The design and implementation of a package for
sparse constrained least squares problems

Alan George
Esmond Ng

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

CS-85-39
August 1985

The Design and Implementation of a Package for

Sparse Constrained Least Squares Problems®

Alan George

Esmond Ng

Department of Computer Science
University of Waterloo
Waterloo, Ontario, CANADA

August 22, 1985

ABSTRACT

This report describes the design and implementation of a
mathematical software package for solving large sparse overdetermined
systems of linear equations, possibly subject to sparse linear constraints.
The algorithm used is due to Bjorck [1], which in turn is derived from
basic algorithms described in [3] and [14]. The algorithm is very general
in that rank deficiency is allowed in both the equations and the
constraints, and the constraints need not be consistent. The package is
implemented in a portable subset of ANSI-66 Fortran, and is distributed

under license by the University of Waterloo.

* Research supported in part by the Canadian Natural Sciences and Engineering Research Council under
grant A8111.

Table of Contents

BTSN 5 %75 oo Yo R0 10 7 Te 3 « AU

2. Reduction of sparse matrices to upper trapezoidal form using Givens

o3 7F: 173 L + 1= SR PP O PUPPPTN
2.1. The basic algorithim ..o e e e seae e ee e
2.2, Effect of column ordering ..ot v e e e
2.3. Effect of TOW OTAEring ...cccccuiiiieiiiiiiiiiii it eeteeees s eraeesseessenensennesannnas

2.4, SUININATY circieiiiineiiriieiieneeeteenaaenesaeraesseensesrnsesrsssssrasssansserasssssasssasssserssssnnsssnanes

4. An algorithm for solving general sparse constrained linear least squares

93 0] o3 =5 o o LSOO O O
Stage 1: reduce sparse constraint equationsc.ccccooiiiiiiiiiiiiiiiiiievien e,

Stage 2: process dense constraint equations and compute residual of the

sparse constraint equUAtIONSccccviieiiiiiiiiiiiceic et er e rae e nneeeanaeee
Stage 3: reduce sparse least squares equationscc.ccceeevveiviiiiiiiiiniiieneeeeenennn.

Stage 4: process (modified) dense constraint equations and dense least

SQUATES EQUALIONIS ...ciiieiiiieniiiieiieireiereteaerrenterranerreaseeanesernensrennssresasesnssrennssesnssennnens

Stage 5: compute the minimal norm solutionccccovveeriiiiiiiiiiiiiiiieinieinneee.

5. The design of SPARSPAK- B ...ttt eerenese s seneesenne s ennessssnsennenns
L5 M N TN 00} =) o - X o1 = SR

5.2. The main interface SUDTOULINES ...ocievirieiiiiii i eeeesneaenas
Step 1: INItIalization ... e e e e e reas

Step 2: problem INPUb ... e s e

~11 -

Step 3: column OPdEringccvuiiiiiiieiiiirieiieeeeee e e crenr st ee s eneraernnssannns 34

Step 4: TOW OFdErINE ...ciiuiiiiiiiiiiiec e eea e raee e sea e ee s e s raeeanseanasnnnns 34

Step 5: SOIULION ..uiieeiiie e e e e e s s e ra e e e anaes 35

5.3. Other interface subroutinesccoceiiiiimiiiiiiiiciiicrrc e eeenees 35
Residual computationccoiiiiiiiiiiiiiiiiirnr e e ern e e e ees 35
STALISTICS it re s s s e e e e saee 35

Save and Testartc.ccciiiiiiiiiii e 36

6. Concluding remarks ...ttt rree s ea e eareene e s eaneenns 37

e RO OI OIICES ottt ittt eteaetsesnssaracassarasasnssasssassasnsessesasnsessenseasnsessssnsasnssnnn 38

1. Introduction

In this report we consider the problem of solving the large sparse linear least

squares problem
mn 1X8-v | . (8

where X is m Xn, with m >n, and y and B are vectors of appropriate dimensions. A
basic technique for solving (1.1) is to transform X to upper trapezoidal form using
orthogonal transformations, such as Givens rotations or Householder transformations
[12]. That is, we first determine an m Xm orthogonal matrix @ and an nXn upper

triangular matrix R such that

R

QX = O

We shall assume for the moment that X has linearly independent columns. Thus, R is

nonsingular. Since

R
Ixg—yl = lexB-—9) = l|plf-Qvl

the least squares solution to (1.1) is then given by the solution to the triangular system
R = ¢
where ¢ contains the first n elements of Qy.

In [3], George and Heath describe a scheme for transforming a sparse X to upper
trapezoidal form by applying Givens rotations to the rows of X. As we shall see in the
next section, efficient implementation of this algorithm relies heavily on the
assumption that the symmetric positive definite matrix XTX and its Cholesky factor
are sparse. This assumption usually holds when X is sparse, and in instances in which
the assumption is false, it turns out that there are usually a few relatively dense rows
in X that cause XTX and its Cholesky factor to be dense. A technique which has

been found to be effective for handling such instances is to partition X into

A

X=B

so that A and B contain respectively the sparse and dense rows of X. We assume A

is m;Xn and B is myXn. Thus m=m;+m,. Let y be partitioned accordingly

Ya
y = Yp)

and assume A has full column rank. Suppose we first solve the sparse linear least

squares problem
min A8 ~y4 Ik (1.2)

using the approach described in [3]. Then the solution to (1.1) can be obtained by
modifying the solution to (1.2) using B and yp. Algorithms for performing the
modification are described in [3,14]. These algorithms assume that the sparse
submatrix A has linearly independent columns, but of course this need not be true in

general even if X has full rank.

In some applications, there may be some a-priori (linear) relationships among some
of the unknown variables 8y, By, - -, B,. Thus it is appropriate to consider the

constrained linear least squares problem
min 1X8 - I,

subject to YB = =z (1.3)

where Y is pXn and z is a p-vector. As in the previous case, some of the least
squares equations may be sparse and some may be dense. Similarly, the constraint

equations may also be partitioned into sparse and dense portions

-7

where E is p;Xn and F is pyXn. That is, p;+py=p. The p-vector z will be

partitioned accordingly

- 2]

In [14], Heath has proposed an algorithm for solving (1.3). The constraint equations
are assumed to be consistent and are treated as dense, and the algorithm requires A to

have full column rank.

In some cases, the constraint equations may be inconsistent. Thus, in general, it
is more appropriate to consider the following general constrained linear least squares

problem

M xg
g I x8—vy |l

where (1 = {ﬂ I B minimizes || Y8 — 2 "2 } (1.4)

Again, each of the least squares equations and the constraint equations may be either
sparse or dense. In [1], Bjorck has proposed an algorithm for solving (1.4). This
algorithm not only handles sparse and dense least squares equations and constraint
equations, but also makes no assumptions about the ranks of the matrices X, Y, A, B,
E, and F.

The purpose of this report is to describe the design and implementation of a
FORTRAN package SPARSPAK-B for solving (1.4) using Bjorck’s algorithm. The
package SPARSPAK-B is efficient (in storage requirement and execution time) when
the following assumptions hold. First, the number of dense least squares equations and
constraint equations is small; that is, m, and p, are small. Second, the rank deficiency

g |
in E is small. If m, and p, are large, or if the rank deficiency in E is large, the
overhead in both storage requirements and execution times may be so large that it may
be more beneficial to treat the whole problem as dense and to solve (1.4) using a

standard code for dense problems.

