Solving Backtracking Problems
with Structure Diagrams

E.S.H. Bulman
D.D. Cowan
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
N2L 3Gl

Technical Report CS-85-40
September 1985

Solving EBacktracking Problems with Structure Diagrams

EeSeHs Bulman and D.B. Cowan

INTRODUCTION

In his book Princinles of Program Design, Jackson (M

devotes a whole <chapter to backtracking. This is a tachnique
that has to be used in cases where the only way to proceed is by
trial and error. He Llooks at several problems, and in each case

draws a structure diagram which he uses to write the program.
He identifies three stages in his development of a3 solution:

1« Trial - picking a given path to start with.
Ze Error =~ making sure that a dead end is reccgnized,

2. Consideration of the side effects created by taking
a path with a dead end, There are three kinds of
side effect:

8. Those that MUST be undone,
be Those that need not be undone,.
Ce Those that should NOT be undone.

As far as programming stage 3 is concernec, he discusses
the side effects, and why they should or should not be undone.,
and then with much reascnings, describes how his program can be
modified to get out of its impasse.

Top~down design assumes that modules exist to don
everything that needs to be done, and this allows a proagrammer to
divide his problem into a series of smaller ones for which he

assumes (for the time being) a module exists, This division
process is continued until the lowest undefined modules consist
of only a few simple operatiors, The contents of all these
modules can be derived from data directed design, The scolution

to Jackson's stage 3 can be found by drawing a structure diagram
(2), and this diagram will identity all the information that must
he available to undo what has bean done, The outout structure
will be the situation that existed at the point that the progranm
started down the cdead end path,.

. - — — . - - . A o —— T Y VR R i G - - — VS WP ek W W U WS A N . e e - —

(1) Jacksone Mahow Principles of Program Bbesiagn, 1975,
Academic Press.

(2 For a description of structure diagramss, see (owanes
CaDeuv Grahams, JoWar Welchs, JoWe and Lucenar, f.J.P.sr A

{

Data~directed Aporoach to Program Construction,
Software Practice and FExperience, vol. 1C, 355-372
(1981), also appendix A, which explains certain

modificaticns which we have used in the figqures in this
report.,

EXAMPLES

We shall examine three problems: the Eight Gueens, the
Knight's Tour and the updating of a direct access file in real

time. Aswill be apparent, all three involve backtracking, and
we shall attempt to find one structure diagram that can be wused
for all of them. We shall examine the first problem in some
detail in order to see the development of the solution. In the

case of the last twor less detail will be necessary, since the
development of their solutions is very similar to that of the
first.

IThe Eight Queens

To start with, we shall <consider the problem of the
Fight Queens and show first how the main proaram is developed,
assuming that a backtracking algorithm exists. Then we shall
develop this algorithm, ageain by using a structure diagram.

£ight queens are to be placed on a chess board in such a
way that ncone of them are in check (being in check is defined as
one gueen being on the same rows column or diagonal as another),
Most programs for solving this problem look fcr all possible
solutions. Since we are merely demonstrating a technique for
handling backtracking, we shall stop when we have found one solu-
tion. The algorithm we shall use is very simple. The first
queen will be placed in the first row of the first column. Then
for each of the following columns, a queen will be placed on the
first wuncovered square (uncovered meaning that no queen 1is
already checking that square), When no uncovered sguare exists
for a3 particular column, we must hack up one column, and move its
gueen to the next uncovered sguare, and continue from that pnoint

as though the previous path had never been tried. Since there
may be no uncovered squares remaining in a previous column, it
may be necessary to bhack up more than one column, The input and

output structures for this algorithm are shown in Figure 1,

Like the algorithm, the structure diagram for the main
program is gquite simple. It should be noted that although there
are structures for columns and rows, there 1is nothing for
diagonals. It s clear that given a column and a rcws we have
identified a square which must be associated with exactly two
diagonals. We shall in fact keep a table which will didentify
the twe diagonals passing through each square (aven if one of
them is only of length 1). If a square is available, that means
first of all that no gueen is on the same row of another <column,
and next that no queen is on one of the dijagonals that passes
through that sqguare. It is clear that the output structure is
identicals, even thouagh the names of some of the structures
differ,

The two structures LAST ROW and NOT LAST ROW need a
Little explanation, Because we c¢can only work by trial and
error, if we cannot place a queen on a particular rows, then we
must try the next one, if there is one, If there is nots, that

