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ABSTRACT

In 1983, Lee published a linear time algorithm for computing the visibility
polygon of a simple polygon from a prescribed point. We present an alternative
organization of Lee’s algorithm which allows us to present it in relatively simple
pseudo-code. This organization provides it in a directly programmable form, and
corrects a case in Lee’s description which allows it to fail. An example of a
polygon is given which shows that the original version by Lee, as well as the 1981
algorithm of El Gindy and Avis can fail.

1. Introduction

Two linear time algorithms for computing the visibility set of a simple polygon, P, from a
vision point, z, in the interior of P have been published, El Gindy and Avis (1981) and Lee
(1983). Lee (1983) also extends his algorithm to the case where 2 is in the exterior of P. The
cases where z is in the interior or exterior of P arise in the two-dimensional hidden line elimina-
tion problem in computer graphics. The case where z is on the boundary of P also arises in the
method of Schachter (1978) for decomposing a simple polygon into convex polygons, where z is a
reflex vertex of the simple polygon. In this paper, we consider the cases where z is in the interior
or on the boundary of P.

Lee’s algorithm is simpler in structure; in particular it requires only one stack, which even-
tually yields the visibility set, as opposed to three in the El Gindy and Avis case. Lee’s descrip-
tion of his algorithm assumed, for simplicity, that no three boundary vertices are collinear. This
paper had its origin in our attempt to program his algorithm, removing this technicality as a con-
straint, and extending the class of polygons slightly to simply connected polygons, i.e. polygonal
curves which define simply connected domains, which have oriented polygonal boundaries in
which some boundary segments (cut or branch lines) may be traversed twice, in opposite direc-
tions. OQur efforts resulted in rather complicated code, with deeply nested if-then-else constructs,
which proved difficult to read and we had little confidence in our ability to debug it, or modify it
correctly. This led us to devise a modified organization of the algorithm which we feel is more
suitable for coding, which we present in pseudo-code in Section 3. In the process of defining this
modified organization, we discovered that Lee’s algorithm is not correct for polygons that wind
sufficiently as we show in Appendix A. The El Gindy and Avis algorithm also fails for this exam-
ple.

The algorithm is based on a scan of the boundary of P. Central to our organization is the
use of the angular displacement, a(v), of the ray from the vision point z to a point v on the
boundary of P as a control variable. In addition to simplifying some test conditions, the use of
o(v) clarifies how some polygons with convoluted winding lobes, e.g. Figure A.1, should be



treated. In Section 2 we prove some properties of this angular displacement that are required to
justify its use in the algorithm. Both earlier papers provide a statement of a stack condition
which is the justification for the correctness of their algorithms. We restate this condition in
terms of angular displacement so that it is valid for our organization of the algorithm, and use it
to verify the correctness of the algorithm in Section 4.

2. Notation and preliminary results

The boundary of a simple polygon P consists of a sequence of straight-line edges such that
they form a cycle and no two nonconsecutive edges intersect. We represent P by a list of vertices
in counterclockwise order so that the bounded interior region is to the left as the boundary of P
is traversed. We denote the boundary, interior, and exterior of P by Bd(P), Int(P), and Ext(P),
respectively, so that P = Bd(P)JInt(P). The vision point z is in Int(P) or on Bd(P). If z is in
Int(P), we denote the vertices of P as vy, vy, * * * ,v,_;, and v, = vy (the edges of P are vy,
Vg, * WV, ). If z is on Bd(P), we denote the vertices of P as z, vy, vy, " * - ,v, (v, is the
predecessor of z) since this labelling allows us to treat the two cases similarly in our algorithm.

For simplification, we assume that the coordinate system is translated so that z is at the
origin. If 2€Bd(P), then we also assume that the coordinate system is rotated so that v, is on
the positive x-axis. If z€Int(P), then we also assume that the vertices are relabelled so that
vg=uv, is the point on Bd(P) which is on the positive x-axis and has the smallest x-coordinate
(note that vy is visible from z). We denote the polar coordinates of a point v by (r(v),0(v))
where 0<8(v)<27.