It should be noted that Bjorck’s algorithm works even if m<n or p>n.
However, if m <<n and p <n, the storage and execution time required may also be
large and it may be more advantageous to use other schemes to solve (1.4). In [4],
alternate algorithms have been proposed to handle the case in which m <<n and p =0.
It has also been demonstrated that considerable improvements can be achieved by

using these alternate algorithms.

An outline of the report is as follows. In Section 2 we review the basic approach
used in reducing a sparse matrix to upper trapezoidal form, and in Section 3 we
describe the data structures employed in SPARSPAK-B. In Section 4, Bjorck’s
algorithm and its implementation are described. In this section, specific details are
provided concerning the way information is stored and managed in SPARSPAK-B. A
set of interface subroutines which insulate the user from the internal structure of
SPARSPAK-B is described in Section 5, and finally, some concluding remarks are

provided in Section 6.

2. Reduction of sparse matrices to upper trapezoidal form using Givens

rotations

2.1. The basic algorithm

Let X be an m Xn sparse matrix with full column rank and consider the solution

of the unconstrained linear least squares problem
min Ix8—-y . . (2-1)

A standard technique for solving (2.1) is to reduce X to upper trapezoidal form using

orthogonal transformations

R

QX = 10

where R is an nXn upper triangular matrix and @ is an m Xm orthogonal matrix.
One way of computing R is as follows. Let RO=0 be the nXn zero matrix. A

sequence of n Xn upper triangular matrices
{R(l),R(Q)’ oo R }

is then computed, where R™®) is obtained by annihilating the nonzeros of the k-th row
of X using Givens rotations constructed from the diagonal elements of R*-1) [3]. Note
that these rotations can be applied simultaneously to the vector y and therefore need
not be saved. Furthermore, the rows of X are accessed and processed sequentially.
Thus it is not necessary to store X in main memory since the rows can be stored in
secondary storage and read in one at a time when they are needed. This makes the
approach described above attractive for large and sparse problems. Moreover, in

practice, the matrix X is often generated row by row.

Another important aspect of the approach described above is the way in which

sparsity is exploited for large problems. Note that

— pT
ol = RB'RE

xTx = x7QTgx = [RT 0] B

This shows that R is in fact the Cholesky factor of the symmetric positive definite
matrix X'X (apart from possible sign differences in some rows). Assume that X7X
and its Cholesky factor R are sparse. It is well known that the structure of R can be

determined efficiently from the structure of XTX [6]. Such a process is commonly

5

referred to as the symbolic factorization of xTx. Knowing the structure of R allows
a data structure or storage scheme which exploits the sparsity of R to be set up prior
to the numerical computation, which can then be performed using that static storage

scheme.

The discussion above only shows that a storage scheme for the final upper
triangular matrix B can be set up by symbolically factoring XTX. We also need space
to accommodate the nonzeros in the intermediate upper triangular matrices R),
However it can be shown that a data structure for the final upper triangular matrix R
is also large enough to accommodate the nonzeros in each of the intermediate upper
triangular matrices RK) [3,18]. Moreover, the computation can be organized in such a
way that R* =1 ¢can be overwritten by R®). Hence by using the (static) data structure
for R, we can then process the rows of X one at a time and compute the upper
triangular matrices R(l), R(Q), -+ -, and RM=R.

At this point, it is appropriate to summarize the solution process which is

proposed by George and Heath [3].
(1) Determine the structure (not the numerical values) of X7X from that of X.
(2) Symbolically factorize XTX, generating a row-oriented data structure for R.

(3) Compute R by processing the rows of X one by one using Givens rotations.

Apply the Givens rotations to the vector y simultaneously.

(4) Use the upper triangular matrix R and the first n elements of the modified

vector y to compute the least squares solution.

A few remarks are in order. First, even though R is (mathematically) the
Cholesky factor of XTX, we never form X1X explicitly; R is computed from X using
orthogonal transformations (Givens rotations). Second, the data structure is row-
oriented because of the way in which the elements of R are accessed. Third, secondary
storage can be used easily and in a natural manner. Fourth, since the first two steps
in the solution process depend only on the structure of X, it should be clear that the
data structure obtained in step 2 is independent of whether the matrix X has full
rank. That is, even if the columns of X are linearly dependent, we can still determine
a storage scheme for R by treating X as if the columns were linearly independent.
This is reasonable since we only make use of the structure of X at this stage. Then we
can compute the upper triangular matrix R using the static data structure, although R

is now singular.

Recently, Liu has proposed a new scheme for computing R using Givens rotations
[16]. Preliminary experiments indicate that the new approach is comparable with the
George-Heath approach in terms of storage requirements, and its execution times are
often better than the latter approach. The incorporation of this new scheme into
SPARSPAK-B is under investigation.

2.2. Effect of column ordering

Suppose P, is an n Xn permutation matrix and consider the matrix XP,. We
assume again that X has full column rank. Let R denote the upper triangular matrix
obtained when XP, is reduced to upper trapezoidal form using Givens rotations. From

our discussion in Section 2.1, we have
R'TR = (xp,)I(xP,) = PIxTX)P,

When X7TX is sparse, it is well known that the sparsity of R depends not only on the
structure of XTX, but also on the choice of P,. Thus, in order to reduce the amount
of space required to solve the problem, P, should be chosen so that R is as sparse as
possible. However, the problem of choosing the best P, turns out to be very difficult
[20]. On the other hand, there are many efficient heuristic algorithms for choosing P,
such that R will tend to be sparse [3]. In SPARSPAK-B, the column permutation P,
for X is determined using the minimum degree algorithm which is an effective
algorithm for generating a P, so that R is sparse. The technique of multiple

elimination is employed to improve the execution time [17].

2.3. Effect of row ordering

Suppose P, is an m Xm permutation matrix and consider the reduction of P, X to
upper trapezoidal form using Givens rotations. Let R denote the upper triangular

matrix obtained. Note that
R'TR = (P.xX)T(P.x) = XT"(P'P)X = X'X = R'R

When X has full column rank, R=R (at least mathematically). This shows that row
permutations P, have no effect on the structure of the fimal upper triangular matrix
R. However, P, may affect the structures of the intermediate matrices. This may

have a significant impact on the number of rotations and operations, and consequently

the execution time, required in computing R [10,18].

7

For certain column orderings, it is possible to characterize row orderings that
would tend to reduce the execution times [7,8,9,10]. However, the problem of finding
a good P, to reduce the execution time in general is not well understood. In
SPARSPAK-B, several row ordering options are provided. See [11] for details.

2.4. Summary

In this subsection, we summarize the major steps involved in solving a sparse

unconstrained linear least squares problem.

(1) Determine the structure of X7X from that of X.

(2) Determine a column ordering P, for X so that the Cholesky factor R of
XTX is (hopefully) sparse.

(3) Symbolically factorize PIXTXP,, generating a row-oriented data structure
for R.

(4) Determine a row ordering P, for XP, so that the cost of computing R is
hopefully small.

(5) Compute R by processing the rows of P,XP, one by one using Givens

rotations. Apply the Givens rotations to the vector P,y simultaneously.

(6) Use the upper triangular matrix R and the first n elements of the modified
vector P,y to compute the least squares solution. Then permute the

elements in the computed solution back into the original column ordering of

X.

