new rows must be added to keep it consistent. Deletion (and change) pro-
cessing is similar to reducing a tableau by row subsumption (see Chapter 2).
Once the conclusion row is replaced and substitutions are applied, w,, (w,.) is
the first row found that subsumes the conclusion.

The difference between the usual tableau chase and this type of iterative
process is that traditional chases start from a fixed tableau (or relation), whereas
here the rules Op({t};,R;,force) must consider the set of all possible valid
tableau (relation) configurations. Therefore, even though the chase process for a
single template dependency is always finite, the process of generating insertion or
deletion chains for non-simple templates may never end.

47

The term substitution pattern is used here to refer to the fact that any
sequence of mappings in a chain is characterized by a pattern of ““old”’ and ‘‘new”
values. OIld values refer to the symbols that are inherited by the next mapping in
the chain; new symbols are introduced by using a new template copy at each new
mapping. The pattern depends on how rows match each other.

Example: Let old values be represented by O, and new values by ®. The
template on the left is a template dependency; the one in the middle is the map-
ping generated by w3+~ABC; the one on the right describes the pattern that
characterizes this substitution. Every time a mapping in a chain is generated by
replacing row wg, the set of old and new values can be visualized as forming this
pattern.

A B C A B C A B C
a b (2] a B 2] o (o} []
a b ¢ a b C e @ ©
a, b c A B C o} o (o)
a; bl ¢ A bl (] o [J [

For this template dependency, subsequent substitutions in other rows will always
produce new insertion expressions in the conclusion row. New insertion ezpres-
sions are those that cannot be derived from expressions that describe tuples that
already exist in the relation (i.e., cannot be derived from database state descrip-
tions). _

For instance, if the conclusion (Ab;c,) were to replace the second row, the
result would be a new insertion expression (a'b;¢’), which cannot be derived from
the existing tuples described by the expressions in the previous template (rows 1
and 2) and in this new template (rows 1 and 3).

A B C
A b
A b ¢
a' b ¢
a' b, ¢

This second insertion is needed to maintain consistency only after insertion of
(Ab,c,) is performed. If (a'h,c') were now to replace the third row, yet another
new insertion would appear, (a'b"c"), following the pattern shown for replace-
ment of the third row.

A B C
a" bl C"
a" b" C'
a' b ¢
a' bu C"

Consider, for instance, a relation subject to this constraint, with the con-
sistent extension {(001), (010), (122), (221), (313), (332)}. Forced insertion of
(100) can only be accomplished if (111) is inserted as well (because of (001) and
(010)). However, once (111) is inserted, (212) must be inserted also, because of
tuples (122) and (221). If (212) is inserted, (233) must be inserted as well, because
of (313) and (322). This is an instance where insertion of (100)=(ABC) would fall

48 C. M. B. Medeiros

into the mapping sequence just indicated (generated by substitutions of w;, w,
and w3). There is no limit to this process: as long as new mappings are gen-
erated, new expressions will appear. Any valuation that takes each new symbol
into an attribute value that has not been chosen before will determine a different
database instance, for which the new insertion will be needed to maintain con-
sistency. This new insertion depends on the insertion that preceded it in the
chain, and cannot be determined independently. If, for instance, the extension
had been {(001), (010), (313), (332)}, insertion of (100) would only require inser-
tion of (111) and no further updates would be needed. In other words, for non-
simple template dependencies, insertion chains can be finitely described only if the
extensional database is known.

The next chapter will prove the correctness of the update validation algo-
rithm and determine its complexity. Some of the similarities between the update
validation algorithm and tableau chases will help the development of the proofs.
Insertion and deletion chains will be accomodated, as it will be proved they have
length one for simple templates. More general chains will be investigated in
Chapter 6.

3.7. Summary outline of the validation algorithm

Execate steps 1 and 2, stopping with the appropriate message if an error is
found in the input. Record all changes in variables in the database state table
entries.

STEP 1
CHECK INPUT CONSISTENCY AND PREPROCESS CONSTRAINTS
Let the input be <R, q,, u,>, where
Uy =<OP,I‘,, r{ui = (OP,’ y{t }i ’Ri ,exception)}>
1. For each relation scheme E; DO
1.1. If there are functional dependencies, build the BCNF partitions. If this is
not possible, interrupt execution with an error message.
Let Npart be the number of non-trivial BCNF partitions, and TRIV denote a
trivial partition (i.e., where no functional dependency exist).
1.2. If {Cs‘,.} contains a non-simple template dependency, stop with error mes-
sage (not a simple template dependency)
1.3. If {Npart=0} OR
{{C; } does not contain a template dependency} OR
{exception =cond} OR
{Op; = Ch and all attributes being changed belong to TRIV } OR
{there is a Y-partial template dependency and Y € TRIV — the functional
dependencies do not interact with the template dependency} then process next
scheme R, .+, (go to OD)
N.B. 1.4 and 1.5 refer to the situation where {C;n} contains both functional
dependencies and a template dependency
1.4. If Npart=1, the functional dependencies in the partition can only interact
with the template dependency according to classes (A) or (HX). If neither of
these cases occur, stop with error message (ambiguous update); else, go to OD.
1.5. For j = 1 to Npart do
Consider each dependency X-A in partition(j). If the interaction between this

49

dependency and the template dependency is not (HXA}, stop with error mes-

sage.
OD (1.) STEP 2 (update validation algorithm)

DETERMINE ISOLATED CONTRIBUTIONS OF UPDATING EACH r;

1. Build the underlying modification table
For each request u; =(Op; {t}; R, exception) € u, do
1.1. Compute A; and store its expressions in the underlying modification
table, together with the relation state description determined by State(Op;).
2. For each request u; =(Op; ,{t}; R, exception) € u, do
2.1. Build the initial tableau T'; based on the entries of the underlying modifi-
cation table for R;, and initialize a new database state table for the
sequence.
2.2. Initialize a set F', of functional dependencies to be checked at each step
F = set of functional dependencies that apply to R;
2.3. Create the sequence Ty * - - T}
2.3.1. While there are operations to execute in ¢, do
- perform the next operation in q,,, using Ez(q,) rules;
- if the last operation was a join with scheme Rj then do
: F=F U {functional dependencies in R}
: determine additional parametric variables: if X - A € F, and X has
been assigned specific parametric values M during the join, transform
attribute A into parametric variable Aj, and add M-A; to the data-
base state table entry;
. if X+ A assigned a parametric variable to A, F = F - {X-A}
- if the last operation was a projection that eliminated the attribute A
corresponding to the right side of some dependency X-+A € I then F = F -
{X-A}.
2.4. Associated with each row of T}, indicate the corresponding class of initial
database states as appears in the database state table.

Chapter 4

Correctness and complexity of the update validation algorithm

This chapter is composed of two parts. In the first, the update validation
algorithm proposed in Chapter 3 is proved correct; in the second, its complexity is
analyzed.

4.1. Basic concepts and definitions

Let a template dependency be defined as w, * * * w,| w, 4+, and row w;
match row w; over a set of attributes {ap}. This is denoted by
Same(j,k)={a s}, which is the notation used by Sadri and Ullman [SAD80].

Let (w; * * * w,)|wy+; be a symbolic valuation of an X-partial template
dependency, where w,., describes a set of possible insertions which may be
needed to maintain the constraint described by the template. The expression
W, 4+ Tepresents a necessarsly redundant snsertson if either

a) 3 j | (Wy4,) is equivalent to w; (i.e., the tuples already exist in the

50 C. M. B. Medeiros

relation), or
b) 3 j | Hx(w,+,) is equivalent to ITxw,, (i.e., the tuples needed to
preserve the embedded constraint already exist in the relation).

4.2. Proving the correctness of the validation algorithm

4.2.1. Outline of the proof steps

Theorem I. The update validation algorithm correctly predicts the set of
all possible outcomes for arbitrary update policies u, on SJP views, together with
the class of initial database states for which each such modification becomes visi-
ble in the view.

Proof
Theorem [is proved by using the following Lemmas and Theorems, whose proofs
appear in the next section.

Theorem 1: The set of expressions generated according to
Op({t};,R,,cond) describes a minimal set of updates which accomplishes the
corresponding underlying operation Op and maintain the semantic integrity of r;
as defined by the constraints {C; }.

Theorem 2: The set of expressions generated according to
De({t};,R;, force) describes a minimal set of deletions necessary to accomplish
the corresponding underlying operation and maintains the semantic integrity of r;
as defined by the constraints {C; }.

Theorems 3-4: (Similar to Theorem 2, for insertions and for changes.)

Theorem 5: The set of rules State(Op,), that determine the underlying
conditions for a row to appear in each initial tableau T';, exactly describe the
relation state for which the corresponding set of tuples exist.

Theorem 6: The update validation algorithm always stops.

Theorem 7: The contribution to the SJP view V=(R,q,) of the set of
underlying tuples described in a tableau T is exactly described by the final
tableau T}, of the corresponding tableau sequence generated by the update valida-
tion algorithm.

Theorem 8: The database state table entries associated with each output
row in a final tableau T} in the update validation algorithm exactly describe the
class of database states necessary for the corresponding update to be reflected in
the view,

Theorem 9: For monotonic view functions, deleting a tuple { from an
underlying relation extension r; does not add tuples to the view extension; adding
t to r; does not delete tuples from the view extension.

Theorem 10: Any possible outcome for a complete update policy
u, ={(Op; ,{t}, R; exception)}; =y , on an SJP view is derivable from the set
described by the rows of {T}}; = , representing the isolated contributions of the
underlying updates u,; = (Op,,{t};,R; exception) to the same view.

Using these theorems, the proof goes as follows.
a) Correctness in interpreting an isolated update

51

O Theorems 1-4 (minimality and correctness of the set generated by
Op({t};,R; exception)) show that the set of underlying updates specified for
relation r; is correctly interpreted by entries in the underlying modification table,
and that these entries describe a minimal set of updates that achieve the update
requested and maintain the database consistency, for the allowed types of con-
straints in {C; }.

O Theorem 5 (correctness of State(Op,)) shows that the database state table
entries associated with each row of a tableau T'; describe the class of relation
states for which the corresponding tuples contribute to view formation.

O Theorems 6 (finiteness of the update validation algorithm), and 7 (minimality
and correctness of the view updates represented in Ty, the last tableau of a
sequence) consider a tableau sequence T * - - Ty. They show that, unless the
algorithm stops as a consequence of an error, the final tableau Ty always exists.
This tableau exactly describes all view tuples which may originate from the initial
set of underlying updates portrayed in T, the first tableau of the corresponding
sequence.

O Theorem 8 (correctness of the final database state table entries) shows that
each row in a tableau T} is correctly associated with the description of the class
of underlying database states for which the corresponding view update occurs.

Therefore, Theorems 1 through 8 show that, if any isolated underlying rela-
tion is updated by u;=(Op;,{t};,R; exception), the update validation algorithm
exactly provides as output the description of the isolated contribution of u; to
any SJP view, and the class of database states for which these updates occur.

b) Correctness in considering all possible consequences of a set of
underlying updates

O Theorem 9 (composition of underlying updates) shows that underlying deletions
or underlying insertions in different relations do not interact destructively, and
therefore the order in which the underlying relations are updated does not influ-
ence the final view extension.

O Finally, Theorem 10 (sufficiency in checking isolated updates) shows that any
view update resulting from a set of “simultaneously executed” underlying updates
{u;=(0p, {t}; ,R; exception)} can be derived by composing the isolated contri-
butions of u;, as long as the view belongs to the class of SIP views.

Since by Theorems 1-8 the update validation algorithm correctly describes
all effects of isolated updates, and since all updates to underlying relations are
processed, then the set of final tableaux {T}} contains the description of all possi-
ble view updates that can result from the policy u, = {(Op,,{t}; R; exception)}
for SJP views. Furthermore, the associated database state table entries indicate
exactly when these updates can occur.@

52 C. M. B. Medeiros

4.2.2. Proofs of Lemmas and Theorems

Theorem 1: The set of expressions generated according to
Op({t};,R;,cond) describes a minimal set of updates which accomplishes the
corresponding underlying operation Op and maintain the semantic integrity of r;
as defined by the constraints {C }.

Proof

The expressions A; generated are In({t};,R;,cond): {t};,
De({t}; ,R;,cond): [{t};] and Ch({t t"};,R; ,cond): ({t}; [{t'};]). In other words,
for conditional updates, the update performed involves exclusively the tuples indi-
cated, and occurs only if no constraints are violated. Therefore, the proof of
minimality and correctness for conditional updates is trivial. B

Theorem 2: The set of expressions generated according to
De({t},,R;, force) describes a minimal set of deletions necessary to accomplish
the corresponding underlying operation and maintains the semantic integrity of r;
as defined by the constraints {C; }.

This theorem is proved by Lemmas 2.1 (sufficiency of De({t};,R;, force))
and 2.2 (minimality of De({t};,R;, force)).

Lemma 2.1: (sufficiency in executing the update while maintaining consistency)
The set of deletions generated by De({t},,R;,force) accomplishes the
corresponding underlying operation, and does not violate the constraints {C,-n} for
relation r;.

Proof

When there are no constraints or functional dependencies only, the proof is
trivial: deletion of {t}; is sufficient to obey the underlying request, and the rela-
tion is kept consistent. The proof that follows refers to maintaining template
dependencies.

Consider an X-partial template dependency, and let r;=r,—{t};,. Let
{t.em} describe a set of tuples in r; such that ITy{t}, is equivalent to IT,{t,.,}.
By the deletion rules, deletion of {t}; ought to be sufficient to maintain con-
sistency if {t,.,} # &. Assume {i,.,,} # & and yet deletion of {t}, is not suffi-
cient. This means there exists a tuple t@r; and a valuation p such that
Alp(w;)€r; = tE€r; (ie., r; is not consistent). In other words, ¢ is described by

{Jt };, since the relation was consistent before the deletion. Since only the set X is
subject to the template dependency,

Ix(wy)A - - AN x(w,)=1Ix(w, +y)-
and ITyx{t}; describes ITyt. However, this means IIxt is described by
Iy t,. }, and if ¢ &r; then {t,.,,} = &, which contradicts the initial hypothesis.
Thus, deletion of {t}, is sufficient if {¢,.,} # .

Suppose now {t,em} = . In this case,
De({t};,R;, force) : A; ={t};Uw,,. Proving sufficiency requires proving that
the sct [{t};U w,4] achieves the deletion of {t}; and does not imply new dele-
tions, i.e., these deletions can be achieved without causing deletion of any further
tuples. Obviously, deletion of {t}; achieves the desired operation. The remainder
of the proof refers therefore to the fact that deletion of {t}; U w,, is sufficient
to maintain the consistency.

53

Let w;y be chosen from some mapping o, generated by o: w,4 «{t};,

where
o{w;)=Bra A [o{wi)A-Aolw,) = L.

Assume, by contradiction, that the set {t}; U w;, is not sufficient — i.e.,
other tuples must be deleted as well if consistency is to be maintained. If deletion
of {t}; U w,, is not sufficient, then there exists some symbolic valuation ¢ that
applies to the tuples described by (r; - [{t}; Uw4]) such that

d(w)A...Ad(w,) = wiy AP k| ¢(w;) is subsumed by w,.
Consider the mappings o and ¢, where
o ws+l"{t} A wld_a(wj)
P: Wyt -Wyy.
Let R, be defined over the set of attributes Y. For X-partial simple templates
V w;,w;, IIx Same(i,j) C ITx Same(j,s+1) A IIiy—x) Same(js+1) =
Let J1=Same(j,s+1) and NotJ1=Y-J1. Row ¢(w1) matches ¢(w,+1)-— Wi
over exactly J1 and thus has different symbols for attributes in NotJl;
Eld—a(w]) matches o{w, +{)={t}; over J1 and has different symbols for attri-
butes in NotJ1. Therefore, the rows {a('w)} w; match w4 over subsets of J1
and have distinct symbols for the remaining attributes; rows {¢(i)} % ; match
Aw]) over subsets of J1 and have distinct symbols for the remaining attributes.

Consider the mapping o' which is obtained from o by replacing a('w) by
¢(w;). This replacement will not affect any other row in o, as a consequence ol'
the matching characteristics of simple template dependencies. Thus, o' differs
from o only in the symbols corresponding to ITpe s10'(w,). There is a homomor-
phism h that maps o into o':
V k#j, '(wk) = h("(wk)) = o{w;)
0w /) = 11 h(o(w,;)) = 5 0(w;)
Iy j10'(w;) Nom‘(‘f(w;) ot r16(w;)
This corresponds to the containment mapping 6'Co. An inverse homomorphism
h™! can be derived in a similar way and results in 0Co'. Therefore, o=¢’,
which means that ¢(w,) is equivalent to o{w;). Thus ¢(w;) is subsumed by
w4, contradicting the assumption in the previous page that this is not true for
any j.
Thus, the set {t}; U "_”_ld is sufficient to maintain the constraints {C,-"},
and perform the request (De {t}, R, ,exception). m
Lemma 2.2: (minimality while maintaining consistency)
No subset of the deletions described by De({t},,R;,force) can perform the
corresponding underlying operation without violating the constraints {C; }.
Proof

In the absence of constraints, or in case of functional dependencies, the
proof is trivial, since De({t};,R;, force) : A; = [{t};]. The proof that follows is
for template dependencies, where De({t}; R;, force) : A; = [{t}; U wy].

Deletion of {t}, is certainly necessary. Let {t,,,,} be defined as in the previ-
ous lemma. Assume, by contradiction, that the set indicated is not minimal.
Consider the symbolic valuation as a logic sentence

1;1 A A 1;3 = {t}i U {trcm}'
When {t}; is deleted, the constraint can only be maintained if the left side of the

54 C. M. B. Medeiros

sentence is made false or {{,,,,} # &. Assume {t,.,,} = &, and thus w,, should
be considered.

If {t};Uw,, is not minimal, then there must exist a subset of the tuples
described by w4 that achieve the deletion and maintain the consistency. Let
this subset be denoted by Edp. Assume w4 corresponds to some suhstituted row
w;. There exists at least one tuple ¢; such that ¢; is described by w4 and ¢; is
not deleted when wy, is deleted. This means tl,)at there may exist a set of tuples

{tp k%1 described by {w; p#;} such that kAl(tk €r;) = t,4+,1€r;. In other

words, after deletion of the set of tuples described by Edp, t, +1 must still exist to
maintain consistency. This, however, corresponds to a state where
wiA - - - Aw, = {t}; holds. Consequently, not all tuples described by {t}; can
be eliminated if only a subset of w4 is deleted.

Therefore, the rows generated by De({t}; ,R;, force) constitute a minimal
set. B

Theorem 3: The set of rows generated by In({t},,R;, force) describes a
minimal set of insertions and deletions necessary to accomplish the corresponding
underlying operation and maintain the semantic integrity of r; as defined by the
constraints {C} }.

In the absence of constraints the proof is trivial, since’
In({t};,R;, force): A;={t},, and thus the proof refers to cases where {C; }# .