A subset of Bd(P) composed of the chain sv;v;,, - - - vp_1v;t, where s is on edge v;_;v; and
t is on edge vyvg4y, is denoted as Chls,t] or Ch(s,t) depending on whether the two points s, t
are included or excluded, respectively. The chain uvw, where u, v, w are distinct points, is said
to be a left turn, right turn, or no turn if w is to the left of, right of, or on, respectively, the
directed line from u to v.

The point v is said to be visible from 2 with respect to P if the interior of the line segment
joining z and v is in Int(P). The problem we are considering is to find a subset V(P,z) of points
on Bd(P) which are visible from z, i.e. V(P,z) = {v |v€Bd(P) and v is visible from z}. An
equivalent problem is to find the star-shaped simple polygon, V{P,z), the visibility polygon from
z, which is the closure of the set {vE€P|vis visible from z}. Note that some points on
Bd(V(P,z)) are not visible from z, according to our definition, but they are included to enable
Bd(V(P,z)) to be a simple closed curve.

We define the angular displacement, a(v), of a point v on Bd(P) with respect to z as fol-
lows : avg) = 0(vy); for 1<i<n,

ofv; )+ angle(v;_ zv;) if zv;_v; is a left turn
ofv;) = { o(v;_)—angle(v;_yzv;) if zv;_v; is a right turn (2.1)

ofv;_4) if z, v;_;, v; are collinear

ie. a(v;) = 0(v;)+ 27k where k is the integer determined so that |a(v;}—a(v;_;)| < 7. For any
v€v;_;v; where 1<i<n, a(v) can be defined similarly as 8(v)+2rk for some integer k so that
a(v) is a continuous function as Bd(P) is traversed from v=v, to v=v,. To complete the defini-
tion in the case z€Bd(P), we define a(v) = afvg) if vE€2zvy and ofv) = ofv,) if vEV,. Note
that the angular displacement measures the ‘winding’ of Bd(P) in addition to the polar angle.
Freeman and Loutrel (1967), who presented a nonlinear-time algorithm for finding V{P,z), used
the term total angle for angular displacement.

From classical complex integration results (Carrier, Krook, and Pearson (1966, Section 2.3),
Henrici (1974, Section 4.6)),



B if z € Bd(P)
a(v,)—a(vg) = | 27 if 2 € Int(P) (2.2)
0 if z € Eat(P)

where §=angle(v, zvg) is the interior angle of z in P in the first case, and vy=v, is an arbitrary
vertex of P in the last case (this case is referred to in the proof of Lemma 2 below). From our
assumption about the location of z, a(ve)=0(vo)=0 if z€P, a(v,)=27 if z€Int(P), and o(v,)=4
if z€Bd(P). In the case z€Int(P), since ofv,)# a(v,) we consider vy and v, to be ‘distinct’
points where v, is on edge vy and v, is on edge v, _v,.

The following lemma follows from the Jordan curve theorem (see Figure 2.1 for an illustra-
tion in the case z €Int(P)).

Lemma 1 : If the intersection of the ray emanating from z at polar angle ¢, 0<¢ <27, and
Int(P) is nonempty, then the intersection consists of the line segments u uy, usuy, * * * Ugp_Ug;,
k>1, where
() u;=z or u;is on Bd(P), and u;, ¢ >1, is on Bd(P),

(b) the interior of ug;_ uy; is in Int(P),

() 0<r(u)<r(ug)<r(ug)<r(uy< -+ <r(uge—)<r(uz),

(d) g, is on an edge which is oriented in the clockwise direction with respect to z, if
u2;_1;éz,

(e) ug is on an edge which is oriented in the counterclockwise direction with respect to z.

In other words, the ray emanating from z at polar angle ¢ is broken up into line segments
which alternate between being in Int(P) and in Bd(P)U Ext(P). The line segments in Int(P)
have positive length and do not include their endpoints (except u;=z€Int(P)). The line seg-
ments in Bd(P)U Ezt(P) may have zero length (consist of a single point). The first line segment
may be in Int(P) or Bd(P)U Ezt(P) depending on the location of z and the angle ¢. The last
line segment is in Bd(P)U Ext(P) and is of infinite length. From Lemma 1, it follows that there
is at most one point v on Bd(P) visible from z at each polar angle ¢, and v is on an edge which is
oriented in the counterclockwise direction with respect to 2 if z€P. O

The following lemma uses the same notation as Lemma 1 (see Figure 2.1).

