MENT

EPARTMENT
EPARTMENT

EpAR

i
CED

2222

&E
GIE

=

|
T
T
T

bt
PU
PU

==

% 58

Y

gF

T
Sy
ITY

VERSITY OF WATERLOO C

VER
VER

Combinational Static

CMOS
Networks

J.A. Brzozowski
M. Yoeli

CS-85-42

December, 1985

COMBINATIONAL STATIC CMOS NETWORKS*

J.A. Brzozowsk:

Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada

M. Yoel:

Department of Computer Science
Technion
Haifa, Israel

ABSTRACT

We develop mathematical switch-level models for static com-
binational CMOS networks. In contrast to other available MOS
models and theories, our models capture design principles that are
special to CMOS, such as the use of transmission gates. First we
study networks consisting of cascade connections of CMOS cells
realizing negative functions. We then extend this model to incor-
porate transmission gates. Finally, we develop a more complex
CMOS graph model which includes a ternary transient analysis and
is capable of handling some unconventional, but commercially used,
combinational networks. Such designs cannot be properly explained
by presently available theories. Also, we discuss several general
design approaches.

1. Introduction

It is now generally accepted that conventional switching theory based on
gate networks is not suitable for digital MOS networks, and that a switch-level
model is required in order to represent the logic aspects of digital MOS circuits.
Some early work on switch-level models of static NMOS and CMOS can be found
in [BY 76, Appendix D|. Models covering both static and dynamic MOS have
been developed by Bryant [B] and Hayes [H]. However, these “unified” models

* This research was supported by the Natural Sciences and Engineering Research Council of
Canada under grant No. A0871.

2 Brzozowski and Yoeli

treat NMOS and CMOS in a similar way and do not take into account the signi-
ficant differences between the design principles of CMOS and those of NMOS
[WE]. For example, the unified models do not distinguish between ‘“good”
2-transistor switches, i.e. transmission gates, and “poor” single-transistor switches

[WE, p. 28].

Since CMOS technology is becoming the dominant VLSI technology,
switch-level models particularly tailored towards digital CMOS networks are of
considerable importance. One such model was proposed in [YB 85]. An early
version appeared as [YB 84]. The model will reject as not “well-formed” any net-
work which violates the rules of “good” static CMOS design, whereas many such
networks would be accepted by the unified models and corresponding simulators.
However, further studies of CMOS design revealed the model of [YB 85} to be
somewhat too restrictive. It will reject some commercially used static CMOS
designs, e.g. the 6-transistor CMOS XOR |[WE, p. 317|. (Incidentally, this
design will also be rejected by the unified models [WE, p. 256].) Consequently,
this paper develops improved switch-level models for static, combinational CMOS
networks. Actually, the paper proposes a hierarchy of switch-level models. The
top level of this hierarchy, the “C-graph” of Section 5 is not required for the
modeling of most static combinational CMOS circuits. However, the complexity
of the C-graph model cannot be avoided, if certain “tricky” combinational
CMOS designs are to be suitably verified. Some limitations of our switch-level
model are discussed in Section 6. The concepts developed in this paper are
intended to form a basis for a sound design methodology, as illustrated in Section
7.

2. Cells

The fundamental building blocks of CMOS networks are the N-channel
and P-channel enhancement mode transistors [WE]. In Figure 2.1 we show com-
monly used symbols for the N-channel and P-channel transistors, along with the
graph symbols that we will use in this paper. The graph of Figure 2.2 shows a
typical simple CMOS network, namely a two-input NOR gate. In that figure 1
represents voltage VDD which is the positive end of the power supply, and 0
represents voltage VSS which is the negative end of the power supply. The sym-
bols 0 and 1 also represent the customary logical values, using positive logic.

Refer to Figure 2.1(a). An N-transistor behaves like a switch between ter-
minals £, and ¢,; in particular, when A = 1 the switch is ON and when A =0
it is OFF. Such a transistor is labeled Ay in Figure 2.1(b). An N-transistor
which is ON will transmit O-signals well, but will perform poorly in the case of a
1-signal [WE]. Similarly, in Figure 2.1(c) a P-transistor is ON when A =0 and
OFF when A = 1. A P-transistor which is ON transmits 1's well and 0’s poorly.

Consider now the NOR gate of Figure 2.2. Let A=1 and B =0.
There is a “good” connection between the input node labeled 0 and the output
node Z via the N-transistor labeled Ay, which is ON since A = 1. Note also
that there is no connection of any kind to the input node labeled 1. Therefore
the output node Z becomes O reliably. The reader will verify that the graph of
Figure 2.2 represents a NOR gate that behaves reliably for all input

Combinational CMOS Networks

A— Ay a—

t2 t2 t2

(a) (b) (c)

(d)

Figure 2.1 Transistor symbols: (a) N-channel transistor;
(b) graph notation for (a); (c) P-channel transistor;

(d) graph notation for (c).

