o

ENCE BEEARF
IENCE DEPARI
IENCE DEPARTMENT

S
ER SC

]
+
T
T

U
U
U

Al

|
;

E WATERL
F WATERL

10
II¥§

S

IVERSITY OF WATERLO

HNIVER
UNIVER

A Characterization of
Ternary Simulation

of Gate Networks

J.A. Brzozowski
C-J. Seger
VLSI Group

CS-85-37

October, 1985

A Characterization of Ternary Simulation
of Gate Networks*

J.A. Brzozowski and C-J. Seger

Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada

ABSTRACT

Ternary simulation techniques provide efficient methods for
the analysis of the behavior of VLSI circuits. However, the results
of ternary simulation have not been completely characterized. In
this paper we prove a somewhat modified version of the
Brzozowski-Yoeli conjecture (stated in 1976) that the results of the
ternary simulation of a gate network N correspond to the results of
the binary race analysis of N in the "multiple-winner” model, where
N is the network N in which a delay has been inserted in each
wire.

1. Introduction

In 1965 Eichelberger [E] proposed the use of ternary simulation for the
analysis of races in asynchronous sequential networks. His method was applied
to a model of sequential circuits in which the state is determined by feedback
lines, and was somewhat informal. In 1979 Eichelberger’s ternary algorithm was
applied by Brzozowski and Yoeli [B-Y] to a model in which the state is defined
by all the gate outputs; also the relationship of the ternary algorithm to the binary
General Multiple Winner (GMW) model of races was studied. However, only a
partial correspondence was established, leaving open a conjecture (formulated in
1976 and published in 1979 [B-Y]) about complete correspondence. The
importance of termary simulation for practical applications was clearly
demonstrated by Bryant [B83a, B84], who incorporated ternary algorithms in his
simulators for MOS VLSI circuits. Bryant [B83b] also worked on the conjecture
and obtained a characterization of the first part of the ternary algorithm. In this
paper we provide a complete characterization of the ternary algorithm.

We introduce the problem by means of an example [B-Y]. Consider the net-
work N; in Fig.l. One verifies that the total state x =0,
y = (01, ¥2, ¥3) = (0, 1, 1) is stable. (We will write y = 011 for short.)

* This research was supported by the Natural Sciences and Engineering Research Coun-
cil of Canada under grants No. A1617 and A0871.

2 Brzozowski and Seger

=

Figure 1. Network N;.

Suppose now that the input changes to x = 1; what will be the final state of the
network? This question constitutes the basic problem in the analysis of asynchro-
nous sequential networks.

In our example, the behavior of the network is governed by the following

gate excitation equations:
Yi=x+y, Yy=y{,and Y3=(xyzy3),

where Y; gives the value of the boolean function computed by the gate whose out-
put is y;, i.e. it is the excitation of the gate. In the total state x = 1, y = 011,
we find Y = 110; hence gates 1 and 3 are unstable and we have a race. We use
the General Multiple Winner (GMW) model [B-Y] for the analysis of races.
Specifically, we assume that gate 1 may win the race (have a smaller delay than
gate 3), or gate 3 may win the race, or both can change at the same time. Thus
the next state of N, could be 111, 010, or 110, depending on the relative delays
of gates 1 and 3. For each of these possible successors of the initial state 011 we
now repeat the process. The result of this analysis is the diagram of Fig.2, where
each state reachable from the initial state 011 is represented by a node, and an
arrow from state a to state b indicates that b can be an immediate successor of
a. Unstable gate outputs are shown underlined.

It can be seen that the graph has two cycles of length two and one of length
one. In the first cycle (states 010 and 011), the variable y, is O in both states and
is unstable in both states. Hence the network can exist in these two states only
for a finite amount of time, for eventually y; will change. We call such a cycle a
transient cycle [B-Y]. Similar remarks apply to the second cycle consisting of 110
and 111. Thus the only nontransient outcome of this transition is the stable state
101.

In general the binary analysis in the GMW model is exponential in the
number s of gates because it is possible to have as many as 2° states in a
diagram such as Fig.2. Therefore this approach is impractical for large net-
works.

A Characterization of Ternary Simulation of Gate Networks 3

Figure 2. Binary analysis of N;.

In contrast to this consider the following ternary approach. Starting with
state x = 0, y = 011, change the input to x = %, representing an unknown or
changing signal. As a result of this unknown input x, gates 1 and 3 will have
unknown values. In the second step, gate 2 will also become %. This approach
is summarized in Fig.3(a) and corresponds to Eichelberger’s Procedure A [E, B-
Y]. In this case the figure shows that all the gates may become unknown when
the input is changing.

nj-
nj-
ol

o1

o} 14
£33 104
101

(a) (b)

Figure 3. Ternary analysis of Ny: (a) Algorithm A; (b) Algorithm B.

To complete the ternary analysis we now apply the new input x = 1 to the
ternary state % % % resulting from Procedure A, to see how much of the uncer-
tainty introduced by the transient input can be removed when the final input
value becomes known. First, y; will become 1 since the input x = 1 will force
the output to 1, independently of the second input to the OR gate. Second, the
output of the inverter will become 0 after y; becomes 1. Finally y; becomes 1

4 Brzozowski and Seger

after y, changes to 0. This is summarized in Fig.3(b). Notice that the final out-
come of the ternary algorithm is 101 which is precisely the nontransient outcome
of the GMW analysis. The ternary Algorithms A and B are both linear in the
number of gates.

X ——=8

Figure 4. Network N,.

00

01 10

11
Figure 5. Binary analysis of N,.

Q0

of-
n)-

O

-
[

(a) (b)

Figure 6. Ternary analysis of N,: (a) Algorithm A; (b) Algorithm B.