-2 -

means that we have tried the last row (unsuccessfully) and
therefore shall have to back up. This is an acticn that 1is an
exception to the normal running of the program, and therefore
must be represented by an "exception” structure. This s why
LAST ROW has to be distinguished from NOT LAST ROW, Writing the
program is now very simple, and follows the complete diagram 1in

Figure 2. For every column, one of three thinas can haopen,
I1f there is a row uncovered, the queen is placed on 1it. If a
row we try is covered, but is not the last one, the next one must
be tried. Finally, i1f the row that is causing the problem s
the Llast one of the column, it will be necessary to back up.
PLACE GUEEN takes care of the uncovered row situation’ the

control point B creates a loop which looks after roving from one
rocw to the next; and the black box BACK UP handles the Last
possibility. We shall now look into this.

We shall use a structure diagram for this purpose and it
appears in Figure 3 (3), It should be stressed that even though
they are not the same, both this diaaram and the one in Figure 1
represent the chess board and the position of the gueens. There
are other similarities in the two diagrams. In beth casess, the
hoard is represented hy the structures COLUMN and ROW,.
Furthermore, in both we are interested in an available row. At
the same times, there are important differences. In the main
diagrams, we need to be able tc examine all the rows of a column,
whereas in RBACK UP, only two are of interest: the one where the
queen iss, and the next untried row. Moreovers, sirce the actual
trial of this second row will take place in the main diaaram.,
that is to sayes when BACK UP returns, there 1is no need to
distinguish a covered row from an available one. The structure
TABLE OF DIAGONALS COVERED that precedes COLUMN may seem a Llittle
nodd, however it should nct be forgotten that a taeble created to
solve a problem may well he input data for a sub-rcutine.

When it is necessary to back ups, it is because there is
no square available in the current column, and therefore the
configuration established wup to the present column must he
changed. This means that the queen in the previcus column will
have to be moved. To do this, first of all we must go back to
that column, This 1is achieved by decrementing the column
cocunter, Then the gueen must be removed so that it can be
placed on the next available row. The removal itself obviously
belongs to the structure RCW WITH GQUEEN, If there is still an
untried row in the column, it must be tried. Setting ROW to the
value of one more than that of ROW WITH QUEEN and returning to
the main program will take care of this. At that time, things
will continue as though that point had been naturally from the
beginning. As we mentioned earlier, if there are no more

- . A . SN D mh A S G M G g e e S A A Gwe e K S e WA N SR M G W N S M W A - P S AN W S g e o A

(3) There should be diagrams for both PLACE QUEEN and BACK
UP, however since the only one we are interested in for
generalization purpcses 1is RACK UP, we shall assume
that PLACE QUEEN is an operation that has already been
properly defined,

- L -

untried rows in the column to which we have backed up, it will be
necessary to back up another column, This may have to continue
all the way back to the first column, What we have here is a
recursive action, but one that we can implement as a loop (the
structure COLUMN),. The <control for this loop is: FOR FACH
COLUMN (GOING BACKWARDS) UNTIL A NEW ROW IN THE COLUMN CAN BE
TRIED. The complete diagram for BACK UP is to be found in
Figure 4 (4).,

The Kpight's Iour

In the Knight's Tour, the knight 1is placed 1in an
arbitrary position on the chess board and has to visit all the
squares once only (5),. Again, we use 3 simple algorithm, When
the knight is placed on any sauare, a descriptor of that sguare
is modified to show that it is occupied, If the krnight is placed
on a square whose successors are all occupiedr, it has found a

dead end and must try another path. The easiest thing to do is
to go back to its predecessor, and try that square's next
successor. If that predecessor has no more untried successorss

then the knight must g0 hack another move and try the next
successor of its predecessor's predecessor; and sc¢ on,