Lemma 2 : For 1<i <k, oug;_;) = ofug;) if ug;_7#2.

Proof : If ug;_;7 2, the line segment uy;_ uy; subdivides P into two simple subpolygons. If
Ug;_y occurs before us in a traversal of Bd(P) from vy to v,, then let @ be the subpolygon
formed by Chlug_j,ug;] and line segment ug;ug g, else let @ be the subpolygon formed by
Ch[ug;,ug; ;] and line segment ug;_juy;, so that z€Ext(Q). (If uy_, is the point vy or v, in the
case z€Int(P), then uy_, can be named appropriately as vy or v, so that z €EExt(Q) - the other
choice would give 2z €Int(Q).) If the definition of angular displacement is applied to @, then, by
(2.2), ugi_y and ugy would have the same angular displacement on Bd(Q). This implies that
oug;_;) = a(ug) on Bd(P) also. O

As elaborated further in the next section, we denote the visibility polygon by the chain
8¢S, ' * * 8, where so=vg, s,=v,, s;€Bd(P), 0<j<t, s;8;4, is on Bd(P) if 0(s;)#0(s;4), and

0=0(sq)<0(s))< -+ <O(s,)=8, m=t, if z€BA(P)
0=0(sg)<0(s))< -+ - <O(spn)<2m,
O(smyr)= " =0(s;)=0, m<t, if z€Int(P).
See Figure 2.2 for examples.
Lemma 3 : If v€Bd(P) is visible from z and v#wv,, then a(v)=0(v).

Proof : If veBd(P) is visible from z and 6 (v)=4¢, then v is the point with polar angle ¢ on
the chain sgs; * - - s, which is closest to z.

We first show by induction that



afs;) = 0(s;), 0<j<m . (2.3)

89 = vy and ofvg) = 0(vg) = 0 so (2.3) is true for j=0. Suppose (2.3) is true for j<m. If
0(sj4+1)>0(s;) then s;s;,; is on Bd(P) and by the definition of angular displacement
ofs41)=0ls;)+ angle(s ;4 25;). If 0(s;41)=0(s;) and s;s;4; is on Bd(P) then os;y)=a(s;) by
definition. If 0(s;,1)=0(s;) and s;s;,, is not on Bd(P) then an argument similar to that used in
the proof of Lemma 2 shows that a(s;;;)=afs;). From the inductive hypothesis a(s;)=8(s;), it
follows that ofs;y;)=0(s,4,) in all three cases. Therefore (2.3) is true for j+1. Similarly
ofs;)=2n for m+1<5<t.

Now let vE€Bd(P) be visible from z and v#v,. If v=s; for some j then o(v)=0(v) since
J<m. Otherwise v is on the interior of an edge s;s;,; wWhere afs;)<a(s;4), a(s;=0(s;), and
either o(s;4;)=0(s;41) or a(s;41)=27, so a(v)=0(v) by the definition of angular displacement. O

Corollary : If v€Bd(P) and either a(v)<0 or a(v)>2x, then v is not visible from z.

3. The algorithm

The algorithm carries out a monotone scan of Bd(P) starting from edge vgv; and ending at
edge v,_,v,, while manipulating a stack of vertices sq,s4, - - - ,5, such that ultimately the chain
805y * " " 8 OF 28¢sy " * * §;2 becomes Bd(V(P,z)) depending on whether z€Int(P) or z€Bd(P),
respectively. The computation of o(v;) in this scan requires eo(v;_,) and angle(v;_;2v;) as indi-
cated in (2.1). The angular displacement values can be computed for all v; in a preprocessing
step and saved, or computed once when needed during the scan of Bd(P). When s, is put on the
stack, a(s,), which is either 27 or a(v;) for some k, can be saved for future reference. Hence a(v)
is used for notational convenience in our algorithm and is not a function reference.