Our second example shows what happens when the result of an input change
does not lead to a unique stable state. The binary and ternary analyses of the
NOR latch of Fig.4 are shown in Figs. 5 and 6, respectively. The initial state is
x =1, y = 00 and the input is changed to x = 0. The GMW analysis of Fig.5
shows three cycles: the stable states 01, and 10 and an oscillation (00, 11). The
latter cycle is not transient like the ones of Fig.2. However, it is "match-
dependent” [B-Y] in the sense that a network can only maintain such an oscilla-
tion if at each step the two gates have perfectly matched delays.

A Characterization of Ternary Simulation of Gate Networks 5

In the case of N, the ternary model of Fig.6 predicts an unknown final state.
If one interprets % as meaning that the gate could either have the value 0 or the

value 1 in any nontransient situation, then the ternary algorithm results are
correct.

Xy ¥y

— y
) ___D_z_

Figure 7. Network N;.

Our final example [B-Y] for this section shows that the ternary results do not
always correspond to the binary results, if one assumes that delays are associated
only with gates. If the network N of Fig.7 is started with x = 01, y = 00 and
the input changed to x = 10, the binary analysis predicts no change in the state,
i.e. y = 00. However, the ternary algorithm yields y = 0%. This discrepancy
can be explained by assuming that wires, as well as gates, have delays. This
leads to the conjecture that the ternary and binary results correspond properly if
one allows appropriate wire delays. It is this problem that is scttled in the
present paper.

2. Gate Network Model

We will require a precise mathematical model of gate networks. We assume
that the network N has n inputs, described by the vector x =x¢, - - - ,x, of input
variables. We also assume that the network has s gates. We will represent each
input and each gate by a node in a directed graph G = (V,E), where V is the
set of vertices or nodes and E is the set of edges. The edges will represent the
connections among the input terminals and gates in the natural way. The input
and gate nodes can be distinguished as follows. Nodes of indegree 0 are input
nodes, and nodes of indegree >1 are called gate nodes. With each gate node we
associate a boolean function g; —the incoming edges to the gate node represent
the arguments of g;.

Sometimes it is convenient to treat all the nodes of G in the same fashion;
for this reason we will use the vector y =y, * - * ,yp4s Of node labels or node
variables. Thus the vector y of node variables represent the rotal state (inputs
and gate outputs) of the network. When it is necessary to distinguish between
input and gate variables we replace y; by x; for i =1, - - - ,n. However, for
i=n+l, - - - ,n+s,y; always denotes the output of gate i.

6 Brzozowski and Seger

To illustrate these ideas, consider the network N; of Fig.8. The graph for
Ny is shown in Fig.9. It has 4 nodes: one input node labeled y; (and also x;)
and 3 gate nodes labeled y,, y3,y4. The boolean functions corresponding to these
gates are g,, g5 and gy.

X4

Figure 8. Network N;.

Q ? &) ?

Figure 9. Graph of network N;.

In summary, we are using the following model. A gate network is a directed
labeled graph
N = <G’x’y’g >

where: G = (V, E) is a finite directed graph,

V = {1, - - ,n4s}is the set of vertices of G,

E C VXYV is the set of edges of G,

X =Xy, - - - X, is the vector of input variables,

Y = Y1, " »Yngs is the vector of node labels or node variables,
and

8 = 8n41> * * * »8n4s 1S @ vector of boolean functions.

For an input node the variable y; always takes the value of the external input
X; s i.e.

Y = X; fori=1,"',n.

With each gate node j we associate the boolean function g;. The arguments of
g; are all those node variables y; such that (i, j) € E; this represents the fact
that node y; is connected to an input of gate y;. Note that, by definition, at most
one such wire exists between y; and y;. Thus the indegree of node y; is the
number of arguments of g;. For notational convenience we rename the

A Characterization of Ternary Simulation of Gate Networks 7

arguments of g; as follows. For each (i, j) € E the variable y; is renamed w;;.
Suppose all the inputs of gate j are w; ;, - - - ,w;_ ;; we will denote this vector
J

simply by w;. Thus, if the input vector for gate y; is w;, g;(w;) is called the
excitation of the gate and we have

g :B™ —B,
where B = {0, 1}.

We illustrate these details for the network Ny of Fig.8. The boolean func-
tions associated with the three gates are:

82(w2) = 820w, wn) = 82001,2) = 82(x1,y2) = x1+¥2,

83(w3) = g3(wx) = 83(y2) = ¥,

84(Wa) = 84(W1a,W34,Was) = 84(¥1,¥3.Y4) = 8a(x¥1,y3,¥4) = (x1yaya)"-

We assume that each gate has an arbitrary but finite delay. Thus the gate
output y; may differ from its excitation g;(w;). If y; = g;(w;) we say that gate
j is stable; otherwise it is unstable. A network N is said to be in a stable total
state iff its inputs are fixed and all its gates are stable.

3. Binary Race Model

We now formally define the General Multiple Winner model. Let b € B***
be any total state and let a = by, - - - ,b, be a fixed input vector. Define U (b)
to be the set of unstable gates in b, i.e.

U®)={i :n+1<i<n+s, and b;#g; (w;)}.

The GMW relation R, defines the set of successors for any total state b. If b is
stable, i.e. if U(b) = ¢, then the only possible successor is . If b is unstable,
then every state of the form 5@ is a successor of b, where b®) is b with some
components changed as follows. Let § be any subset of the set U (b) of unstable
gate variables; to obtain b**) complement b; iff i € S. Formally, define the
GMW relation R, , on the set B*** of total states. For b ¢ B***,

if U(b) = ¢ then bR, b;

if U(b) # @ then bR, b for any S € U(b), S= Q.