Figure 2.2 CMOS NOR gate.

combinations.

three types of nodes:

(a)

(b)
(c)

We now formalize this idea of CMOS logic gates such as NOR gates by
introducing the concept of cell. A cell is a finite, labeled, undirected graph with

Input nodes, shown as black dots, and labeled by either a constant input (0
or 1) or by an input letter (A, B, etc.).

Internal nodes shown as white dots.

Exactly one output node - this is a special internal node, indicated by a
small outgoing arrow.

4 Brzozowski and Yoeli

Every edge in a cell graph must be labeled with a label of the form Ay or
Ap where A is an input letter.

A binary input state of a cell is an assignment of 0’s and 1’s to the input
letters. An N-path (P-path) in a cell graph is any path of N-transistors
(P-transistors) which are ON. We define the following boolean functions on the
input letters in any cell:

go = 1 iff there exists an N-path from the output node to an input node
with value 0;

g, = 1 iff there exists a P-path from the output node to an input node
with value 1;

to =1 iff there exists any path of transistors which are ON from the out-
put node to an input node with value 0;

t; = 1 iff there exists any path of transistors which are ON from the out-
put node to an input node with value 1.

The following definition is motivated by good design rules for combinational
static CMOS. We say that the output Z of a cell is 0 only if there is a “good”
connection, i.e. an N-path, to 0 and no connection to 1. We define Z =1 in a
similar way. We use the value Z = 2 to indicate that the output node is isolated,
to model tri-state outputs. Finally Z = 3 denotes all the other situations which
are considered undesirable under stable conditions. Formally, a 4-valued output
function Z over the binary input variables is defined as follows:

Z=0 iff go=1 and t, =0
Z=1 iff gy=1 and t;3=0;
Z =2 iff tog=1t,=0;

Z=3 otherwise.

The cell is boolean if the output value is always either O or 1. It is tri-state
if Z €{0,1,2}, and it is not boolean.

We now illustrate the above definitions by several examples. For the cell of
Figure 2.2 one verifies that

go=to=A+B, ¢, =t,=AB =g}, and Z = (A+B).

In the example of Figure 2.3 we find gy by enumerating all the N-paths from Z
to 0, namely

go = AD+BE+ACE+BCD.
Similarly, by considering all the P-paths from Z to 1 we find
g, = A'B'+D'E'+ A'C'E'+ B'C'D’.

The reader may also note that the graph consiting of the P-transistors is the dual
of the graph consisting of the N-transistors. The construction of such duals is

Combinational CMOS Networks 5

Figure 2.3 A “bridge-type” cell.

described in [C]. The cells of Figures 2.2 and 2.3 are boolean. One verifies that
in any boolean cell

g = 9(’), ge=1y g1=1;, and Z = g,.

In our third example, in Figure 2.4, we find go,=1ty;=AB and
gy = t, = A'B'. Note that gy # g| but gog; = 0. Here the cell is tri-state:

Z=0 iff go=1;
Z2=2 otherwise.

Our final example is shown in Figure 2.5. To compute g,, note that there
are two paths to be considered: the path labeled AyBy from 0 to Z and the
path labeled Cy from B to Z. The latter becomes a path from 0 to Z when
B = 0. Altogether gy = AB+B'C. To compute t; we must also consider paths
other than N-paths. If A = 0 there is a path labeled Bp; this contributes the
product A'B' to t,. Also, when B = 0, there is the path labeled Ap, but this
contributes the same product A'B'. Thus ¢, = go+A'B'. Similarly one verifies
that g, = A'B+AB' and t, = g;+BC. Note that, when A = B = C = 1, the
output is Z = 3. Thus this cell is neither boolean nor tri-state. Nevertheless
this cell can be useful as will be shown in Section 6.

6 Brzozowski and Yoeli

o—e 7

Figure 2.4 A tri-state cell.

1

®
Ap y4

B

qL By I oA
Ay Aol Ion

[]

0 B

Figure 2.5 A cell that is neither boolean nor tri-state.

3. Boolean and Tri-State Cells

In this section we study the structure of cells which are either tri-state or
boolean. A cell is said to be redundant if some edge can be removed or shorted
without changing the output function; otherwise the cell is trredundant.

Proposition 1. If an irredundant cell is tri-state or boolean, then all of its input
nodes are labeled by constant inputs.

Proof: Suppose the cell has an input node labeled by input variable A. Sup-
pose also that there is an N-path t from Z to A for some input state.

Combinational CMOS Networks 7

Assign the value 1 to all the cell inputs. Then N-path ¢ still exists and ¢, =1,
but g, = 0 since no P-transistors can be ON. Thus Z =3 which contradicts
our assumption. Therefore there cannot be any N-paths from Z to A. By a
similar argument we show that there cannot be any P-paths from Z to A.
Consequently, removing node A and its incident edges cannot destroy any P-
paths or N-paths from Z to any input node. Thus one verifies that the output
function remains unchanged if node A and its edges are removed. But this
implies that the cell is redundant. O

A boolean function f is positive iff there exists a sum of products of
uncomplemented variables for f. A boolean function is negative iff its comple-
ment f' is positive. The following propositions show the importance of positive
and negative functions in CMOS design.