This Theorem is proved by separately proving sufficiency and minimality of
the set generated by In({t}; R, force); minimality of deletions must also be con-
sidered in the case of maintenance of functional dependencies. The proof consid-
ers the possible compositions of {C,'"}. Lemmas 3.1 and 3.2 prove sufficiency and
minimality when {C,'"} consists of functional dependencies only; Lemmas 3.3 and
3.4 prove sufficiency and minimality when {C; } consists of a simple template
dependency; and Lemmas 3.5 through 3.10 refer to the correctness of
In({t};,R;, force) when {C; } contains both functional dependencies and a sim-
ple template dependency. In particular, Lemmas 3.5 through 3.8 prove no ambi-
guous updates are introduced by limiting interaction between functional depen-
dencies and a simple template dependency to classes (HXA), (HX) and (A), and
Lemmas 3.9 and 3.10 prove sufficiency and minimality of the set generated by
In({t}; ,R;, force) for these classes.

As a consequence of the definition of necessarily redundant insertions with
respect to partial dependencies, given at the beginning of this chapter, only full
dependencies need to be considered when dealing with minimality and sufficiency
of the set of insertions generated by In({t}; R;, force). The interaction between
the non-embedded part of a partial template dependency and a set of functional
dependencies can also be disregarded. The procedure for determining the value of
system-generated parametric variables, described in Chapter 3, ensures that func-
tional dependencies affecting the non-embedded part are never violated by the
additional insertions {(w,+,);}. For this reason, these insertions meed not be
checked for violation of such functional dependencies. This characteristic of tem-
plate dependencies is also recognized in a related context: that of testing implica-
tion of partial template dependencies [MAI83, Theorem 14.9]. (An X-partial

55

template dependency TD is implied by a set of template dependencies when the
chase with T-rules results in a row that matches the conclusion of TD over X.)
Thus, unless specified, all template dependencies mentioned in the proof of
Theorem 3 are assumed to be full dependencies.

Lemma 3.1: (sufficiency for functional dependencies) Let {C; } consist of a set of
functional dependencies in Partitionable BCNF. The set of insertions and dele-
tions generated by In({t};,R;,force) accomplishes the correspording underlying
operation, and does not violate the constraints {C; } for relation r,.

Proof

For functional dependencies, In({t},,R;,force) : A; = {t}; U
{(wfd [w' D)} = {t};UAI(tsp)— AD(tpp). Proving sufficiency requires prov-
ing that these operations accomplish insertion of {t};, and do not require further
insertions or deletions to maintain the constraints {C; }. The fact that {t}; is
inserted is obvious: all expressions in AD(tpp) disagree with {t}, over at least
one attribute, and therefore cannot delete {t};. Thus, only maintenance of con-
sistency needs to be proved. '

Let ;' = f,‘U{t},'U AI(tFD)— AD(tFD), and trp € AI(tFD). Assume, ini-
tially, that R, is in BCNF. Furthermore, assume, by contradiction, that there is
some functional dependency X-A violated in r;, i.e.,

3 tl,t2€;,~| Hth=IIXt2 A HAt1¢HAt2.
Since the relation before the update was consistent and deletions do not violate
functional dependencies, then the violation must have been introduced by some
insertion described by {t};UAI(tpp). Assume that insertion of some tuple ¢, is
responsible for this violation.

The following cases are possible:

O t, is described by {t},

in this case, a palr (wfd [w’14]) is generated such that
IIxwg = IIxw' = lllxtl YA (ITqwgg = Hut0) A (Tawyy # 1w yy)

This means that w' 74 describes all tuples t,€r;, where (IIxt,=IIxt;) A
(ITot # I14t,). Therefore, since w's; describes a set of deleted tuples, ¢, is
deleted, and the dependency is not violated.

O t, is described by AI(tgp)
this means that 3 tzp | t; = tpp. Since HXAtFD=HXAwfd = HXA{t}i7 then
a violation exists if

At,| Hxty = Hyxw'yy Alxt, = Hw'y,

and the same reasoning is used as before.

Because the relation is in BCNF, no insertion w y; requires in its turn that
further changes be forced. For any two functional dependencies {X-A, Y-B} €
{C,"}+ XT=Y". Thus, ITy+wey=ITx+t};, and insertion of any tuple
described by {w fd} does not violate dependency which are not already violated by
insertion of {t},.

Assume now that R; is not in BCNF, but rather in Partitionable BCNF.
An insertion generates sets of changes (w ﬂ,['w' 74]) for each BCNF partition, and
these changes do not violate the functional dependencies in the partition because
they are sufficient for a BCNF relation. Since there is no dependency connection
among partitions, all attributes in (wgy,[w's]) that do not belong to the

56 C. M. B. Medeiros

partition are represented by placeholder variables, and thus the changes in a par-
tition cannot affect another partition. The changes for each partition can be pro-
cessed independently and the order in whlch they are processed does not affect
the final result.

Therefore, the set of insertions and deletions generated by
In({t};,R;, force) is sufficient to maintain the consistency when there are only
functional dependencies in {C; }. ®

Lemma 3.2: (minimality while maintaining consistency) Let {C; } be composed
of a set of functional dependencies. No subset of the insertions and deletions gen-
erated by In({t};,R;, force) can perform the corresponding underlying operation
without either violating the constraints {C; } or destroying additional informa-

tion.
Proof

Assume that for a given functional dependency X-A the set of insertions
and deletions (w z4,[w fd] generated to maintain this dependency is not minimal.
In other words, there exists a subset of the operations described, (Ey, [E 14));
that is sufficient to maintain the consistency and preserve the information in r,.
This means that (Ejq4, |E! 7a]) describe a set of insertions and deletions of all
tuples (t,[t']) such that

t' € ry AlIyt' =ITx{t}; A I, #114{t}; and
ITx st = Iy 4{t};.
It (Eg,|E'f4]) is a subset of {(w [Jw' d])} then there exists at least one pair of
inserted and deleted tuples, (u,[u’]) that is described by {(wy,|w’ 74])} and is not
described by (E4,[E'4]). In other words,
Ixpu = Hyawgy Allxsu’ = Hxaw'yy.
However, this means that
HXu’ = Hx{t},' /\HAU' #* HA{t},'.
Therefore (u') must also be deleted, and thus if [E' 4] does not include ', it is not
sufficient to maintain the constraint.

If (u') is deleted, then (u) must be inserted, otherwise information will be
lost. Even though (E ;) describes a set of insertions which is sufficient to main-
tain consistency, it does not preserve information in (E; - XA). Therefore, the set
of insertions and deletions {(w z4,[w’4])} is a minimal set that maintains the con-
sistency of all functional dependencies without destroying more information than
necessary. @

Lemma 3.3: (sufficiency for a simple template dependency) Let {C’,-"} consist of a
¢imple template dependency. The set of insertions generated by
In({t};,R;, force) accomplishes the insertion and does not violate the constraints
{C; } for relation r,.

Proof

Assume by contradiction that the set {t}; U {(w,+,),} is not sufficient to
maintain the consistency of a template dependency. This means that there exists
some additional insertion expression Iy which must be considered to maintain the
consistency.

57

The set {{w,..1},I describes all possible additional insertions required by the
insertion of {t};, = < iherefore I, is not an insertion expression needed to allow
insertion of {t};. :..s, I, must be needed in order to allow some insertion in the
set {(w,y+1)j}. T otaer words, there exists some expression E€{(w,+,),} such
that E must be iuserted to allow insertion of {t};, and if E is inserted, then I,
must also be inserted, otherwise the dependency will be violated. Without loss of
generality, assume E and I;; are generated by the mappings

o: o{wi)-{t} A o(w,4,)=E

¢: d(w;) «E A ¢(w,+1)=I,.
where o is generated by substitution in the original template dependency TD, and
¢ is generated by substitution in a copy of the dependency, TD', whose symbols
do not appear in TD. Since the proof is based on row matching for simple depen-
dencies, this also includes the case where more than one row is replaced by {t},
(or E).

Since only simple (full) dependencies are considered, the following holds:

: Iy has the same symbols as E for all attributes in Same(j,s+1);
: Iy has new symbols (from TD') for the remaining attributes, that are assigned
by rows that do not match w;.
: V w;,wj, Same(i,j) C Same(i,s+1) and Same(i,j) C Same(j,s+1).
Therefore, the only symbols of E that will propagate to other rows of ¢
correspond to those in Same(j,s+1), since E replaces row w;. All the other sym-'
bols in ¢ will be new.

Consider the mapping ¢' obtained from ¢ by replacing ¢(w;)=E by o{(w;),
yielding the conclusion I'y. Since o{w;) comes from the original template substi-
tution which yielded E, then E has the same symbols as o(wj) for attributes in
Same(j,s+1). Thus, replacing ¢(w;)=E by o{w;) will not cause any changes to
the other rows of mapping ¢. Thus, I'y== I is the expression that must be
inserted to maintain consistency if ¢' holds, i.e., if o(w;)€r; and IQ ((w;)€r;).

J

It j#k, {o(w;)} and {¢(w,); » j} describe tuples that already existed in the
relation before the update, or tuples in {t},. Therefore, since the relation was ori-
ginally consistent, I, must also have existed before the update, or correspond to
some other insertion expression in {(w,+,),}, and cannot describe a new set of
insertions. If j=k, then o{w;)={t};, and I, is equivalent to E (i.e., it
corresponds to an insertion which has already been described in mapping o).
Thus, Iy cannot represent a new insertion.

Since no insertion is needed beyond those generated by In({t},,R;, force),
this set is sufficient to accomplish the underlying update request while maintain-
ing the consistency when {C; } consists of a simple template dependency. &

n
Lemma 3.4: (minimality while maintaining consistency) Let {C,-"} consist of a
simple template dependency. No subset of the insertions generated by
In({t};,R;, force) can perform the required insertion without violating the tem-
plate dependency.

Proof

Assume that there exists a set of insertions, {I,}, which is contained in the
set A; generated by In({t}; ,R,,force), and that these insertions maintain the
database consistency and achieve the desired insertion. In other words, there is at

58 C. M. B. Medeiros

least one tuple t' described by A; that is not described by {Ig}. This means that
{I,} is a subset of {(w,+,);} which is sufficient to ensure consistency after inser-
tion of {t};.

Let the consistent relation before the insertion be represented by a tableau,
and add {t}, to this tableau. If this new tableau is to represent the consistent
relation state after the insertion, then it must be chased with the template depen-
dency to derive which additional tuples must be inserted. This is done by com-
bining the existing rows with the new rows in all possible mappings. (This pro-
cess corresponds to deriving the relation state description obtained when {t};
replaces each template hypothesis row and substitution rules are applied.) By the
definition of a tableau chase using T-rules (see Chapter 2), the additional tuples
obtained exactly correspond to all valuations of the set described by {(w,+),}.
Therefore, no subset of {(w,+,),} is sufficient to maintain the consistency, since
this means the chase with T-rules yields superfluous expressions which are not
needed for maintaining the relation consistency.

Thus, the set of insertions described by A, constitute a minimal set which
maintains the relation consistency when {C,-n} consists of a simple template
dependency. ®

Lemmas 3.5 through 3.10 refer to relation schemes that are subject to both
functional dependencies and a template dependency. Recall from Chapter 3 that
the syntactic constraints imposed on the database scheme R are that every rela-
tion scheme must be in Partitionable BCNF and that
a) if there exists at most one non-trivial partition, its interaction with the tem-
plate dependency must be one of the following

. class (A) or

. class (HXA) or

. class (HX);

b) if there exists more than one non-trivial partition, only class (HXA) interac-
tions are allowed.

The lemmas that follow justify this choice of allowed interactions.

Lemma 3.5: Consider the scheme R<{A; },{C; }>, where {C; } contains a sim-
ple full template dependency and a set of non-trivial functional dependencies in
Partitionable BCNF. Let the dependency X~A be a full functional dependency in
{C..}. Let {(w,+,),} denote insertions required to maintain consistency with
respect to the template dependency when a single tuple t denoted by {t}; is
inserted into an instance r; such that r;U{t}, — AD(tpp) satisfies X~A. If for
all j,
a) Vk Hywy = IIyw,4,; (class A) or
b) 3 k, HXAwk - IIXAw,H (class HXA)

then the tuples described by any one (w, +,); necessarily satisfy X-A.
Proof

a) Let all rows match over A. All mappings generated by replacement of a
row by an expression in {t}; U AI(tpp) create insertion expressions {(w,+,),}
where IT4(w,4;);=II4{t}; (or II4(w,+,); = Ilztpp) and therefore no two
tuples described by any such expression can disagree over XA.

59

b) Let both right hand side and left hand side come from a single row wy.
If the insertion expression (w,+,); is generated by replacing wy by {t}, (or typ),
then all tuples it describes have their XA-values taken from
{t},UAI(tpp)— AD(tgp). If (w,+,); is generated by replacing some other row
w; by {t}; (tpp), the tuples it describes have their XA-values taken from tuples
in’ r;U{t};UAI(trp) - AD(tpp), which agree over XA. In neither case can the
tuples described by any insertion expression disagree over XA. B

Lemma 3.8: If a template dependency interacts with a functional dependency
according to class (HXA) then the set of additional insertions {(w,+,);} does not
require any deletions in order to maintain the relation consistency w1th respect to
this functional dependency.

Proof

Let r;=r,— AD(tpp). Consider a partition containing X~A. Let Z a, the
symbols for XA in the conclusion row, appear in some template row w;. Two
kinds of insertion expression can exist as far as the attributes XA are concerned:
a) IHys(wy4)r = Hxa{t};, when {t}; replaces w, (or
Ixa(w,+1)x = Hxatpp, when tpp replaces wy).
b) Myp(ws+1); = IIxawg, when {t}; (or tpp) replaces some other row, and
wy, describes a set of tuples which belong to r; U {t},UAI(tzp).

The tuples described by r;U{t};UAI(tpp) satisfy X-A (Lemma 3.1).
Thus, any expression type (a) agrees with r; U {t}; U AI(tpp), and no two
expressions of type (a) can disagree over XA. Expressions type (b) cannot
disagree with r; U {t}; U AI(tpp) because the XA-values are taken from this
very same set of tuples. For the same reason, expressions of type (b) cannot
disagree with each other over XA, and expressions of type (b) cannot disagree
with any expression type (a). Thus, when the interaction between a template
dependency and a functional dependency is of class (HXA), the insertions in
{(w,+1),} can be processed as if this functional dependency did not exist, and no
further deletions are necessary to maintain this dependency. ®

Corollary to Lemma 3.8: If all interactions in a partition are of class (HXA)
then the insertions in {(w ,.H) '} need not consider any functional dependency in
this partition for the effect of additional deletions. If for all partitions the
interactions are of class (HXA), {(w,+1);} = {(w,+1),; '}

Lemma 3.7: Assume {C; } contains more than one non-trivial BCNF partition
interacting with a template dependency. If at least one interaction is of class (A),
the updates generated by In({t}; ,R;, force) depend on the order in which the
tuples in {t}, U AI{tzp) are pushed down the template.

Proof

Let r,=r;—AD(tpp). Let one partition contain X-A, and consider
tpp,€{t},UAI(tpp). Because the interaction is class (A), all insertion expres-
sions that result from pushing {pp, down the template obey
M (w ,.H) IT,tpp,, and cannot disagree with each other over XA. Thus, the
only violations of X-A that need to be considered correspond to checking
{(1;34-1)]'} against ;"U{t},' U AI(tFD) - tFDr

60 C. M. B. Medeiros

Assume that tpp € AI(tpp) and that insertion of tgp, requires deletion of
some expression in AlI(tgp), say tpp, The set of tuples that will be inserted,
Al is
ALy C{thU(AI(tpp)- trp)Ud(i,+1);%}

Suppose now that ¢zp, is pushed down the template ahead of {pp,, and that the

resulting insertions require deletion of some tuple tpp,. Thus, if t5p, is processed

before tp,, the set of tuples that is inserted by In({t};,R;, force) is
ALC{thU(AI(tpp)—trp,— tFDs)U{(ws+l)]

In particular, if tpp,=tpp, then Al, does not delete tgp, and thus Al # A,

and the contents of the set generated by In({t},;,R;, force) depend on the order

in which the insertions are checked. B

Example: Let X =(MN). Consider the following template, and the dependencies
MN-A, Y-B. The partitions are (MNA), (YB). The template interacts with the
first partition according to class (A), and with the second according to class
(HXA).
M N A Y B

m ky a y b

ky mny a y, b

m_n; a Yy b
Forced insertion of (MNAYB) causes the changes (-wfd,[w 'fd])

(MNAy.b,, [MNA'y,b,]) and (m n,aYB, [mn,aYB']).
Let tgpp,= MNAyb be a tuple described by (MNAy,b,), and tpp,= MBA''YB
be a tuple described by (m;n,aYB). Assume that before the insertion r, also
contained some tuple (afA~6). Pushing tpp, down the template generates
(Mn;Ayb) and (m; NAy,b,),

when the first and the second template rows are replaced. Considering (afA~5),
valid valuations for these expressions are wu;=(MPBAyb) and u,=(aNA~F).
Tuple u, disagrees with tpp, over (M/NA), and thus to maintain consistency
either insertion of {zp, or insertion of u, should be prevented.

If insertion of tgp, is prevented, then it will not be pushed down the tem-
plate and the final updated relation will not contain the tuples that result from
this operation. If, instead, insertion of %, is prevented, then by applying deletion
rules to the mapping that created u,, the first hypothesis row containing a
parametric variable (w;4) must be eliminated, i.e. tpp, will not be inserted. In
the latter case, the insertions originating from pushing {zp, down the template
will be performed.

Lemma 3.8: Consider {Ci,.} consisting of a template dependency and functional
dependencies such that there is only one non-trivial BCNF partition and let
r;=r,—AD(tpp). Let the dependencies in the partition mteract with the tem-
plate acc%rdmg to classes (A), (HX) or (HXA). If {(w,+4,); By£ @, all tuples in
{(w,+1);" } originate from r,.

Proof

This requires showing that all insertion expressions agree with each other.
Consequently, if they are to disagree with any expression, this expression must
describe tuples in r;. In other words, no insertion requires deletion of some other
insertion.

61

The attributes can be assigned to two partitions, of which one (possibly
empty) is not subject to any functional dependency. Let X-A € {C;} and
Iy w,+1=% a. Let W= R;-(X U A). Forced insertion of (XAW) creates the
changes

(XAW,[XA'W]) and (XAw,[XA'W]), ie., Al(tpp) = (XAw).
Thus, {(,+1);} results from pushing (XAW) and (XAw) down the template.

If the interaction is of class (HXA) with respect to XA, then by Lemma 3.6

no msertlon expression requnres any further deletions, and {(w,+,);} =

{(_a+l) } (and {(ws+1) }_ @)

Assume now it is of class (HX), i.e., there exists at least one row that con-
tains T and no row containing T a. There are four types of insertion expression
(Wy+1); that can be generated when some row is replaced by {t}; or by tpp €
Al(tpp) _

: when only the row(s) containing Z are replaced, Tx4(w,+;);j= (Xa);

: when only the row(s) containing a are replaced, HXA(w.?.H) = (zA);

: when row(s) containing @ and rows containing Z are replaced (W 41)j =
XA,
: when row(s) containing neither a nor T are replaced, [Tx4(w,+); = za.
In this last situation, the XA-values are taken from tuples that agree with r; U
{t},UAI{tgp) over XA, and no deletions are needed. Thus, the only tuples that
may need to be deleted to prevent inconsistency are those whose A-value is dif-
ferent from ‘A’. Since there exists only one nontrivial partition,
Iy, AI(tpp)= XA, and therefore the tuples that need to be deleted do not
belong to {t},UAI(trp). Consequently, only tuples from r; may need to be
deleted.