Following [B-Y] we define the set cycl(R,, b) to be the set of total states of
N that appear in cycles in the relation R, and are reachable from b. For exam-
ple the set of cyclic states reachable from 001 in Fig.2 is {011,010, 111, 110, 101}.
Thus let

cycl(R,,b) = {ce B"* :b R;c and c R;" c},

where R, is the transitive closure of R,, and R; is the reflexive and transitive clo-
sure of R, .

8 Brzozowski and Seger

A cycle is called rransient if there exists a gate i, n4+1<i<n+s which is
unstable in all of the states in the cycle and has the same value in all these states.
For example, in Fig.2, the cycle consisting of 011 and 010 is transient. Let

trans(R, ,b) = {¢c ecycl(R,,b) : ¢ does not appear in any nontransient cycle }
and
out(R,,b) = cycl(R,,b) — trans(R, ,b).

The set out(R, ,b) is the "outcome” of the binary analysis of the behavior of N
when started in total state b, in the sense that it consists of all the states N can
be in under nontransient conditions. Note that match-dependent cycles are con-
sidered non-transient in this model.

4. Ternary Simulation Algorithm

We now describe the ternary simulation. For more details the reader should
refer to [B-Y]. Let T = {0,1,%}. The values 0 and 1 represent the usual logic
levels and % represents an unknown value. We will use the convention that vari-
ables like x;,y;, etc. which take values from B = {0, 1} will have corresponding
variables x;,y;, etc. taking values from T. The partial order < on T is defined
by

t<tforallteT,
0<% and 1<%.

The statement t < r means that whenever r; is binary then #; has the same binary
value as r;, but r may contain more unknown components (i.e. components with
value %). Thus r has more "uncertainty” than t.

We write t<r if t<r and t#r. Also we extend the partial order < to 7 in the
usual way:

tgl‘ifft,-sr,- foralli = 1, RN / / X
We define the u—average operation on nonempty subsets of the set B as follows:
p{0}=0, p{1}=1, p{0,1}=1%.

We extend the p-average to nonempty sets of vectors from B™ by taking the

"component-by-component” u-average. Thus, if A CB™, let
A ={a; :(ay, - ,a,)eA} for 1<i <m be the set of the ith components of
all the vectors in A. Then define

HA = (/“Al’ T ’”Am)

For example, 1{(0,0),(0,1)} = (0,%). Clearly a<pA foreverya €A.

A Characterization of Ternary Simulation of Gate Networks 9

For any boolean function f:B™ —BP we define its ternary extension
f: T" —TP by

f(t) = p{f(a) :aeB™ and a<t}.

It follows that, for € B™, f(t) = f (¢), i.e. on binary vectors the ternary exten-
sion agrees with the original function. The ternary extension obeys the following
monotonicity property [B-Y]:

t<r implies f(t)<f(r).

First we describe how to compute the ternary excitation next for any total
state y e T"*°.

Junction next(y e T"**) e T"***;
begin
forj=1ton do
next; = yj;;
forj=n+lton+s do
next; = g;(w;);
end,
Here, g; is the ternary extension of the boolean function g; associated with gate
Jj. Note that w;, as before, is a vector consisting of some components of y.
Also, one verifies that

y<y implies next(y)< next(y).

This follows from the definition of next and the monotonicity property of the ter-
nary extension.

The ternary simulation consists of Algorithms A and B described below.

Let d,b =dy, -+ ,3,,c1, " C; EB" be any stable total state and
a = ay, * - - ,a, be the new input vector. Let u = pu{d,a}.
Algorithm A
h:=0;
Yi=uc;
repeat
h:=h+1;
y* i=next(y*~);

until y*=y*1;

10 Brzozowski and Seger

It was shown in [B-Y] that Algorithm A always terminates, i.e. we have a
sequence of p distinct ternary states, where p <s

yo’yl’ e ,yo—l.

It was also shown in [B-Y] that Algorithm A can only "increase the uncertainty”
in the network state, i.e.

y'< y** for O<h<p-1.
Note that y~! = u,r, for some r e 7°.
Next, starting with state ¥~ = u,r, we apply Algorithm B given below.
Algorithm B

h:=p;
=a,r,
repeat
e
=next(y");
until y*=y"~1;

Algorithm B also terminates [B-Y], i.e. we have a sequence of ¢ distinct ternary
states, where g <s

y",y’"’l, . ’yp+q—1,

and now the uncertainty decreases, i.e.

y'> y*tl for p<h<p+q-1.
Note that 9! = g, t for some t e T*.

5. Main Result

The following result was proved in [B-Y]. Let N be started in some stable
state d,c and let the input vector change to a, i.e. let the new total state be
b =a,c. Then the result y? of the ternary simulation of N “covers” the non-
transient states reachable from » in the GMW graph of N in the sense that:

p(out(R,,b))<y".

The example of Fig.7 shows that, in general, the two results are not equal. In
this paper we show that the results become equal if appropriate delays are added.
The main result is formally stated in this section; the following sections then con-
tain the proof. The basic idea is to study a "delay complete” network obtained
from the original network by adding an arbitrary but finite inertial delay to each
wire. The new network will be called N. It contains the gates of N whose out-
puts are now labeled by the vector y, and the special "gates" corresponding to the
added delays. The outputs of those delays will be described by the vector z.