Our organization of the algorithm involves a decomposition into three procedures:
ADVANCE - adds vertices to the stack,
RETARD - removes vertices from the stack,
SCAN - scans invisible edges of Bd(P) without modifying the stack.

Each of these procedures is entered with a current edge of Bd(P), v;v;,,, for which at least a
subedge including the point v;,; is to be treated according to the procedure’s name. Each pro-
cedure thus carries out the operation indicated by its name on successive boundary segments until
it determines one that requires treatment by another process.

When either ADVANCE or RETARD determines that the next segment should be pro-
cessed by SCAN, the process can also determine an interval, or ‘window’, across which a segment
of Bd(P) must pass in order to leave the SCAN process, and the manner of crossing (clockwise or
counterclockwise). One end of the window is always the top of the stack, s,, and the other end is
passed to SCAN in argument w, which is a point on the polar ray zs; (including possibly the
point at o). The direction of passage out this window is passed to SCAN in logical variable ccw
(which is true if counterclockwise).

Suppose Ch[vg,v;] has been scanned so far by the algorithm, and the stack contains the
points sg,8;, * * * ,8;. Let S; = chainsgs, - - - s;,. Then the following stack properties are satisfied:

(S1) 0=a(sg)<esy)< - - - <alfs,) <27, sp=1vg, and 0t <.
(S2) s;€Bd(P) for 0<5<t, and s;s,,,€BA(P) if a(s;)<o(s;41)-
(S3) If veChlvgv;] but v is not on S; then v is not visible from z.

We note that the following intuitively attractive stack property “S; is composed of the visible
points v ECh(vg,v;) for which 0<o(v)<o(s;)” is not true in general.

We now give the pseudo-code for our algorithm, followed by some remarks about the algo-
rithm.



procedure VISPOL(z,v,n,s,t); *

# Input : vision point z in P and vertices v = vgvy, * * - ,v, of P

# with v, satisfying assumption in Section 2

# Output : visibility polygon vertices s = s4,9,, * * * ,8, where sg=vg, 5, =v,
$g = Vg,

1 = 0;t := 0; +# stack properties are satisfied
if a(vy) > ovg) then

vpcase = ‘advance’;
else
upcase = ‘scan’; ccw := true; # see remark 2
w := point with polar coordinates (00,8 (vg));
endif;

while vpcase # ‘finish’ do
case vpcase of
‘advance’ : ADVANCE(z,v,n,s,t 7 ,vpcase ccw,w);
‘retard’ : RETARD(z,v,n,s5,t,i,upcase,ccw,w);
‘scan’ : SCAN(z,v,n,s,t,i,vpcase ccw,w);
endwhile;

U In this pseudo-code, we follow the FORTRAN 77 convention for if statements, i.e. at the termination of any
clause of an

if ... then ...
else if ... then ...
else if ... then ...

else ...

endif
construct, control passes to the next endif at this level. Also, a ‘#’ symbol indicates that the rest of the line is
a comment.



procedure ADVANCE(z,v,n,s,t,7,vpcase ccw,w);
#Input:z,u,n
# Input and output : s, ¢, 1, vpcase
# Output : ccw, w
# o(v;41) > max(o(s,),(v;)) and s, 7#v; 4, is on edge v;v; 4
while vpcase = ‘advance’ do
if ofv;41) < 27 then
t =141t :=1t41;s, :=v;; F stack properties are satisfied
if £ = n then

vpcase = ‘finish’;
else if o(v;4) < o(v;) and v; _jv;v; 4, is a right turn then
vpcase = ‘scan’; ccw := true; # see remark 2

w := point with polar coordinates (0,8 (v;));
else if ofv;41) < o(v;) and v;_yv;v; 4 1s a left turn then
vpcase = ‘retard’; # see remarks 3, 4, and 5
endif;
# vpcase remains at ‘advance’ if ofv;4,) > a(v;)