Class (A) means this template has no row containing Z, since this would
create an interaction of class (HXA). If it is class (A) with respect to XA, then
: My a(W, +1)j= TA, where Z is not completely parametric, or
t Iy q(wy 4y j_XA
Similarly, only the tuples in r; need to be considered for possible additional dele-
tions.

This proof can be extended to more attributes on the right hand side, and
to the other dependencies in the partition. In particular, class (A) with respect to
some dependency X-A means it is class (A) in {C; }, otherwise the symbol for X
would appear in some hypothesis row, which would make the interaction class
(HXA). Thus, for a single non-trivial BCNF partition and a template dependency
that interact according to classes (A), (HX) or (HXA), only tuples from r; need to
be deleted. (Notice this does not occur when there exists more than one non-
trivial BCNF partition, because then ITx4AI(tgp) is not necessarily equal to
Ty 4{t}; — see previous lemma.) ®
Lemma 3.9: (sufficiency of the set generated by In({t}; R;, force)) The rules
In({t},,R;, force) for generating A; when {C; } contains functional dependen-
cies and a template dependency interacting within the allowed classes define a set
of insertions and deletions for r; which are sufficient to satisfy the dependencies
in {O""}.

Proof

62 C. M. B. Medeiros

Let AD=AD (5)U{(@,+1);}, and Al={t};U AI(tpp)U{(w,+,), }
a) Sufficiency with respect to the set of functional dependencies

Assume the updates in A; are not sufficient to maintain some dependency

X-A. Then, there exist at least two tupleg t1,to described by
LE U{t}c U AI(tFD)U{(ws+1) } (AD(tFD)U {(ws+l)1 })

that violate X~A. Since deletions do not violate functional dependencies, and r;
was consistent before the insertion, then this violation must have been introduced
by the set Al. Two cases are possible:
a) t,€r; and t, is described by Al
b) both ¢, and t, are described by Al

Assume case (a) can occur. This means that there exists a tuple ¢,
described by Al, and some tuple t; in r; such that IIyt,=IIyxt; A
I14t,# I14t,. However, this means that not all tuples described in Al are
checked against r;, which is not true. Thus, case (a) cannot occur.

Case (b) may occur in the following combinations:
b.1) tl—{t} and t,€ Al(tpp)
b.2) t, is described by ({t}; U AI(tgp)) and t, is described by some expression
in {(w s+1) };
b.3) t, agd t, are described by different insertion expressions (@, +1);,(Wy+1)x €
{(ws+l)] };
b.4) t; and t, are described by the same insertion expression (w,+;); €

{(ws+l) G}-

- (b.1) cannot occur by Lemma 3.1
- {b.2) cannot occur for more than one partition, since in this case only class
(HXA) is allowed. For one partition only, for any functional dependency X-—A €
{C.}, Hxalth=IIx,AI(tpp), and each insertion expression (wy+y); is
checked against {t}, U AI(trp). Any tuple t, described by (waﬂ) that does
not agree with {t}; has its insertion prevented by some deletion in f(ws.,.l)',
(ie., if Ao(w;) = t;, then /\ a(wk JA-w; #t,). Thus, for every ¢, correspond-
]

ing to a valuation of (w 8+:) that disagrees with {t}; U AI(tgp), there exists
some deletion in AD that precludes the need for the existence of ¢,.

- (b.3) cannot occur because for the templates analyzed all insertion expressions
agree with each other over XA.

- (b.4) cannot occur by Lemma 3.5 for classes (HXA) and (A). For class (HX),
since there exists a single non-trivial partition, the disagreeing expressions are
those that disagree with {t}, over XA. Their insertion is prevented, and thus
even if case (b.4) occurs, it is circumvented by deletions in A4;.

Thus, the insertions specified in A; do not violate any functional depen-
dency. O
b) Sufficiency with respect to the template dependency

Assume the operations are not sufficient to maintain the relation’s con-
sistency with respect to the template dependency. This can occur either if there
exists some tuple insertion or some tuple deletion that is omitted.

63

An insertion is omitted if either a) one of the row substitutions is not per-
formed, or b) an insertion in Al is cancelled by a deletion in AD. Case (a) does
not occur: Assume case (b) can occur, i.e., an insertion I that must be performed
in order to obtain a consistent final state is prevented by a deletion Dy in AD
(i.e., Iy = Dg). Any insertion in Al is performed only when the associated rela-
tion state holds. Any tuple Dg in AD is pushed up the template, and thus is
effectively deleted (Theorem 2). This also eliminates one of the conditions that
would require the insertion of I in order to maintain the relation consistency.
Thus, Iy= D, means that I is not necessary for a consistent final state, and con-
sequently the set of insertions Al is sufficient given the set of deletions AD.

A deletion is omitted if there exists some tuple that should be deleted and
was not, i.e., a) the expression that describes this tuple was not processed against
the template or b) some deleted tuple is re-inserted by some expression in Al
Case (a) does not occur: Assume further deletlons may need to be performed.
This means some deletion in AD(oFD)U{(w,,...l)J } needs to be pushed up the
template. However, since this is a simple template dependency, one iteration is
sufficient to produce the deletions that will maintain consistency (Theorem 2).

Case (b) cannot occur: Tuples in AD(trp) cannot be re-inserted by tuples
in {t}; U AlI{tpp) (Lemma 3.1). Thus, a necessary deletion Dy in AD is re-
inserted by some necessary insertion I, iff it is inserted by {(w s.H)JG}. It I, is
necessary, there exists a set of tuples that created the need for this insertion in
order to obey the template dependency. In other words, the deletion expression
that describes D has not been processed against the template (since one of the
conditions that would make insertion of D necessary is deleted through deletion
of some w,4). Since this cannot occur, no necessary deletion is re-inserted by
some necessary insertion in Al, and the set of deletions is sufficient. O
¢) Sufficiency with respect to the functional dependencies and the template depen-
dency

No insertion in AI will re-insert a tuple deleted by AD, and vice versa. The
insertions are sufficient to maintain both the template dependency and the func-
tional dependencies. The deletions are sufficient to maintain consistency with
respect to the template dependency, and cannot violate any functional depen-
dency. Therefore, the insertions and deletions in A; are sufficient to obtain a
consistent final state. ®

Lemma 3.10: (minimality of the set generated by In({t},,R;, force)) The rules
In({t},,R;, force) for generating A; when {C; } contains functional dependen-
cies {F} and a template dependency that interact in the allowed classes define a
minimal set of insertions and deletions for r; which satisfy the dependencies in
(.}
Proof

Assume first the set of deletions is not minimal. This set is divided into
two components: tuples that have to be deleted in order to maintain the con-
sistency with respect to the functional dependencies (say, {t,}); and tuples that
have to be deleted to maintain consistency with respect to the template depen-
dency (say, {ts}). Given {t,}, then {tg} is a minimal set of deletions which main-
tains the consistency and allow the deletions in {t,} to occur (Theorem 2). Thus,
the set of deletions is not minimal if and only if the set {¢,} is not minimal.

64 C. M. B. Medeiros

Assume that there exists a subset of {t,} that can maintain the relation’s
consistency with respect to {F}, given the insertions {t};U AI{tpp)U{(w,+,);}-
The deletions in {¢,} are of three types: the ones determined in the preliminary
functional dependency processing, the ones that prevent insertion of additional
tuples that will cause violation of X=A, and tuples in r;— AD(zp) that violate
X-A given the insertions in {(17,.,.1)]-6}. If any such deletion is omitted, then by
construction there may exist an inserted tuple which causes the updated relation
to violate the functional dependency. Thus, the set of deletions {¢,} is minimal.

Assume now the set of insertions is not minimal. Again, this set can be
divided into: insertions needed in order to maintain the functional dependencies
(AI(tpp), which is a minimal set that preserves information given the deletions
in AD(lpp) — Lemma 3.2); and insertions needed to maintain the template
dependency ({(ES.H)]-G }, already proved to be minimal by Lemmas 3.3 and 3.4).
Thus, although strictly speaking none of the tuples in AI{(tpp) needs to be
inserted, omitting any would unnecessarily destroy information. Thus, the set of
insertions is a minimal set.

Assume now that even though both sets are minimal, it is possible to elim-
inate some insertions and deletions from A; such that the result will still be con-
sistent. The set of deletions AD(tpp) is necessary to maintain the functional
dependencies (Lemma 3.2); the accompanying set AI(tzp) prevents loss of infor-
mation. Thus, if the set A; is not minimal, the set of insertions and deletions
that can be eliminated from it must come from {(w,+;);” U(w,+,);" }.

Assume there exist some inserted tuples {t,,} described by {(17)_,,+1)]~G} and
some deleted tuples {t;.} described by {(Es.,.l)jB} such that V =
r;UA;U{t; }—{t;,} is consistent. As shown in part (b) of the proof of this
lemma, the set {(w,.+;), '} is necessary to maintain the consistency of the tem-
plate dependency, given that {t}; U AI{tpp) are inserted. Thus, V is consistent
only if {t;,} C {t;c}. However, as also shown in this proof, no deletion in AD
deletes an insertion in Al, and vice-versa. This means that {t;,} N {t,.} = O,
and therefore {t;,} = &.

Thus, {t;,} must be such that r;UA;U{t; } is consistent, which has been
shown by this lemma to be false, since the set of deletions is necessary.

Therefore, the set of insertions and deletions in A; constitute a minimal set
of updates that maintain consistency and preserve information. B

Theorem 4: The set of insertions and deletions generated by
Ch({t,t"}; ,R;,force) describes a minimal set of symbolic row operations to
accomplish the corresponding underlying operation and maintain the semantic
integrity of r; as defined by the constraints {C; }.

Lemma 4.1: (sufficiency while maintaining consistency) The set of insertions and
deletions described by Ch({t,t'};,R;,force) accomplishes the corresponding
underlying operation and does not violate the constraints {C; } of relation r,.
Proof

a) For no constraints, the proof is trivial.

b) For functional dependencies only, the same proof as for Lemmas 3.1 and 3.2
for insertions.

c) For template dependencies only, the proof is a combination of the proof of

65

Lemma 2.1 for De({t’},,R;, force) followed by the proof of Lemmas 3.3 and 3.4
for In({t},,R;, force) and In(w,,R;, force).

d) For functional dependencies and a template dependency, Lemmas 3.9 and 3.10
prove the correctness of In({t},,R;, force) U In(w,,,R;, force). m

Lemma 4.2: (minimality while maintaining consistency) No subset of the inser-
tions and deletions described by Ch({t,t'};,R;,force) can perform the
corresponding underlying operation without either violating the constraints {C,-”}
or unnecessarily destroying information.

Proof

In({t}; R;, force) : A;'; In(w,,R;, force): A;";

Ch({t t'"};,R;, force) : A; =(wy.,[w'y]) U ({t},{t'k]) U A, U A;". The
proof again follows the previous proofs:

a) For absence of constraints, it is trivial;

b) For functional dependencies alone, it is the same as Lemmas 3.1 and 3.2.

c) For template dependencies alone, it is the same as minimality for forced dele-
tion of {t'};, followed by minimality of forced insertion of {t}, Uw, ., where w;,
is inserted to preserve information.

d) Template dependencies and functional dependencies are handled as follows:

- forcing ({t};,[{t'};]) requires deletion of {t'},, which is minimally achieved by
deleting w',, (Lemma 2.2).

- forcing ({t};,[{t’};]) requires insertion of {t};, which is minimally achieved by
the operations in In({t},,R;, force) (Lemma 3.10).

- w;, must be inserted if the change operation is to preserve information, and
this insertion is minimally achieved by (In,w,.,R;, force) (Lemma 3.10).

Therefore, the set generated by Ch({t,t'}; R;, force) constitutes a minimal
set of insertions and deletions that performs the change, maintains the con-
sistency, and preserves information. ®

Theorem 5: The set of rules State(Op,), that determine the underlying
conditions for a row to appear in each initial tableau T}, exactly describe the
relation state for which the corresponding set of tuples exist.

The proof consists of stating the rules described in chapter 3 as logic
clauses. These rules correspond to defining the conditions under which an update
should be performed. Recall that the symbolic valuation of a template row (w;)
can also be interpreted as True(w;). For this proof it means that the set of
tuples described by w; exist in r;U {t}; U Al(tpp) - AD(tpp). This Theorem
is proved separately for conditional and forced updates.

Lemma 5.1: (Rules for conditional updates)
The set of rules in State(Op;) that determine the conditions for execution of the
underlying operation (Op {t}; R; cond) exactly describe the class of relation
states in which the indicated update may occur without violating the constraints
{C,,}
Proof
Insertions
1. {C,-"} contains a functionzl dependency X-A

{t}; is inserted if V ¢ € r;, (IIxt=1IIx{t};) = II,t=11,{t};.
2. {C;,} contains a template dependency

66 C. M. B. Medeiros

Let (w; - w;—; {t}; w4 - - w,)(w,+1); correspond to the substituted
template when {t}, replaces w;. (Recall that since {t}; plays multiple roles,
other expressions w; may also be equivalent to {t},.)

8

{t}, is inserted if A Ik/\l (wg) = ('-173+1)j]
] =

Deletions
1. {C; } contains an X-partial template dependency
Let (w, - - - w,)|{t}; be the replaced template. ,
{t}; is deleted if (w € 7; | Ixyw=IIx{tk) v @ jl w; C {t};= kvl
(~wy))-
The first part of this clause results directly from the properties of partial tem-
plate dependencies.
Changes
1. {C,-n} contains a functional dependency X-A
{t'}, is changed into {t}, if
{t'}; €ry A@tern| IMyt=1Ix{th) = Hst=114{t}
2. {Ci..} contains a template dependency
Let the modified template be {(w;,[w’;]} | ({t}, [{t’};])
{t'}, is changed into {t}; if {t'}; € r; A [il w;# u_)"]-)=>-ﬁ']-]
3. {C,-n} contains both functional dependencies and a template dependency
Same as (2.) above, and (w; U {t};) agree over the functional dependen-
cies.
Lemma 5.2: (Rules for forced updates)
The set of rules in State(Op;) that determine the underlying conditions for addi-
tional updates to be represented in the initial tableau T';, given the the underlying
operation (Op;{t}; R, force), exactly describe the class of relation states in
which the indicated update must occur in order to maintain the constraints {C;"}.
Proof

Insertions
1. {C;,} contains a functional dependency X-A

.perform (wfd,[w’fd]), where {wfd} = AI(tpD) and UXA'wfd:HXA{t}i’

if
3 ¢ (IIxt'=Ix{t}; A I4t'#I14{t};), where {t'} is described by
{w'fd}.

2. {C; } contains a template dependency

Let (wy " wj—y Wy Wj4y " " w,)|(w,+,); correspond to the substituted

template when w,, an insertion expression, replaces w ;.
8
(1) s inserted it | A (B A = (@, 4.);

3. {Ci,.} contains a functional dependency X-A and a template dependency
O1 € (W,4,),C is inserted if
8

J
[kél (wk)] A = (Wo41); A (@ t described by I | IIxt=1IIxw, A
It # I, w,).

OD € (wy+;), is deleted if

67

D describes tuples in r; and 3 I € ('E,.H)J-G | D disagrees with 1 over XA
v

D corresponds to additional deletions w4, determined by the rules for
deletions that follow.

Deletions

1. {C;,} contains a (X-partial) temnlate dependency

Let (w, - * - W4 * - * w,)|{t}; be the replaced template.
w4 is deleted if

@wer;—{t} | Myw=Tx{tk) A@ 5l w; C {th) A lj/:\1 (w;)]

Changes
1. {C;n} contains a functional dependency X-A
the same as for forced insertions.
2. {C;,} contains a template dependency
Let the modified template be {(w;,[w7|}| ({t};,[{t'}])

the additional change (w,,,[w";.]) is performed if L\I('IF'J-)

The remaining conditions (for insertions of w,, and {ti,—) are the same as the
ones for forced insertions.
3. {C;n} contains a template dependency and functional dependencies

The same as for the two previous cases. w;, must agree with {t}; over
XA. B

Theocrem 6: The update validation algorithm always stops.
Proof

The algorithm stops with an error message if the input is invalid. The algo-
rithm also stops if no error occurs. Step 1 (checking input consistency and build-
ing the templates) is finite, being limited by the size of the input and the number
of rows in each template. Building the BCINF partitions is finite, since it involves
checking a finite number of functional dependencies. Creating the underlying
modification table entries is a finite process for simple templates and Partition-
able BCNF.

The process of building each tableau sequence is finite. Building T
involves one scan of the (finite) underlying modification table. Processing the
remainder of each sequence is also finite, and the proof is similar to the proof of
finiteness of traditional tableau chases: it consists of simulating a (finite) number
of monotonic operations, computed by the rules FEz(q,), followed by functional
dependency checking. This process can only change placeholder variables either
to other placeholder variables with lower index, or placeholder to parametric vari-
ables (but never the opposite). Furthermore, it can only change system-generated
parametric variables either to system-generated parametric variables with lower
index or to user-entered parametric variables. This means that, in any sequence
T,,T,.. Tk, no tableau is repeated, ie., A Lj | 1 # j and T; = Tj, and the
number of placeholder variables is a non-increasing non-negative quantity. The
number of sequences is finite, being limited by the number of relation schemes in
the database. Therefore, the algorithm always stops. @

68 C. M. B. Medeiros

Theorem 7: The contribution to the SJP view V=(R,q,) of the set of
underlying tuples described in a tableau 7', is exactly described by the final
tableau Ty of the corresponding tableau sequence generated by the update valida-
tion algorithm.

This Theorem is proved using four Lemmas. Lemma 7.1 proves that the
Ez(g,) execution rules, which provide the transition from tableau T} to tableau
Tj.H in a sequence T - - T}, correctly process symbolic tuple expressions
according to the operations specified in q,,. Lemma 7.2 shows that checking func-
tional dependencies at each step does not invalidate the results represented in the
rows of tableau T'; 4, after execution of Ez(q,). Lemma 7.3 shows that the rows
of tableau T} describe at least all possible isolated contributions to the view of
the underlying tuples in 7). Lemma 7.4 shows that the rows of T} do not

describe any update that cannot occur in the view.

Lemma 7.1: The execution rules Ez(g,), that determine how to perform rela-
tional operators on tableau rows, correctly represent the effect of the select, pro-
ject and join operations specified in g, for the extensions r; of E;.

Proof

The execution rules Ez(g,) may introduce errors either in processing
tableau rows or in processing the entries of the database state table. Each case
will be analyzed separately.

Case 1: Processing of tableau rows

In the tableau rows, errors can happen either because the Ex(q,) rules
introduce invalid symbols, or because the actual operations are not simulated
correctly. Fx(q,) rules simulate the actual operations correctly, because they
represent a modified version of computation of tableau queries. The Ez(q,) rule
for projection corresponds to the projection rule for computation of tableau
queries (see [MAI83, Chapter 10] and Chapter 2 of this thesis). The Ez(q,) rule
for joins corresponds to the rule for computing joins in tableau queries (after vari-
ables are unified according to the chase J-rule). Tableau queries handle selection
with equality by making the selected attribute have a specific value. In the
Ezx(q,) rules this has been modified by introducing parametric variables that
describe the range of the selected tuples, which are thereafter treated as in
tableau query processing. Since actual operations are simulated correctly, errors
can only occur if incorrect symbolic values are assigned to variables when per-
forming the simulation.