A Characterization of Ternary Simulation of Gate Networks 11

Each delay may be viewed as a gate performing the identity function. The total
state of N is now (¥ ,), but we will compare only with the corresponding vec-
tor y in N. In the theorem below, if ¥ ,Z appears in a cycle of the GMW graph
of N, then we will say that § belongs to that cycle. Assuming that N and N are
started in corresponding initial conditions, the main result is:

Theorem 1 The ternary result y? from Algoritbm B for any network N is equal
to the p-average of all the binary vectors y which belong to nontransient cycles
reachable from the initial state of N in the GMW model. Furthermore, there
exists a nontransient cycle Z in the graph of the GMW-relation such that the u-
average of all the vectors y belonging to that one cycle is equal to y2 .

The proof proceeds as follows. In Section 6 we prove that the ternary simu-
lation is insensitive to the addition of delays anywhere in the network N. In par-
ticular, the results of the ternary algorithm applied to N and N agree in the gate
variables. In Section 7 we characterize the result of Algorithm A and establish
the first part of a sequence of states of N that will eventually lead to the nontran-
sient cycle Z of Theorem 1. In Section 8 we find the second part of that
sequence, which is related to Algorithm B. In Section 9 we exhibit the nontran-
sient cycle Z. Finally, in Section 10 we complete the proof of Theorem 1.

6. Ternary Simulation and Delays

In this section we show that the ternary simulation is insensitive to the addi-
tion of delays anywhere in the network. In the lemma below we insert one delay
to N in the wire from node k to node m. The output of this delay will be desig-
nated Z,, and the resulting network will be N = <G,x,¥, Zun » &>, Where the
graph G is G with an extra node added for the "gate" corresponding to the delay
Zn, the input vector x is the same as in N, the total state of N is given by
(&5 Zm) and the vector g of boolean functions is the same as in N. The "gate
function” of delay z,, is simply y;.

We say that Algorithm A or B is consistent for N and N if the final result is
the same for y and y, i.e. the output of the additional delay %, is simply
ignored.

Lemma 1 The result of Algorithm A applied to any network N is consistent with
the result of Algorithm A applied to the same network with one wire delay 2,
added.

Proof: Let N = <G, x, y, g> be an arbitrary network and suppose (k, m) € E.
Let y° = (@, b) be a stable total state of N and let y° = u,b, where u = p{d,a},
be the initial ternary state of N for Algorithm A. Let N = <G, X, ¥, Zimr 8>
be N with a delay z, inserted in the wire from node k& to node m. The total
state y ,Zp, = d,b,y," is stable in N. Let y°, %% be the initial ternary state of N
for Algorithm A.

12 Brzozowski and Seger

We will prove by induction on /2 that
¥ <y <¥*! for all h>0.
In view of the fact that Algorithm A converges to its final value after a finite
number of steps, the lemma will then follow.

If y, does not change during Algorithm A the lemma is obviously true.
Otherwise, assume that y;, becomes % at step r, r>0. Note that r = 0 means
that y, is an input node.

For the basis, & = 0, we have y° = y°. By the monotonicity of Algorithm
A,¥>%°. Thus we have

Y <y <yt
Suppose now that ¥ < y* <¥*'. Consider the input variables w; andw;; to

all the gates of N. If (i,j) = (k,m) then w;; =¥; and it is always true that
w; = y;. Hence

h < Wi}} S‘-Vijh+l
by the induction hypothesis for the y;. Also wy,= y; and wy, = z,,. We know
that
~0
0 Ye ifh<r
Won= v if h>r
and
h i h<r+1
= 1 if h>r+1

Thus we also have

Altogether we have
wh < wh <wi*! forall (i,j) €E.
It now follows by the monotonicity of g; that
h+1 =g (wh) <g (wh) - h+1 <g (wh+1) h+2.
Hence the induction step goes through and the lemma holds. O

We are now ready to prove the main theorem of this section.

Theorem 2: Informally, the ternary algorithm is not affected by adding any delays
to the network belng analyzed. Formally, let N = <G, x, y, g> be any network
and let N = <G, x, ¥, z, g> be any network obtained from N by the addition
of delays in any wires of N. Then the outcomes of Algorithms A and B are con-
sistent for N and N .

A Characterization of Ternary Simulation of Gate Networks 13

Proof:

Let Lemma 1° be Lemma 1 with Algorithm A replaced by Algorithm B,
with initial state y?~! = u,r and new input x = a for N, and appropriate initial
state for N depending on the position of the added delay. One can verify that
Lemma 1P is proved by dual arguments, interchanging < and >. We leave the
details to the reader.

Altogether, Lemma 1 and Lemma 1° show that ternary simulation yields
consistent results for N and N, when only one delay has been added.

It now follows by induction on the number of delays added to N that the
theorem holds for any N as claimed. O

According to Theorem 2 any number of delays can be added to a network
without changing the result of the ternary simulation. We now define the delay-
completion of a network that gives a network which, in some sense, has all possi-
ble delays included. More specifically, let N = <G, x,y, g> be a given net-
work. We obtain N = <G, x,7,%, g> by inserting a delay in every input line
of every gate of N; N is the delay-completion of N. Let d be the number of
delays inserted. As in the case of w; we define z; to be the vector

J -
% i, ,% ;. Thisis the vector of input variables of gate j in network N.
ll J 'mj J

To illustrate this definition we show the delay-completion of N, in Fig.10.

~

. 244

12 g - ¥ 7 3
~ yZ Zo3 y3 — 134 y‘
Zp0 1

— 234

Figure 10. Delay-completion of N.

14 Brzozowski and Seger

7. Characterization of Algorithm A

The results of this section are an adaptation of the work of Bryant [B83b].
In his model delays are associated only with wires and not with gates. However,
the main idea for Theorem 3 is essentially the same. We assume that N and N
arc started in corresponding initial conditions.