It should be clear from our discussion in this section that it is important for R to be
sparse for efficient solution of large sparse problems. Hence dense rows in X are not

desirable and should be withheld from the sparse orthogonal decomposition.

The structure of SPARSPAK-B is almost identical to the structure of the solution
process described above, with only a few differences. Steps (5) and (6) are replaced by
a single step which implements Bjorck’s algorithm for solving sparse constrained linear
least squares problems. As we shall see in Section 4, instead of working with X in

Steps (1)-(4), we have to work with a matrix containing the sparse least squares and

E
constraint portions; that is, [A]‘

3. Data structures in SPARSPAK-B

As we have mentioned in the previous section, the rows of X and Y can be stored
in secondary storage and read in one at a time when they are needed. For general
constrained linear least squares problems, as we are going to see in the next section,
very often we have to manipulate and modify the dense rows in B and F' at various
points in the algorithm. Thus it is more convenient to store these dense rows in main
memory. In SPARSPAK-B, we store BT and FT (column by column) respectively in
two two-dimensional arrays DSEQNS and DSCONS. The vectors ygp and zp are
stored respectively in two one-dimensional arrays DSBEQN and DSBCON. The
reason for storing BT and FT by columns rather than B and F is that it turns out that
in the solution process, we have to solve numerous triangular systems using the rows of
B and F as right hand side vectors. Thus, for efficient access of the elements of the

rows of B and F, it is more convenient to store BT and FT by columns.

The other quantity we have to store is the sequence of upper triangular matrices
R, The discussion in Section 2.1 showed that all we need is a storage scheme for the
final upper triangular matrix R which can be set up by symbolically factoring xTx.
Since the nonzeros of R are accessed row by row, it is appropriate to use a row-
oriented data structure. That is, the nonzeros of R are stored row by row in a one-
dimensional array called RINZ. (For convenience, we store the diagonal elements of R
separately in a one-dimensional array DIAG. Thus, RNZ only contains the off-
diagonal nonzeros of R.) A one-dimensional array XRNZ of size n+1 is used to point
to the beginning positions of the off-diagonal nonzeros in the rows of R. More
specifically, the off-diagonal nonzeros of row £ of R are found in RNZ(7), where
t=XRNZ(k), XRNZ(k)+1, XRNZ(k)+2, -+, XRNZ(k4+1)—1. We have assumed
that XRNZ(n+1)=p+1, where p denotes the total number of off-diagonal nonzeros
that can be accommodated in the data structure. The column subsecripts of the off-
diagonal nonzeros in RNZ are stored in a compressed format [3,19] in a one-
dimensional integer array NZSUB, and the beginning position of the column subscripts
for row k is stored in XNZSUB(k), where XNZSUB is another one-dimensional array
of size n. That is, the column subscripts for row & of R can be found in NZSUB(j),
for j=XNZSUB(k), XNZSUB(k)+1, XNZSUB(k)+2, ---. The storage scheme
described here is common in the solution of sparse symmetric positive definite systems.

Readers are referred to [3] for details.

The solution vector B will be stored in a one-dimensional array @B which is of
size n. Both @B and RNZ are initialized to zero before the numerical computation

begins.

The arrays DIAG, RNZ, XRNZ, NZSUB, XNZSUB, QB, DSCONS, DSEQNS,
DSBCON, and DSBEQN, together with various working arrays, are allocated from a

single one-dimensional floating-point array (see Section 5 for more discussion).

4. An algorithm for solving general sparse constrained linear least squares

problems

We now describe our implementation of Bjorck’s algorithm for solving a general

sparse constrained linear least squares problem. We first re-state the problem we want

1 [a- L)
min I8y, |

E 2E
where 1 = {,3 Iﬂminimizes I [F]ﬂ - LF] "2}

to solve:

(4.1)

The matrices A and FE are sparse, and B and F are dense. The row dimensions of A,
B, E and F are respectively my, mo, p; and p,. We assume that m,<<m,; and
py<&p,. The size of B is n. It is assumed that the ordering of the unknown variables
By, By, -+, B, has been fixed. That is, the column ordering of A, B, E and F is

fixed. Furthermore we assume a static storage scheme for R has been set up, where

R'R = [ET AT][ﬂ

There are no restrictions on m, my, p;, po and n. For example, m, and p; could
be zero while m; and p, are nonzero, or m; and mqy both could be zero, with p; and p,
nonzero. Of course, in practice, the second example may not make any sense, but
nevertheless, the algorithm and the package SPARSPAK-B are capable of handling this
peculiar case. (The package will treat the constraint equations as least squares
equations in this case.) The only restrictions we have in SPARSPAK-B, which we
believe are reasonable, are that the number of sparse (least squares and constraint)

equations m;+p,; and the number of unknowns n are nonzero.

- 10 -

Another important feature of Bjorck’s algorithm is its ability to handle rank
deficient problems. More specifically, the algorithm makes no assumptions about the
ranks the various matrices A, B, E and F. Hence there is a possibility that problem
(4.1) may not have a unique solution, in which case the package will determine the

solution that has the minimal Euclidean norm (the minimal norm solution). In

E
SPARSPAK-B, we make the reasonable assumption that the rank deficiency in [A] is
small.

The algorithm may be broken up into five stages which are described below. In
the actual implementation, we have a FORTRAN subroutine for each stage (which
may invoke other subroutines as well). These five major subroutines are GENLS1,
GENLS2, GENLS3, GENLS4 and GENLS5. Note that some of the steps in a major

stage will be omitted if some of the matrices are null.

Stage 1: reduce sparse constraint equations

The first thing we do is to reduce the sparse constraint matrix E to upper
trapezoidal form using the approach described in [3]. Hence we obtain the following

decomposition:

Rp Sg

QEE= O O

where Qp represents the sequence of Givens rotations applied to E. We shall assume
that the rank of E is p’;, where p';<min(p,,n). Thus, Rp will be p’;Xp';, upper
triangular and nonsingular, and Sg is p/; X(n—p’;). For simplicity, we denote by R;

the n Xn upper triangular matrix

Rp Sgp

B=10 o

(4.2)

(The nonzeros of R, are stored in the data structure allocated for R.)

It is important to note that, in general, it is not possible to obtain the upper
trapezoidal form as specified in (4.2) unless column interchanges are performed. Recall
from our previous discussion that the column ordering for E and A is determined (and
hence fixed) prior to any numerical computation so that a static storage scheme for the
sparse upper triangular matrix R can be used during the reduction. Thus, it is not

feasible to change this column ordering during the numerical phase. Without column

~11 -

interchanges, the actual structure of R, will be a permuted form of the one shown in

(4.2). This does not create difficulties since in subsequent stages all we need is the

ability to identify the rows in R; that belong to [RE Sp] It is easy to show that if

a diagonal element of R, is zero, then the entire row (at least in exact arithmetic) must
be null [18]. Thus, it simply amounts to determining which of the rows of R; have
nonzero diagonal elements. In order to make the description clearer, we shall assume
throughout this section that the resulting upper triangular matrix R; has been
permuted appropriately so that it has the form given in (4.2), although this is not the

case in the actual implementation.

Furthermore, in subsequent computations, the null rows of R; will be modified by
the least squares equations. However, it may be necessary to identify which of the

non-null rows of the subsequently modified upper triangular matrix belong to
[RE SE]. This is done by keeping a mask vector ROWMSK so that after the

sparse constraint equations are reduced, ROWMSK (¢) is equal to 2 if and only if row ¢
belongs to [RE Sy]; otherwise, ROWMSK (7) has the value 1.

