Splines and the Notion
of Geometric Continuity
in Differential Geometry

John J. Jezioranski

Department of Computer Science
Computer Graphics Laboratory
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1

Technical Report CS-85-36
September 1985



Table of Contents

AcCKNOWIEAZEMENTS ...iuiiiiiiitiiiiiii ittt e e et e s e e e eanaeeniaeenae e 3
INtrodUCtion ....viiniii e et S
0. Notation and Background ............cooeiiiiiiiiiiiiiiii e e 7
1. Some Differential Calculus .........ccooiiiiiiiiiiii e 15
2. Topological Properties of CUIVES .......ceiieiiniiiiiiiiiiiiaiiei i eniiererieeaneaaaannen 28
3. Curves with Differentiability ........cocviiiiiiiiiiii e 36
4. SPHNE CUIVES .uiiniiiiiit ittt ittt ettt ee e et e e st eateanessnneasaseansaaanes 49
5. Beta Splines and Tensor Products of Them ..........ccoooiiiiiiiiiiiiiiiii e, 57
6. Polyhedral B-Splines ..........cooveviiiiiiiiiiian, e, 66
T EPIHOZUE .oneieiii e e e e 69

Appendix 1: VAXIMA Programs for Constructing 8-splines ...........eeceeveiieeinnennns 71



Acknowledgements

I am thankful to Professors Djokovi¢, Gilbert, McKiernan, Shadwick, Webb and
Zorzitto who were kind enough to answer many of my questions about mathematics.
Their (possibly misinterpreted) answers to these questions are sprinkled throughout my

thesis.

I thank the members of the Computer Graphics Laboratory for their patience in
answering my questions about the lab computer. Especially, I want to thank Prof.
Beatty, Peter Bumbulis and Prof. Field whose software was used to produce the figures in
this thesis. (The figures were all done using splines!) Ian Allen kindly helped me
through some problems with TROFF and its associated utilities. I would never have got-

ten VAXIMA to do what I wanted it to without the help of Prof. Char.

I am deeply indebted to my supervisor, Richard Bartels, who (1) helped get me
admitted to graduate school, (2) knows that it is better to encourage graduate students for
what they manage to do right than to criticize what they do wrong, (3) got me interested
in this thesis topic, (4) met weekly with me to discuss my work and (5) painstakingly

read some almost unreadable earlier drafts of this thesis.



ABSTRACT

This thesis is written with the computer graphics community as the intended
audience. The main goal of the thesis is to translate the notion of a ‘‘kink-free”
curve or surface into something precise. The graphics community has used the
constructs of tangent line/plane and osculating circle/sphere from classical dif-
ferential geometry to determine the “‘order” of a kink for the first two orders of
differentiability. The fact that people cannot see the difference between twice-
differentiable curves and more than twice-differentiable curves means that the
definition of a kink of order higher than two will necessarily be less intuitive than
it is for orders one and two. In the computer graphics literature there have been
recent proposals for a constructive process for curves and surfaces which attempt
to capture the notion of higher-order kinks. The standard texts in differential
geometry do not appear to have studied the (local) notion of higher order kinks
per se, although they provide a wealth of tools for studying local properties of
curves and surfaces. We do not claim to have achieved a solid theory for these
higher-order kinks. Rather, this thesis is a researcher’s guide to possible avenues
of generalization of kinks of orders one and two to higher order.

This thesis reaches into mathematics in two directions. Mainly, it reaches
into differential geometry and singularity theory in several attempts to find the
conditions to impose at spline joints in order to make the spline “kink-free”.
Higher-dimensional spline theory is currently an active area of research and is
clearly deriving much of its foundation from combinatorial topology. We reach
briefly into this recent literature and point to what we believe is an analogous and
previously researched problem in differential topology. It is hoped that these
great differential theories may be used in the discovery of higher-dimensional,
higher-order “kink-free” splines.



Introduction

At the outset, the object of this thesis was to (1) construct a basis (the g-splines) for
a linear space of geometrically continuous splines useful in computer graphics and (2) to
consider the context and generalizations of these ideas in differential geometry and dif-
ferential topology. The object of the thesis became more modest when the author found
that the notion of geometric continuity was not as easy to find in the differential geometry

literature as he had anticipated.