Proposition 2. If a cell is tri-state or boolean then g, is positive and g, is
negative.

Proof: If the cell has an input node labeled by an input variable, that node and
its edges can be removed as in the proof of Proposition 1 without affecting the
output function. Thus we may assume that all the input nodes are labeled by
constant inputs. Consider a path t: consisting of N-transistors with labels
Ak, ...,Ak from Z to an input node labeled 0. The path ¢ is an N-path iff
A'A%. .. A% = 1. The function g, can be denoted by the boolean sum of all
such path products, and is therefore positive. By a similar argument g, is nega-
tive. O

A commonly used method of implementing any negative function is based
on the structure shown in Figure 3.1 where the P-part (N-part) consists only of
P-transistors (N-transistors). We call this structure a separated cell. Clearly a
separated cell is tri-state iff gy g, = 0 and gg+g; # 1. It is boolean iff g4 = g¢!.
One easily verifies that any negative function can be implemented by a separated
boolean cell. However, an implementation of a negative function is not neces-
sarily separated, even if it is an irredundant implementation. The cell of Figure
3.2 is an implementation of the NAND function Z = (AB), that is not
separated. No transistor can be removed or shorted without changing the output
function; hence the cell is irredundant. On the other hand, this cell is not
minimal, since the separated implementation of the NAND function requires only
4 transistors. In general, we have the following result.

Proposition 8. For any negative boolean function there exists a separated cell
implementation with the minimal number of transistors (i.e. no non-separated cell
could have fewer transistors).

Proof: Consider any implementation of a negative boolean function by some
non-separated cell G. Let Gp (Gy) be the subgraph of G which consists of all
the P-transistors (IN-transistors) of G. Now construct a separated cell with Gp
as P-part and G as N-part. Clearly the output function and the transistor
count are the same. O

8 Brzozowski and Yoeli

Figure 3.1 General form of separated cell.

Figure 3.2 A non-separated NAND cell.

One also verifies that the following result holds; the proof is similar to the
proof of Proposition 3.

Proposition 4. For any tri-state cell there exists a separated cell implementa-
tion with the minimal number of transistors (i.e. no non-separated implementa-
tion can have fewer transistors).

Combinational CMOS Networks 9

In general, a tri-state function is not necessarily realizable by a single cell.
In fact the following result is easily verified.

Proposition 5. Let f be a tri-state function, and let f, and f; be boolean
functions defined by fo=1 iff f=0 and f;=1 iff f=1. Then f is
realizable by a single cell iff f, is positive and f, is negative.

The problem of designing separated cells with the minimal number of
transistors is closely related to the design of minimal contact networks [C]. The
minimization of the transistor count in the IN-part is equivalent to the minimiza-
tion of the corresponding contact network, which uses only normally open con-
tacts. Similar remarks apply to the P-part.

4. Cascades

Arbitrary boolean functions may be implemented as cascade compositions
of negative functions, such as NOT and (multi-input) NAND or NOR func-
tions. Thus, any boolean function may be implemented as a cascade of suitably
interconnected separated cells. Figure 4.1(a) shows such an implementation of
the XOR function, consisting of two separated cells T and TI?, where T!
implements the function Z'= (A+B) and T? implements Z°= (Z'+4AB).
Thus Z%2= ADB.

1
Ap
Bp

2
Awl B
o]
1
r

(a) {b)

Figure 4.1 (a) XOR with separated cells; (b) rz,

The concept of “cascade of suitably interconnected cells” will be formalized
in this section. Moreover, our formal concept of “cascade” is also intended to
model combinational networks containing transmission gates [WE]. A 2-cell

10 Brzozowski and Yoeli

implementation of the XOR-function using transmission gates is shown in Figure
4.2(a). T is an inverter, producing Z!'= A'. T? contains two transmission
gates, one controlled by A and the other by Z' = A'. Note, however, that cell
I'?, considered by itself, is neither boolean nor tri-state. For example, when
A=B=2'=1, we have Z2= 3. Nevertheless, the composition of I'' and
I'? is a suitable implementation of Z%2= APB.

1
w" !
2
Y4 Bp
Ae Ap Ay
/ /
A A
An N F |Bw
® ®
0o o

(a) (b)

Figure 4.2 (a) XOR implementation using transmission gates; (b) TZ.

"The above considerations motivate the following formal definitions.

Let A= A!,...,A" be a vector of input letters. A cascade over A isa
finite sequence T = TI'!, ... T* of cells having the following property: Any input
letter of T7 is either in A or in the set {Z',...,Z%7'}, where Z' denotes the
output node of I¥. However, any input letter Z* (1 €7 < j) may only appear
as an edge label of T, and not as an input node label. The input vector of T is
defined to be A, and its output is Z*.