else
if a(s;) < 27 then
t :== t+1; s, = intersection of v;v;,; and line z;:);
endif;
vpcase = ‘scan’; ccw = false; w := vy, # see remark 6
endif;

endwhile;



procedure RETARD(z,v,n,s,t i ,upcase ccw,w);
# Input : z, v, n
# Input and output : s, ¢, 7, vpcase
# Output : ccw, w
# o(v;41) < o(v;) and ov;4) < afs,) < ofvy)
while vpcase = ‘retard’ do
# see remark 3
scan backwards s,_;,s, 5, - - + 84 for first stack vertex s; such that either
(a) a(s;) < (v;41) < &fs;44), or
(b) a(vi4) < ofs;) = ofs;41) and v;v;,; intersects 575,y
if os;) < o(v;41) then  # case (a)
ti=4+4+1;t:= g4+1;
(ra
8; = intersection of s;s;,, and line zv;;
t :=1t+1; s = wv;; # stack properties are satisfied
if ¢ = n then
vpcase = ‘finish’;
else if a(v;1;) > a(v;) and v;_;v;v;,, is a right turn then

vpcase = ‘advance’;

else if a(v;41) > ofv;) and v;_yv;v;,, is a left turn then
vpcase = ‘scan’; ccw = false; w 1= v;; t = t—1;
# see remark 4

else
t=1t~-1;

endif;

# upcase remains at ‘retard’ if o(v;,,) < e(v;)
# or o(viy) = ov;) and r(v;41) > r(v;)
else # case (b) - see remark 5
if &(v;41) = (s;) and o(v;45) > ofv;4;) and v;v; 1 v; 44 is a right turn then

vpcase = ‘advance’; 1 =i+ 1;¢ ;= j4+1; 8 := v;;
# stack properties are satisfied
else
vpcase = ‘scan’; t = §; ccw := true;
w := intersection of v;v;, and s;s,,;;
endif;

endif;
endwhile;



procedure SCAN(z,v,n,s,t,t,vpcase ccw,w);
# Input : 2z, v, n, cew, w
# Input and output : s, t, ¢, vpcase
# 0(s,) = 6(w), window is s,w
# o(v;) < afs,) if cew, afv;) > ofs,) if not ccw
while vpcase = ‘scan’ do
t :=t+1; # stack properties are satisfied
if ccw and o(v; ) > ofs;) > o(v;) then
# see remarks 2 and 5
if v;v;,, intersects s,w then
s¢41 ‘= intersection of v;v; 4, and s;w;
t == t+1; vpcase := ‘advance’;
endif;
else if not ccw and o(v; ) <afs;) < ofv;) then
# see remarks 4 and 6
if v;v;,; intersects s,w then
vpcase = ‘retard’;
endif;
endif;
endwhile;

Remark 1 : We show that stack properties (S1) and (S2) are satisfied for all 7. Initially
1=0, sg=vg, and o(sg)=0. In ADVANCE, each new point, s;, put on top of the stack satisfies
ofsyy)<as;) <27 and s,ys, is on Bd(P). In RETARD, vertices s;4,, - * * ,5, are popped from
the stack but sy=wvy is never popped from the stack as mentioned in remark 3, so t >0 is always
satisfied; each new point, s;, put on top of the stack is either on edge s;s;y; with s, ;=s,,
os;)>0(s;—y), and s;_s, on Bd(P) (since s;s;4; is on Bd(P)) or is v; with afs;)=0o(s;). In
SCAN, each new point, s;, put on top of the stack is on edge v;v;; with o(s;)=0(s,_;). Finally,
t <1 since ¢ is increased by at most 1 each time 7 is increased by 1.

Remark 2 : If o(v; ) <o(v;) with v;=s; and either ¢ =0 or v;_,v;v;,, is a right turn with
s;_, on edge v;_,v; (see Figure 3.1), then a scan is made starting from edge v;,v; o for the first
edge v U4 such that a(vg)<ofs,)<a(vgy;) and vivg,; intersects s,w where w is the ‘point’ with
polar coordinates (00,0 (s;)). The existence of edge viv,4; follows from Lemmas 1 and 2. Let u
be the intersection of vyv,; and s,w. Let v be a point on Ch(v;,u). Since Bd(P) is simple and
89=7vy is visible from z or zsy is on Bd(P), either o(v)<0 or 0<a(v)<a(s;) and there exists a
point on Ch [vg,s,] with angular displacement a(v) which is closer to z than v. In the former case,
v is not visible from 2 by Lemma 4. In the latter case, v is not visible from z since part of line
segment zv lies in Ext(P).