The initial set of rows in T is correct (see Theorems 1 through 4). Con-
sider a transition from tableau T]- to TW j+1, achieved through the execution of
some rule in Ex(q,), and assume T'; contains no error. (T’;4+; will be obtained
from T4, by checking functional dependencies.) No row of T is ignored by
Ezx(q,): all rows that describe tuples that should be processed by the relational
operation are processed, and the remaining rows are copied into T'J-.H. Thus,
errors can only be introduced by the modified rows.

Projection rules do not introduce new variables in the tableau.

Selection rules only modify the variables corresponding to attributes in the
selection range and either a) change a placeholder to a parametric value without
modifying any other characteristics of the tableau variables or b) if the attribute

69

subject to the select condition is already represented by some parametric variable
A, the variable is maintained, and the description of the new selection condition
is appended to the description of A;. No other variables are modified and the net
result is that of imposing a (further) restriction on the tuples being processed.

The rules for joining R;X R, can only introduce errors while determining
the final value of the unified attributes in R;NR,. These rules will be analyzed
for each possible case of joining pairs of attributes:

1. (placcholder, placeholder): the rule is the same as the one used in processing
tableau queries with joins, and cannot therefore introduce errors.

2. (placeholder, parametric): parametric variables stand for specific values. Since
the user (or the system) indicates that a given value (or range of values) will be
used for that attribute at run time, the only tuples that are needed for determin-
ing modi fications in the view are those where that value is matched. Therefore,
parametric variables should determine the outcome of the join.

3. (parametric, parametric): if at least one of the variables is user-entered, the
result must match this variable (for the same reasons as above). If both values
are system-generated, then again the rule is the same as that of processing
tableau queries.

Thus, Case 1 cannot introduce errors: the operational specification of g, is
correct.

Case 2: Processing database state table entries

The initial entries in the database state table are correct, as proved by
Theorem 5. Assume therefore that some error is introduced by the Ez{q,) rules
during a transition from T to T" ;4. The database state table entries are modi-
fied either when variables have their values changed or when two rows are joined.

Every time a tableau variable has its value changed, the change is correct
(see Case 1), and therefore must be reflected in the database state table entries.
Two tuples (i.e. rows) can only be joined if they exist at the same time (which is
reflected in the database state table by having the entries for both rows combined
into a conjunctive expression). Thus, the entries in the database state table are
correctly processed.

Summarizing, the operational specification of Ex(q,) is correct, it does not
assign invalid values to variables, and all necessary conditions for the execution of
a given operation are stored in the database state table. Therefore, the execution
rules are correct. @

Lemma 7.2: Let T'j+1 denote a tableau that results from applying Ez(q,) to
tableau Tj. The check of functional dependencies over the rows of T'J-.H, which
results in the next tableau 7'+, in the sequence T’y * * - T}, does not invalidate
the results described in 7" ;4.

Proof

Recall that, for each row of T'j+1, functional dependency checking assigns
parametric variables to attributes in the right side of a functional dependency
whenever the left side has been assigned a specific (i.e., non-selection) parametric
variable during execution of join Ez(q,) rules. Furthermore, dependencies are
excluded from this process if
- they apply to relation schemes not yet processed by Ez(q,); or

70 C. M. B. Medeiros

- they have already assigned parametric values to attributes on their right side;
or

- the attributes corresponding to their right side are eliminated by projection.
Any change in a variable of a row in 77 j+1 15 reflected in the database state
table. Thus, if functional dependency checking does not invalidate the rows of
T" j+1, neither does it introduce errors in this table. The proof shows that func-
tional dependency checking does not introduce errors, by proving that:

- it does not create inconsistencies among the rows of 7" 4,

- it needs not check a different set of functional dependencies

- it does not interfere with the set of valid valuations of the rows of 1,4,
because

: it does not create additional expressions (i.e., that describe updates that can
never occur) and

: it does not eliminate valid expressions (i.e., does not discard the description of
tuples that should have been considered as resulting from the underlying updates).
In other words, it will be proved that checking functional dependencies cannot
invalidate any expression in 7" j+1, neither can it violate underlying constraints.

Assume, first, that checking functional dependencies invalidates the expres-
sions in 7" ;1 by assigning parametric values to some variables, thereby creating
an inconsistency among the rows of TJ‘+1. This cannot occur because each
tableau row corresponds to an independent update and is processed separately.
Notice this process cannot create expressions whose valuations violate any func-
tional dependency, since all parametric values assigned correspond to system-
determined variables.

Assume, now, that functional dependency checking should consider a dif-
ferent set of functional dependencies. Obviously, it needs not consider the depen-
dencies that apply to relations not yet processed by Ex(q,). If the left side of a
given dependency does not consist of (specific values) parametric variables, there
is no point in checking the dependency, either. Therefore, the only dependencies
that need to be checked are those whose left side consists of parametric variables.
Once these dependencies are checked, and the symbols on the right side are
changed, they need not be checked again: any future joins will preserve the
parametric variables assigned. and the corresponding functional dependencies can-
not determine additional parametric variables. Finally, if all attributes
corresponding to the right side of a dependency are discarded by projection, their
value will not affect the view formation, and the corresponding dependency needs
not be checked. Thus, the set of dependencies being considered at each step is
correct.

Assume now that checking functional dependencies modifies some expres-
sion E in T" j+1 S0 as to make it describe a larger set of tuples than it originally
did. Let E’ denote this expression after this modification. Since functional depen-
dency checking assigns new parametric values to variables, E’ subsumes E.
Therefore, E' cannot describe more updates than E: it describes less tuples than
E.

Assume, finally, that since E’ describes less tuples, the functional depen-
dency checking discarded the description of view tuples which may correspond to
a view update. This means, however, that there exists some functional

71

dependency X-Y and a view tuple t such that if Iyt is a specific value, ITyt is
not necessarily the corresponding value. This obviously contradicts the notion of
a functional dependency. Therefore, no valid valuation is discarded by restricting
E to E’, since all "real world” tuples which are described by E are also described
by E’.

Thus, the results described by the rows of T" ;1 are maintained by T';+,. ®

Lemma 7.3: Any SJP view tuple which can be formed by applying g, to the
expressions displayed in T is described by some row of the final tableau T}.
Proof ‘ ,

Assume, by contradiction, that there exists some view tuple 7, which is
affected (i.e., inserted, deleted or changed) by the isolated updates described in
Ty, and yet is not described by any row in Ty. If this tuple is affected by the
updates in 7', then it must originate from a set of tuples {t; - - - ¢ j} described by
expressions {p; * * - p;}in T}.

Since 7, belongs to the view, it is generated by applying the view generating
function g, to the tuples {t, - - - t;}, ie, 7,=gq,(t; - - - t;). In symbolic terms,
1, is described by q,(p; - - - p;)- By Lemma 7.1, the execution rules Ez(q,)
correctly perform the operations specified in g, and no tuples are ignored in the
process. Thus, g,(p; - * - p;) is correctly performed by applying Ez(g,) to
{p1 - - - p;}. This means Ez(q,)p, * - * p;) must be represented by a row in T}
- i.e., 7, is described by some row in Tj. Therefore, there exists no view update
that is based on the underlying tuples described in 7'y and which is not described
by some row in T;. @

Lemma 7.4: Any result row that appears in the final tableau T} correctly
describes a possible update on an SJP view resulting from the isolated updates
described in the tableau T'.

Proof

Assume, by contradiction, that there is a superfluous tuple described by
some row in T}, i.e., a tuple that cannot originate from the underlying operations
described in T';. This means that, in generating the sequence T'; - - - T}, a tran-
sition from tableau Tj to tableau Tj+1 creates an expression that describes tuples
which did not originate from the tuples described in 7T';. Since any tableau row is
obtained by a sequence of operations q, on rows of T, introduction of additional
tuples can only occur if there is an error in the execution rules Ez(g,) or in func-
tional dependency checking, which is impossible (see Lemmas 7.1 and 7.2).
Therefore, no row of T} can represent the isolated contribution to the view of
tuples which are not described by the expressions in 7. B

Theorem 8: The database state table entries associated with each output
row in a final tableau T} in the update validation algorithm exactly describe the
class of database states necessary for the corresponding update to be reflected in
the view.

Proof

Assume, by contradiction, that an entry in the database state table for
some result row contains an incomplete description of the database state neces-
sary for the corresponding update to appear in the view (i.e., further conditions
than stated are needed). The individual underlying conditions necessary for

72 C. M. B. Medeiros

generation of tableau T are correctly derived by State(Op;) substitution rules
(Theorem 5). Let T; and T,4+; be successive tableaux in the sequence
Ty - - - Tg. The transition from T; to T4, is achieved by executing one opera-
tor from q, using Ez(q,) (Lemma 7.1) followed by checking functional dependen-
cies (Lemma 7.2); any change in attribute values is recorded, indicating what are
the conditions for this operator to be executed. If more conditions were needed,
the operator could not be executed, and the tableau T,-.H would not be created.
Therefore, the database state table entries generated are sufficient for a) initially
obtaining the underlying update in 7'; and b) reflecting it on the view as
described by T}. Thus, the database state description associated with the output
rows is sufficient.

These conditions also constitute a necessary set: the conditions in
State(Op;) are necessary (Theorem 5). If any intermediate database state com-
putation were eliminated, the function g, could not be executed to the end, and
the output row would not be generated. Thus, the database states associated
with each row are necessary and sufficient for describing the class of underlying
states for which the update occurs. &

Theorem 9: For monotonic view functions, deleting a tuple ¢ from an
underlying relation extension r; does not add tuples to the view extension; adding
t to r; does not delete tuples from the view extension. '

Proof

Deleting ¢; from r; creates r’;=r;-t;; inserting ; in r; creates r';=r; Ut;.
For deletions from r;, no tuples are added to the view g,(r; ...r,), since, by the
monotonicity of gy, §,(ry - F5—=1 7' Ti+1 Tn)Squ(ry ...rp).

For imsertions in r;, no tuples are deleted from the view, since
Qu(Fy - Pa)C (71 Ty T's Tty oatn).

Thus, if the result of an isolated underlying update to r; is the
deletion(insertion) of some tuple ¢, in the view, then no other underlying
deletion(insertion) in some r; , j#1, will re-insert(delete) t,. ®

Theorem 10: Any possible outcome for a complete update policy
u, ={(O0p; {t}; ,R; exception)}, =1 , on an SJP view is derivable from the set
described by the rows of {T;}; =y , representing the isolated contributions of the
underlying updates u; = (Op;,{t},,R; exception) to the same view.
Proof

The proof is based on the fact that the update validation algorithm makes
sure that underlying operations do not interact destructively. Lemmas 10.1 and
10.2 show that the description of an isolated update is complete, and that the
order in which the relations are updated does not affect the final view. Lemma
10.3 shows that the description of any update which may appear on the view can
be derived by combining the results of isolated updates from STEP 2.

Lemma 10.1: Given an initial database extension described by {r, * - - r,}, an
SJP view formed by g¢,(R;---R,), and a set of underlying updates
{u;=(Op; {t};,R; exception)}, the order in which the relations are updated does
not affect the final database extension {r’; - - - r’,}, nor the final view extension
Q(r'y = 1)

Proof

73

~ Assume the final database state can be influenced by the order in which the
operations are executed. This means that some update to relation r; causes
changes to r;#r,. This is not possible in the model studied, for SJP views, which
assumes independence of relation schemes.

Therefore, the final database state does not depend on the order in which
underlying updates are executed. Since the final view extension is defined as a
function over the final database state, the order of the underlying operations does
not affect the final view state. B

Lemma 10.2 (non-interference) Given a set of updates u, =
{u;=(Op; {t}; ,R; exception)} and an SJIP view, if the set of all possible effects
on the view caused by one underlying operation u; is given by the set of expres-
sions W, then there exist database states for which the set of view modifications
described by W; will occur, independent of the underlying updates to the other
relations {r; ,}.

Proof

a) Non-interference among deletions

Let u,=(De,{t};,R ,exception), and u,=(De,{t},,Ry,exception) represent
two underlying deletions, where the effects of u; and u, on the view are given by
Wl and WQ. .

As a corollary to Theorem 9, deletions cannot be undone by other deletions.
Thus, no deletion expressed in W, can prevent a deletion expressed in W,, and
vice versa, even though W, and W, may have expressions in common. This
means that some deletions expressed in W, as depending on the existence of {t},
in r, are the same deletions described in W, as depending on the existence of {t},
in r;. Thus, if u, is executed before u,, some of the deletions expressed in W,
will occur as part of W, and vice versa.

b) Non-interference among insertions

Let u;=(In {t}, R, exception), and u,=(In {t}, R, exception) represent
two underlying insertions, where the effects of u; and u, on the view are given
by W, and W,, and neither u; nor u, force functional dependencies.

Again by Theorem 9, insertions cannot be undone by other insertions. Since
there are no functional dependencies involved, execution of u; and u, implies
that no deletions will be performed in ry and r,. Thus, no insertion described in
W, can be prevented by an insertion in Wy, and vice versa, even though W, and
W, may have expressions in common. This means that if u; is executed before
t5, some of the tuples described by W, will occur as part of Wy, and vice-versa.

¢) Non-interference among insertions and deletions

Let ;= (In,{t}; R exception), u,= (De, {t}, Roexception), and uj
=(Ch {t,t'};,R3,exception) represent underlying updates, where the insertion u,
may force functional dependencies. Let W, ,W, and W; represent the isolated
effects of u,,u, and ug on the view.

W, may contain the expressions E,, [E',] and (E,|E’]);
W, may contains expressions [E,);
W3 may contain the expressions E3, [E's] and (E3,[E’ 3]).
Since there is no interference among insertions, the expressions in £, and Ej3 do

74 C. M. B. Medeiros

not depend on the order in which the insertions in r{ and r3 are executed, nor in
their content. Similarly, deletions £’ |,F/5 and E'; do not depend on the order in
which the deletions in r{,r, and r3 are executed.

Assume that some deletion described by [E,] can be prevented by some
insertion in ry, i.e., deletion of [E,] depends on the existence of tuples {t}, in r,
which will not exist after insertions. If {t}l does not exist after insertion in r,,
this means that {t}; contributes to forming the expressions |[E’,]. Therefore, the
corresponding deletion will always occur, being described both by [E,] and [E',).

Insertions described by E| cannot be prevented by the deletions described
by [E',], because they are executed for a single relation r; over disjoint sets of
tuples. The same applies to the expressions E3 and [E’4].

Finally, assume by contradiction that some insertion described in E; or Ej
will never occur because it depends on the existence of tuples that have been
deleted by u,,us or us. This means, for instance, that some E, corresponds to
the statement : _
S1: view tuples I',, are inserted if ¢t € r,,
whereas some E corresponds to the statement _

S2: view tuples I', are deleted because t € r, is deleted. _

View insertion S1 cannot obviously occur, since S2 indicates u, deletes . Recall
that when an initial tableau T is built from the underlying modification table,
the only tuples from r, that are allowed to participate in view insertions are
those that will not be deleted by any operation in r,. Thus, the only tuples from
r, allowed to participate in a view insertion have the form ¢ #¢. Therefore, no
expression E; can correspond to statement S1. By the same token, no insertion
described by E3 can be prevented by deletions in v, or u,. Thus, the expressions
in W{,W, and Wj describe view updates which may eventually occur, and combi-
nations of underlying updates do not prevent any such expression from being
reflected on the view. B

Lemma 10.3 Any possible effect of a complete policy
u, ={(Op; {t}; ,R; exception)} on an SIP view can be derived by combining the
information contained in the sets W; that describe the isolated outcomes of
underlying updates (Op, {t}; R, exception).

Proof

From Lemma 10.2, the isolated contribution W; to an SJP view caused by
one update u; ={Op; {t}; R, exception) is completely described by the output
of the update validation algorithm, and is not affected by other simultaneous
underlying operations. Assume, by contradiction, that there exists a view update
which results from a set of underlying updates {u;=(Op; {t};,R; exception)}
and yet cannot be derived from a valid valuation of the set UW,. Consider the

1}

following facts .

- the final effect of a set of updates does not depend on the order in which sets of
updates are executed, as long as the complete policy is treated as a transaction
(Lemma 10.1);

- a given relation can only contribute to modifying an SJP view if the relation is
modified itself (by the definition of SJP views}; and

- the net effect of a sequence of underlying updates is that of eliminating some

75

tuples and adding others to the view.

Let 7, be a view tuple that is affected by the complete policy, and assume

its description is not derivable from UW;. If 7, is a result of the complete policy,
T

then it is a result of applying the updates in u, in some order, i.e., there is a set
of underlying updates u; * - - u; that contribute to 7,. Assume, without loss of
generality, that at least u; contributes to the formation of 7,. Since W,
describes all possible effects on the view of the policy u,, then the description of
7, must be contained in W, otherwise u, would not contribute to forming 7.
Therefore, the only possibility for 7, not being derivable from the set UW; is

3
that some underlying update(s) u; whose effect is described by Wy, interact des-
tructively with u,, in such a way that some of the updates described in W; will
not occur as a consequence. This, however, cannot happen, as shown by Lemma
10.2. Therefore, any possible effect of a complete policy u, on an SJP view can
be derived from a valid valuation of the set UW, that describes the isolated out-

1]
come of underlying updates u; =(Op; {t}; R, exception). m

4.3. Complexity analysis
Theorem II:

The number of comparison operations executed by the update validation
algorithm is polynomial in the size of the scheme R={R; <{A,-J.},{C',-n}>}.
Proof

Let Nrel be the number of relations in R, Nh; be the number of hypothesis
rows in R;, Na,; the number of attributes in the template for E,, and NF; the
number of non-redundant functional dependencies in scheme R;.

The complexity of the operations in STEP 1 (input consistency checking)
depends on the number of schemes with functional dependencies. Consider one
scheme R;. Building BCNF partitions requires a sweep of all functional depen-
dencies in the relation, as well as checking the closure of each determinant in a
partition. This takes O(Na; X NF;) [MAI83, chapter 4] per determinant, and
thus O(Na; X NF,?) per relation. Checking for valid interactions between func-
tional dependencies and template dependencies takes O (INF; X Nh; X Na;) com-
parisons. Let NA =max(Na,), NF=max(NF;), and NH = max(Nh,).

Thus, STEP 1 takes O (Nrel X NA X max(NF?,NFx NH)).

The creation of the underlying modification table in STEP 2 requires execu-
tion of Op({t}; R, exception) and derivation of the rules State(Op;). In the
expressions that follow, all rows formed by pairs of expressions (e.g., (w fd,[w' fd]))
will be counted as two entries in a table. Each execution of
De({t}; R, exception) takes Nh;X Na; comparisons when {C;} contains a
template dependency. Execution of In({t}; R;,exception) and
Ch({t,t"; ,R; exception) varies according to the type of constraint involved.
Assume the worst case for changes, when every attribute to be changed is
involved in some functional dependency.