An extended cell is similar to a (basic) cell as defined in Section 2 except
that the edge labels are of the form fy or fp where f is a boolean function
on the input variables. An edge labeled fy (fp), again representing an N-
transistor (P-transistor), is ON when f=1(f=0) and OFF when
f =0(f =1). The concept of output function defined for basic cells in Section
2 is generalized to extended cells in the obvious way.

To illustrate these definitions consider the two-cell cascade of Figure 4.1(a).
Analyzing the first cell we find Z!= A'B'. We now replace Z' in all the
relevant labels of the second cell by (A'B'), thus obtaining the extended cell of
Figure 4.1(b). Now Z%is 1iff (A'B’) = 0 and either A or B is 0, i.e.

Z?= (A+B)(A'+B) = A ® B.

Alternatively, from Figure 4.1(a),

Combinational CMOS Networks 11
7% = (Z1+AB)’ = (A'B'+ABY = A P B

As a second example consider the two-cell cascade of Figure 4.2(a). In Fig-
ure 4.2(b) we show the extended version of the second cell I'? obtained by substi-
tuting A’ for Z!. Now one verifies that Z2= A @ B. Note, however, that the
alternative method which we used for Figure 4.1 does not apply here because I'?
is neither boolean nor tri-state. A problem occurs when A = B = 2! = 1, giv-
ing Z% = 3. However, if I'? is used in cascade with T, Z' = A’ and the offend-
ing input combination does not occur under steady-state conditions.

To analyze any cascade proceed from I'! to r* using step-by-step substitu-
tions to obtain the appropriate extended cells rt=rir? ... ,l"k.~ If each I"‘.,
1 <7 < k, whose output is used in subsequent cells is boolean and I'* is boolean
(tri-state), then the cascade T is said to be boolean (tri-state).

Note that the cascade of Figure 4.2 has fewer transistors than the cascade
of separated cells in Figure 4.1. One can verify that any cascade of separated
cells that realizes the XOR function requires at least 10 transistors. If we res-
trict our attention to cascades of separated cells, our next example shows that
using the minimal number of cells does not always result in a minimal transistor
count. Consider the function f = (ABC)Y ¢ D. The minimal number of cells
for this function is 2, as can be verified by applying Muroga’s algorithm [M]. In
this case the algorithm results in a unique solution, namely a cell realizing the
function Z' = (ABCDY and a cell realizing the function Z2 = [Z! (D+ABC).
One verifies that any cell realizing Z' must use at least 8 transistors, and Z°
requires at least 10 transistors. Thus the minimal 2-cell solution uses 18 transis-
tors. The following 3-cell solution uses only 16 transistors:

Z' = (ABCY,
2% = (Z'+DY,
Z8 = (Z'D+ 2%

5. C-Graphs

So far we have been concerned with the steady-state behavior of CMOS
networks, disregarding any transient phenomena. However, we show later in this
section that the study of transient behavior is essential for the proper under-
standing of CMOS networks, even if we restrict our attention to combinational
networks only. Furthermore, the new model of combinational CMOS networks
to be introduced in this section, will enable us to make essential distinctions
between networks implementing the same boolean function. This distinction is a
novel feature of CMOS switching theory and is not applicable to conventional
gate networks.

To be more specific, let us consider the two cascades of Figure 5.1. One
can verify that they are both implementations of the AND function Z = AB.

12 Brzozowski and Yoeli

We wish to study the behavior of the two networks, under the assumption that
B = 0, but the value of A is unknown. "Unknown" is to be understood as
indicating that the voltage representing A could be VDD or VSS or some
intermediate value between VDD and VSS. In the network of Figure 5.1(a),
when B = 0, there is a P-path from Z! to 1 and no path to 0. Consequently
Z'=1 and Z = 0. In the network of Figure 5.1(b), if A is unknown, then so
is Z!. If one assumes that A is unknown but binary, i.e. has the value either
0 or 1, then the output Z is well defined in each case, and has the value 0 if
B =0. However, if A should take on some intermediate voltage between
VDD and VSS, then the output Z is not well defined. Note that, under the
same conditions, the output of Figure 5.1(a) ¢s well defined.

A, Ay .
z z' BQ—"—'O
‘N Z1P z
(b)

Figure 5.1 Two implementations of the AND function.

In order to model the different behavior of the two networks of Figure 5.1,
we introduce a third value X (sometimes also denoted by %). Ternary models
have been previously used for gate networks [BY 79] and switch-level MOS
simulators [B]. The ternary behavior of the two networks of Figure 5.1 is
described in Figure 5.2. The model we are about to introduce will distinguish
between these two types of behavior.