A subtle problem to consider is the identification of “‘null” rows. Assume p’;<n.
Since only finite-precision arithmetic is used, we are unlikely to find exactly n —p’; null
rows in R;. It is more probable to find rows whose elements are small in magnitude.
A reliable way to determine the rank of E is to use a singular value decomposition [13],
but this method causes unacceptable fill for sparse problems. A heuristic but usually
reliable method is to compare the diagonal elements of R; with some user-specified
small tolerance TOL. Suppose there are 1 diagonal elements that are smaller than
TOL in magnitude. Then the corresponding 7 rows will be annihilated and (n —n) will
be regarded as the numerical rank of E. See [14] for more details on this technique.
Of course, the choice of TOL is itself a delicate problem. See [11] for a detailed
discussion. This approach is also used in stage 3 when we annihilate the sparse least

squares equations.

We now turn to the reduction of the sparse constraint equations. Suppose we

have applied the Givens rotations to the vector zg:

e
Qrzp = s ;

where e and é are respectively vectors of size p’; and (p;—p’;). The portion e will be

e
used in subsequent computations and the vector o is stored in the array QB, but é

~-12 -

will not be needed and can be discarded.

We shall assume that the equations are stored in secondary storage. Thus we
have to read in the equations to process the sparse constraint equations. At the same
time, we can identify the dense constraint equations and store them (in the appropriate
format) in DSCONS (and DSBCON).

We denote by rg the residual vector of the sparse constraint equations

rg = Ef —zg

At the end of stage 1, the sparse constraint equations have been transformed into

Rp Sg e

B—|.
é

Qete = QeEB—Qpzp = | o o

If the vector B is partitioned into

o= 2]

where u and z are respectively p’;- and (n —p';)-vectors, then
e Rpu 4+ Spx — e
el T —é

rg = REU -+ SE:v — € (43)

Rp Sg
0 O

u

QrTE -

We denote by rg the quantity

and after rearranging, we have
u = Rp'e + Rg'rg — Rg'Spzx . (4.4)
We now summarize the computations we have to perform in this stage (and in
GENLS1).
(1) Reduce E to upper trapezoidal form using Givens rotations,

Rp Sg

E—=10 o

saving Rp and Sy in the static data structure.

~13 -

(2) Apply the same transformations to the vector zg,

e
z - |.
E (4

saving e in the array QB.

Stage 2: process dense constraint equations and compute residual of the

sparse constraint equations

We partition the dense constraint matrix F' into
F = [Fu Fx] ,

where F, and F, are respectively pyXp'; and pyX(n—p’;). The residual vector rp of
the dense constraint equations can be written as

u

Tr

P

zp —F,u — F,x
Replacing v by the expression in (4.4), we obtain
rp = zp — F,(Rg'e + Rj'ry — R5'Spz) — F,x

= (2p — F,Rg'e) — F,Rg'rp — (F, — F,R;'Sp)z

zZp — Fyrp — F,.x

A A e
e s
where we have denoted (zp—F,Rg'e), F,Rg' and (F,—F,Rg'Sg) respectively by Zp,
Fu and PA’z Note that zp, ﬁ'u and I:’x depend only on known quantities. In fact, they

can be computed using a simple scheme. Construct

Ry Sg
O I

R2=

That is, we simply replace the diagonal elements of all the null rows of B; by 1. Then
it is not hard to see that

~ 14 -

Rp' —Rp'Sy

R =

2 o) I ,

and

FT RrRzT o|l|FT

7 F U

o = _ = R;TFT
Fr —SLRZT 1 ||FT

Of course we never compute Rz_l; ﬁ’u and ﬁ'x are obtained by solving a few triangular
systems. In SPARSPAK-B, a subroutine RTSOLV is provided for solving a lower
triangular system using the transpose of a sparse upper triangular matrix as the

coefficient matrix. Finally,

~ N R e
2]:‘ = ZF—FuREIC = ZF'—FuC = Zp — [Fu Fx][o]

In the actual implementation, ﬁ'u and ﬁz will overwrite F,, and F, respectively. Also

zp will be overwritten by Zp.

After we have computed ﬁ'u and ﬁ'z, we reduce ﬁ'x to upper trapezoidal form using

orthogonal transformations, and these transformations are applied also to ﬁ’u and Zp

H, G

QF[F“ Fz] - |[H, 0

In SPARSPAK-B, since the transpose of [ﬁ'u I:'z] is stored, we have to reduce a

subset of rows in a rectangular array to lower trapezoidal form. This subset of rows
(ﬁz) is identified using the information in the mask vector ROWMSK . The subroutine
MSKQR is designed for this purpose.

Suppose G is p'yX(n—p';), where p'y<p,. Then H; is p'yXp'; and H, is
(po—p'y)Xp';. (Note that G has full rank.) Suppose

g1
QFZF = g ’

where g; and g, are vectors of size p/y and (py—p’y) respectively. Then (4.5) becomes

~ 15 —

H, G
H, O

L))
T

Qrrr = Qrp|ér — [Fu Fz][rf] = [Z:]—

[gl — Hirp — Gz

gy — Hyrg (4.6)

Since G now has full rank, we can always find an z so that the residual in the first p’y

(modified) dense constraint equations is zero for any rg, and (4.6) becomes

0
Qrrp = L,Q “‘H2"E]

Now the residual of the (sparse and dense) constraint equations is given by

g
I~ 5 = 7z I+ 77 I3
2

= lQere B+ | @rrr I3

re
- 1|,

= llre B+ oo —Horg I5+ lé [

2

2
m+uh_mmhb

The goal is to minimize the residual of the constraint equations. That is, we have to

choose rg so that

L
2 a2 2
Ire 1 + | Hore — g2 [| Hyrp —gg] 5

[1 of .,
H, T — s "2

is minimized. (Note that € is a constant vector.) This is simply an unconstrained
linear least squares problem, and it has a unique solution since the coefficient matrix

always has linearly independent columns. The dimension of the coefficient matrix is

— 16 —

(p'1+pe—p's) Xp';. We assume that py (and hence p'y) is small, but p';, which is the
rank of the sparse constraint matrix E, would be large (in the extreme case, p’; could

be equal to n). Thus, the unconstrained linear least squares problem

I 0
aia | [H}E - L,] I (4.7)

may be large (and sparse). Fortunately, because of the structure of the problem, we do
not have to employ sparse techniques in solving (4.7). Suppose we have computed a

singular value decomposition of H, (which is small and dense)
Hy, = UySpVy

where Uy is a (pg—p'y)X(ps—p'y) orthogonal matrix, Vy is a p/;Xp’; orthogonal
matrix, and ¥ is a (po—p’y)Xp'; diagonal matrix whose diagonal elements are the
singular values of H,. Then the solution to (4.7) can be expressed in terms of the
singular values, g,, Uy and the first (po—p'y) columns of Vg if (po—p')<p'|, or Vg
and the first p/; columns of Uy if (py—p's)>p’;. The computation should be organized
in such a way that only the necessary columns of Uy and Vp are computed. In
SPARSPAK-B, the subroutines LSSVD1 (for (po—p’y)<p';) and LSSVD2 (for
(pg—p’s)>p'y) are designed to solve (4.7) using a singular value decomposition of H,.