Remark 3 : If RETARD is entered after exiting ADVANCE, then s,=v; and
ofv;4)<afv;). If RETARD is entered after exiting SCAN, then o(v;)>a(s;)>0a(v;4,). Either
vertex v;,; is on line segment zs, with r(v;,,)<r(s;) or part of edge v;v;,; is in ‘front’ of chain
S;=s08; - * * 8 with respect to z. Since Bd(P) is simple, and sg=1vy is visible from z or zs is on
Bd(P), and the a(s;)’s are in nondecreasing order, v;; must satisfy for some 7>0 (see Figure 3.2)
(a) ofs;)<e(viy1)<a(s;p), or
(b)  o(viy1)Lofs;)=0a(s;41) and v;v; 4, intersects s;s;,; where s;5,,, is not on Bd(P).
In case (a), let u be the intersection of s;s;.; and line zv:;_l. A point v on edge s;8;4,, where
J+1<k<t, or on us;,, in case (a), is not visible from z since there is a point on v;v;,; with polar
angle 6 (v) which is closer to z than v. A point v3#v;,, on edge v;v;,; is not visible from 2z since
v;V; 41 Is a clockwise oriented edge with respect to z implies that part of line segment zv lies in
Ext(P).

Remark 4 : If case (a) in remark 3 occurs, then the stack and i are updated with s,

t=j+1, set to the intersection of s;s;y; and zv;, and then v; is pushed on top of the stack. If



o(v; 41)>0(v;) and v; 1 v;v;4; is a right turn then ADVANCE is entered next; else if a(v; ;) <a(v;)
then the next edge v;v;,; is processed by RETARD as in remark 3. The remaining case occurs
when o(v; 1) >a(v;) and v;_jv;v;4, is a left turn (see Figure 3.3). v; is popped from the stack.
Then a scan is made starting from edge wv;.v;4, for the first edge wvvp,; such that
o(vp)>a(s;) > afvgyy) and vgvg,, intersects s,v;. The existence of edge v v, follows from Lem-
mas 1 and 2. Let v be a point on Ch(v;,v;). Since Bd(P) is simple, v lies in the ‘region’ bounded
by Ch(s;,v;] and line segment v;s,, and there exists a point on Chl[s,,v;] with angular displace-
ment o(v) which is closer to z than v, so v is not visible from z. A point v v, on edge v,vj,
or v=w; is not visible from z since part of line segment zv lies in Exzt(P).

Remark 5 : If case (b) in remark 3 occurs, then the stack is updated with s,=s; as illus-
trated in Figure 3.4. If o(v;4;)=0(s,), and ofv;40)>a(v; ), and v;v;41v; 44 is a right turn (v;4
exists since v;,,#v,) then v;,,v;, is in ‘front’ of v;v;,; with respect to z so ADVANCE is
entered next. Otherwise, a scan is made starting from edge v; . v; o for the first edge vivi,; such
that ofv)<a(s;)<o(vi41) and vivey, intersects s;w where w is the intersection of v;v;,; and line

z;; The existence of edge vyvi,, follows from Lemmas 1 and 2. Let u be the intersection of
VgUg4; and s;w. Let v be a point on Ch(w,u). Since Bd(P) is simple, v lies in the ‘region’
bounded by Ch[s;,w] and line segment ws;, and there exists a point on Ch[s,,w] with angular dis-
placement ofv) which is closer to z than v, so v is not visible from z.