76 _ C. M. B. Medeiros

If {C','"} consists of functional dependencies only, then both insertions and
changes take approximately Na, X NF; comparisons, to create the pairs
{(wsq,|w' gD} 1t {C;} consists of one simple template dependency, the number
of comparisons for In({t}; ,R;,cond) is Nh; X (Nh;—1)X Na; (since the substi-
tution rules must be applied as many times as there are rows in the template);
and execution of Ch({t,t'};,R;,cond) is composed of at worst 3X Nh; X Na;
comparisons for finding w,, (since each row is duplicated and the elements of
each pair must be compared against each other); forced changes need an addi-
tional 2X Nh; X (Nh;—1)X Na; comparisons for determining additional inser-
tions (resulting from {t}; and w,,).

If {C,-n} consists of both functional dependencies and one template depen--
dency, In({t},,R; cond) takes approximately Na;X(NF;— Nh;+ Nh;?) com-
parisons; In({t};,R;, force) may require an additional
Na,; X NF; X (Nh;*= Nh;) comparisons for pushing AI(t;p) down the template,
and (Nh; X Na,;)(Nh; + NF; + NF; .Nh;) comparisons to push potential dele-
tions up the template. Ch({t,t'}; ,R;,cond) takes approximately
Na,; X (NF;+ 2Nh;+ Nh;%) comparisons; Ch({t,t"; R;,force) may require
Ne; X (2Nh;%+ 2Nh;) more comparisons than In({t},,R;, force), to account for
additional insertions and deletions.

Building the tableau T'; for each underlying update, and initializing the
database state table entries, takes constant time. The remainder of STEP 2
depends on the number of joins and of checking functional dependencies.

Let NJ denote the number of joins, and NT the number of rows in the first
tableau. Recall that, for each tableau sequence needed to process an update to
scheme R,, T contains one row for each scheme R;y;. The number of rows for
R; is the number of expressions in Op({t};,R;,exception). I each relation may
contain both functional dependencies and a template dependency, the following
results hold.

(NT= Nrel
. for conditional insertions and deletions {(NJ= Nrel—1
(NT= Nrel
. for conditional changes {[NJS 92X (Nrel—1)
(NT=Nrel+1

. for forced deletions \NJ=2X (Nrel-1)

(NT=(Nrel + Nh; X NF;+5Nh, +2NF;)
- for forced “‘““‘”stNJs (1+ 5Nh; + 3NF, + NF; X Nh;)X (Nrel - 1)
This expression for NT is composed as follows: NF; rows (wgy,[w'y));
(Nh;)(NF;+1) insertions for pushing {t},UAI(tpp) down the template; this
may generate a potential 2Nh, deletions, which have to be pushed up the tem-

plate together with {w’,;}, resulting in a total 4Nh; + NF; deletion expressions.
(NT'<(Nrel + Nh; X NF, + 8 Nh, + 2NF.)

- for forced changes, {NJs (3NF;+ NF; X Nh; +8Nh,)X (Nrel - 1)

The execution time for each join depends on the join algorithm employed
and on the number of attributes being joined at each step. NA=mjax(Na,-) is
1 2

77

the maximum number of attributes being joined at each step. The number of
comparisons (which determines changing and adding entries to the database state
table) is at most (NJX NA). The checking of functional dependencies at each
step will be considered separately, and depends on the number of rows being
checked, which for any step is at most NT-(Nrel-1). For conditional updates or
forced deletions, this check takes approximately the same amount of time (since
the number of rows to be checked is the same), denoted Chk1; checking rows that
result from forced insertions or forced changes again takes approximately the
same time, and will be denoted Chk2.

Assume there are CI conditional insertions, FI forced insertions, CD condi-
tional deletions, FD forced deletions, CC conditional changes and FC forced
changes, where the total number of underlying updates is Nrel. This generates an
underlying modification table whose s;'}[zz }% proportional to NAX UMT, Fv%here

UMT<CI+CD+2(CC+FD)+3 5, (Nh;+ NF,+NF;x Nh;)+ 5 Nh;.
1=] 1=1
All entries in this table must be checked when building each tableau T';, whenever
insertions or changes are processed. The upper bounds for checking the side
effects of all underlying updates of each type are given by adding up the number
of comparisons it takes to compute
A; + number of joins + check of functional dependencies.

. conditicglnal insertions
ECI =) '{Na;(Nh* — Nh;+ NF;)+ NAX(Nrel—1) + Chk1}

1=
. forced insertions

FI

EFl = Y{Ne,[Nh?X(NF;+3)= Nh;+ NF;] +
1=1
+ NAX(3NF;+ 5Nh;+ Nh; X NF;)xX (Nrel = 1) + Chk2}

. conditional deletions
cD

ECD =<){Na; X Nh;+ NAX(Nrel—1) + Chk1}
1 =]
. forced ggletions
EFD = }{Na; X Nh;+2NAX(Nrel—1)+ Chkl }
i=]
. conditigrépl changes
ECC =) {Na,[Nh;,(Nh;+2)+ NF;]+2NAX(Nrel—-1) + Chk1}
1=
. forced %anges
EFC < 3 '{Na,[Nh?X(NF;+5)+ Nh,; + NF;] +
f=1
+ NAX(3NF;+8Nh;+ NF; X Nh;)X (Nrel - 1) + Chk2}
For computing Chkl and Chk2, recall that it is not the whole tableau that
is checked for functional dependencies at each step, only the rows involved in a
join. A functional dependency is only allowed to modify attributes once, and
tableau rows are processed independently. If a dependency is activated after a
join (i.e., changes a placeholder variable to parametric), all rows that result from
this join will be checked individually, and this dependency cannot cause any

78 C. M. B. Medeiros

subsequent changes. (If for certain rows a given attribute becomes parametric
after a join, no subsequent joins can affect this attribute again.)

Assume NF=max(INF;) dependencies are activated at each of NJ joins.
]

For conditional updates and for forced deletions, the functional dependency check
processes at most two rows at each step ({t};Uw,4), and therefore Chk1 takes
approximately (NFX NA) comparisons per join, and thus O(Nrel X NFX NA)
comparisons per execution. For forced changes and insertions, the functional
dependency check processes at most (NT-(Nrel—1)) rows per join, i.e.,
O(NFX NH). Thus, there are O(NFQX NA X NH) comparisons per join, and
hence Chk2 takes O(Nrel X NF2X NAX NH) comparisons per execution.

Therefore, since the execution of STEP 2 requires (ECI + EFI + ECD +
EFD + ECC + ECI) steps, the algorithm is polynomial in the size of the input. ®

Corollary: Let NA=max(Ng;), NF=max(NF;), NH=max(Nh;), and let
13 L}

%
N=max (NA,NF,NH). If the input size is given by M=0O (NrchNQ), the
update validation algorithm takes at most O(W) comparisons.
Proof

From the expressions given in Theorem II, the worst case occurs when all
underlying updates are forced changes, and all relations are subject to both func-
tional dependencies and a template dependency. The input size is
Nrel X NA(NH+ NF+1), i.e., O(Nrel X N?). Using the results of Theorem II,
and abandoning lower-order terms, the following results hold:

STEP1 takes O (Nrel X N°)

UMT = O (Nrel X N?)

STEP 2 takes Nrel XEFC (for FC=1), which is approximately equal to
(N*X Nrel + Nrel?x N3+ Nrel?x N*), and thus it is O (M?).

Therefore, the algorithm takes at most O(W) comparisons, for an input of size
M B

Chapter 5

Extending and unifying related work

Several authors have proposed means of analyzing the validity of update
translations. This chapter exemplifies how the update validation algorithm pro-
posed in Chapter 3 can be used for obtaining the same results, and how this
analysis can be extended to encompass all SJP views.

5.1. Examining some policies proposed by other authors

An example of a proposal that can be described in terms of the update vali-
dation algorithm model is that of Keller [KEL82]. According to his model, views
mvolving joins cannot be updated if the attributes that participate in the join do
not appear in the view.

Example: [KEL82
Let R={R,<ED,{E~D}>, R,<DM,{D-M}>}, and q,=ITp)yR; X R,. Updat-
ing through this view is forbidden, since the join attribute D is not present.

79

(This example will appear again in the next section, where it will be discussed at
length.) This restriction approximately translates to forbidding updates in case of
lossy joins or when joins are performed over placeholder variables (i.e., whose
values cannot be specified by the user at execution time).

His policy is that of always translating the specified update exactly, even if
this causes more changes than desired in the view, being an attempt at liberaliz-
ing the restrictions imposed by previous models. The level of view modification
achieved is measured in terms of striving for a minimal set of database changes.
One of the problems pointed out by Keller is that his minimality criteria involve
dynamic decisions as to which underlying updates to perform. This approach
resembles forcing updates (since additional operations are allowed) but attributes
affected by functional dependencies cannot be forcibly modified.

Recently, Keller [KEL85] liberalized this to the effect of allowing insertions
even when functional dependencies are violated. The treatment given is the same
as the one proposed in this thesis: changing any existing tuples to agree with the
inserted values. He assumes that if a tuple with conflicting values for the func-
tional dependency already exists in the database, it does not appear in the view
(otherwise the user would not request insertion of conflicting attribute values).
Thus, the effect on the view of inserting a tuple is either to insert the tuple itself
(when no violation occurs) or to insert the tuple by changing tuples which did not
appear in the view, but already existed in the database and violated the depen-
dency as defined by the insertion. Inscrtions cannot cause deletions from the
view.

In this latter proposal, all underlying relations are in BCNF, the constraints
consist exclusively of functional dependencies, all keys appear in the view and
joins are performed only over key attributes, so that there exists a unique key for
each view tuple corresponding to the key of an underlying BCNF relation. If the
update validation algorithm from Chapter 3 processes any view which is analyzed
by his model, the result obtained is the same. The existence of view tuple keys is
also one of the conditions imposed by Ling [LIN78] for a view to be uncondition-
ally update-viable.

Carlson and Arora [CAR79] are among the few that try extending the con-
straint domain to multivalued dependencies, to show how this adds complexity to
the view update problem. This is done by means of a series of examples, using a
scheme over (Employee Dept Project Acct#), containing a subscheme of the form
R={R,<ED{E-D}> R,<DPA,{DP-A}>}, and q,=R;XR,. Part of the
instances provided are:

E D D P A

Jones D1 DI P1 Al
Davis D2 DI P4 A2
King D1 D2 P2 A1l

The authors make several comments, among which the following statements
are transcribed into symbolic tuple expressions:
a) the underlying conditional policy {(In,ED,R,), (In,DPA,R,)} inserts tuples
described by (EDPA) and (eDPA) in the view (the latter for all tuples (eD)

80 C. M. B. Medeiros

already in R), where (EDPA) = (Mays, D1, P3, A5);
b) it is not possible to delete a tuple (EDPA) from the view without deleting all
other tuples of the form (eDPA).

Let the placeholder expressions for B; and R, be respectively (e;d;) and
(dspqa,). If the update validation algorithm algorithm is executed for the inser-
tion proposed in {a), the output is
(In ED,R,): EDpa, (is inserted if) 3 py,a; | (Dp,a,) € ry (and A D' # D| ED'
€ fl),

(In,DPA,R,): ¢,DPA (is inserted if) 3 €, | (¢;D) € r; (and A A’ # A| DPA' €
ro);

This shows the authors ignored the side effects caused by isolated insertion in R;:
their example on page 417 should also consider tuples (Mays,D1,P1,A1) and
(Mays,D1,P4,A2) as a result of inserting (Mays,D1) in r; and (D1,P3,A5) in r,.
Since these examples in the paper manipulate relations of 10 or more tuples, it is
possible that the reason for this oversight is the size of the relations employed,
which makes it cumbersome to derive all side effects. The update validation algo-
rithm, however, reduces this problem to one of systematic manipulation of sym-
bolic tuples, with the consequent conciseness and completeness of results. Arora
and Carlson seem to have concentrated in maintaining the view consistency (by
checking the derived inter-relation constraint E»—-D|PA) without consndermg that
each underlying relation must also be processed.

Their second statement (b) is not correct, either. There is an underlying
transformation - (De ED,R,) - which achieves deletion of (EDp a,) (for all tuples
(Dp,a,) in ry). This deletes, among others, the desired tuple (EDPA), and yet
does not affect the tuples (eDPA) predicted by the authors. In other words, dele-
tion of T=(Mays,D1,P3,A5) can be achieved by deleting (Mays,D1). This does
not affect view tuples {Jones,D1,P3,A5) and (King,P3,D1,A5), which they claim
must be deleted in order to delete T from the view.

5.2. Detecting clean sources

Dayal and Bernstein [DAY82] develop view-trace and view-dependency
graphs as a means of detecting, in linear time in the input size (number of attri-
butes and functional dependencies), the presence of clean sources for a view
update operation, whenever the underlying relations are subject to keys and func-
tional dependencies. (An underlying relation r; contains a clean source for a view
if an update in r; affects only the desired view tuple(s).) In their graph approach,
r; contains a clean source when there is a path from the node representing r; to a
node representing the view.

Example: [DAY82]
Le¢ R be a scheme over (Employee, Dept, Manager), where
R={R,<ED{E-D}>, R,<DM,{D-M}>}, and q,=R; X R,. If view graphs are
built for this specification, there will be a path from relation node [ED] to view
node [EDM], and none from [EM] to [EDM], (i.e., B contains a clean source for
the view EDM, but R, does not).

The same fact can also be verified by executing the update validation algo-
rithm. Let (e;d,) and (d,m,) be the placeholder expressions that represent
schemes (ED) and (DM). The operation (/n ED,R,cond) will exactly produce a

81

single tuple (EDM,) (conditional to absence of (ED') in r, and existence of a
tuple (DM;) in r;), whereas (In DM,R,,cond) creates tuples (¢;DM) in the view
(if (e;D) exists in r;). Similarly, (De ED,R ,cond) causes deletion of (EDAM,)
from the view, whereas (De, DM,R,,cond) deletes the set (¢;DM) from the view.
Therefore, relation R; contains a clean source for insertion (and deletion) of view
tuples (EDM). Similar remarks, for the same example, are made by Keller
[KEL82| (see previous section). '

Like Dayal and Bernstein’s graphic method, the second step of the update
validation algorithm also runs in linear time (in number of relations and func-
tional dependencies per relation) for all cases considered by the view graphs which
do not involve inter-relational constraints: since only functional dependencies are
involved, and forced updates are ignored, each relation is represented by a single
row in the initial tableau 7|, and the number of joins is at most Nrel—1.

Dayal and Bernstein also propose update programs (which approximate
complete policies u,), and define conditions under which these programs exactly
perform the desired update. For insertions, for instance, these conditions are that
the primary keys of all relations must appear in the view, these keys cannot have
MNULL values, and insertions must not violate the functional dependencies. If this
statement is translated into the symbolic input for the update validation algo-
rithm, for view EDM, it corresponds to the policy <In EDM,{(In,R,ED),
(In,R5,DM)}>. The symbolic output indicates that an exact translation occurs
only if tuples of the form (e;D) do not exist in ry, or if (DM) already exists in r.
This means, in fact, that if (DM) does not yet exist in ro, and r; contains tuples
(e;D), insertion of (EDM) in the view will also be accompanied by insertion of
(¢,DM) in the view. In other words, this may not be an exact translation.

On the other hand, for a view function q,=ITg)/R;X R, (see the same
example from Keller in the previous section) there is no exact translation pro-
vided by the authors, since the attribute D, which is a key for R,, does not
appear in the view. Keller [KEL82, KEL85] does not allow this update either,
because D, a join attribute, does not appear in the view. Such is not the case for
the update validation algorithm, as it allows parametric specification of variables
that do not appear in the view. The policy <In EM{(InED,R)),
(In DM,R,)}> can again be used in this case. The value of parametric variable
‘D’ is defined at run time by the system (e.g., taken from the user’s access code).
Thus, an exact translation can be provided even if the key of a relation (or a join
attribute) does not appear in the view.

As also pointed out in [DAY82], it is not always possible to find a clean
source to update a view. Absence of clean sources translates, in the view graph
model, to absence of paths from any underlying relation node to the view node.
View graphs, however, do not describe which side effects may occur in the
absence of clean sources, whereas execution of the update validation algorithm
provides this additional information. This allows the designer to choose the more
appropriate translation (e.g., the one where “minimal change” occurs in the data-
base, as desired by [DAY82]).

Given the database scheme R={R; <{A,~J.},{C,~n}>}, the detection of clean
sources for an update operation OP involving view tuple I',, can be achieved by
the following algorithm based on the update validation algorithm:

82 C. M. B. Medeiros

Algorithm I — Detection of clean sources
1) Execute the update validation algorithm with input <R,q,,u, >, where
u,=<OP,I', {OP {t};,R; ,cond}>.

The parametric variables of {t}; are ({A,'u},{A;"}),_where A,, are all attributes of
R; that appear as parametric variables in I'y; A; correspond to all attributes
that do not appear in the view and yet are assigned specific values by the system.
All underlying updates must be of the same type as the desired view operation.

2) Analyze the output of this execution:
- if the result of isolated updating of some relation r; exactly represents the
desired update OP(I",) (i.e., the symbolic output expression is equivalent to I',),
then r; contains a clean source for the operation;
- if no such result occurs, there is no clean source for the operation.

The reasoning behind Algorithm I is that, in order to affect exactly the indi-
cated view tuple T, the only underlying tuples to be considered are those whose
attributes match specific (parametric) values of the view attributes. The next
example shows that detection of clean sources is thus made possible for a larger
class of constraints.

Example: Let R={R;<AB{A-B}>, R,<ACD/{*[AC,AD,CD]}), and
q,=IT45pR;X Ry. The placeholder expression for R; and the template for R,

are
A B A C D

a; b a; ¢ d,
a; ¢ d
ag ¢; d

a; ¢ dy
R, contains a clean source for deletion of one tuple from the view, since deletion
of I' ,=(ABD) is exactly accomplished by deletion of (AcD) from r,.

5.3. Forcing updates

Another advantage provided by the update validation algorithm is that it
takes into consideration actions to be taken when exceptions occur. Chapter 3
shows that forcing changes or forcing insertions in relations subject to functional
dependencies may eliminate tuples from the view. Fagin, Vardi and Ullman
[FAGS83], who suggested forcing updates, exemplify this type of action by updat-
ing the scheme (Employee Child Dept) of the form R={R,,<ECD(E-D}>1},
q,=IIgpR;.

Let the relation and view extensions be

E C D E D
Gauss Yoni Math Gauss Math
Turing Yoram CS Turing CS

Turing Gabi CS
If there is forced insertion of (Turing,Math) (which violates the dependency E-D),
the view is changed to {(Gauss,Math), (Turing,Math)}.

83

This operation corresponds to the rule <In, ED{In ECD,R, force} >,

whose initial tableau T is

E C D [E C D]

€ ¢ D, E ¢ D)

E C D
The first entry in this tableau indicates that the set of tuples [Ec,D'] may need to
be eliminated and replaced by (Ec,D), because of the functional dependency E-D.
The output (ED,|ED']) agrees with the authors’ result: (ED) is inserted, but (ED')
may disappear from the view.

5.4. Analyzing effects on other views

Until now, the issue of view interference (i.e., when updates to a view
modify the extension of other views) has not been considered in this thesis. The
update validation algorithm can be extended to determine the effects of the
underlying operations on any other view V', by applying the corresponding gen-
erating function g, to the each tableau T';. Thus, after T is created, the effects
of any update rule on other views can be observed:

Algorithm II — Determining side effects
1) Execute the update validation algorithm with input <R,q,’, ©,>
2) The output describes the effects on V' of the update policy u,.