The singular value decomposition is obtained using the subroutine DSSVDC which is a
slight modification of the one in LINPACK [2].

Note that when the rows of F are exactly or almost linearly dependent, the
elements of H, may be very small in magnitude. In this case, it may be necessary to
use an absolute tolerance to determine the numerical rank of H, (even if relative
tolerances are used elsewhere in the algorithm) so that we will be able to treat H, as
zero if all the singular values are very small. (If the elements of H, have fairly large
magnitude, it does not matter if absolute or relative tolerance is used. It will be up to
the user’s discretion.) This idea is also employed elsewhere when we have to determine

the numerical rank of some submatrices from (probably modified) B and F.

Suppose we have computed the residual vector rp of the (modified) sparse

constraint equations. We can then write the first p’y equations in (4.6) as
Gz = h (4.8)

where h=g,—Hrgz. Knowing rg also allows (4.3) to be written as

~17 -

RE’U + SEQF = f ’ (49)
where f=e+rg.
Following is a summary of the steps involved at this stage (and in GENLS2).

(1) Compute

(2) Compute

- ety
zp = zp — F|,
(3) Transform
into

H, G
H, O

using orthogonal transformations. The submatrix G is upper trapezoidal and has

g1

full rank. Apply the same transformations to zZp and obtain
2

(4) Solve the unconstrained least squares problem

i 1| °1
ngn H, B~ go |

(56) Compute h =¢g;,—Hrg and f=e+rp.

In the actual implementation, at the end of stage 2, DSBCON will contain the vector

h
[0} and e will be overwritten by f in @QB. We have replaced g, by zero since g, is no

longer needed. Similarly, the portion in DSCONS containing H; and H, will also be

set to zero.

— 18 —

Stage 3: reduce sparse least squares equations

We begin our description by reviewing what we have computed so far. The

storage scheme for R contains the upper triangular matrix R, and we also have the

vector f in @QB.
f
’ 0

The arrays DSCONS and DSBCON contain respectively G and h.

-

Now we read in the rows from secondary storage again and annihilate the sparse least

Rp Sg
O O

R1=

O G
(NN

squares equations. At the same time, the dense least squares equations are identified
and stored in the arrays DSEQNS and DSBEQN (in an appropriate format).

It is important to note that at this stage we do not always use Givens rotations to
annihilate the nonzeros in the sparse least squares equations. The reason is that we do
not want to modify R and Sg. Thus if we have to use a diagonal element of Rg to

annihilate a nonzero in a row of A, we will use a Gaussian transformation instead of a

Givens rotation. Again, rows belonging to [RE SE] are identified by the fact that
the corresponding ROWMSK values are 2. We use a Givens rotation only if the

diagonal element of R does not belong to Ry. Loosely speaking, we first use the upper
trapezoidal matrix in R; to modify the sparse least squares equations before we

annihilate them using orthogonal transformations.

Note that row interchanges are not allowed when we use Gaussian
transformations. Thus there is potentially numerical instability in the reduction of the
sparse least squares equations. Such instability may be detected by computing an
estimate of the condition number of Rp. We are currently looking into the

implementation of such an estimator.

Thus, at the end of stage 3, the sparse least squares equations are reduced to

upper trapezoidal form. More specifically, we have

- 19 —

! "
[RE SE] Rp Sp R'g
= 10 R, S . 4.10
Qala, A, A Sa (4.10)
O O O

Here we have partitioned A according to the partitioning in [RE SE]. That is, A,

and A, are respectively m;Xp'; and m;X(n—p’;). Assume R, has rank m’;, where
m',<(n—p';). Then R, is m';Xm'|, upper triangular and nonsingular. The
dimensions of Sy, S'r and S"p are respectively m';X(n—p’;—m’}), p’/;Xm'; and

E
p'1 X(n—p';—m';). Note that p’;+m/'; is the rank of the matrix al

The rows of the upper triangular matrix in (4.10) can be categorized into three

classes:

(a) Those that belong to the sparse constraints; that is, they are in the submatrix
[RE SIE SIIE]

The corresponding ROWMSK entries still have the value 2.

(b) Those that belong to the sparse equations; that is, they are in the submatrix
[O R, SA]

The corresponding ROWMSK entries will be 1.
(¢c) Those that are null. Their corresponding ROWMSK entries will be 0.

The information in ROWMSK allows the rows to be identified in subsequent
computations.

Suppose the Gaussian transformations and Givens rotations are also applied to the

vector [} in the same order:
Ya
I I
QA Y4 = 'i ’
$

where s and 8 are respectively vectors of size m'; and (n —p';—m/;). In SPARSPAK-
B, R4 and S, are stored in the static data structure for R. The vector s is stored in

QB and the portion § is ignored. For simplicity, define R and S to be

- 920 —

S”E
R =

Now partition z into

so that v and w are m';- and (n—p';—m';)-vectors. That is, the unknown vector 8

has been partitioned into

From (4.9) and (4.10), we have

(4.11)

K Rp S'p S"g|[u f
ra = (0 RA SA v]|— IS8 s
fa O O O |l 5
TA
where ; is the residual vector of the (transformed) sparse least equations (and
A
|
74 =-—5). The first p’; +m'; equations are equivalent to
u 0
R ot Sw = + ra ,
and after rearranging, we obtain
u f 0
= R |+R? — R 'Sw
v s r4

We now summarize the computational steps required
GENLS3).

in this stage (and in

(1) Reduce the sparse least squares equations A to upper trapezoidal form using

Gaussian transformations and Givens rotations.

—-91 —

RSI S"
Rp Sg ECECE R S
a, A, | 7|9 B4 Sa| = oo
0O 0 o0

2) Apply the same transformations to the vector containing f and y4-
A

f
—_—

Ya

Stage 4: process (modified) dense constraint equations and dense least

& =

&>

squares equations

If we partition the p/y X(n—p';) matrix G according to =
¢ -fo o .

then (4.8) can be written as

e alls] - o o als| -

or
u
[0 GU] o+ Gow = &
u
Substituting |, [by (4.11), we obtain
-1 -1 0 -1
[O GU]R s + R 4 —R"Sw|+G,w = h
or
[0 GU]R“I e | T G, — [o GU]R_IS]w

99 _

aff
= h — [O G,]R

s

Denote [0 G, |[R™' by [G‘u é’v], G’w—[O G’U]R_IS by é’w and
el
h——-[O GU]R s by k. Then, we have
A A 0 A . TA .

[Gu G’U] ', +G,w = [GU G’w] wl = h . (4.12)

As in stage 2, I;, é’v and é’w depend only on known quantities, and can be computed

easily. Let

RS

Rs = o g

Thus Rj is obtained from the triangular matrix obtained in stage 3 by adding 1 to the

diagonal elements of all null rows. Then it is not hard to see that

[7]
G, 0]
rI|éT| = |er
G. G
and
A A) S
h = h—[Gu G, Gw] 8
0

Hence C;'U, é’w and h are obtained by solving a few triangular systems (using RTSOLV
in SPARSPAK-B). Again, éu, é’w and k can overwrite G,, G, and h respectively.