Our next example illustrates a feature of CMOS networks that we have not
considered so far. Figure 5.3 shows a widely used CMOS implementation of the
XOR function [WE]. Here an internal node (Q') controls one of the transistors
(labeled Qf). Assume first that A =0 and B =1. Then Q' has a P-path
to 1, and no path to 0. Thus @' becomes 1 reliably, and Z is also 1. If now A
changes from O to 1 we reach a configuration that cannot be analyzed correctly
by means of our previous models. This is because @' has an N-path to 0
(through Ay), but also another N-path (By,Q to B = 1) to 1. However, we
will show shortly that this N-path to 1 is a "non-conducting” path and should be
ignored. A similar situation arises if we assume that Q! is initially unknown,
ie. has the value X. When A = B =1, @' has an N-path (Ay) to 0 and a

Combinational CMOS Networks 13

B
0 X 1
0jojoj|o
A X|o|X|X
10X |1

B
0 X 1
oj{ojo]o
A X|X|x|X
1]o0|X}1
(b)

Figure 5.2 (a) Ternary table network of Figure 5.1 (a);
(b) Ternary table for network of Figure 5.1 (b).

potential N-path to 1 (By,Qy). We will show that this potential path can be
ignored also.

1
AP Bj B
01 N P=A
4
Anl Al oy
0

Figure 5.3 6-transistor implementation of the XOR function.

To explain the concept of "non-conducting” paths we first make the follow-
ing formal definitions. We generalize the concept of a cell by permitting internal
node variables to control any edges as in the example of Figure 5.3. A C-graph is
a finite, labeled, undirected graph with four types of nodes:

(a) Input nodes shown as black dots, and labeled by either a constant input (0
or 1) or by an input letter (A,B, etc).

(b) Internal nodes shown as white dots.

(¢) Key nodes, which are special internal nodes, each of which is labeled by a
different key letter Q', . .. ,Q*.

14 Brzozowski and Yoeli

(d) One output node which is a special internal node shown by a small outgoing
arrow.

Every edge in a C-graph is labeled with a label of the form Qun or @p,
where @ is either an input letter or a key letter. Each key letter appears as
some edge label. A (ternary) ¢nput-key state is an assignment of 0, 1, or X to
each input letter and each key letter. Similarly, a total state is an assignment of
0, 1, or X to each input letter and to each internal node.

Given a C-graph I' and a ternary input vector for I', we define the con-
cept of self-dependent path as follows. Let @ be a key-node of T' and let € be
an edge of I' labeled @y. A path 7 containing both node @ and edge e is
called self-dependent iff either 7 has a node Z labeled 0 and @ is between edge
e and node Z, or ® has a node U labeled 1 and Qp is between @ and U.
Similarly, a path containing @ and an edge labeled Qp is self-dependent if
either @ is between @Qp and 1 or @p is between @ and 0. These four situa-
tions are illustrated in Figure 5.4.

T

eio u? }1 a
. i !

z:*o %o | ':'0

ol | i l
(a) (b) (c) (d)

Figure 5.4 Self-dependent paths.

When analyzing C-graphs one should ignore sell-dependent paths for the
following reasons. Suppose we have a path of the type shown in Figure 5.4(a). If
this path were to conduct current from node A to node B, the voltage at node
@ would be close to the voltage at node R which is the source of @p. Thus
the transistor labeled @y has a gate-to-source voltage that is essentially O (in
fact, a small negative voltage). Thus @Qp is OFF, contradicting the assumption

Combinational CMOS Networks 15

that the path conducts. A similar argument holds for cases (b), (c), and (d) in
Figure 5.4. In summary, self-dependent paths from any node to 0 or 1 will have
no effect on that node.

Returning to our mathematical model, for each ternary input-key state of a

C-graph T we define the following boolean functions for each internal node Q°
of T :

go=1 iff there is an N-path that is not self-dependent from
Q@' toO;

go=0 otherwise;

to=1 iff there is a path, which is not self-dependent,

consisting of transistors that are either ON or labeled
X from @* to 0;
t,=0 otherwise.

The functions g, and t, are defined similarly (using P-paths from Q* to 1 for
g1, ete.).

The excitation E(Q’) of node Q* for a given ternary input-key state is
defined as follows:

1 ifft ggy=1 and ¢t3=0;
0 iff gg=1 and ¢; = 0;
=X otherwise.

A key-node is stable in a given ternary input-key state iff E(Q’) = Q’. An
input-key state is stable iff each key-node is stable.

To analyze the behavior of any C-graph started in a given ternary key
state for a fixed ternary input vector, we define the relation p on {0,1,X}*,
which will determine the set of possible successor key states, as follows:

For Q=@QY,...,Q" ¢ {0,1, X}, define E(Q)=E(QY,...,E(Q").
Now

f Q=E(Q then QrQ;]
if Q=#E(Q) then QpQ forall Q % Q

such that Q* = Q* or Q' = E(Q) for i =1,... k.