Update propagation can be measured by examining the complementary
view. Bancilhon and Spyratos [BANS81] postulate that desirable updates are those
that should leave the complement invariant. In [FAGS83], using the same example
of the previous section, it is also pointed out that the complementary view V
given by q.=IIpc R, is not affected. Even though true for this particular exam-
ple, this may not always be the case: the complement’s state before the update is
V={(e,¢,)} {which includes tuples corresponding to the expression (Ec,)) (if 3
¢1,dy | (Ecid,y) € ry); after the update, the result is V={(Ec,)} (if 3 ¢,,d, |
(Feqdq) € ry - which will be true if the update is accomplished). In the following
tableau, which is similar to a tableau query, the first (‘‘summary”’) rows represent
the effect on the complementary view V resulting from the update.

E C D [E C Dj

E (3] [E Cll

E C

(E ¢, D [E ¢ D
E C D

The tuples in the complementary view will not be affected only if some (Ec,D')
already existed and ¢;=C. In particular, if the relation is initially empty and
(ECD) is such that C happens to be a null value, the complementary view may
not be affected (if tuples with nulls are not considered in the view), even though
the complementary projection will contain a new tuple. This example has been
frequently used in the literature as an instance of an invariant complement. Due
to the liberalization of policies advocated here, an update through view ED can
actually manipulate the contents of attributes not in the view (i.e., C'), by specify-
ing an underlying translation that assigns a parametric variable to such attri-
butes. If this translation is accepted, (EC) ceases to be an invariant complement.

84 C. M. B. Medeiros

Detecting whether a complement remains invariant under an update policy
u, is accomplished by the following algorithm, which is an extension of Algorithm
I for a special class of views - that of complementary views:
Algorithm III - Invariance of complements
1) Determine the symbolic format of the complementary view tuples {tf} before
the update;
2) Execute the update validation algorithm with input <R,qg;,uy >, where g is
the complementary view generating function.
3) The complementary view is invariant for each of the following cases:
a) the output expressions {E} are equivalent to {t;}, or
b) the output is of the form (w,[w’]), w is equivalent to w’, and nulls are
ignored in the view; or
c) there are no user-entered parametric variables in the output, neither are
such parametric variables eliminated by projection . (e.g.,
q;=Ijg,ur4R1 X Ry X Ry may result in a placeholder-only row if the update
is performed in R,, and yet the complement may be affected); or
d) the output rows of V are determined by selection operators which refer to
sets of attributes disjoint from those forming the view V. In this case, either
the view V is updated, or the complement is updated.
If none of the above cases occurs, the invariance of the complement will depend
on the underlying siate of the database.

Example: Let ¢,=0p~10R;XR,, defined for the scheme
R={R,<AB,{A-B}>,R,<BC,{B-C}>}. If there are no dangling tuples, a pos-
sible complement is g;=0p<;oR X R;. Let <In,ABC{(In,AB,R,,cond)}> be
a policy proposed for view V. The result of this policy is

(ABC) is inserted in the view V if

@B| (BC,) € ry,B~C; AB>10] A A [B'# B| (AB) € r,].

For the complementary view, the same result is given, except that B<10. There-
fore, V is invariant under this operation.

The policy <In,ABC{Ch (AB,AB'),R, force}> will produce the following
results for V and V:
in V: (ABC,) is inserted if 3 B | {(BC,) € ro, B~C; A B>10} and
(AB’CQ) is deleted if 3 B’ I {(B’CQ) € ro, B"’CQ A B’>]0}
in V: the same result, but for values of B and B’ less than or equal to 10.

For this second policy, nothing can be guaranteed, because even if a user-entered
value B>10 ensures no insertion occurs in V, the initial state for r; may contain
(AB'") for B'=10. In this case, insertion of (ABC,) in V causes deletion of
(AB'Cy)in V.

85

5.5. The updatable view - supporting multiple translations

Keller [KEL82] avoids some translation semantics because ‘“‘they can have
arbitrary complexity”. By this he means not only that a unique translation is not
usually possible, and the user’s intention may not be correctly interpreted, but
also that correctly expressing the desired interpretation presents too many prob-
lems. To support this claim, he gives the following example: For
R={R,<ED{E-D}>, R,<DM,{D-M}>}, and ¢,=R;XR,, the request to
“delete from EDM where D=Toys ’’ can be interpreted as either a deletion from
relation ED of the tuples with D=‘Toys’, or as a deletion from relation ED of the
tuples where D='Toys’' followed by a deletion from relation DM of the tuple
where D="'Toys’.

The first objection, non-uniqueness of translation, can be dealt with by
observing that if the translation is defined at design time, there is no possibility of
doing ‘“more” than intended, since by execution of the update validation algo-
rithm the result of the underlying updates is always clear. Secondly, the seman-
tics of each request can be translated into a different conditional policy:

DEL1: <De ,eDM, {(De,eD,R,)}>
DEL2: <De,eDM, {(De,eD,R,), (De, DM,R,)}>.

Both policies delete all tuples of the form (eDM). However, after DEL1 is per-
formed, insertion of a tuple (ED) into r; might insert tuple (EDM) in the view;
after DEL2, this insertion would not appear in the view. Yet another interpreta-
tion (not mentioned by Keller) is possible:

DEL3: <De,eDM,{(De,DM,R,)}>, which only deletes from the (DM) relation.
This example shows that the symbolic tuple notation can help express many poli-
cies whose interpretation is sometimes not clear.

If the burden of translating updates is transferred to each view, then Spyra-
tos’ suggestion of an operational view model [SPY82 - see Chapter 1] can be
extended. Spyratos suggests that views be defined according to the way updates
affect data and the allowed updates do not interfere with his ‘“definition sets”
partition. The updates allowed by the operational model proposed here are all
those that are part of the view definition. This corresponds to the abstract data
type approach of Tucherman, Casanova and Furtado [TUC83 - see Chapter 1}.
Therefore, each view forms its own definition set, and checking whether an
update is allowed is transformed into checking whether the corresponding policy
“procedure’” has been authorized for the particular view. In this interpretation,
views should be treated as single-relation updatable units, defined by means of
two different sets of operations: view creation and view update mechanisms. The
former describe the sequence of operations involved in creating the query image,
and correspond to the standard concept of view definition; update policies (u,)
describe all valid elementary operations on the particular view, and their transla-
tion. Since every view contains the definition of valid updates through it, validat-
ing updates at execution time becomes checking whether the operation is accept-
able for the given view, which reduces the execution overhead of checking for
undesirable effects on other views. Traditionally, each update operation is
translated in a unique way; in the framework suggested, views which in the stan-
dard approach would be considered equivalent (i.e., returning the same image to a
query) may have different interpretations for update requests, becoming,

86 C. M. B. Medeiros

therefore, different views, increasing the operational flexibility.

A view is thus defined by the triple
(R.q,,U,),
where U,={u,} is the set of permissible updates for the given view. Valid
updates, furthermore, are those that can be expressed by composition of elements
of U,. If this concept is implemented, the view designer is allowed more control
over the degree of changes to the view and to the database. Multiple update
translations coexist in a view by allowing each interpretation to have a different
procedural name. It is conceivable that, for specific applications, the user be
allowed to choose at run time the correct interpretation desired.

Example: Let R={R, (ECD,{E~D>}, ¢,=IIgp R, (the example of section
5.2), and let the following policies exist in the view:
INS1: <In ED,(In ECD,R, force}>
INS2: <In ED,(In E"NULL"D,R,cond}>
DEL1: <De eD,(De ecD,Ry,cond}>
DEL2: <De ED,(De EcD,R, force}>
Let the relation and view extensions be, respectively

E C D E D
Gauss Yoni Math Gauss Math
Turing Yoram CS Turing CS

Turing Gabi CS
The following examples show the effect of the operations, on this initial state:

INS1(Turing,Math):
E C D E D
Gauss Yoni Math Gauss Math
Turing Yoram Math Turing Math
Turing Gabi Math
Turing C = Math

where the value of ‘C’ in the last tuple of (ECD) is determined by the system.
INS2(Turing,Math): not accepted, since it violates the dependency E-D;

INS2(Einstein,Phys):
E C D E D
Gauss Yoni Math Gauss Math
Turing Yoram CS Turing CS
Turing Gabi CS Einstein Phys
Einstein NULL Phys
DEL1(Math):
E C D E D
Turing Yoram CS Turing CS

Turing Gabi CSs
DEL2(Turing,CS):

87

E C D E D

Gauss Yoni Math Gauss Math

Yet another advantage of this operational approach is that it can be
analyzed under the complement model, which is also the idea behind definition
sets. One problem intrinsic to the complement mapping approach is that invari-
ant complements are hard to find, and the constraints imposed on them virtually
preclude the possibility of executing any view updates. By applying the updatable
view model, the rigidity of the rules surrounding invariant complements disap-
pears: instead of describing the updatable view as the one with a unique comple-
ment to remain invariant at all times, the designer can define different sets of
updates based on which complement will remain invariant (always keeping in
mind that a view can have many different complements).

Thus, instead of specifying a single (and possibly even unupdatable) view,
the designer can define the same view formation function several times, for each
different set of allowable update policies. Even though the (unique) invariant
complement is lost, for practical purposes the complement of each view is invari-.
ant with respect to the set of updates allowed on that view. The query image for
the set of views may be the same at all times, but the views are different: under
the abstract data type approach, the views differ because the set of operations
allowed is different; under the complement mapping approach, the views differ
because different complements remain invariant for each of the operations
defined.

As remarked in Chapter 1, Casanova and Furtado divide approaches to
view updates as either generalized mappings or abstract data type. If seen under
this new light, however, the division ceases to be so marked.

This chapter showed some examples of how the update validation algorithm
proposed in Chapter 3 can be used to interpret and expand results obtained by
other update validation tools. Some suggestions for further extensions are dis-
cussed in the next chapter.

Chapter 6
Summary and directions for future work

6.1. Summary

This thesis presents a new approach to the view update problem, that
allows the designer to test the outcome of a large class of view update policies on
SJP views. It gives the designer the opportunity of defining many different trans-
lations for the same update operations, and actions to be taken when exceptions
occur. Previous research on database updates has concentrated on unique,
mirimal and unambiguous translations on updates through views. Here, a new
framework was presented - that of liberalizing mapping restrictions. Not only
does this approach enhance the flexibility in updating views, but it also enlarges
the set of views which can be updated. Under this premise, an algorithm to vali-
date arbitrary update policies was presented, which predicts all possible side

88 C. M. B. Medeiros

effects that can occur as a result of a given update mapping.

The proofs of Chapter 4 show that the algorithm is correct for any SJP
views. Except for the proof of correctness of the Ex(q,) rules (lemma 7.1), all
other proofs rely only on the monotonicity of q,. The algorithm is, therefore,
applicable to views formed by monotonic functions other than select, project and
join operators. This just requires extending the execution rules in Ez(q,).

Furthermore, this algorithm makes the designer aware of the role played by
individual underlying relations, which often seems to be disregarded in analyses of
update effects. The use of symbolic tuple expressions shows how implementation
of update requests can be simplified so as to indicate only the attributes that need
to be affected. Not only does this standardize the user’s requests, but also saves
execution time, since there is no need to check characteristics of attributes which
are used only in the internal mapping (corresponding to the placeholder vari-
ables).

The main contributions of the thesis belong to three categories: the presen-
tation of a liberalized approach to database updates; the development of a sys-
tematic and error-free algorithm to predict update effects, which generalizes and
unifies previous attempts in that direction; and the characterization of types of
constraints that are conducive to fostering undesirable side effects.

The analysis presented here of the update problem under the ‘liberaliza-
tion”’ assumption is diametrally opposed to the formal analyses previously pub-
lished. As an immediate consequence, more update mappings can be shown to be
acceptable, and more views can be successfully updated, including views not sup-
ported by universal relation databases, and even lossy views, which are avoided by
all authors. However, as mentioned by Biskup and Bruggeman [BIS83], there is no
reason why lossy views should not be considered, as long as the user is aware of
the possible implications in using them. The enhanced set of updatable views
includes many which, in general, have been considered to be query-only views
[FUR79, ARO80, DAY82, KEL82, SPY82, MAS84, KEL85| (e.g., allowing refer-
ence to sets of attributes not visible in the external schema). Other marked
differences between previously allowed mappings and the policies analyzed here
include comprehensive treatment of tuple replacement operations as a distinct
type of update request, differentiation and combination of forced and conditional
updates, and combination of different types of underlying operations fo translate
a given external request.

The update validation algorithm can be seen as a method of syntactically
determining the conditions under which the semantic consistency of a database
will be maintained. It allows systematic and error-free prediction of all possible
side effects a policy may have, associated with the underlying state where such
side effects occur. This prediction is extended to any SJP views in the database
so that the effects of a policy on another view can also be determined. Chapter 5
shows how the update validation algorithm generalizes other view design tools,
and provides a unifying framework for analysis of approaches to the update prob-
lem which have been until now considered independent and incompatible.

Finally, whereas most analyses of update validation restrict the set of
integrity constraints to functional dependencies when keys are present in the view
[LIN78, ARO80, DAYS82, KEL82, BRO85 KEL85), the update validation

89

algorithm uses join dependencies, extending thereby the constraint domain. Pre-
vious analyses of properties of tableaux, recursive axioms and template dependen-
cies (e.g., [AHO79, MIN83, SAG85]) were concerned with query derivation, while
here these properties were interpreted under the framework of characterization of
side effect propagation. Chapter 3 showed that simple template dependencies can
interact with functional dependencies so as to generate conflicting information
when insertions are forced, and necessary and sufficient conditions were given for
which this does not occur. Furthermore, non-simple template dependencies were
shown to be generators of infinite chains when forced updates are requested.
Thus, the designer can be made aware of some types of constraints which may
foster either side effect blow-up or ambiguous updates, independent of the type of
update requested.

Suggestions for future work fit into three main categories: extensions to the
update validation algorithm, suggestions for its use as a design tool, and some
open topics in the view update problem.

6.2. Extending the update validation algorithm to automate the check
for the desired update outcome

The output of the update validation algorithm describes all possible results
for the policy being tested, so that the user can verify whether the intended
update is, in fact, reflected in the view. It is possible, however, that this checking
may be made cumbersome by a multiplicity of side effects, allied to a number of
complex underlying conditions.

This check can be automated by adding a third step to the algorithm,
which indicates as its output whether the specified operation is actually imple-
mented.

STEP 3
DETERMINE EFFECT OF THE ACTUAL POLICY PROPOSED
Let the policy be <OP,I’, {u,}>
If the desired update I', appeared among the result rows in STEP 2, stop.
Else do using the set {u; =(Op, {t}; ,R; exception)}
1. Eliminate from the underlying modification table information which is not per-
tinent to the specific update requested I',,
Let 8, represent the set of expressions in R; that may contribute to forming I,
1.1 if OP = ‘insert’ do for each underlying update u; =(Op,,{t}; R, exception)

1.1.1 If Op;=Ch or In, eliminate all deletions [w’,]. Add to the data-
base state description associated with §; the clause 0;# w'; (i.e., no inser-
tion can consider this set of tuples).

1.1.2. If Op;=De, the set of rows to be used is the one which remains
unaffected by the deletion (i.e., 8; # ({t};Uw,) is added to the database
state description).

1.2 if OP = ‘delete’ do for each underlying update u; =(Op,,{t},,R; exception)

1.2.1 If Op; =Ch or In, eliminate all insertions {w;} and associated data-
base state description. If this results in In({t}; R;,force): A; = &, use
a placeholder expression for E;.

2. Define the tableau T'; as being this reduced underlying modification table,
thereby processing all underlying vpdates simultaneously

90 C. M. B. Medeiros

3. Perform the remainder of this step as in STEP 2, stopping as soon as any out-
put row translates to the desired update I'y. For changes, each join of rows of
the form (new tuple, [old tuple]) results in a new row where the first (respectively,
second) element is obtained from joining the new (old) elements of the original
rows. Joining two different user-entered parametric variables is forbidden.

The cost of executing this third step is bound by the number of row joins.
For conditional update executions, and deletions over relations subject exclusively
to functional dependencies, the number of row joins is Nrel —1, since each rela-
tion is replaced by a single row.

For all other cases, however, the number of joins may grow exponentially,
since each relation can be potentially replaced by a set of rows, and all sets have
to be joined together. The exponential number of join operations is a characteris-
tic inherent to the problem of generating queries from underlying relations. Since
this step is only used to check if the desired update occurs, most rows can be
abandoned after each execution of Ex(q,) if subsequent operations on these rows
cannot create the intended result row. This can be verified by checking the row’s
attributes against the corresponding attributes in the desired expression I';,. In
practical applications, appearance of too many result rows in STEP 2 corresponds
to a multiplicity of possible side effects, which may suggest that the policy pro-
posed should not be implemented.

. Improving the execution time of the update validation algorithm

Some improvement may be achieved by eliminating unnecessary rows dur-
ing tableau processing. A slight improvement is achieved by noting that relations
that do not contribute to view formation need not be considered. This, however,
only decreases the execution time by reducing Nrel, and saves storage space in
eliminating some tableau rows.

Simplifications can also occur when special dependencies are kmown to
apply. For instance, when {C; } contains a Y-partial template dependency, and
forced changes are applied to attrlbutes inR; -Y, no msertlons (of {t}; or 'wlc)
need to be pushed down the template (and thus {(,.H)] } = {(w ,,.,.1)1 =
). The number of comparisons in Ch({¢,t"}; ,R;, force) is then reduced from
O(Na,; X Nh;2x NF;) to O(Na; X NF}).

Another special case occurs when the underlying set of operations consists
exclusively of deletions, or of insertions that do not force functional dependencies
(i.e., there is no mix of insertions and deletions in the policy). In this case, the
underlying modification table need not be stored, and each set in
Op({t};,R; exception) is generated when each tableau T'; is built (since the
underlying modification table is used only to determme when deletions prevent
insertions). This saves approximately O (Nrel X N?) space.

Finally, if g, is an optimized query function, then the number of joins may
also be minimized. This is not always true, since minimization often involves exe-
cuting select operators as soon as possible (which decreases the number of tuples
that participate in later joins). For the update validation algorithm, this makes
no difference, since assigning a selection parametric value to an attribute does not
decrease the number of symbolic expressions that may participate in joins.

91

6.4. Extending the analysis to other normal forms

Whereas most authors restrict themselves to analysis of BCNF relations,
this thesis relaxed this assumption to BCNF partitions. A suggested extension
would be therefore the generalization to other types of functional dependency
interaction. This section presents some partial results that limit the level of
liberalization one can expect in this direction.

Proposition:

Consider a relation scheme containing attributes (XYA), with dependencies
X-A and Y-A, such that XpY and YA#X. Processing a request for forced inser-
tion (change) for this scheme generates an infinite number of pairs {w ;4,[w’ 14]).
Proof

Insertion of a tuple containing (XYA) generates
Wy = (Xyl.A.,[XylA,]) and W2=(leA,[ZIYA']).
Since Y is a left hand side, insertion of (Xy;A) may disagree over YA with some
other existing tuples, and therefore this insertion requires another change level
(z2y14,[22y,A")).
Insertion of (z,y,A) may disagree with yet other tuples over XA, thus requiring
another pair of changes (2,534 ,[z2y3A™)), etc.