Theorem 3 The ternary result y* from Algorithm A for any network N is equal
to the p-average of all the binary vectors j reachable from the initial state of N
in the GMW model. Furthermore, there exists a state y,Z reachable from the
initial state of N, in which each gate output that corresponds to % after Algo-
rithm A in the ternary simulation of N, is the complement of its initial value, i.e.
y* is the u-average of the initial state and y .

Proof: We will prove the second part, since the first part follows immediately
from the second. Clearly the second part implies that y* is < pY, where Y is
the set of all the binary vectors reachable from the initial state of N. On the
other hand, in [B-Y (Lemma 4)] it was shown that any binary state of N reach-
able from the initial state is < the result of Algorithm A for N. By Theorem 2,
this result is consistent with that of Algorithm A for N. Hence y*> pY, and the
first part follows.

For convenience we now define the standard initial conditions for N and N
which will always be used to study a transition from a stable total state when the
input vector changes.

Standard Initial Conditions

Network N : <G,x,y

=da,b - given stable total state

a - input vector before change

a - input vector after change

u=yp(d,a) - ternary input vector for Algorithm A
b - initial state of gate nodes of N

Network N : <G,x,y,z,8>

30,2 - stable total state corresponding to °
of network N, where

=50 forall (i,j)eE

)76,20 - total state of N after input change
which is also the initial state for the
GMW analysis of N, where

9= a,b

R, - GMW relation for N

The second part of the theorem can be stated more formally as: let N be any
network and let N be its delay-completion, both started in the standard initial
conditions. Let y*, 0<h <p—1 be the result of Algorithm A after & steps.

A Characterization of Ternary Simulation of Gate Networks 15

Then for each h there exist 32" € B*** and #*¢ B¢ such that
() G%PR*G™,),
(ii) y?=1% impliesy*= (5)' for 1<j<n+s,
(iii) yj y, 1mp11esy, —yJ and z, _z for 1<j<n+s.
We proceed by induction on 4. The reader may find it useful to follow the con-

struction in the proof of the theorem in parallel with the construction after Fig.11
for network N, of Fig.11.

Basis, h=0: One verifies that 3°, 20 satisfies conditions (i)-(ii).

Induction step: Assume that 3% .2 has been constructed and consider y
There are two cases.

h+l
yi -

(2) y}*'=% and y*=7y?. In other words y; had the original binary value for
the first # steps and changed to % in step £+1. There must exist at least
one such j in every step h, 0O<h<p-—1. Note that 1+1>1 implies that y;
must be a gate output, since all the input node variables became % in step 0.
Since yh+1 =g; (W) =%, and yj gi(W; %) € B and by the definition of the
ternary extension of g;, there exists v; eB " such that g;(v)) = (y,o) and

h< wjh Note also that w; < w}' If v,j # w,J (at least one such case must
ex15t), then w, ; % i.e yt=%. By the induction hypothes1s y, = 50 by
(ii). Also z%*=z)) because y!= y] and (iii) applies. But Z; = 32, and hence
the delay 2,-,- is unstable in step 24, i.e.

¥i 2k, z,j for all i such that v,,# w,J

Let 572+1= 3 if v}= W] and 32**'= 72 otherwise. Note that 77*+!= v},
and hence gate y; will become unstable in step 22 +1.

(b) If case (a) does not hold, variable y; has not changed from step & to step
h+1. Let z2#+1= 3% Note that now gate y; will be stable in step 2 +1.

Now define 52 +1= 32, It follows that
G2,)R, G, o),
Next define 32 +2,72#+2 a5 follows:
}.’ju+2= gj(ffh-"l) for all j,
and
2h42_ 2kl

The reader can now verify that 32*+2, 2#+2 satisfies (i)-(iii). Therefore the
induction step goes through and the theorem holds. O

16 Brzozowski and Seger

X Yi W
1 s W34 Y, w
8

Y, W,
W13 ™ - 45{>¢ 5 56 y
44 (3
/\ W0

Figure 11. Network N,.

To illustrate the construction in the proof of Theorem 3 consider network N,
of Fig.11. Let
=0, a=1, b=10010.

Then y°= 010010 and u= %. Also let

Z4= Z34, 244= 00

= 345=0

26 = 2467 256 =01
Hence

39,7 = 110010, 0 01 00 0 01

The construction described in the proof of Theorem 3 is shown below. Note that
all the gates of N are stable in %, but there are some unstable delays. This fact
will be used in a later section.

Y= 1%10010 3° 2= 110010, 0 01 00 0 01
51,2 = 110010, 1 11 00 0 01

y'= %%%010 y2,z2= 101010,111 00001
5*,#= 101010, 1 11 10 0 01
Y= %%%%10 7% 7= 101110,11110001
5%,7= 101110,111101 11

Y = hhkwil 5%,7= 101101,111101 11

A Characterization of Ternary Simulation of Gate Networks 17

8. Algorithm B - Definite Nodes

Let N be any network started in the standard initial conditions. Let y? be
the result of Algorithm B. The indefinite nodes or indefinite gates of N are those
gates whose outputs are % in y? ; the other nodes will be called definite.

Assuming that there is at least one indefinite gate j (i.e. Algorithm B does
not yield a binary result) that gate must have at least one input w;; where y; is
also an indefinite gate (possibly with i=j). Otherwise all inputs to gate j would
be binary and its output could not be %. Since the network N is finite we must
have at least one cycle of indefinite nodes; such a cycle will be called indefinite.