The —complete structure diagram appears in Figure 5. A
few comments will be helpful. The input structure dincludes a
"successor table"™ which 1is used to <create a table of sguare
descriptors (6), Each descriptor contains, in addition to the
number of successors and their coordinatess, an indicator showing
whether the sqguare is already cccupieds, the identity of its
predecessor and the identity of the last successor tried, iJ.e.
where the knight was before it moved from this sqguare. Like the
table of diagonals covered in the Eight Queens, the descriptor
table itself 1is not dnput to the main program, neither is it
output, however it is used in the operation MOVE KNIGHT and again
in BACK UP. (We have only drawn the structure diagram for BACK
UP, and in thise. the descriptor table appears as input under the
name of STATE.) The other input data describes the chess hoard
itself, Since the problem again deals with a chess board, the
basic diagram resembles that of the Eight Queens problems in that
the board is again divided into squares (although not in the same

way). Another resemblance is the fact that the availability of
a square is JIimportant and therefore it is necessary to
distinguish between avalailable and unavailable successors, The

- ————— - " G - T A T M . S - W P VI s e A WS W P R e W S WU L e W S A AN G M e Ao e

(4) In all future 2xampless, we shall not show a separate
input and output diagram since these structures appear
clearly in the complete diagram,.

(5) One wversion of this problem requires the knight to
finish on the square that it started from.

(8 It would have been possible to formulate an algorithm
to calculate the successors of each saquare, and this
would have made it possible to write a general program
for <checuer boards of an arbitrary size. We used 23
table in order to simplify programming.

- 5 -

output structure is exactly the same as the input one except for
the successor table which is not changed (it is only used to

create the descriptor table), When the actions are added to
complete the diagram, they are added to the structures which
correspond to those in the Eight Queens diagram, Where PLACE

QUEEN was includeds in the Knight's Tour diagram we find MOVE
KNIGHT, and din the same way that BACK UP was only used when the
last row was occupied (LOVERED) in the Eight Queens, the same
operation only appears in the Knight's Tour when there are no
more successors available.

When we come to the diaaram for the operation 3ACK UP,

Wwe see that thera is an interesting difference. In probhlems
involving back wups, information has to be kept about the point at
which the backing wup will stop. Furthermore, the effects of
moves made after that point, but which led to the cul de sac,
have to be undone. Only when this has been done, can a new path
be started from the point which the backing up has reached, In

the <case of the Eight Queens, because moves were controlled by
loopss, the appropriate changes could be made by decrementing the
column counter cor incrementing the row counter; in addition,s, the
special table maintained to Llook after diagonals had to be
corrected, In the Knight's Tour, because all information about
successors is kept in the descriptor table, this s the only
structure that can be used to make the proper adjustments, The
complete diagram for BACK UP appears in Figure 6. The relevant
information of the descriptor of the square appears in the struc-
ture STATE.

Updating a Eile in Real Iime from Multiple Iransactions

In the final example, we are asked by a business to
write a program to process transactions affecting a master file

organized to allow direct access, There are four kinds of
transaction: open a new account, send an invoice receive 2
payment., clecse an account. Any given customer makes zero or
more transactions during the days, and they are to be processed
immediately. Obviously, <¢ertain transactions are illogical.

For example, if a customer already has an account numbered 22227,
he cannot open a new accounts, number 2222 (there is, of course
nothing to prevent him from opening another account with a
different number). There are several kinds of illogical
transaction and the business has asked us not to process ANY
transactions for an account for which there is at least one
illogical onre. Since transactions have to be processed in real
time, there is a paradox. Several seeminagly good transactions
may be processed before the first illegical one occurss and this
means that the ones that were processed ought not to have been,
When the dllogical transaction is discovered, all the transac-
tions for that customer that have already been processed that day

will have to be removed. It will be necessary once again to
provide for backing up over those transactions which had been
thought to be good. There are two ways of looking at this.

The master file can be thought of as containing a number

- 4 -

of "super records”, each consisting of a group of transactions
and a master part (which may be empty to start with i.e. when a

new account is opened),. These records are either good or bad.
Jackson (7)) wuses a "nposit'" constructions, which supposes that a
record is good until it is onoroven bad. When that occurse

control "quits'" that opart of the program that processes good
recordss, and is "admitted” to another part that processes bad
ones.

The second way of looking at the problem is in the same
mannear that we looked at the gqueens and the knight. We advance
along a given path until we are stopped and then we back up to a
point that we recognize as heing acceptable. Instead of having
a process driven by records, we shall use a transaction driven
one. ALL transactions are either good or bad, and will be
treated accordingly. The structure diagram for this is to be
found at Figure 7.