We interpret this relation as that of a "General Multiple Winner” model
[BY 79} as follows: If Q = E(Q) then Q is stable and Q is the only possible
successor key state. If Q # E(Q), then some of the key nodes are unstable. In
this case, let Q be any key state derived from Q by changing any non-empty
subset of unstable key nodes to their corresponding values in E(Q) . Then Q is
a possible successor of Q. We repeat this process for Q, etc. Altogether we
find all the possible successors of initial key state Q. This information is con-
veniently summarized in the graph of the relation p. Usually, one is only
interested in the "non-transient” successors of Q. Following [BY 79|, we define a
cycle in the graph of p to be transient iff there exists i,1<:i <k, such that

16 Brzozowski and Yoeli

node Q° is unstable and has the same value for all the states in the cycle. A
C-graph cannot be in such a cycle for a long time, for eventually Q° must
change. The final behavior of a C-graph is then reflected in the non-transient
cycles of p.

A ternary input vector is forcing if the graph of the relation p has exactly
one non-transient cycle, and this cycle is of length 1. The key state correspond-
ing to this cycle is said to be the response of the input vector. A ternary input
vector is key-combinational if it is forcing and its response is binary.

Given a key-combinational input vector we define the output value Z by
the table:

g1ty
00 01 11
00 2 3 1
goto 01 3 3 3

11 0 3 3

z

A C-graph T is combinational (T-combinational) if every binary input vec-
tor is key-combinational, and the corresponding output is boolean (tri-state).
One verifies that this definition is an extension of the concepts from Section 4.
In particular, a cascade is boolean (tri-state) iff it is combinational
(T-combinational) considered as a C-graph.

Let us now return to the two implementations of the AND function in Fig-
ure 5.1. If the ternary input vector A = X, B = 0 is applied to each cascade
started with Z! = Z = X, our analysis shows that this input is forcing and the
response is Z!=1,Z = 0 for Figures 5.1(a) but it is Z'= X, Z = X for Fig-
ure 5.1(b). Therefore the input vector A = X, B = 0 is key-combinational for
the network of Figure 5.1(a) but not for the network of Figure 5.1(b). In general,
starting with key node Z!= X and applying our analysis, one obtains the
tables of Figure 5.2.

Let us now also reconsider the XOR gate of Figure 5.3. When B =0,
Q! = A’, since the transistor labeled By is OFF. If B=1 and A =0,
there is a P-path from Q! to 1 and no path of ON transistors from Q' to 0.
Finally if A = B =1, there is an N-path from Q' to O and a self-dependent
path from Q! to B = 1. Hence E(Q') = 0. Altogether, our model verifies
that this C-graph realizes the XOR function reliably.

6. Composition of C-Graphs

In this section we consider composite CMOS networks obtained by connect-
ing the output of one network to an input of another network. Whereas such an
interconnnection is well understood as far as gate networks are concerned, the
composition of MOS networks poses a new problemn whenever an interconnection

Combinational CMOS Networks 17

is bidirectional. We first consider some logical aspects of such compositions, and
then relate them to circuit concepts.

Let T! and T? be C-graphs, let A be an input variable of T'? and let Z!
be the output node of I''. Without loss of generality we assume that I'? has at
most one input node labeled A, since any two such nodes can be identified
without changing the behavior of I'?. The composition of T!' and T? with
respect to A is defined to be the C-graph ' = I''{A]T?, where

(a) If there is no input node labeled A in T? then T is the union of T'' and
I'? with all A-labels in T2 replaced by Z!. (In this case I' may be
viewed as a “cascade” of the C-graphs T'! and I'’.

(b) If there is an input node labeled A in I'?, the graph T is now obtained
from the union of I'' and I'? by identifying the output node of I'' with
the input node labeled A of I'?, and relabeling the new node Z' and the
edges of T'? asin (a).

The output node of T is Z2 — the output node of T'?.

A cascade of two cells may be viewed as the composition of the component
cells. For example, the composition of I'' and I'? of Figure 6.1 with respect to
C yields the C-graph of Figure 5.1(a). This example illustrates case (a) in the
definition of C-graph composition. Case (b) is illustrated in Figure 6.2. The
C-graph of Figure 6.2(c) is the composition TI'[C]T?, where I'' and I'? are
shown in Figures 6.2(a) and (b), respectively. Figure 6.2(c) essentially coincides
with Figure 5.3; thus Figure 6.2(c) also implements A @ B. Note that I'? of Fig-
ure 6.2(b) is not combinational; nevertheless I''[C]I? ¢s combinational.

In the sequel we establish conditions for the composition of C-graphs to be
combinational. These conditions will then be applied to formulate design rules
for the implementation of boolean functions. Consider again T'? of Figure
6.2(b). Although I'? is not combinational, its output Z? is boolean for every
binary input vector satisfying the condition C=A'. Indeed, under the condition
C=A' we have Z?=A @ B. This observation motivates the following defini-
tions.

Let T' be a C-graph with A = A!, ... A" as the vector of input letters
and let f be a boolean function over A. A binary n-tuple (al,...,a") satis-
fies f iff al= f(a!,...,a").