Notice that w, will have to undergo the same process independently. This
type of functional dependency interaction generates two chains of changes. Both
chains can grow arbitrarily, as long as new symbols are generated for X or Y, and
can only be processed finitely if the relation’s extension is part of the input. O

By the same type of proof mechanism, it can be shown that each level of
functional dependency transitivity (e.g., X~A-B-~C-...) requires one additional set
of pairs (wfd,['w'fd]). Furthermore, if part of a left hand side is dependent on
some attributes of its right hand side (e.g., XY-A and A-Y), at least three levels
of substitution are required. If these two results are combined, several types of
functional dependency interaction can be shown to produce unbounded chains.
These results impose limits on the set of functional dependencies that can be
maintained, given forced insertions or forced changes.

8.5. Extending the analysis to other types of template dependency

This thesis restricted the analysis of template dependencies to simple typed
minimal template dependencies, which Sagiv [SAG85] has proved correspond to
join dependencies. The restriction of constraints to functional dependencies and
join dependencies follows the assumptions of several authors when analyzing
models of real world database design. For updates, this presents the added
advantage that there is no generation of deletion or insertion chains. Chapter 3
has an example of how maintaining non-simple template dependencies can give
origin to insertion chains of unbounded length.

Chapter 4 shows that simple template dependencies require only one level of
substitution to derive all possible updates which may be necessary to maintain
consistency of a relation. The same type of proof mechanism is used by Minker
and Nicolas [MIN83], when showing that query answering in deductive logic data-
bases will not result in infinite derivation paths if the clauses to be substituted
correspond to what they define as singular recursive axioms. The class of

92 C. M. B. Medeiros

singular recursive axioms properly contains the class of simple typed template
dependencies.

Sagiv [SAG85] uses a method similar to applying substitution rules upwards
to define the composition of a template dependency T with itself, denoted
TOT=T2. It can be shown that the rows of T2 correspond to the expressions
that are obtained as additional insertions if two levels of substitutions are
required in a chain (i.e., if insertion of {(w,+);} requires further insertions). He
proves that T=T? if and only if T is a minimal join dependency tableau. Thus,
only for join dependencies can one always be sure that generation of additional
updates takes exactly one level of iterations. This means that, in the general
case, the computation of additional updates may never end, unless one is allowed
to process the database itself as part of the input, rather than its symbolic
scheme description.

This is a problem that has been recognized in the context of query answer-
ing in deductive databases. As is pointed out by Gallaire et al. [GAL84], inference
methods work well when no recursive axioms (e.g. template dependencies) are
present, otherwise termination presents a problem. Inference methods for logic
database access must use an interleaving of deductive laws and searching for facts
in the extensional database.

Thus, another extension to the work presented in this thesis is that of try-
ing to analyze the influence of non-simple template dependencies in update propa-
gation. This would enhance the role of the update validation algorithm as a tool
to guide the view designer in choosing sets of integrity constraints less liable to
cause unwanted side effects. The designer would thus be able to obtain informa-
tion on update propagation even before proposing any specific policy. The con-
straints’ characteristics would become an indicator of the type of side effect that
might occur.

The two sections that follow analyze some results in this direction. It will
be shown that, in case of deletions, the update validation algorithm can be
extended to manipulate any template dependency in polynomial time, as long as
it maintains the policy of choosing w,4 for each additional mapping in a deletion
chain. For insertions, a subset of the class of general template dependencies
(composed of those that contain an embedded simple minimal template depen-
dency) is analyzed. It will be shown which insertion sequences in an insertion
chain will eventually stop, without creating the need for additional updates. Both
forced insertions and deletions can result in an unbounded set of additional opera-
tions. It will be shown that the chain of additional deletions can be described in a
compact form. Additional insertions, however, besides constituting a potentially
infinite set, are also characterized by the fact that the description of an insertion
chain has unbounded growth as well.

93

68.5.1. Handling deletions for any type of template dependency
Proposition:

There exists a modified version of the npdate validation algorithm that runs
in polynomial time in number of comparisons, independent of the type of tem-
plate processed, if the set of underlying operations consists exclusively of deletions
and any conditional updates.

Proof:

Conditional operations do not require propagation of updates. Insertions
can generate an unbounded number of insertion expressions. It will be proved
here that, even though deletions can also have the same type of ripple effect, this
effect can be described in a recursive procedure, and this procedure can be derived
in most two template substitutions - i.e., an additional O{NNh, X Nag;) operations
per relation scheme. Thus, even though the output of the update validation algo-
rithm cannot enumerate all possible deletion side effects, it can be modified to
describe these side effects in a procedural form in polynomial time. Therefore,
deletions can be processed in polynomial time, independent of the type of tem-
plate dependency defined in {Ci,.}- The mapping that checks whether a deletion
should be propagated is built by creating at each iteration a new copy of the tem-
plate dependency (where no symbol has appeared before), and replacing the con-
clusion row of this copy by the expression describing tuples that must be deleted.

Let {t};Uw, 4 represent the set of tuples that must be deleted to achieve
deletion of {t},, for any template depeudency, where wi;=w; (ie, wyy
corresponds to the substitution of row wg). The check of whether deletion of
w4 requires further deletions is done by generating a new template, replacing its
conclusion row by w,4, and pushing w;; up. Call the mapping thus generated
#,. It ¢, is such that some row ¢,(w) is subsumed by w4, then w,, is effec-

P\
tively deleted, and the set {t};, Uw,, is sufficient.

Assume, therefore, that there exists no row ¢1(wj) subsumed by w,,4. Let

Same(k,s+1)=K1. Since ¢, was generated by replacing w, .+, by w4,
I {tl = Hgywyg = Hgyéy(wy)

All other symbols in ¢;(w;) will be new. Any parametric variable in ¢; must
correspond to some parametric variable in w,,. Since w,4(=wy) was the first
row found with parametric variables in the first substitution, then @,(wy) will
also be the first row with parametric variables in ¢;. Thus, ¢,(w;) is the dele-
tion chosen to guarantee deletion of row w,4. The remaining rows ¢1(wj) will
match w;, in Same(j,k+1), and all other symbols will contain new values.

The same symbol pattern will occur in the next substitution mapping ¢,
where ¢o(wy) will be chosen to guarantee deletion of ¢;(wy), (which will have
replaced the conclusion row). Symbols which are ‘“‘carried over” from ¢, to ¢,
are those corresponding to Same(j,s+1), for j=[1..s]. It is easy to see that, if the
deletion of w,; was not sufficient, neither will deletion of ¢,(w}) be sufficient,
because both substitutions will be characterized by the same symbol pattern, and
correspond to different sets of tuples. Since by the hypothesis no row ¢;(w;) is
subsumed by w4, then no row ¢y(w,) is subsumed by ¢,(wy).

94 C. M. B. Medeiros

Consider the template that describes the i-th additional deletion in this pro-
cess, corresponding to mapping ¢,. Generate a new template from the original
template dependency by adding to each symbol the superscript . Replace the
conclusion row by the expression ¢; —;(w;). Apply substitution rules. The result-
ing template will correspond to the database state description for which deletion
of ¢,(wy) will be necessary to maintain consistency. The symbols of ¢; _;(w;)
are given by: ITg¢; —(wr) = IIg {t};; the remaining symbols in ¢; _;(wy) are
given by the corresponding symbols in ¢;(w;) with one subtracted from the
superscript.

Therefore, the ripple effect of a forced deletion can be represented by
{t},Uw,,, together with the (recursive) rule: '
é1: ,(wy) (is deleted) for the database state description given by replacing
wy+; by wyy and pushing w4 up the template;
b,: d:(wy) (is deleted) if ¢, —i(wy) (is deleted) and the database state descrip-
tion given by the rows of mapping @; describe existing tuples.

Even though this generates an unbounded set, its description can be computed in
two template substitutions. The recursive description of the deletion ripple effect
is possible only because De({t};,R;, force) chooses always the first row where a
parametric variable occurs (whereas each insertion expression can potentially gen-
erate Nh; new insertions). O

Example: Consider forcing the deletion of (ABC) for the template on the
left. The first substitution generates the template on the right, and w;; =
(¢16,C) (wi=w)).

B C A B C
aq bl Co ay bl C
a,y b2 C ajg B Cq
ao bl CI A bl C1
Qs bo Co A B C

The next set of templates show the mappings ¢; and ¢,;. Notice that if deletion
of w4 is not sufficient, neither will deletion of ¢, _(w;) be sufficient to main-
tain consistency.

A B C A B C
al, b, C a’, b C
o'y bi cy a'y b ey
a, b 1 Cll a'—ll b'l C'l
a, bl C a“_ll b'._ll C

Since deletions do not violate functional dependencies, if this procedural approach
is taken, the update validation algorithm can analyze the result of underlying
updates for any type of functional dependencies and template dependencies.

95

6.5.2. Analyzing insertion chains for more general classes of template
dependencies

This section describes some of the properties of insertion chains for a subset
of the class of general typed template dependencies, and characterizes the condi-
tions under which redundant insertions may appear in a chain. The subset
analyzed corresponds to all non-simple template dependencies such that, if they
contain an embedded simple template dependency, then this embedded template
dependency must be minimal.

By the definition of necessarily redundant insertion expressions given in the
first section of Chapter 4, insertions for partial dependencies need only be checked
for the set of attributes corresponding to the embedded constraint. Thus, unless
otherwise specified, all template dependencies in this section will be assumed to be
full dependencies. Recall (Chapter 3) that when an insertion expression E
replaces a hypothesis row w; and substitution rules are applied, a mapping o is
generated where o{w,+,) is 2 new insertion expression. This is denoted by
o wi+E.

Let E be a new insertion expression generated in a chain. If pushing E
down a template results in E', E' is not a new insertion expression if it can be gen-
erated without using E. This section uses the fact that an insertion chain can be
cut off whenever it produces an insertion expression that can also be derived using
just the hypothesis rows of previous mappings in this chain (which describe tuples
that already exist in the database). The argument for showing non-termination
of a chain goes along the following lines. Let E' be an insertion expression
created by mapping o', generated by pushing E down the template, i.e.,

3wy | 0" wy~E, and o'(w, +,)=E".

If E' is not new, then there exists some mapping 0" such that o"(w,+,)=E’, and
no row in o' is equivalent to E. Mapping 0" can only be constructed from exist-
ing information (i.e., its hypothesis rows must correspond to expressions used in
forming previous mappings in the chain). Using substitution pattern properties
(Chapters 3 and 4), it will be shown that 0" exists only in special cases. Hence, E'
is usually a new insertion expression, and chains can be shown to have unbounded
length.

In particular, for the special class of non-simple templates mentioned previ-
ously, it will be shown that, given an insertion expression o; —;(w,+,) in a chain,
it is always possible to find a row w; such that a subsequent mapping
0;: w;+0; —1(w,+,) yields a new insertion expression. Hence, for such non-simple
templates, chains can always be extended.

Consider a minimal simple full template dependency defined over a set of
attributes X. Let an attribute A be added to this template dependency such that
all rows except for one match over A, and let the conclusion row be assigned the
symbol that does not match the others. Call this an A-perturbation. The tem-
plate that follows exemplifics the A-perturbation introduced to the join depen-
dency *|KL, KM, LM], where X=KLM.

96 C. M. B. Medeiros

K L M A
k 1 m; o
k i m o
ki, 1 m a
k 1| m a

Let the non-matching symbol - @ - be introduced in row wg, and let all
remaining rows have the symbol a; for attribute A. Consider forcing the inser-
tion of {t}; and the resulting set of insertion chains. Two cases should be con-
sidered: first, the initial mapping of a chain is generated by replacing row w; by
{t};; second, this initial mapping is generated by replacing some other row Wi
by {t},. When the subsequent mappings in the chain are considered, it is shown
that all but one of the substitutions for this template generate new insertion
expressions, and thus it is always possible to extend a chain. The analysis of the
second case is very similar to that of the first one, and will therefore will be omit-
ted.

I) The initial mapping is generated by o;: w; ~{t};

The pattern that corresponds to this mapping can be projected into two
disjoint sets of attributes: the pattern formed by the original simple template over
X, where any insertion chain stops after one iteration; and the added column
corresponding to attribute A, where a «IT4{t};,. The new template is still a full
dependency, and

Ig0((w,+1) = I 4{t};.

In the picture that follows, the template on the left represents the mapping
generated by 0,: wi«~ {t};. The next mapping in the chain, ¢, can have two
possible patterns, as far as attribute A is concerned: the template in the middle
corresponds to 0, wi«o,{(w,4+,); the one on the right corresponds to

09 Wy +O1 (W, +1).

X A Case 1
Wk 23] a’l Xy é
Wy, X A z; A a'
z, A Zo A I3 a’

Symbols (z;) and (...) correspond to expressions that would have been obtained
for the original simple template. The chain stops if &y(w,+,) is not new, i.e., it
can be generated without using o;(w,+), and using only the hypothesis rows of
o, and 0,.

Case 1: 0 is generated by 0,: wy +0(w, +q).

The conclusion row can be divided into ITy05(w,+,) and IT405(w, +;). For the
simple template over X, lemma 3.3 shows that ITy0(w,+) is not new, since it
can also be obtained in 0,": wy«0 (wg) — i.e., by replacing o,(w;) by o(w;).
HMyo,(w,4+,) = II,{t}; corresponds to the perturbation. However, since
oy(wy)={t};, I 00(w,+1) can also be obtained by o, w;«o;(wi)={t};.
Thus, o,(w,+,) is equivalent to oy(w, +,) and oy(w, +,) does not represent a new
insertion expression. (This is the only situation for which an insertion chain will
end, for this type of template dependencies.)

97

Case 2: 0, is generated by 0p: Wy« (wy+,), w; # wy.

05(w,+1) is again considered in two parts. ITx0o,(w,+) can still be obtained by
oy wy+o(w;). II405(w,4+,) now contains a "new" symbol, @’. This means that
oy(w;) cannot replace oy(w;) without modifying the conclusion row. All
hypothesis rows, except wy, match w; over A:
V wigp, Il 00(w;)=I1,{t}; and [I,0,(w;)=a; and a; # IT4{t},

In words, even if IIx05(w,+1) can be obtained by a different substitution, this
substitution will introduce new expressions in the hypotheses, because of attribute
A, and chain termination cannot be shown.

Only two possibilities exist for combining rows of o, with rows of o,
without disturbing the pattern for A:
- Possibility 1: replacing o5(w;) by {t}; = 0(w;), yielding mapping o,";
- Possibility 2: replacing o;(wy) by 05(wy) yielding mapping o'
It will be shown that neither possibility yields oo(w,+,), which is thus a new
insertion expression.

Possibility 1

Consider first modifying mapping ¢,. Attribute A does not need to be con-
sidered any longer, since the replacement indicated (of o5(w;) by {t};) satisfies
the pattern for A. Since o, was generated by modification of row w;, then all
remaining rows w, »; match o5(w;) over Same(i,l), and have new symbols for the
other attributes.

Recall that for simple full templates Same(i,]) € Same(l,s+1) and Same(i,l)
C Same(is+1). The situations for which replacing o,(w;) by oy(w;)={t}; will
not demand introduction of new hypothesis expressions occur when the symbols in

Same(i,1) are not affected:
1) Same(l,s+1)= & = Same(i]) =

No row matches w;, which means the original template over X was not

minimal.
2) Same(i,]) C Same(l,s+1) C Same(k,s+1)

Again, the original template was not minimal.
3) Same(i,l)=J, i.e., w; only matches w, 4+,

In this case, the conclusion obtained in &,": w;«~o,(w}) corresponds to a dif-
ferent (new) insertion expression, i.e., Oo(W, +1)# 05wy 4+1).
Possibility 2

o,(w;,) contains the same values as o;(w,+,) for attributes in Same(k,l)
and new symbols for the remaining attributes. Let o;(w;) be replaced by o5(wy),
generating o,'. As in Possibility 1, new hypothesis expressions occur only if
- wy, matches no other row (and thus the result is different), or
- wy, is subsumed by wy (i.e., the embedded simple template was not minimal).

Summarizing the last three pages, consider a minimal simple full template
into which an A-perturbation is introduced, and the set of chains generated by
forcing insertion of {t};. Let o, be generated by replacing w; by {t},, where wy
is the row that contains the non-matching symbol a that appears in the conclu-
sion. The insertion expression obtained, o;(w, +,), represents a "new" insertion
that will generate another (k-1) "new" insertions for any subsequent mappings

98 C. M. B. Medeiros

generated by 05 Wygg+0(W,41).

What remains to be shown is that some of these mappings o, will again ori-
ginate new insertion expressions, and that at each step chains can be extended.
The argument is the same as the one employed in the transition from o; to oy —
(k-1) substitutions generate new insertion expressions — and is based on the fact
that the transition between any two mappings 0, -, and o; is characterized by
either
© a) A "new" symbol for attribute A is introduced in the result o;(w,+1), when-
ever o; is generated by 0;: Wy g +0; —1(Wy+1), OF
O b) The result contains an "old” symbol for A carried over from mapping o, —,,
when 0;: wy«0; —j(w,+1). In this case all other rows o,{w;;) will have
acquired a "new" symbol for attribute A.

Following the lines of the previous discussion, it can be shown that
0;(wy+1), in case (O a), always describes a new insertion; and
0;(w,+1), in case (O b), is equivalent to o, _ (W, +1).
Thus, for an A-perturbation to a minimal simple template, an insertion chain ter-
minates only if a substitution is performed on row wy.
II) Generalizing by partitioning over A

The previous results can be generalized to template dependencies defined
over two disjoint sets of attributes, X and Y, such that for attributes in X it is a
minimal simple dependency. Each column y € Y is characterized by having two
repeated symbols. '

Example: Consider the dependency

Yl Y2 Y3
vr ¥ y"
v ¥ Us
!i Yo Ys

[] "

y y y
The request (In {t}, R;, force), for this template, will generate unbounded inser-

tion chains. This was the template used for the example at the end of Chapter 3,
where (Y,Y,Y3) = (ABC). Notice that the set of attributes corresponding to the
embedded minimal simple dependency is empty.

Consider now generalizing the problem of A-perturbations so that several
rows are allowed to match over A=a;, and others to match over A=a. Assume,
again, that the (original) simple template dependency over X is minimal.

This generalized problem can be treated by
a) Dividing the template vertically (i.e., by “projection’) into two sets of attri-
butes: one corresponds to the minimal simple template dependency and the other
to the perturbation introduced; and
b) Dividing the template horizontally (i.e., by “selection”) into two sets of rows:
each has the same symbol for attribute A.

1 m - o (I
2 (ry - a (IV)
We+1 a

99

For generation of new symbols, quadrants (II) and (IV) are treated as distinct
units, and quadrants (I) and (III) correspond to the simple dependency. Let w(y)
denote any row in the top horizontal region (1), and w (o) any row in the bottom
horizontal region (2).