Now reduce é’v to upper trapezoidal form using orthogonal transformations, and

apply these transformations to é’w and h as well (using MSKQR in SPARSPAK-B)

)) OT K
QG[O Gy GW]= oo T,

- 923 —

t

Qeh = i

Next reduce j'l to upper trapezoidal form using orthogonal transformations, and apply

the same transformations to fl (using MSKQR again)

OT K

OT, K

QTOOT1 0O O T,| °
ty ty
QT£1 = to

(The portions é’v and é’w are identified using the information in the mask vector
ROWMSK .) Note that both T; and T, have full rank (if they are not null). Assume
T, is p"yXm'y and Ty is p"™yX(n—m';—p';). Since G originally has full rank,
p"o+pMy=p'y, p"y<m'y, and p"y <(n —p’;—m';). Hence (4.12) is transformed into

TA] [h]
ol = ol (4.13)

Now we can partition the columns of the dense least squares equations according

T, K
o T,

the partitioning in 8
B = [Bu B, Bw]

The residual vector rg of the dense least squares equations is

u
rg = BB —yg = [Bu B, Bw] v|—yg ,
w
or
u
[Bu B’U] v +wa = yB+TB

u
Replacing L] by (4.11) again, we get

~ 924 —

[Bu B,,] R |+ R TZ]—R—lsw +By,w = yg+rg
and after rearranging,
[Bu B,,]R"l e | T 1By - [Bu BU]R_IS]w
i
= ¥Yp — [Bu BU]R s|TTB

We denote [Bu B, |R™! by [ﬁu ﬁv], [Bw—[Bu Bv]R"lS] by Bw, and

f
yp— [Bu B,]R_l [s by §g. Then the equation above can be written as
d

B’UrA + ,éw‘ll) = :l)B + rp . (414)

As before, the quantities Eu, ﬁv, éw and gp can be obtained by solving

B, B!
R}|B/| = |BY
By| |BS

(using RTSOLV in SPARSPAK-B) and computing

gB = Yp — [ﬁu B’U Bw] S

We overwrite B,, B,, B, and ypg respectively by B’u, ﬁv, Bw and yp in our
implementation.
The required computational tasks for this stage (and for GENLS4) are

summarized below.

(1) Compute

o OT K
[0] 0O 0 T,

(4) Transform Tl to upper trapezoidal form and apply the same transformations to fl.

OT K OT K
ooT| 00T,
tl tl
tAl - t2

- 926 —

Stage 5: compute the minimal norm solution

This is the last (and most complicated) stage in the numerical solution. The
R S

o ol The arrays

static storage scheme contains the upper triangular matrix

OT K
DSCONS and DSEQNS respectively contain 00 T and [Bu B, Bw],
2
Fl
while the arrays @B, DSBCON and DSBEQN contain respectively |s |, |ty]|, and
0] (o

gp. Consider the residual of the (modified) least squares equations. Our goal is to

LY
o | B

where r, and rp satisfy (from (4.13) and (4.14))

minimize

T]_TA = tl—Kw
and

BUTA_rB =gB_wa y

with the condition that w satisfies Tow =t, (from (4.13)). That is, we have to solve

the following constrained linear least squares problem

LV}
min ||, | b

.) (4.15)
BU —I T4 ﬁB Bw
subject to T, ollrgl = |t,| lK w
B, —I
The coefficient matrix T, 0 is (mo+p"y)X(m'4+my). Since p”y<m'), (4.15) is

equivalent to the prol_olem of computing the minimal norm solution to an
underdetermined system of linear equations. Also note that since the coefficient
matrix always has full row rank (T has full rank), (4.15) always has a unique minimal
norm solution. To solve (4.15), we proceed as follows. Let L be an
(motp"y) X (motp"sy) lower triangular matrix and Qp be an (m'i+mg)X(m';+my)

_97 _

orthogonal matrix such that

no|- [ol

Since m, and p”, are assumed to be small, this decomposition can be computed easily.
In SPARSPAK-B, a subroutine DSQRDC is provided to compute the QR-
decomposition of a small dense matrix using Householder transformations. Thus, in
order to compute L and @, it is necessary to extract l;’v and T; from the arrays
DSEQNS z_md DSCONS using the information in ROWMSK and store the transpose

—I
v
of . o | Then the underdetermined system can be written as
1

[A gB [Bw]
_L O]QLrB = 7 K |®

or
L - U 1 Bw
[I O]QL - = L) — L K |w
|
gB Bw ~ ~
Note that L is nonsingular.) Denote L™ and L1 by t and M respectively.
t K

T TA
Alsolet |, |=Qy . Thus we have
To B

This implies that
121 = t — Mw

and 7, can be arbitrary. Since

— 98 —

A~

Ta LS
min || re I = min || , 5 = min |7, IE+ N7 15

7o must be zero and 7; is the minimal residual vector of the following constrained least

squares problem

min || { — Mw Il

w

subject to Tow = t, (4.16)
This problem is small since M is (p"y4my)X(n—p';—m'}) and Ty is p"y X (n—p';—m')),
and we have assumed p”y, p"y, my and (n —p’; —m/';) (which is the rank-deficiency in
the final upper triangular matrix E) are small. Note that the constraints are always
consistent since Ty has full rank, and the set of constraints is an underdetermined
system because p"y<(n—p’;—m';). We can solve this using any standard technique
for solving small dense constrained least squares problem [15]. In SPARSPAK-B, there
is a subroutine DSCLS for solving (4.16) using singular value decompositions. Let w

be a solution to (4.16). A solution to (4.15) is then given by

L' Tf—-Mﬁ;‘
TB = QL 0

u
Apparently, knowing r, and w allows the final solution L] to be computed using

(4.11). (Note that w is part of the final solution vector.) Unfortunately this is not the

case since M may be rank-deficient and (4.16) may not have a unique solution. Hence

u
(4.11) may not give a unique solution for vl In this case, we decide to compute the

minimal norm solution. However, even if w is the minimal norm solution to (4.16) and
u
u . . _
if we compute [’u] using w in (4.11), the resulting solution, say |v [, need not be the
w
minimal norm solution to the original problem. This can readily be seen from (4.11);
U

the norm of |v | also depends on R and S.

w

— 99 —

To compute the minimal solution to (4.1), we proceed as follows. Denote the

general solution to (4.16) by
w = w+Z0

where w is any solution to (4.16), Z is a matrix containing linearly independent
columns that span the null space associated with (4.16), and 8 is some vector of
appropriate dimension. (Z can be obtained easily if singular value decompositions are
used to solve (4.16).) From (4.11), we have

f 0
_ p-1 -1 _ p-la/—
o = B |+R ' R™S(w + Z9)
il [o
Let d= s + ra | Then
ol = R'd — R'Sw — R718Z¢6

u
Our goal is to find € so that the Euclidean norm of |v | is minimized; that is, we want
w
to solve the following problem

_ . R7'd —R™'Sw — R7'SZ6
S Y A | I
 |r4—rsw| |Rsz
= min I L - —-| _gz 6 I, . (4.17)

This is again a small dense unconstrained linear squares problem in which the
coefficient matrix has full column rank (since Z has linearly independent columns).
Thus one can use an orthogonal decomposition of the coefficient matrix to solve (4.17).
(We can use DSQRDC again in SPARSPAK-B.) Note that all we need is the residual

R'd —R'Sw R™'SZ
vector of (4.17). The vector — and the coefficient matrix | _,

w
can be obtained by solving

and

- 30—

R S d
o1l = |z
R S 0
or1l|¢ = |-z

In SPARSPAK-B, the subroutine RSOLV, which solves a sparse upper triangular

system, can be used.