Consider now N ; the indefinite gates of N are the same as those of N. Any
delay between two indefinite gates will be called indefinite. Eventually we want
to show that, if the result of Algorithm B contains at least one %, there exists a
nontransient cycle of length >2 (i.e. an oscillation) in the graph of the relation
R, for N such that all indefinite gates "take part” in that oscillation, i.e. each
gate variable will take on both values O and 1 in the cycle. Furthermore that
cycle is reachable from the initial state of N .

Theorem 4 Let N and N be started in the standard initial conditions and let y?
be the result of Algorithm B. There exists a state y ,z of N reachable from the
initial state such that:

(1) All definite gates have the same (binary) value iny as they do in y?. Furth-
ermore, they are all stable, as are all the delays in the wires leaving definite
nodes.

(2) There is at least one unstable wire delay in each indefinite cycle of N.

Proof: Let 3272 7%—2 be the total state of N constructed in the proof of
Theorem 3. Let y!, p<h<p+q-1 be the result of Algorithm B after 2—p
steps. We first claim that there exist y2*e B*** and #*e B¢ such that

0 6% 2R 6.7,

(ii) y!eB implies =y} for 1<j<n+s,

(iii) y*= % implies 5 =5? 2 and =372 for 1<j<n+s.
We proceed by induction on k. The reader may find it useful to follow the con-

struction in the proof in parallel with the construction shown right after this proof

for network N4 of Fig.11.

Basis, h=p: Let %? =3%~2 and 2 =772 Claims (i) and (iii) follow immedi-

ately. For (ii), i.e. y/e B, there are two cases.

(a) y?~! € B. But by Theorem 3, (iii) in proof, 57 2= y?~! and from the defini-
tion of Algorithm B it follows that y7 ~1e B implies that y?= y? -1 and hence

-~ -~ -2 —_
yE=3F 2=yt l=yr

18 Brzozowski and Seger

(b) yP~'=%. This implies that j is an input node of N, and from Theorem 3,
(ii) in proof, it follows that ?= 7%= (5])". But this is the new input
value assigned to y? by Algorithm B and hence y jz"= Y2

Induction step: Assume that y?* 7% (h>p) has been constructed and consider

k+1 There are two cases.

i
(@) yr=% and y/*'eB. In other words y; was % for the first h—p steps in

Algorithm B and changed to a binary value in y**!. Note that h+1>p
implies that y; must be a gate output, since all the input node variables
became binary in y¥. Let 2,-"}"+l= yHfori =iy, - - ,i,,,j. This corresponds
to changing all unstable wire delays to gate j (if any). Now z7*< w}
because z%**'= 5 and by the induction hypothesis (iii) we bave that if
yleB then 3=yt Note that y}*'=g(w¥)eB implies that
&G =y

(b) I case (a) does not hold, variable y; has not changed from step & to step

h+1. Let z**= 72%. Note that now gate y; is stable in step 2 +1.

Now define y2**+1= $2*_ It follows that either
§2 2 g 2h

or

G, #) R, G*, 2441,
In either case

G, 2) Ry G, 24).
Next define y?*+2,7%+2 as follows:

57" 7= g; (&) forall j,
and

2h+2_ 2h+l

The reader can now verify that y2*+2, 74+2 satisfies (i)-(iii). Therefore the
induction step goes through and the claim holds.
Now let

5)8 - }-)2(p+q—1)

and

A Characterization of Ternary Simulation of Gate Networks 19

) 5 2P+a=D for all i such that i is a definite node

Z;; = - — .
4 z,%"’*q D otherwise.

It follows trivially that all wire delays from definite nodes are stable in 3® 22, but
furthermore all definite gates are also stable in $?,2%. This is because (ii)
implies that 7P< wP*?~! and (by the definition of Algorithm B) it follows that
j;f: yf@ﬂ—f): y?*4 1= g;(wP+?1) for all definite gates. In other words,
32, is a total state reachable from the initial total state y°, # in the GMW
relation such that all definite gates are stable and have the binary value predicted
by the result of Algorithm B. Furthermore all wire delays from definite nodes are

also stable. This completes the proof of Part (1).

For Part (2), clearly it is sufficient to prove the claim for each simple inde-
finite cycle, where a cycle is simple if it has no repeated nodes except for the first
and the last node in the cycle. Let C be an arbitrary simple indefinite cycle in
N. A gate j in C is said to be initiating iff no other gate in C becomes % in
Algorithm A before gate j. Clearly there must be at least one initiating gate in
each simple indefinite cycle. Let j be an initiating gate in C. Assume gate j
became % at step r of Algorithm A. Note that » >1 since an input node cannot
be indefinite. Now since node j is in C there must exist a predecessor to j in
the cycle, say node i. Note that i = j is permitted. Consider z;. Since j is an
initiating gate we have that y/~1= 3. and hence according to Theorem 3, (iii) in
proof, 32 D= 52 and also E,%("l)= 72, Note that this implies that v, as
defined in the proof of Theorem 3, satisfies v/ '= 39, i.e. the wire delay from
the predecessor to an initiating gate has the original "old" binary value when the
initiating gate changes.

After this, z;; is never changed again to construct # (since j is an indefinite
gate). However we know that 5% 2= (%)’ (Theorem 3, (ii) in proof) and by
the construction of 3%, # that 7= 3%~2. 1t follows that 7= ()’ and z8= 3
and hence { is unstable. This complete the proof of part 2. O

The first part of the construction of Theorem 4 for network N4 is shown
below.

y'= 1snunr 35,7 = 101101,11110111
7%,2 = 101101,11110111
Y= 10%%%% $1°37°= 101101,111101 11
y1,z1= 101101,110101 11
Y= 100%%% 52,72= 100101,11010111

20 Brzozowski and Seger

To illustrate the construction of 32,72 for N, we have
y2,7 = 100101,11000 1 11.