To back ups, it is necessary to put the record in the
master file back to the state it was in before any transactions
were received for it at all. To do thiss, a recorac must be kept
of all transactions so that if necessary (and this may not be
known until the end of the day) they can be undone, An easier
method is to make a copy of the master record before the first
transaction is processed., If it is necessary to back ups, the
cdrrent master record c¢an be replaced by the copy of the
original. We have used the second method, however as we shall
see, the first method conforms to what might be called the
"standard diagraem”" for backtracking. The diagram for the BACK
UP we have used is in Figure %,

ANALYSIS

In all three of the above examples, the essential part
of the main diagram can be modified so that one structure will

serve for all three. This structure 1is shown in Figure 9.
There are really only two kinds of transactions, acceptable ones
and unacceptable ones, It is the latter that force us to back
Upa The control points A and R describe what is acceptable and

what i1s not:

Eight Queens
A IF ROW AVAILARLE
B: IF LAST ROW AND NOT AVAILABLE

Knight's Tour
A IF NEXT SUCCESSOR AVAILABLE
i~ IF NEXT SUCCESSOR IS LAST AND NOT AVAILABLE

File Update
A: IF GOOD TRANSACTION
B: IF BAD TRANSACTION

- - - - w— . v WS G A G VD M W W S W R WS G G n G s Se G e G e W W R e M M Ae W W A W N MRS R e e s -

It should be noted that in the case of the file update.,
because all bad transactions (for a particular customer) after
the first are handled in the main diagram, Figures 7 and 9 do not
resemble each other as cleosely as they could have. Two types of
unacceptable transactions have been distinguished: the first
(for a customer) and all the others (for the sames customer). If
the treatment of the latter had been included in BACK UP, the
diagrams would have heen similar, As we shall see, this would
have <created a difference in the generalized BACK UP diagram,
The problem is caused by the fact that even though we have backed
upes wWe must Look at any other transactions that may occur
subseguently for the same customer,

Backing up

In atl three problems, the action of backing up imnlies
two things: first, finding the point where the back up can stop
and a new path tried; seconds, removing all trace of the moves

from that point which led to the cul de sac. In the case of the
Eight Gueens, modifying the loop counters locates the square to
which we want to back un. it also removes some of the traces of

the "bad" moves,» in that resetting the column and row counters
automatically eliminates moves made past the the back up point.
Changing the diagonal table has to be done explicitly. In the
Knight's Tour., there is no automatic adjustment. Every time 2
back up is carried outs, it is necessary to change the descriptor
of the square or squares on the path leading to the cul de sac.
Actually, in both casess for each square backed ups, what was done
was simply the opposite of what was done when the original move
was made. This s dillustrated more clearly din the third
example,

In &any backtracking problem, it is possiktle to describe
the point or the situation to which the bhack-up must return.
The logically correct way to find this point is to undo all the

previgus transactions in the reverse order., In the file
processing problem, if we keep a record of all the transactions,
we can do this. However, since we know this point ahead of time

(it 1is always the master record at the beginning c¢f the day), we
can make a ccpy just before the first transaction for that record
is processed, and use that as a short cut. In spite of apparent
differences, the basic structure of the three oprchlems is the
same, We only use a copy of the opening state as an optimiza-
tion, Figure 10 shows clearly the essential details of the
generalized BACK UP diagram, It must be stressec that although
this diagram serves as a foundation, other structures may be
added, depending on the circumstances. For example, it is
probable that in the file updating problem, a report would be
produced, showing all transactions affecting a "bac" record. In
fact, this is what we did in Figures 7 and 2. The enly —changes
required to Figure 10 would be the addition of output structures
REPORT and DETAIL corresponding to RECORD OF ACTIVITY and
TRANSACTION respectively. There would alsc te an operation
PRINT DETAILS associated with the structure TRANSACTION.,

I1f we had decided to handle all transacticns after a had
one in BACK UP» the generalized diagram of Figure 10 would have

had to be modified. It would have been necessary to distinguish
those transactions (if any) which were processed before the first
bad one, from those that might arrive after, It is clear that

this distinction has to be macde in one of the diagrams, but it
not so clear which one should be chosen.