The C-graph T is combinational (T-combinational) with respect to f and
A! iff each binary input n-tuple satisfying f is key-combinational and the
corresponding output is boolean (tri-state).

Let T'' and I'? be two C-graphs over A and let T' = I''[AY]T. Let T be
boolean with output function f!, and let T'? be combinational with respect to
f! and A'. Then T! and I'? are said to be composable with respect to Al
If I' is combinational, one verifies that the output of T’ is

7 = f2(fl(A), A2’ . ,A"),

where f2 is any boolean function satisfying the condition Z%Z= f2(a', ... ,a")

18 Brzozowski and Yoeli

1 1
V
Ap| |8p Co
Z‘ . —— Z2
By Cn
$
0
Ay
(o)
2

{a)

Figure 6.2 (a) I''; (b) T?; (c) T'[C]I?.

for every n-tuple (a!,...,a") satisfying f1.

In the following proposition, which is easily veriflied, we state a sufficient
condition for the composition of two C-graphs to be combinational.

Proposition 8. Let ' and I'? be two C-graphs over A which are composable
with respect to A!. Assume that no input node of I'? is labeled A!. Then
I'[A!T? is combinational.

Evidently a cascade T'=T! ..., % of cells may be viewed as the

Combinational CMOS Networks 19

composition I [Zl]f‘ where I is the C-graph formed by the subcascade
I'%2,...,T*. If T isboolean, one verifies that I' and T are composable with
respect to Z'. Conversely, if T' and I' are composable with respect to 2,
then their composition is combinational in view of Proposition 6. It follows that
the cascade T is boolean.

A method for implementing arbitrary boolean functions by means of
transmission gates is based on the following proposition, which is also easily veri-
fied.

Proposition 7. Let f(A!,...,A") be a boolean function and let
J(AL .. AM) = (A fl 4 Alf?

be its decomposition with respect to Al ie. f! and f? are boolean functions
on A% ...,A". Let T! and T? be arbitrary implementations of f! and f2
respectively. Let I'® be the C-graph shown in Figure 6.3. Then the C-graph
T = I'?[H]|(T'[GIT®) is combinational and realizes f.

] G
Al oA
P QN P
\J
Q
. z
Ay '
Ay Qp
(o]
H

Figure 6.3 C-graph T®.

Our final example of this section illustrates a circuit that cannot be
explained in our model, since its design requires circuit considerations beyond the
switch level approach. In Figure 6.4 we show the XOR gate of Figure 6.2(c), in
which the input nodes A and B are driven by the outputs of inverters. Con-
sider the input-key state A =1, B =0, A=B-= = @ = X. Node A has an
N-path to 0 (Ay), but also a potential path (BP, Bﬂ, AP) to 1. According to
our model E(A)= X. Similarly, one verifies that B has a P-path to 1 (Bp),

and a potential path (AP,BN,AN) to 0, giving E(B) X. Ao E(Q) = X.
Therefore this input vector is not key-combinational, and the circuit is not
accepted by our model. Nevertheless the circuit can be properly designed by
choosing appropriate circuit parameters. For instance, the resistance of the path
through transistor Ay from A to 0 would be much smaller than the resis-
tance of the potential path (BP,BN,AP) to 1, causing A to become 0, etc.

In general, whenever our model accepts a circuit, additional restrictions
may have to be imposed, e.g. no more than n transistors in series or no more
than k cells in a cascade, etc. A circuit that satisfies our model and such restric-
tions should be relatively easy to implement. On the other hand, a circuit which

20 Brzozowski and Yoeli

O By 8 Bp 1

Figure 6.4 Another XOR gate.

is rejected by our model may require more effort on the part of the circuit
designer to make it work.

7. Design Examples

In this section we illustrate the applicability to design of the theoretical
aspects discussed above.

As already pointed out, any boolean function can be implemented by a cas-
cade of separated cells, each cell implementing a negative function. Examples of
such implementations have been given in Section 4. As a further example, con-
sider the function Z = AB@C . The minimal sum expression for Z, namely

Z = ABC'+ A'C + B'C, ™
yields the 2-level NAND expression
Z = NAND [NAND(A,B,C"), NAND(A'C), NAND(B'C)).
The corresponding cascade of separated cells is highly inefficient: it consists of 7

cells (3 inverters and 4 NAND cells) and its transistor count is 26.

Any boolean function which can be represented by a single product of
literals, can be decomposed into two negative functions. For example
U = A'B'CDE becomes U = A'B'V!, where V = (CDE) . Applying this
approach to each product of the above minimal sum expression (*) we obtain:

7= (Zl)'C' + A’(Zg)' + BI(ZQ)I
= (ZI)IOI + (A'+B’)(Z2)’,
where Z! = (ABY and Z2=C'. This decomposition yields a cascade of 3
separated cells, with a transistor count of 16.

The implementation of the function Z = AB@C can be further
improved. Consider the decomposition:

Combinational CMOS Networks 21

Z' = (AB+CY,
Z =2%= (Z'+ABC).