Remark 8 : If o(v;y)>27>0a(v;) (see Figure 3.5) then s, is the point on wv;v;,, with
o(s;)=27 and a scan is made starting from edge v; . v;,o for the first edge vyvs,, such that
o(vg)>a(s;) >o(veyy) and vpvgy, intersects vgs,. The existence of edge v;vi,, follows from Lem-
mas 1 and 2. Let v be a point on Ch(s;,v;). If a(v)>2r or a(v)<0, then v is not visible from z
by Lemma 4. If 0<o(v)<27 then, since Bd(P) is simple, v lies on line segment s,s, or in the
exterior of the region bounded by chain S;,;=s¢s; - - - s, and line segment s,s,, so v is not visible
from z. A point v v, on edge v vy, is not visible from z since part of line segment zv lies in

Exzt(P).

4. Correctness and running time of the algorithm

In this section, we verify the correctness of the algorithm and show that the algorithm runs
in linear time.

Theorem 1 : For all i, 0<¢<n, the stack properties (S1), (S2), (S3) are satisfied after
Ch{vo,v;] has been scanned (at the places indicated in the pseudo-code), and the algorithm ter-
minates with s,=v,.

Proof : From remark 1, (S1) and (S2) are satisfied for each 7. From remarks 2 to 6, (S3) is
satisfied for each ¢. In SCAN, 7 is increased by at least 1 and from remarks 2, 4, 5, 6 there exists
an edge v;v;,,; which causes ADVANCE or RETARD to be entered next. In ADVANCE and
RETARD, 7 is increased by 1 each time through the while loop, except possibly when SCAN is
entered next. Therefore, eventually the algorithm must exit ADVANCE or RETARD with ¢ =n
and s;=v, and terminate. O

Theorem 2 : Bd(V(P,z))=S5,U {v,z,2v, if z€Bd(P)} where S, is the chain s¢s; - - - 5, at
the end of the algorithm (i.e. the algorithm correctly computes V(P,z)).

Proof : If v€Ch[vyv,| but v is not on S, then v is not visible from z by Theorem 1 and
(83). Therefore if vE€Ch[vy,v,] is visible from z, then v is on S,. If v is on S, but v is not the
closest point to z on S, with polar angle 6 (v), then v is not visible from z since the intersection
of the interior of line segment zv and Bd(P) is nonempty. If v is on S, and v is the closest (or
only) point to z on S, with polar angle 8 (v) (where 0<8(v)<2x if z€Int(P) and 0<9(v)<8(v,)
if z€Bd(P)), then v is on Bd(P) by Theorem 1 and (S2), and v must be visible from z since there
exists a point on Bd(P) with polar angle 0(v) which is visible from z and all other points on
Bd(P) with polar angle ¢(v) are not visible from 2. Since the a{s;)’s are in nondecreasing order
by Theorem 1 and (S1), any point on .S, which is not visible from z is on an edge s;s;4, in which
ofs;)=0(s41); these edges are added to connect the visible points on Bd(P). Also, note that if
three or more consecutive stack vertices have the same angular displacement, then their distances
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from z are in strictly increasing or decreasing order since Bd(P) is simple. Therefore
Bd(V(P,z))=5, U {v, z,2vy if z€Bd(P)}. O

Theorem 38 : The algorithm given in procedures VISPOL, ADVANCE, RETARD, and
SCAN runs in O(n) time.

Proof : Each edge v;v;,,, 0<i<n—1, on Bd(P) is scanned once in the algorithm. For each
edge v;v;,, scanned, at most 2 points are pushed onto the stack. Therefore at most 2n points are
pushed onto the stack in the algorithm, and at most 2n points are popped from the stack in
RETARD. The computation of the angular displacement of a polygon vertex v; or stack vertex
s; can be done in constant time (as mentioned in Section 3). Also, computing the intersection of
two edges or lines and determining whether v;_;v;v;,, is a left or right turn can each be done in
constant time. Therefore the algorithm runs in O(n) time. O

Appendix A

In this appendix, we illustrate the algorithm with the polygon P and the vision point
z€Int(P) in Figure A.1, and show that the original version of Lee’s algorithm and El Gindy and
Avis’s algorithm fail for this example.