Note that wire delay Z4, is unstable. This will later be used to start an oscillation
in the indefinite subnetwork. Note also that all definite nodes have the same
values as in y2.

9. Algorithm B - Indefinite Gates
The main result of this section is captured in the following theorem.

Theorem 5 Let N be a network started in the standard initial conditions. Let
72,28 be a total state of N as defined at the end of Section 8. Then there is a
nontransient cycle in the GMW graph, reachable from)':B ,Z%, such that all inde-
finite gates of N are oscillating.

To simplify the proof of Theorem 5, the following two definitions are useful.
Define a state 3,7 of N to be consistent with y? iff 5 <y?, and all the definite
nodes and all the delays leaving definite nodes are stable in N. Also, a state 7 ,
is loop-unstable iff there is at least one unstable wire delay in each simple indefin-
ite cycle of N .

We now proceed as follows. Starting with a total state (y,Z) we first exhibit
a sequence of total states of N

S -0 ~ -m -

(y,z)=(y ’ZO)’ Y (ym,zm)’
where m is the number of indefinite gates, and in y*, exact & indefinite gate out-
puts have complementary values to those in y and the other indefinite gate nodes
are the same as iny. For convenience, we will say that k indefinite nodes have
been “marked” in this way. By repeating this process of marking (i.e. comple-

menting) all the indefinite gates we show the existence of an oscillation involving
all the indefinite nodes.

Lemma 2 Let N be a network started in the standard initial conditions and y* be
the result of Algorithm B. Let 5, be any total state of N consistent with y?
and loop-unstable. Assume that some, but not all, indefinite nodes of N are
marked. Assume also that every wire delay between a marked and an unmarked
indefinite node is unstable. Then there exists at least one unmarked indefinite
node j, such that all indefinite wire delays to j are unstable.

Proof: Consider the directed graph G’ = (V', E’) where
V'cV, ieV'iffiisanindefinite gate node and
E'={(i,j)eV'XV':(i,j) € E and z; is stable}.
G ' can be obtained from the graph G by retaining only the indefinite gate nodes
and those indefinite edges that corresponds to stable indefinite delays. G’ has
two important properties:

A Characterization of Ternary Simulation of Gate Networks 21

(i) there is no edge from a marked node to an unmarked node, and
(ii) there isnocyclein G'.

Both properties follow trivially from the construction of G’ and the assumptions
in the Lemma.

Now consider a reverse path in G'. Start at some unmarked node k € V' and
traverse G’ backwards. From (ii) and the fact that G ' is finite it follows that a
reverse path in G ' started at node k£ must stop at some node, say j. By property
(i) it follows that j must be an unmarked node. Furthermore, since each inde-
finite gate has at least one input wire from an indefinite gate, it follows that all
indefinite wire delays to j must be unstable; otherwise the reverse path could not
have stopped at j. Hence the Lemma holds. O

In the following Lemma we will show how instabilities can be "moved”. The
idea is that if all indefinite wire delays 70 a gate are unstable then it is possible in
the GMW relation to find a state reachable from the present state such that all
indefinite wire delays leaving the gate are unstable.

Lemma 3 Let N be a network started in the standard initial conditions. Lety, Z
be a total state of N consistent with y? and loop-unstable. If all indefinite wire
delays to indefinite gate j are unstable, then there exists a total state ¥, z€,
reachable from y , z, consistent with y? and loop-unstable, such that

(i) yf= ;) and

(ii) all indefinite wire delays leaving gate j are unstable.

Proof: Consider gate j. Two cases are possible.

a) Gate j isstable iny, z, i.e. y;= g;(Z;). Since j is an indefinite gate, after
Algorithm B for N, we have yP= g;(wP) = %. Note that z; < w}/ by con-
struction of 32,28 . By the definition of the ternary extension of gj, there
must exist a v; € B such that g;(v;) # g;(Z;), and v; <wP. If v; # 3;
then we must have w/= %, i.e. y’= %, and hence Z; is an indefinite wire
delay. We want to reach a state in which gate j is unstable. We will do
this, if we set the inputs of gate j to the vector v;. This can be done
because all the indefinite wire delays to j are assumed to be unstable.
Therefore, define

S’,‘ lfk=l,l=] andv,-j;éi,-j
D _ .
k= 1z, otherwise

and

22 Brzozowski and Seger

yo =y
b) Gate j is unstable. Define 3 = 7 and 2 = :.
In either case we have that (7, 2) R} (57,) and gate j is unstable in 3°, .

Now we will simultaneously change gate j and all indefinite delays leaving
gate j which are unstable. In this way all the indefinite delays leaving gate j will
become unstable after the change. Therefore define 7€, 3¢ as follows:

c | y7 if k =j and gate ! is an indefinite gate
= |38 otherwise
and
-c) g](EJD) if & =j
Y= 5P otherwise

Condition (i) follows from the fact that Srjc = g;(zP) = g;(v;) = (5;)". Condition
(i) follows from (i) and the fact that if k is an indefinite gate then z§ = j‘lp =J;.
Hence the Lemma holds. O

Lemma 4 Let N be a network started in the standard initial conditions. Lety,z
be a total state of N which is consistent with y? and loop-unstable. Then there
exists a total state ¥,7, reachable from y,z, which is consistent with y?, loop-
unstable, and such that all indefinite gates in y and y have complementary
values.

Proof: We proceeds by induction on the number of indefinite nodes which have
been marked, i.e. complemented.