CCNCLUSION

We have presented three different problems and developed
one main structure diagram and one subsidiary diagram that can

serve for all three, In many wayss, the Eight Queens and the
Knight's Tour are the same problem, however there is a subtle
difference, In the first <cases the Queen could not be moved

until its target sguare was verified, whereas in the Knight's
Tours, the Knight was moved and only then was the successor sguare
checked, The file wupdate problem showed how a sufficient
history might have to be maintained in order to undo the previous
operations in the reverse order (even though it is possible to
short circuit that by using a copy of the starting point).,

It is suggested that the two generalized ciagrams can be
used for all types of backtracking problems. This simplifies
the work of the programmer, and enables him to concentrate on the
question of what information must ke kept in order to undo those
operations that led nowhere.

We have deliberately not tackled the guestion of side
effects that should not be undone, This s because these
usually have to do with optimization of subsequent operations.,
Since we are trying to develop 2 generalized method that will
make programming easier for less experienced users, simplicity of

the method itself is the prime consideration, Only when a
simple, clear program that works has be written should optimiza~-
tion be considered., Even then, this should only te done if the

circumstances warrant 1it.

EIGHT QUEEN’S - .INPUT AND OUTPUT

- |

77" COVERED
, EMPTY

COLUMN

AVAILABLE
OCCUPIED

()
|
i
!
{
I
'
i
I
]
!

O\

COVERED
EMPTY

? ._qu;késqunLr_—:r<:;\
{ ‘)

AVAILABLE
OCCUPIED

L*)
N\’ CHESS BOARD - START
CHESS BOARD - FINISH

FIGURE 1

EIGHT QUEEN'S - COMPLETE

/f‘ii COLUMN
* i

HSINI4 - @dv0g SS3IH)
LHYLS - @v0d9 SS3H)

TOTMMUOUOm >

o
a31dn320

BACK UP

PILACE QUEEN

GV TIVAY

o =

O = mao
Q> =0
< = T <<
- 33
m& || PLACE QUEEN 7
U; (e

FOR EACH COLUMN

FOR EACH ROW

IF LAST ROW

IF NOT LAST ROW

IF SQUARE NOT COVERED
IF SQUARE COVERED

IF SQUARE NOT COVERED
IF SQUARE COVERED

FIGURE 2

EIGHT QUEEN'S: BACK UP - INPUT AND QUTPUT

i

|

| INVISIBLE
_TABLE_OF SQUARES: DIAGONALS

|
'

_TABLE_OF DIAGONALS COVERED

L

COLUMN
*/r T R s S———
.
[X =
oot s (]
mm =
w N
wwn = \
M NONE
W w = ? F
[Nen] '
= = L]
[o
(e] m =1
m —
P = =1
=
L e | [
— 0 =
wv - Q.
= =1
!
i1
1]
I

FIGURE 3

EIGHT QUEEN’S: BACK UP-COMPLETE

INVISIBLE
JZTABLE OF SQUARES: DIAGONALS

TABLE OF DIAGONALS COVERED
Fj

C*\L COLUMN
- ~
=
=
- 5} NONE
o 7 =
z ! 7
o = || REMOVE QUEEN =2 §
& m S
o O ™~
§§ ggil =
= o
] “
w “
_.:; 1
prw)
—

ABJUST TABLE OF
DIAGONALS COVERED

FOR EACH COLUMN (GOING BACKWARDS) UNTIL
A NEW ROW IN THE COLUMN CAN BE TRIED

IF NO UNTRIED ROWS

IF AT LEAST ONE UNTRIED ROW

FIGURE 4

KNIGHT'S TOUR

FIGURE 5

INVISIBLE
SUCCESSOR _TABLE
1 SQUARE
")
-~
o C
== " AVATIABLE
m !
w =
nl, =2
(v [y m
o O
s o H =
x m =
o wn !l —t
(%2 o
O 1y T
= 5
7
it
i
. UNAVAILABLE
D F
? ? - =TT = :."..‘@
. - -/
— =
> o
w =
-—.l
—
a.
BACK_UP —
A: FOR EACH SQUARE IN THE TOUR
B: FOR EACH SUCCESSOR
C: 1IF SUCCESSOR AVAILABLE
D: IF SUCCESSOR NOT AVAILABLE
E: IF LAST SUCCESSOR ‘
F: IF NOT LAST SUCCESSOR

quvoa SS3H)