The various computational steps involved in this final stage (and in GENLS5) are

summarized below.

(1)

(2)

Determine the following matrices and vector from the various arrays using the
information in ROWMSK..

év -1 [Bw] '!}B
K) t

Compute the following orthogonal decomposition.

T, o = [L O]QL

Use L to solve for £ and M.

X Up

Lt = £
N Bw
LM = K

Solve the following small dense constrained least squares problem.
min "f — Mw Il
w
subject to Tow = i,

Denote a solution by w and let Z denote a set of linearly independent vectors

that span the null space.

~31 -

(6) Compute

(6) Form
f 0
d = S + TA
(7) Solve
R S d
o1 b = w
and
R S O
o1|¢ = |-z

(8) Compute the residual vector of the following least squares problem.

min o —co [,

5. The design of SPARSPAK-B

5.1. The interface
The software package SPARSPAK-B is a collection of FORTRAN subroutines for

solving large sparse least squares problems. The design and implementation are similar
to those of SPARSPAK (sparse matrix package), which is a package for solving large
sparse symmetric positive definite syster;ls [5]. The subroutines of SPARSPAK-B can
roughly be divided into two classes: the interface subroutines and the internal

subroutines.

The internal subroutines form the core of the package. These subroutines are
responsible for performing the various tasks, such as finding the column and row
permutations, determining the structure of R and setting up an efficient storage
scheme, and computing the minimal norm solution. Those mentioned in the previous
section, such as GENLSt, 1=1,2,3,4,5, MSKQR, RTSOLV, RSOLV, and DSSVDC are

examples of internal subroutines. Because of the use of sophisticated data structure

~- 32 _

and storage management, and the large number of working arrays, these subroutines

tend to have long and complicated calling sequences.

The interface subroutines are designed to be easy to use and have very simple
calling sequences. As their name implies, they form an interface between the user and
the internal subroutines. Each interface subroutine initiates a major task and it is
responsible for invoking various internal subroutines to carry out that task. Thus
these subroutines effectively insulate the user from the complications of the internal

subroutines.

A problem that arises immediately is the communication among the internal
subroutines and the communication between the interface and internal subroutines.
Our solution involves the use of a one-dimensional floating-point array which we
denote by T, labelled common blocks, and secondary storage. As we have mentioned
in previous sections, the equations (and other information that describes the problem,
such as weights) are stored in secondary storage. These equations are accessible by
any subroutine of the package. The logical unit number of the external sequential file
is supplied by the user through a call to an interface subroutine FILEB. The data
structure and the numerical values of R are stored in the floating-point array 7.
Other (integer and floating-pointing) arrays required by the internal subroutines are
also allocated from 7. Thus it is important that the user not modify the array T
between calls to the interface subroutines. In order to keep track of where the
individual arrays are, pointers to the beginning of the arrays are needed. These
pointers are stored in labelled common blocks. They are accessible by all the interface

subroutines and are used when the internal subroutines are invoked.

Certain control information is also stored in the labelled common blocks. This
includes timing information, storage requirements, sequence control and some system
parameters. Sequence control is necessary to make sure that the interface subroutines
are invoked in the proper sequence. System parameters include logical unit numbers
for output files and the ratio of the number of bits in a floating-point number to that
in an integer number. The latter parameter is needed in the allocation of integer
arrays from the floating-point array T. The length of T is also stored in a variable in
one of the common blocks and it should be initialized by the user at the beginning of

the program.

It should be noted that the user has the option of using the internal subroutines
directly. This allows the user to modify or replace any modules if the user develops

new algorithms. Such flexibility also allows the user to tailor the package to her/his

~ 33—

applications.

5.2. The main interface subroutines

As we have seen in Section 2, the solution process can conveniently be broken into

several steps, and the corresponding interface subroutines are described below.

Step 1: initialization

Initialization is done by invoking two interface subroutines, SPRSPK and FILEB.
The FORTRAN statements are as follow.

CALL SPRSPK
CALL FILEB (FILE)

The first subroutine SPRSPK needs to be called only once in each program. It is
responsible for initializing the timing routine and setting the logical unit numbers for
output files. The second subroutine is called for each problem to be solved. The
integer variable FILE contains the logical unit number for an external sequential file

which will be used by the package.

Step 2: problem input

After the initialization subroutines have been called, the user then invokes the
interface subroutine INXYWB to input each equation. The calling sequence has the

form shown below.

CALL INXYWB (ROWNUM, TYPE, NSUBS, SUBS, VALUES, RHS, WEIGHT,
T)

The integer variable ROWNUM contains a positive integer which is usually less than
m-+p-—+1. It may be regarded as a label for each equation. To indicate that an input
equation is a sparse least squares equation, the integer variable TYPE should contain 1.
If the input equation is a dense least squares equation, a sparse constraint equation or
a dense constraint equation, TYPE should then contain 2, 3 or 4 accordingly. The
integer variable NNSUBS contains the number of nonzeros in the input equation
(excluding the entry in y or z). The column indices and numerical values of the
nonzeros are stored respectively in the integer array SUBS and floating-point array
VALUES. The corresponding entry in y or z is stored in the floating-point variable
RHS. If the problem is a weighted least squares problem, the floating-point variable
WEIGHT contains the weight; otherwise, it should be set to 1.0.

— 34 —

Thus the problem can be provided to the package by calling INXYWB repeatedly.
Note that the equations can be supplied to the package in any order.

Step 3: column ordering

This step is initiated by invoking the subroutine ORCOLB. The FORTRAN

statement to be used is shown below.
CALL ORCOLB (T)

This subroutine serves several purposes. First, it indicates that Step 2 has finished;
that is, that the user has supplied the entire problem to the package. Second, the

A
package reorders the columns of El The minimum degree algorithm is used to

generate a good P,. Third, the package determines the structure of R from that of
ATA+ETE and the permutation matrix P,, and sets up an efficient storage scheme
for R.

Step 4: row ordering

The subroutine to be invoked is ORROWB, and its calling sequence is as follows.
CALL ORROWB ({ OPTION, T)

The integer variable OPTION indicates the order in which the rows should be
processed. By setting OPTION=0, the wuser specifies that the rows should be
processed in the order they were input. Other possibilities (OPTION #0) include

(1) arranging the rows in the order of the parameter ROWNUM,
(2) arranging the rows in the order of increasing number of nonzeros,

(3) arranging the rows in the order of increasing weight (this is useful when the

weights vary widely in value), and

(4) reordering the rows in order to attempt to reduce the cost of computing R (see

the discussion in Section 2.3).

_ 35—

Step 5: solution

The numerical computation of the the least squares solution is initiated by calling
the subroutine LSQSLV. The FORTRAN statement is as follows.

CALL LSQSLV (TOL, TYPTOL, T)

Here TOL is a tolerance used to determine when a numerical value should be regarded
as numerically zero. The test can be done in absolute (TYPTOL =0) or relative
(TYPTOL =1) terms.

After LSQSLV is called, the first n elements of T contain the least squares

solution.

5.3. Other interface subroutines

The interface contains a few other subroutines which may be useful.

Residual computation

The subroutine RESIDB can be used after LSQSLV has been executed
successfully to compute the residuals in the least squares equations and constraint
equations. The FORTRAN statement to be used is as follows.