Our algorithm : sg=wvy is initially pushed on the stack in VISPOL. ADVANCE is entered
first and s,=v, is pushed on the stack. Next, SCAN is entered with ccw =true and w=(00f(v));
SCAN is exited when edge vy;vy5 is scanned and sy=a is pushed on the stack where a is on v;;v5
(note that vsug crosses s,w at point ¢ in the counterclockwise direction but ofc)=a(s;)—2.
Then, ADVANCE is entered and sg=v;, and s;=wv,3 are pushed on the stack. Then, RETARD is
entered with case (b) occurring : v gv,, intersects s,s4 s0 84, s3, and s, are popped from the stack.
Then, SCAN is entered with ccw=true and w==>0 where b is on v,3v,4; SCAN is exited when edge
VggVygy is scanned and sy=g is pushed on the stack where g is on vg3v,, (note that vgvy crosses
s;b at point e in the counterclockwise direction but ofe)=a(s;)—2x. Finally, ADVANCE is
entered and sg=vgy, 5,= Vo5, S5="vgg, and sg=wvy; are pushed on the stack. The final stack chain
is Sg7 = 8051525354855¢ = VgU19VsqUasVoeVer = Bd(V(P,2)).

Lee’s algorithm : This algorithm proceeds in the same way as our algorithm until edge v 3v4
intersects s,55. Then a scan is made for the first edge to cross s;b in the counterclockwise direc-
tion; in this case the edge is v yvyy and the intersection point is €. Then so=e, sg=vgy, §,=vy,
$5=7gy, and sg=1vyg are pushed on the stack as the scan of Bd{P) proceeds in the counterclock-
wise direction. Then the precautionary step is executed since sg= vy subtends an angle greater
than 27 with respect to z; a scan is made for the first edge which crosses vgh in the counterclock-
wise direction where h is on vgvgs; but in this case no such edge exists when the scan of Bd(P) is
completed at edge vygvy. Therefore Lee’s algorithm fails for this example and other polygons in
which the scan in a hidden region does not account for the winding of the boundary.

El Gindy and Avis’s algorithm : This algorithm is for polygons which are oriented in the
clockwise direction. It can be easily modified for polygons oriented in the counterclockwise direc-
tion by interchanging all occurrences of ‘left turn’ and ‘right turn’. This algorithm does not han-
dle parts of Bd(P) with negative angular displacement correctly so vy, vy, f, ¢, vg, vy, v1o, P, ¢
are pushed on the stack as the scan proceeds to edge vi4v;5. Then g, p, vy, vy, vg, ¢ are popped
from the stack as the scan proceeds to edge v gvs. Then €, vy, Vg, Vog, h, vy are pushed on the
stack as the scan proceeds to the last edge voqvy7, and the algorithm terminates with vy, vy, [, €,
Vo, Vg1, Vsg, R, Vo7 as the visibility polygon vertices which is clearly wrong.
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Figure 2.1 Intersection of P and the ray from z at polar angle ¢.
o - polygon vertices, * - intersection point,
x - vertices of visibility polygon from z
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(a) ze Bd(P) m=t=15

k.
N\

(b) ze Int(P) m=11, t=14

Figure 2.2 Examples of chains 3051 " " " SpSma1 " " " St
o - polygon vertices, x - visibility polygon vertices



Case (b) of procedure RETARD

Figure 3.2 Illustration for remark 3.
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Figure 3.3 Illustration for remark 4 (RETARD, SCAN).

The values of 7=8, v;, w, t=2, s; are set as on exit from
RETARD.

The values of k=15 and v are as on exit from SCAN.
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Figure 3.4 Illustration for remark 5 (RETARD, SCAN).

O

The values of j=3=t, s, ¢ =9, v;, w are set as on exit from

RETARD.
The values of k=17, and v, are as on exit from SCAN.



o
e}

$ <

Figure 3.5 Illustration for remark 6 (ADVANCE, SCAN).
The values of =4, v;, w, t=5, s; are set as on exit from
ADVANCE.
The values of £ =18 and v;, are as on exit from SCAN.



Figure A.1 Example for which the algorithms of Lee and El Gindy
and Avis fail.
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