Claim: There exists a state ¥, 2, reachable from ¥,%, with k nodes marked.
Furthermore, this state is consistent with y? , loop-unstable and all indefinite wire
delays between marked nodes and unmarked nodes are unstable.

The basis, k=0, follows trivially. Suppose the claim holds for k, k>0. By
Lemma 2 it follows that there exists an unmarked indefinite node j, such that all
indefinite wire delays to j are unstable. But Lemma 3 guarantees the existence
of a state y*+1, #+1 reachable from 7*,#, consistent with y* , loop-unstable and
with node j complemented. We now mark node j, and note that all indefinite
wire delays between marked nodes and unmarked nodes are still unstable.
Hence the induction step goes through and the lemma holds. O

Proof of Theorem 5: Since Lemma 4 can be applied any number of times and
there is only a finite number of possible total states there must exist a cycle in the
graph. Also by the construction of Lemma 4 it follows that each indefinite gate
in N will oscillate. Furthermore, since all definite gates are stable, all wire

A Characterization of Ternary Simulation of Gate Networks 23

delays from definite gates are stable, no wire delays to definite gates are changed
and all indefinite gates are oscillating it follows trivially that the cycle cannot be
transient. O

10. The Conjecture
We are now in a position to prove Theorem 1.

Proof of Theorem 1: Let Y = {5 :5,z e out(R,,5°,2)}. In Theorem 5 we
showed that yY*< pY. In [B-Y] it was shown that any binary state of N in
out(R,, %) is < the result of Algorithm B for N. But, by Theorem 2, this result
is consistent with that of Algorithm B for N. Hence y?*> uY, and y? =Y.
Also, the constructions in Theorems 3, 4, and S show the existence of a single
cycle Z such that y? =pZ. O

The following is a consequence of Theorem 1. Whenever a network N has a
critical race, the network N has an oscillation involving the gates that take part
in the race.

The characterization obtained in Theorem 1 does not quite apply to the origi-
nal conjecture which used a network N°¢, described below, instead of N. The
conjecture network N° consists of the given network N to which delays have
been added in all the input lines and in all the fan-out connections. There are
two main differences between N¢ and N :

1) In case an input x; fans out to two or more gates, N° has one delay associ-
ated with the input line x; and additional delays in each fan-out connection
from x;. The network N only has the fan-out delays.

2) In case the output of a gate i is connected to only one gate j (with i =
possible), N¢ has no delay in that connection, whereas in N delays are
inserted uniformly in all gate-input lines.

First we will show that the extra line delays of N¢ as described in 1) above
are not necessary. Let N = <G,x,y,g> be any network. A nodei €V is said
to be singular iff the outdegree of i is 1, i.e. the output of node i is only con-
nected to one gate node.

Lemma 5 Let N be any network, let N¢ be defined as above, and let N¢ be N°¢
after the removal of all input delays corresponding to input nodes which are not
singular. If N° and N¢ are started in the appropriate standard initial conditions,
the outcomes of the GMW analyses of N° and N will be consistent with respect
to the nodes of N¢.

Proof: Consider N¢ with only one extra delay z; added in input line x;. If x; does
not change, the behavior of the two networks is identical. If x; does change, the
variable z; is unstable and can change only once. It must change before the net-
work reaches a nontransient cycle, but after that the network behaves like N9.

24 Brzozowski and Seger

The lemma now follows by induction on the number of delays added to N to get
N¢. O

From now on we consider the network N¢ rather than N¢. Until now we
have not explicitly defined any output of network N. One possible interpretation
is that the output of every gate is an external output. In that case gates originally
considered singular in N¢ have an extra connection and are no longer singular.
Thus delays will be present in all the lines leaving such gates, and hence all gate-
input lines will have delays as in N . Therefore, under this assumption N and N¢
coincide, and Theorem 1 constitutes a proof of the conjecture.

One could make a different interpretation, namely that only some of the
gate nodes are external output nodes. It is then reasonable to also assume that
the network has no "useless” gates, i.e. that in the graph G there is a path from
every gate node to some output node. This implies that there must be at least
one gate node with outdegree > 2 in every simple cycle of G. Now the only way
that N9 differs from N is the fact that in N¢ a gate-input line from a singular
node does not have a delay. For example, refer to Ny of Fig.10. The
corresponding network N, assuming 4 is the only output node, would not have
delay z34. The proof of the conjecture in this interpretation will be described in
another paper.

Acknowledgment

The authors wish to thank Professor Michael Yoeli of the Department of
Computer Science, Technion, Haifa, Israel for his many useful comments and
suggestions regarding this paper.

References

[B84] R.E. Bryant, "A Switch-Level Model and Simulator for MOS Digital
Systems", IEEE Transactions on Computers, Vol. C-33, No. 2, Feb. 1984.

[B83a] R.E. Bryant, "Race Detection in MOS Circuits by Ternary Simulation”,
In F. Anceau and E.J. Aas (eds.), VLSI ’83, pp. 85-95, Elsevier Science
Publishers B. V. (North-Holland).

[B83b] R.E. Bryant, "Toward a Proof of the Brzozowski-Yoeli Conjecture on
Ternary Simulation”, Unpublished manuscript, Dec. 1983.

[B-Y] J.A. Brzozowski and M. Yoeli, "On a Ternary Model of Gate Net-
works", IEEE Transactions on Computers, Vol. C-28, No. 3, pp. 178-183,
Mar. 1979.

[E] E.B. Eichelberger, "Hazard Detection in Combinational and Sequential
Switching Circuits”, IBM J. Res. Dev., Vol. 9, pp. 90-99, Mar. 1965.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