Intuitively, the curve and surface traces that are geometrically continuous of order k&
are those that don’t have visible kinks of order £ (although we allow them to intersect
themselves). We generally equate the appearance of a kink at a point with the lack of a
tangent at that point. A tangent is a geometric object that is related to first order dif-
ferentiability. Consequently, we may say a curve (resp. surface) trace that has no
tangent line (resp. tangent plane) at some point has a kink of order one there. The main
goal of this thesis is to make this observation more precise and to find a natural extension

to higher orders of differentiability.

Chapter O presents notation and should only be looked at if the reader finds the nota-
tion in any of chapters 1 through 7 confusing. Chapter 1 reviews some calculus and dif-
ferential geometry that is fundamental to the notion of geometric continuity. Chapter 2
studies the nature of curves without using calculus and studies the meaning of geometric
continuity of order 0. Chapter 3 is a sampling of concepts from the differential geometry
of curves. The sampling includes material beyond that which is useful in support of our
development in later chapters. It is the result of attempts to find a solid differential
geometric foundation for geometric continuity of orders higher than one and two and is
meant to contain ideas for further research in this direction. In chapter 4, we apply
geometric continuity, insofar as chapter 3 has expressed it, to splines. In chapter 5, we
introduce a vector space of splines every member of which is geometrically continuous.

(Actually we introduce a vector space for any non-negative integer k£ such that all of the



splines in the vector space are geometrically continuous of order k.) We also introduce a
basis for this vector space that is useful for computer graphics. By ‘‘useful for computer
graphics” we mean that (1) there is a basis that can be constructed by efficient and stable
numerical techniques, (2) the elements of the basis have compact support, so that any
curve constructed using a linear combination of basis elements will only change in a lim-
ited region if a single coefficient is adjusted, and (3) the basis forms a partition of unity,
so that they can reasonably be used for control-vertex construction methods. The compu-
tation of this basis is detailed in appendix 2. We look briefly, in chapter 5, at (1) sur-
faces that are members of the tensor product of one such spline space with another and at
(2) the collection of tensor products of members of the partition of unity bases as a basis
for the tensor product space. In chapter 6, we consider polyhedral B-splines as a possible
starting point for geometrically continuous surfaces (and higher dimensional geometrically
continuous objects) more general than tensor products. Polyhedral B-splines are mul-
tivariate objects that were created in analogy to univariate B-splines. Work has been
done trying to find collections of polyhedral B-splines that are a partition of unity and are
a basis for a useful vector space. Chapter 7 is a last look back over the recommendations
of this thesis for further research into the geometry of curves and surfaces (and objects
more general than curves and surfaces) having geometric continuity of order greater than

2.



0. Notation and Background

This chapter is a log of notational conventions, definitions and results from various
areas of mathematics that are peripheral to the thesis. Definitions that are central to this

thesis will be presented in other chapters.

0.1 Sets and Functions

The definitions in this section will be used in virtually every chapter. We will use
(1) lower case Roman letters for functions and members of sets, (2) upper case Roman
letters for functions and sets and (3) upper case Greek letters for sets of sets. In general,
a small-Roman-letter function is scalar-valued or vector-valued; a large-Roman-letter

function is matrix-valued.

Definition 0.1.1: ZZ denotes the integers, ZZ+ denotes the positive integers, ZZ~ denotes
the negative integers, IN denotes the natural numbers {0,1,...}, IR denotes the real
numbers, IR* denotes the positive real numbers and IR~ denotes the negative real

numbers.

Definition 0.1.2: If 7 is a bounded interval of IR, then the left endpoint of I is denoted
left(7) and the right endpoint is denoted right(/). A division of I is an ordered collection
of points (#;)/g such that left(7) = 7y <...< 1, = right(I).