The corresponding cascade has a transistor count of 14, and is minimal in the

number of separated cells. An algorithm for finding such decompositions is
described in [M].

Another universal design method is based on the concepts of transmission
gates and composition of C-graphs. Consider the decomposition of a given
boolean function f(A!,...,A") with respect to one of its variables, say A!:

f(AL AN = (Al ST+ AP

where f! and f2 are boolean functions on A2 ... ,A". Let T!' and TI? be
arbitrary implementations of f! and f2, respectively. Proposition 7 indicates
how f can be realized from I'" and I'? using the above decomposition. Note
that this design step may now be applied to T and I?. For example, the
function Z = ABE@C may be implemented by applying the above decomposi-
tion step twice, yielding the C-graph of Figure 7.1. This design is based on the
decompositions

ABPC = A'C + A(BHC),
B&C = B'C + BC'

1 1 Oe
Ap Bp
Q' Q®
AN BN
0 0

Figure 7.1 A C-graph for ABC.

It contains 4 transmission gates, controlled respectively by A, A'= @Q!, B, and
B' = Q2. The transistor count of this implementation is again 14.

The universal design methods described above can be improved by combin-
ing them with various heuristic design techniques. For example, the design
shown in Figure 7.1 uses an 8-transistor implementation for the auxiliary function
B@C. However, this implementation of B&C can be replaced by the
8-transistor implementation for XOR, shown in Figure 5.3. Thus the overall
transistor count is reduced from 14 to 12.

22 Brzozowski and Yoeli

8. Concluding Remarks

We have considered the class of static combinational CMOS networks. For
this class we have developed a mathematically precise switch-level model, namely
the C-graph and its associated analysis techniques. Given any circuit diagram of
a static CMOS network, one easily obtains the corresponding C-graph. The
behavior of such a C-graph can be analyzed using the methods developed here;
one can determine whether the C-graph is combinational and, if so, find the
boolean function realized by the network. If this is done, one does not need
switch-level simulation to verify that the circuit is logically correct. If the given
C-graph has the structure of a cascade of cells, considerably simpler methods can
be applied, as discussed in Section 4.

A novel feature of our analysis of C-graphs is the fact that intermediate
voltage values at input and internal nodes can be properly handled. This permits
us to distinguish between unknown binary values and intermediate values (X), as
illustrated by the two implementations of the AND function in Section 5. The
use of the third value X also permits us to handle unknown intermediate condi-
tions.

With regard to design, our models form a basis for several synthesis
approaches: (a) using negative-function decompositions, (b) using the decomposi-
tion technique (Figure 6.3) based on transmission gates, and (c) using a mixture
of (a) and (b) as well as “tricky” building blocks like the 6-transistor XOR gate.
These approaches are based on logic as opposed to circuit design, and may need
to be modified by restrictions imposed by the circuit designer. The reader
interested in design techniques is referred to [WE , M 86] for futher discussion.

The methods presented here can be extended to static asynchronous
sequential CMOS networks, along the lines of [YB 84 , YB 85]. Another promis-
ing research direction is the generalization of our model to dynamic CMOS.
Finally, further work is required to improve the efficiency of the transient
analysis of C-graphs (Section 5).

Acknowledgement

The authors wish to thank Professors R. E. Bryant of Carnegie-Mellon
University and T. R. Viswanathan of the University of Waterloo for many helpful
comments.

REFERENCES

Bl Bryant, R. E., "A Switch-Level Model and Simulator for MOS Digital
Systems,” IEEE Trans. Computers C-33, 2, February 1984, 160-177.

[BY 76] Brzozowski, J. A., and Yoeli, M., Digital Networks, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1976.

[BY 79] Brzozowski, J. A., and Yoeli, M., "On a Ternary Model of Gate Net-
works," IEEE Trans. Computers C-28, 3, March 1979, 178-184.

€]
(H]
M 86]
M]

YB 84

[YB 85]

Combinational CMOS Networks 23

Caldwell, S. H., Switching Circuits and Logical Design, John Wiley,
1958.

Hayes, J. P., "A Unified Switching Theory with Applications to VLSI
Design," Proe. IEEE 70, 10, October 1982, 1140-1151.

Mukherjee, A., "Introduction to nMOS and CMOS VLSI Systems
Design", Prentice-Hall, Inc., 1986.

Muroga, S., VLSI System Design, John Wiley, 1982.

Weste, N., and Eshraghian, K., Principles of CMOS VLSI Design,
Addison-Wesley, 1985.

Yoeli, M., and Brzozowski, J. A., "A Mathematical Model of Digital
CMOS Networks”, Research Report No. CS-84-22, Department of
Computer Science, University of Waterloo; August 1984.

Yoeli, M., and Brzozowski, J. A., "A Mathematical Model of Digital
CMOS Networks," 1985 Canadian Con ference on VLSI, Toronto,
Ontario; November 1985, 117-120.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