CALL RESIDB (RESEQN, RESCON, T)
After RESIDB is called, the floating-point variables RESEQN and RESCON will

contain respectively the residuals of least squares and constraint equations.

Statistics

Another useful interface subroutine is STATSB, whose calling sequence is shown

below.
CALL STATSB

The purpose of this subroutine is to display the statistics gathered by the package in
the computation. The statistics include timing information and storage required by

various interface subroutines mentioned above.

- 36 —

Save and restart

Sometimes it may be necessary to save the intermediate information provided by
SPARSPAK-B so that the user can perform something else before returning to the
solution of the least squares problem. For example, each major task in the solution
process requires a different amount of space from the storage array 7. There is a
possibility that the computation cannot proceed at some stage because there is not
enough space in 7. In this case, it is desirable to be able to save what has been
computed successfully so far before terminating the program. Then the user can
change the size of the array 7T, and resume the computation by restoring the
information that has been saved. This avoids the need to execute those tasks that

were successfully carried out previously.

In order to make sure that everything is saved so that execution can be resumed
at a later point, a subroutine SAVEB has been provided. The FORTRAN statement

to be used is
CALL SAVEB (K, T)

where K is a logical unit number of an external sequential file. The contents of the
floating-point array T and the values of the variables in the labelled common blocks
are written onto the sequential file specified. It is important for the sequential file in
the save operation to be different from that supplied to the package using the
subroutine FILEB.

When the user is ready to resume execution, the following statement should be

used to restore everything saved by SAVEB.
CALL RSTRIB (K, T)

Note that after SAVEB is called, the user can use the floating-point array T in

other computations.

- 37 -

6. Concluding remarks

In this report we have described the implementation of a software package for
solving large sparse constrained linear least squares problems. This package, which is
written using a portable subset of ANSI-66 Standard FORTRAN, contains a set of
interface subroutines that are easy to use and which insulate the user from the
complicated data structures and storage management involved in the actual solution

subroutines.

There are several reasons for designing the package as a “library”’ of interface
subroutines for different major tasks in the solution process, rather than as a ‘“stand-
alone’” program. First, it allows the package to be embedded in a ‘‘super-package”
where different tasks may be carried out at different instances. Second, it provides
flexibility that is not available in stand-alone programs, particularly in terms of storage
management. Note that each major task may require a different amount of work space
from the storage array T. In a stand-alone program, if the computation cannot
proceed at some stage because of the lack of space in T, the user can only terminate
the program, change the size of the work space and run the program again. There is
often no effective way to save the output from those tasks that were executed
successfully. This is not desirable in the solution of large problems. In the package,
the design of the interface allows the user to insert checkpoints in the main program.
Output from tasks that are successfully executed can be saved before the program is
terminated and the program can be restarted by restoring the information that is
saved. This avoids the need to ‘“re-do” those successful tasks. Finally, the design
provides an efficient way to experiment with new ideas. For example, if we want to
compare two different algorithms for handling dense rows, we do not have to carry out
the column ordering (and row ordering) twice. All we need to do is to save the
ordering information when the first method is tested. Then we simply restore the
ordering information before we use the second method. Such flexibility is much less

easy to provide if the package is designed as a stand-alone program.

Finally, it should be pointed out that the implementation of the Bjorck’s
algorithm in the package is by no means perfect, though the algorithm is
mathematically correct. Its behavior in the presence of roundoff errors is not well
understood. Experience has shown that the numerical algorithm may be sensitive to

roundoff errors for some ill-conditioned problems.

_ 38 —

7. References

1]

2]

8]

[4]

[5]

[6]

7]

8]

9]

[10]

[11]

[12]

A. BJORCK, “A general updating algorithm for constrained linear least squares
problems”, SIAM J. Sci. Stat. Comput. 5, pp. 394-402 (1984).

J.J. DONGARRA, C.B. MOLER, J.R. BUNCH, AND G.W. STEWART, LINPACK
users’ gutde, SIAM, Philadelphia (1980).

J.A. GEORGE AND M.T. HEATH, “Solution of sparse linear least squares problems
using Givens rotations”, Linear Algebra and its Appl. 34, pp. 69-83 (1980).

J.A. GEORGE, M.T. HEATH, AND E.G-Y. NG, ‘“Solution of sparse underdetermined
systems of linear equations”, SIAM J. Seci. Stat. Comput. 5, pp. 988-997 (1984).

J.A. GEORGE AND J.W-H. LIU, “The design of a user interface for a sparse matrix
package”’, ACM Trans. on Math. Software 5, pp. 134-162 (1979).

J.A. GEORGE AND J.W-H. LIU, Computer solution of large sparse positive
de finite systems, Prentice-Hall Inc., Englewood Cliffs, New Jersey (1981).

J.A. GEORGE, JW-H. LIU, AND E.G-Y. NG, ‘“Row ordering schemes for sparse
Givens transformations, I. Bipartite graph model”, Linear Algebra and its Appl.
61, pp. 55-81 (1984).

J.A. GEORGE, J.W-H. LIU, AND E.G-Y. NG, “Row ordering schemes for sparse
Givens transformations, II. Implicit graph model”’, Linear Algebra and its Appl.,
(1985). (To appear.)

J.A. GEORGE, J.W-H. L1U, AND E.G-Y. NG, “Row ordering schemes for sparse
Givens transformations, III. Analysis for a model problem”, Linear Algebra and its
Appl., (1985). (To appear.)

J.A. GEORGE AND E.G-Y. NG, “On row and column orderings for sparse least
squares problems”, SIAM J. Numer. Anal. 20, pp. 326-344 (1983).

J.A. GEORGE AND E.G-Y. NG, “User’s guide for SPARSPAK-B: Waterloo sparse
constrained linear least squares package’, Research Report CS-84-37, Department

of Computer Science, University of Waterloo (1984).

G.H. GOLUB, ‘“‘Numerical methods for solving linear least squares problems”,
Numer. Math. 7, pp. 206-216 (1965).

13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

-39 —

G.H. GOLUB AND C. REINSCH, ‘“‘Singular value decomposition and least squares
solutions”, Numer. Math. 14, pp. 403-420 (1970).

M.T. HEATH, “Some extensions of an algorithm for sparse linear least squares
problems”; SIAM J. Sci. Stat. Comput. 3, pp. 223-237 (1982).

C.L. LAWSON AND R.J. HANSON, Solving least squares problems, Prentice-Hall
Inc., Englewood Cliffs, N.J. (1974).

J.W-H. LIU, “On general row merging schemes for sparse Givens transformations”,
Technical Report No. 83-04, Department of Computer Science, York University,

Downsview, Ontario (1983).

JW-H. LIU, “Modification of the minimum degree algorithm by multiple
elimination”, ACM Trans. on Math. Software 11, pp. 141-153 (1985).

E.G.Y. NG, “Row elimination in sparse matrices using rotations’’, Research report
CS-83-01, Department of Computer Science, University of Waterloo (1983).

(Doctoral Dissertation)

A.H. SHERMAN, ““On the efficient solution of sparse systems of linear and
nonlinear equations”, Research Report #46, Dept. of Computer Science, Yale
University (1975).

M. YANNAKAKIS, “Computing the minimum fill-in is NP-complete”, SIAM J. Alg.
Disc. Meth. 2, pp. 77-79 (1981).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