Notice that the bottom region by itself represents a simple dependency.
Thus, by lemma 3.3, for any rows w(q) and 'w'(z)» not necessarily distinct, the
mappings 0y: w(p)={t}; and 0x:w’ (5)=0 (W, +;) are such that oy(w,+,) does not
represent a new insertion expression. In other words, if any chain contains two
successive replacements in the bottom region, the second replacement does not
yield a new insertion expression. :

Furthermore, if the top region consists of a single row, then the modified
template dependency still corresponds to a simple template dependency. Assume,
therefore, that the top region (1) has at least two rows. New insertion expres-
sions will be obtained as long as the mappings generated are of the form

0i—1: wyy~E and 0;: @' (1)~0; _1 (W, +).
The reason for this lies in the symbol generation pattern for quadrants (II) and
(IV). The picture shows two such successive mappings:

(1) | a; (E) . |
v | ag xx | a; (E)
Wy xx | @; (E) v | @iy

No row in region (1) of mapping 0; _, can replace the row in region (1) that ori-
ginates the subsequent mapping o,; without disturbing the mapping pattern. The
minimality of the template over X precludes the replacement of any row w(y) in
o; by some row w () in 0; —;.

Consider now another type of mapping sequence,
0;—1: w)~F and o;: "U(-z)"o'i—l(‘wsﬂ)
1

a; (E) o | Gk 41
(2) o | o xx | a; (E)
Wes1 XX Ei (E,) a—'c

This corresponds to considering a simple template formed by the set of rows in
(2) and the additional row in region (1) whose replacement yielded E’. In this
simple template, the expression o;(w,+,) can be obtained if, in mapping o,, the
row w ;) whose replacement generated o; is replaced by o; _;(w(z)). In this case,
0,(w,+,) is equivalent to o;—;(w,4). The proof is the same as the one used for
lemma 3.3.

Summarizing the results for templates partitioned on attribute A, any chain
that ends in region (2) is bounded; chains that remain in section (1) are
unbounded. Thus, forcing insertions to preserve this type of non-simple template
dependency gives origin to insertion chains of unbounded length.

III) Generalizing to several non-simple columns

100 C. M. B. Medeiros

Consider, finally, the same type of A-perturbation described in (II) extended
to additional attributes. This can again be analyzed by letting the template be
divided in horizontal regions.

Example:

(1)
()
3)
(4)
Ws+1 b ¢
Assume that the attributes in X correspond to a non-empty minimal simple tem-
plate. The description of the set of finite chains, for each attribute is:
A : any sequence of mappings that remains or ends in section (4)
B : any sequence of mappings that remains or ends in sections (1) or (4)
C : any sequence of mappings that remains or ends in sections (1) or (2)

RSP
(=l B Il K=
LRI Y]| el el

Since the intersection of these conditions is the empty set, no chain will ever
stop for this template. If, instead, the conclusion row contains (abc), then all
chains that remain or end in section (4) are bounded.

8.6. Extending the update validation algorithm to support universal
relation databases

Some theoretical research on relational databases is based on the universal
relatton model, in which the database is considered as representing a single rela-
tion over a universal scheme. Among several approaches to this model, the one
that has attracted the most attention is the weak instance approach. Instead of a
single universal relation, it assumes that there exists a set of possible (weak)
universal relations, where any relation in the database is contained in the projec-
tion of some weak instance.

Universal relation views assume that the database represents a single rela-
tion over a universal scheme. As remarked before, the update validation algo-
rithm assumes that the underlying relation schemes are independent and therefore
can be updated separately. Thus, it applies to any universal relation scheme com-
posed of independent schemes. If the schemes are not independent, inter-relation
constraints must be taken into consideration.

The problem of maintaining inter-relation constraints is aggravated by the
issue of forced updates. For instance, a forced insertion into a given relation may
also require forcing updates (not necessarily insertions) in other relations. Even if
the only dependencies allowed in the universal schemes are functional dependen-
cies (which is the update model of Brosda and Vosgens [BRO85|), taking forced
insertions into account may generate an infinite chain of pairs (wfd,['w'ﬂ]). This
would not happen, for instance, if the universal scheme itself were in Partitionable
BCNF.

If the update validation algorithm were to support the universal instance
assumption for general constraints, it would need to check sets of constraints over
sets of relations. This, in its turn, would imply templates spanning relation

101

schemes, to be checked concomitantly with the templates for each individual
scheme. The existence of several templates to be chased in order to determine
additional updates implies that the chase may never end. Assuming that the
dependencies given are such that this will not occur, and that furthermore the
dependencies allowed do not generate ambiguous updates or infinite chains, the
next problem that appears in considering inter-relation constraints in the update
validation algorithm lies in determining appropriate Op({t},,R;, ezception)
rules. The paragraphs that follow comment on findings of other authors on the
complexity of maintaining a universal instance. This leads to the belief that
establishing Op ({t}; ,R;,exception) rules for inter-relation constraints is a very
hard problem. :

Fagin and Vardi [FAG84] point out that queries posed to a (weak) universal
relation interface have to be computed over the intersection of all the weak
instances. Whereas computing answers with respect to functional dependencies
can be done in polynomial time, computing answers with respect to full dependen-
cies is EXPTIME-complete, and for embedded dependencies is unsolvable. Since
update processing must maintain query consistency, extending the analysis to gen-
eral universal relation models may not be possible.

Graham and Mendelzon [GRA82| analyze weak instance dependency satis-
faction (see Chapter 2) for tuple generating dependencies and equality generating
dependencies, which generalize template dependencies and functional dependen-
cies. They define the concepts of completeness (which in the case of template
dependencies for one relation means that all tuples generated by chasing the tem-
plate must exist in the view); and consistency (which in the case of functional
dependencies for one relation means that all tuples in the relation agree over the
functional dependencies). They show that, for a single relation, standard satisfac-
tion (of a weak instance) is the conjunction of consistency and completeness.
Thus, the Op({t}; ,R; exception) rules are in fact a way of achieving standard
satisfaction, and the updated relation is complete and consistent under their
definition.

However, if sets of constraints are imposed on sets of relations, consistency
and completeness of a state are reducible to implication problems for dependen-
cies. As the authors point out, this means that it is not probable that consistency
can be checked efficiently, except for very restricted cases of dependencies {e.g.,
functional dependencies or multivalued dependencies). Thus, ensuring mainte-
nance of consistency after an update is performed is also bound to be intractable.

Finally, they point out that, for some cases of universal relations, the
dependencies can be projected into each relation, and then only local consistency
needs to be maintained. This is the type of situation handled by the update vali-
dation algorithm, assuming the view designer has already determined the pro-
jected dependencies. Again, projected dependencies can be determined for special
cases, but this determination is computationally hard.

102 C. M. B. Medeiros

8.7. Other extensions

The update validation algorithm should also be extended to include other
types of view generating functions, as well as other integrity constraints.

Other operators for the g, function should, in particular, include set union
and difference. The main problem with difference is that it is not monotonic: a
deletion in a relation may cause insertion of tuples in the view. Therefore, views
formed by difference operators would have to be processed in a special way. The
Op({t}; R, exception) rules would still be valid, since they are applied before
execution of the generating function g,, but the interpretation of intermediate
results, database state descriptions and the final rows would have to change.
Since difference is not a monotonic operator, most of the theorems — which were
proved correct for SJP views — would not hold any longer. It is for example con-
ceivable that isolated execution of underlying updates (Theorem 10) would no
longer be sufficient for deriving all possible side effects. This would result into an
exponential execution time for the update validation algorithm process.

The union operator (which is monotonic) can be tentatively implemented by
translating it into the union of tableau rows in the sequence T * -+ T}. This
again presents a problem for interpretation of the output: for instance, deleting
from a relation does not necessarily imply elimination of the tuple from the union.
Furthermore, there would have to be changes in the manipulation of database
state descriptions.

Other types of constraints should also be analyzed, such as those described
by nontyped template dependencies. This would allow, for instance, the treat-
ment of inclusion dependencies and referential integrity constraints, which
represent yet another type of inter-relation constraints. The first problem that
occurs is that chasing with inclusion dependencies may not be finite (and thus
forcing insertions given inclusion dependencies may generate yet another modality
of infinite chains). Even when restricted to individual relations, untyped depen-
dencies present the problem of adequate Op({t},,R; exception) rules. If
R,=(AB) is subject to the inclusion dependency AC B, deletion of (aB) may
require deletion of (Ab) as well, and insertion of (AB) may not be allowed.

An initial insight into the problem of untyped dependencies may be gained
from the analysis of Minker and Nicolas |[MIN83]. Their class of singular recur-
sive axioms, whose derivation paths are finite, includes a special subset of untyped
template dependencies. This subset corresponds to template dependencies with
Nh; hypothesis rows, of which Nh;-1, together with the conclusion row, charac-
terize a simple template dependency. The remaining row consists of a permuta-
tion of the symbols of the conclusion.

103

6.8. Conclusions

The update validation algorithm as a design tool

The update validation algorithm should be used as a means of detecting
cost-effective translation policies, and those that will most likely result in
minimality of changes. If the designer is allowed to associate different transla-
tions with different view updates, the set of side effects resulting from each indivi-
dual policy provides an indicator for choosing a more adequate update transla-
tion.

Prototype models of the database usage could be designed, from which
information about data modification profiles would be inferred. Since the update
validation algorithm associates the possible view changes with the database states
for which they occur, this would make it possible to determine which update map-
pings would cause the least amount of changes (given the most common database
modifications). The fact that the policies allowed here accept coexistence of
insertions, deletions and changes may even show that it is sometimes cheaper to
implement a deletion by a forced insertion.

Other activities which would profit from the diagnostic provided by the
update validation algorithm include detection of update anomalies when integrat-
ing new views into an existing database, and when merging existing applications
to form a new system.

Some other open toplcs in the view update problem

Until now, views have been assumed to be single-relation answers to queries,
but it might be sometimes more adequate to have multiple relation views. The
specification and mapping of updating through these views has yet to be
analyzed.

Another issue is that of finding appropriate update mappings. This thesis
assumes the user has an idea of reasonable mappings to use. There is, however, a
pressing need for better guidelines to defining appropriate update mappings, since
theoretical work has until now worried only about general mappings. The
abstract data type approach, which is a step in this direction, does not provide
any indication of how to choose a "good” tramslation. Relaxing Keller'’s [KEL85]
assumptions about systematic update translation algorithms would probably pro-
vide some insight into this area.

Forcing of updates, as suggested in [FAG83|, should sometimes be allowed
to change the integrity constraints themselves. This should also consider the
treatment of exceptions, e.g., when a clerical error assigns the same license plate
number to two different people. (While characterizing violation of a functional
dependency, this may not be discovered until several transactions have been pro-
cessed for each individual. Arbitrarily changing one of the license plates is
unlikely to be the best solution.)

Finally, very little has been done about dynamic modelling of updates. If
the abstract data type approach is extended into this direction, for instance, it is
conceivable that different update translations be specified to be triggered for dif-
ferent initial database states.

104 C. M. B. Medeiros

Bibliography

[AHO79] Aho,A.V., Sagiv,Y., and Ullman,J.D. "Equivalences among relational
expressions." SIAM Journal of Computing, 8(2), 1979, 218-246.

[ARO78] Arora,A K. and Carlson,C.R. "The information preserving properties of
relational database transformations." VLDB 1978, 352-359.

[BANS81] Bancithon,F. and Spyratos,N. "Update semantics of relational views."
ACMTODS, 6(4), 1981, 557-576.

[BIS83] Biskup,J. and Bruggemann H.H. "Universal relation views: a pragmatic
approach.” VLDB 1988, 172-181.

[BRO85] Brosda,V. and Vossen,G. "Updating a relational database through a
universal relation schema interface." PODS 1985, 66-75.

[CART79] Carlson,C.R. and Arora,AK. "The updatability of relational views
based on functional dependencies." COMPSAC 1979, 415-420.

[CAR80] Carlson,C.R., Arora,AK. and Carlson, M.M. "The application of data
dependency theory to the study of databases." COMPSAC 1980, 655-660.

[CAS84] Casanova,M.A. and Furtado,A L. "Updating relational views.” Relatorio
tecnico 020, IBM do Brasil, 1953.

[CHA83] Chan,E.P.F. and Mendelzon,A.O. "Independent and separable database
schemes." PODS 1988, 288-296.

[CLE78] Clemons,EK. "An external schema facility to support database update.”
in Databases: improving usability and responsiveness. B.Shneiderman, editor.
Academic Press,N.Y., 1978, 371-398.

[COD70] Codd,E.F. "A relational model of data for large shared data banks."
CACM 13(6), 1970, 377-387.

[COD79] Codd,EF. "Extending the database relational model to capture more
meaning.” ACM TODS 4(4), 1979, 397-434.

[COS83] Cosmadakis,S. and Papadimitriou,C.H. "Updates of relational views."
PODS 1988, 317-331.

[CRES83] Cremer,A.B. and Domann,G. "AIM - an integrity monitor for the data-
base system INGRES." VLDB 1988, 167-173.

[DAT83] Date,C.J. An introduction to database design, vol. II. Addison-Wesley,
1983.

[DAY78] Dayal,U. and Bernstein,P.A. "On the updatability of relational views."
VLDB 1978, 368-376.

[DAY82] Dayal,U. and Bernstein,P.A. "On the correct translation of update
operations on relational views." TODS, 8(8), 1982, 381-416.

[DAY82a] Dayal,U. and Bernstein,P.A. "On the updatability of network views -
extending relational views theory to the network model." Information Systems
71), 1082, 29-46.

[ELMB80] El-Masri,R.A. "On the design, use and integration of data models.” PhD
thesis, Department of Computer Science, Stanford University, 1980.

[FAGT77] Fagin,R. "The decompositional versus the syntactic approach in data-
base design." IBM Report RJ2881, 1977.

[FAGS83] Fagin,R., Ullman,J.D. and VardiM.Y. "On the semantics of updates in
databases." PODS 1983, 352-364.

105

[FAG83a] Fagin,R., Maier,D., Ullman,J.D. and Yannakakis,M. "Tools for tem-
plate dependencies." SIAM Journal of Computing, 12(1), 1983, 36-59.

[FAG84] Fagin,R. and VardiM.Y. "The theory of data dependencies - an over-
view." 17th Colloquium in Automata, Languages and Programming, Antwerp,
1984, 1-22.

[FUR77] Furtado,AL. and KerschbergL. "An algebra of quotient relations."
SIGMOD 1977, 1-8.

[FURT79] Furtado,A L., Sevcik, K.C. and Santos,C.S. "Permitting updates through
views of data bases." Information Systems 4(2), 1979, 269-283.

[GAD82] Gadgill,S.G. and Navathe,S.B. "A methodology for view integration in
logical database design.” VLDB 1982, 142-164.

[GAL84| Gallaire,H., Minker,J. and Nicolas,J.M. "Logic and databases - a deduc-
tive approach.” Computing Surveys, 16(2), 1984, 153-186. =

[GRA82] Graham M.H., and Mendelzon,A.L. "Notions of dependency satisfac-
tion." PODS 1982, 177-182.

[HEGS83] Hegner,S.J. "Algebraic aspects of relational database decomposition.”
PODS 1958, 400-412.

[HEG84] Hegner,S.J. "Canonical view update support through boolean algebras
of components." PODS 1984, 163-172.

[HON83| Honeyman,P. and Sciore,E. "A new characterization of independence.”
SIGMOD 1983, 92-96.

[KEL82] Keller, A M. "Updates to relational databases through views involving
joins. " 2nd International Conference on Databases, Jerusalem, 1952.

|[KEL84| Keller,A.M. and Ullman,J.D. "On complementary and independent map-
pings on databases." SIGMOD 1984, 143-148.

[KEL85] Keller,A. "Updating relational databases through views.” PhD Thesis,
Department of Computer Science, Stanford University, 1985.

[KLU78] Klug,A.C. "Theory of database mappings.”" University of Toronto
Technical Report CSRG-98, 1978.

[KOB84] Kobayashi,]. "Validating database updates." Information Systems,
9(1), 1984, 1-7.

[KUP84] Kuper,G.M., Ullman,J.D. and Vardi,M.Y. "On the equivalence of logical
databases." PODS 1984, 221-228.

[LIN78] Ling,T.-W. "Improving database integrity based on functional dependen-
cies." PhD thesis, Department of Computer Science, University of Waterloo, 1978.
[MAI83] Maier,D. The theory of relational databases. Computer Science Press,
Rockville, Md, 1983.

[MAI84] Maier,D., Vardi,M. and Ullman,J.D. "On the foundations of the univer-
sal relation model.” TODS 9(2), 1984, 283-308.

[MAS84] Masunaga,J. "A relational database view update translation mechan-
ism." VLDB 1984, 309-320.

[MIN83] Minker,J. and Nicolas,J.M. "On recursive axioms in deductive data-
bases." Information Systems, 8(1), 1988, 1-13.

[MOT81] Motro,A. and Buneman,P. "Constructing superviews." SIGMOD 1981,
56-64.

[NEU82] Neumann,T. and Hornung,C. "Consistency and transactions in CAD
databases." VLDB 19582,

[NIC78] Nicolas,JM. and Yazdanian K. "Integrity checking in deductive

106 C. M. B. Medeiros

databases” In Logic and databases. H.Gallaire and J.Minker, editors. Plenum
Press, N.Y. 1978, 325-343.

[NIC82] Nicolas,J.M. "Logic for improving integrity checking in relational data-
bases." Acta Informatica, 18(8), 1982, 227-254.

[PAO77] Paolini,P. and Pelagatti,G. "Formal definitions of mappings in a data-
base." SIGMOD 1977.

[REI81] Reiter,R. "On the integrity of typed first order databases.” Advances in
database theory, vol I. H.Gallaire, J.Minker, and J.M.Nicolas, editors. Plenum
Press, NY., 1981, 137-158.

[SADS80] Sadri,F. and Ullman,J.D. "The interaction between functional dependen-
cies and template dependencies.” SIGMOD 1980, 45-51.

[SAD82] Sadri,F. and Ullman,J.D. "Template dependencies: a large class of
dependencies in relational databases and its complete axiomatization." JACM
29(2), 1982, 363-372.

[SAG85] Sagiv,Y. "On computing restricted projections of the representative
instance.” PODS 1985, 171-180.

[SHM84] Shmueli,O. and Itai,A. "Maintenance of views." SIGMOD 1984, 240-
255. .

[SIM84] Simon,E. and Valduriez,P. "Design and implementation of an extendible
integrity subsystem.” SIGMOD 1984, 9-17.

[SPY80] Spyratos,N. "Translation structures of relational views." VLDB 1980,
411-416.

[SPY82] Spyratos,N. "An operational approach to data bases." PODS 1982, 212-
219.

[STO75] Stonebraker,M. "Implementation of integrity constraints and views by
query modification. "SIGMOD 1975, 65-77.

[TUC83] TuchermanL., Furtado,AL. and CasanovaM.A. "A pragmatic
approach to structured database design.” VLDB 1983, 219-231.

[ULL82] Ullman,J.D. Principles of database systems. Computer Science Press,
2nd edition, 1982.

[VIA83] Vianu,V. "Dynamic constraints and database evolution." PODS 1988,
389-399.

[WON80] Wong,E. and Katz,R.H. "Logical design and schema conversion for
relational and DBTG databases. In Entity-Relationship Approach to Systems
Analysis and Design, Editor P.P.Chen, North-Holland Publishing Co., 1980, 311-
321.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