Definition 0.1.3: f:A—B:a — b (or f:A—B, f:a — b or b=f (a)) denotes a function
that maps the set A into the set B and the element a € A into b € B. For example, the
function that maps each real number into its square could be denoted IR— IRx — x2 (or
IR— IR, x — x2 or y=x2). This notation will imply that A is the domain of f; that is,
f (a) is defined for all a € A. The trace (or range or codomain) of f is the set f(A) =



{f(@):a € A}. (The symbol := stands for ‘““is defined as”.) If B is a set then a parameter-
ization (A yf ) of B is a set A together with a surjective (see below) function f:A—B. We

say that B is parameterized by (A ;f ) (or just f).

N.B.: We use the term trace because it is the term in use in curve and surface theory. A
curve trace is a collection of points that is the range of a special kind of function called a
curve. In other words, a curve trace is a set that can be parameterized by a curve.

Curves are defined precisely in chapter 2.

A function f:A—B:a — b is called injective (or 1:1 or one to one < every b € f(A) has
exactly one preimage (i.e. one member of A such that f(a) = b). (We will use &< to
stand for “if and only if”’.) f is called surjective (or onto) < f(A) = B. f is bijective (or
one to one and onto) & it is surjective and injective. The inverse of f is denoted by f-1.
If DCB then fY(D):= {a € A: f(a) € D}. (Here, f~! is considered as a set valued
function, so that f needn’t be bijective for it to be well defined. However, if f is bijec-
tive, then f-1 will be a (bijective) function.) If CCA then the function C—B:a — f (a)

is called the restriction of f to C and is denoted f |¢.

Definition 0.1.4: If UCV then the restriction to U of the identity map on V is called the

inclusion map.

Definition 0.1.5: If n € IN then we denote by ndIRvs the collection of all » dimensional
vector spaces over IR and by fdIRvs the collection of all finite dimensional vector spaces

over IR.

0.2 Derivatives

The notion of a derivative is central to this thesis and is used throughout it (except in
the chapter on topological properties of curves (chapter 2)). Our main discussion of
derivatives is in chapters 1 and 3. To define a derivative, all one uses is addition, scalar

multiplication, a norm and limits. This is, precisely what a Banach space has. The fact



that limits make sense in a Banach space derives from its property of completeness:

Definition 0.2.1: If X is a normed linear space and ||-|| is a norm on X then a Cauchy
sequence in X is a sequence (x1,x3,...) (or (x;)#21) with the following property. For any
e € IRt, 3 N € ZZ+ such that d(x, ,x,) = ||[xn—Xs|[<¢ Vm,n>N. A convergent sequence
in X is a sequence (x;)2; with the following property. Ja € X such that for any ¢ € IR*
3 N € ZZ* such that d(x,,,a) < ¢ Vm>N. X is said to be complete with respect to ||| if
every Cauchy sequence is convergent. A Banach Space (X,||‘||]), is a normed linear
space, X together with a norm ||-|| in which every Cauchy sequence converges. (There is

no canonical calculus on objects with less structure - see (Keller, 1974) .)

In this thesis, we want to be able to discuss continuity and the topological structure it
uses in a precise way. We also want to be able to discuss differentiability and the Banach
space structure it uses in a precise way. The reader not familiar with Banach spaces may
imagine IR" every time a Banach space is mentioned and IRX..xIR every time a direct

sum (or Cartesian product or direct product) of n Banach spaces is mentioned.

Proposition 0.2.2: If (X;, ||'|l:), i=1,..,n are Banach spaces then the direct sum of them,

inllX,- , with norm ||(x1,..,%,)|| defined by |jx1][1+..4|[xx||» is also a Banach space.
Proof: p. 152 of (Maurin, 1976) ©

Definition 0.2.3: A Euclidean space is a finite-dimensional real inner-product space. If

n € IN then the collection of all » dimensional Euclidean spaces is denoted by E*. (E° =

{{03}.)

Any finite-dimensional normed linear space is a Banach space. Thus, any
Euclidean space, with the norm induced by the inner product, is a Banach space. (For

example IR" with the usual vector dot product as inner product is a Euclidean space.)
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0.3 Topology

We present here some notions from topology; they are used mainly in chapter two.