KNIGHT'S TOUR: BACK UP

SQUARE

UNOCCUPIED
OCCUPIED

JLvIS

PREDECESSOR

LAST SUCCFSSOR TRIED

REMOVE KNIGHT

ADJUST STATE

A: FOR EACH SQUARE (GOING BACKWARDS) UNTIL
- A NEW SUCCESSOR CAN BE TRIED

FIGURE 6

FILE UPDATE - REAL TIME

WRITE MASTER

REAL

Q}K DUMMY
1
=,
(/')'
ALY
L)
]
)

READ TRANSACTION

OUTPUT

FIGURE 7a

BACK UP
= [ERR-FLAG =T &
= E
L 'REPORT I REPORT
=3 I — A - 1
LT o= = -
e BAD
: ERROR
= !|
o I
5 g " =
a < 1 = _[[CREATE ©|"UPDATE = || UPDATE wll CREATE
& = 1) WHREAL o = S|l DUMMY
(&) § L o = P
L - b= = |
oz L w It (</c, o i d
t —— (e D= T 2 T C\-:‘.'_‘::@:—_:;‘.:E\Dz
<
™ GOOD
g:': - REGULAR
L * \
_~/ TRANSACTIONS
3 REPORTS
=
(48]
§ MASTER-COPY = MASTER
=
= READ MASTER
5| <
o ‘/*'\r
N—" INPUT

O

m " & = T o M mo

FILE UPDATE - REAL TIME

CONTROL POINTS

WHILE ID-TRANS # 999
WHILE ID-TRANS = ID-MASTER

IF (MASTER
(MASTER

NOT C
IF TRANS-TYPE
IF TRANS-TYPE
IF TRANS-TYPE
IF TRANS-TYPE
IF ERR-FLAG
IF ERR-FLAG

1]

REAL AND TRANS-TYPE = (INVOICE, PAYMENT OR CLOSE))
DUMMY AND TRANS-TYPE = OPEN)

F
T

OPEN
INVOICE
PAYMENT
CLOSE

IF MASTER = DUMMY

IF MASTER = REAL

FIGURE 78

OR

1ndino
1NdNI

FILE UPDATE - REAL TIME: BACK UP

MASTER

MASTER-COPY
=
w
—
m
=

]

=
=
w
-
m
T
(]
o
B
-

PREVIOUS TRANSACTIONS

A B
= ? Fo-—=—=o ? =
= O
e =
™ S AL C petarLs
=) *\,
= =
S
v
=

A: IF NO PREVIOUS TRANSACTIONS
B: IF PREVIOUS TRANSACTIONS
C: FOR EACH PREVIOUS TRANSACTION

FIGURE 8

MAIN DIAGRAM

1nd1no
1NdNI

1Nd1ino
1NdNI

" TRANSACTION
A B
Qz —s s = === ?
| :F
3 =
F 3
;' PROCESS "-G BACK UP
=2 ~
= s
m
FIGURE 9
BACK UP
INVISIBLE
RECORD OF ACTIVITY
A
#*
I
UNDO

NOTLJVSNYYL JTGISIANI

ORIGINAL STATE
STATE

A: WHILE STATE UNACCEPTABLE

FIGURE 10

APPENDIX I
STRUCTURE DIAGRAMS

Cowan et al. 1 use three typnes of control point

symbol: a c¢ircle contairing an asterisk (repetition), a circle
containing a guestion mark (alternative) and a circle containing
a semi-colon (element of a tuple), In the last case, we merely

show the s2lements of a tuple as straight lines at right angles to
the parent structure.

Usuallys, three diacrams are drawn: the structure of the
input, the structure of the output and the programrming instruc-
tions (operations). We only use two types of diagram: one that
comhines input and output structures, and a complete diagram i.e.
programming instructions superimoosed on an input cutput diagram.
In order to differentiate between input and output structures and
operations, the former are drawn with a double Line, and the

latter with a singlz line, The name of a horizontal 1input
structure appears directly above it, and that of a vertical one.,
immediately to its left. If the name of the output structure is

the same as that of the input name, it is not showre, but 1f it 1is
different, it appears above the "horizontal" name c¢r to the LlLeft
of the "vertical'" one. In cases where there is no output or
input structure corresponding tc an input or output structure, an
"invisible™ structure is drawn and carries the name INVISIBLE,
The names cof operations appear either above or to the Lleft of
them.

— - - . — " - o - ——— A S - 4> Suh N W - e e G G R S e M M M e e e ems -

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