Proofs of the results stated in this section can be found for example in (Dugundji, 1970) .

Definition 0.3.1: A rtopological space (X,A) is a set X, together with a subset A of the

power set of X (i.e. the collection of all subsets of X) such that

X, 0 € A

(2) If I is a set suitable for indexing the members of A and A; € AVi €I then
LgAi cA ’

€I

(3) If J is a set suitable for indexing a finite subset of the members of A and B; € A

Vj € J then B; € A
g f3%

A is called the ropology and the members of A are called the open sets. A closed set
is a set whose complement is open. If x € X then a neighborhood (or nbd) of x is any set
that contains an open set whose membership includes x. If ACX then a neighborhood of

A is any set that contains an open set that contains A .

Definition 0.3.2: If (X,A) and (Y,Q) are topological spaces and f :X—Y then f is con-
tinuous at x + for each neighborhood N of f(x), f-1(NV) is a neighborhood of x. If
UCX then f is continuous on U & f is continuous at each x € U. f is continuous & f
is continuous on X. f is a homeomorphism < f is bijective and both f and f-! are con-
tinuous. f is open < f takes open sets onto open sets. f is closed & f takes closed sets

onto closed sets.

Proposition 0.3.3: If (X,A) and (Y,Q) are topological spaces and f :X— Y then the fol-
lowing are equivalent:

(1) f is continuous,

(2) V opensets VinY, f~(V) is open in X.

(3) V closed sets C in Y, f~Y(C) is closed in X .
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Definition 0.3.4: If (X,A) is a topological space and UCX then { §: S = UMA and
A € A }is called the relative topology from (X,A) on U.

Proposition 0.3.5: If X is a set and (Y,A) is a topological space and f:X—Y, then
{f1(A): A € A} is a topology on X. Call this the topology from Y induced by f .

Example 0.3.6: The relative topology on a subset of a topological space is the topology

from the topological space induced by the inclusion map.

Definition 0.3.7: If (X,A) is a topological space then E CA is a base for A (and A is gen-

erated by ) < each A € A can be written as a union of elements of E.

Definition 0.3.8: If (X,A) is a topological space and ACBCX and  denotes the relative
topology on B from (X, A), then the closure of A with respect to B, Ag, is the smallest (in
the sense of containment) closed set in B (i.e. the smallest set whose complement is in Q)
which contains A. A denotes Ay. int A denotes the largest open set contained by A. -
(X,4) is said to be regular closed = intA = A V A closed in X. (X, A) is said to be reg-

ular open <= int A = A) V A open in X.

Definition 0.3.9: A topological space is said to be Hausdorff if any two distinct points
have nonintersecting neighborhoods. A topological space is said to be normal if any two

disjoint closed sets are contained in disjoint neighborhoods.

Note 0.3.10: The word “‘closed’’ in the definition of normal is important:

(1) Any two disjoint open sets are disjoint neighborhoods of themselves, so replacing the
“closed” by ““open” would be saying nothing at all.

(2) If a topological space has the property that any two disjoint sets are contained in dis-
joint neighborhoods then, Vx € X, X\{a} and {a} are disjoint sets having no disjoint

supersets. Thus, omitting the word “closed” would imply that {a} is open Va € X, which
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would mean that the topology on X is the power set of X.

Definition 0.3.11: If X is a set and {B;}; ¢; = I is a collection of subsets of X then T is a

coverof ACX & LEJ B; = A. A subcover of a cover T of A is a subset of I which is also
Pl

a cover of A. If (X, 4) is a topological space and ACX and {B;}; ¢, is a collection of sub-
sets of X, then I' is an open cover of A & T' is a cover of A and 'CA. A topological
space X is called compact < it is Hausdorff* and every open cover of X contains a finite
subcover. A subset A of a topological space (X,A) is called compact & A is compact

with the relative topology from (X,A) on A.

Theorem 0.3.12: If (X, A) is a Hausdorff topological space, then any compact set is regu-

lar closed.
Proposition 0.3.13: A continuous map takes compact sets onto compact sets.
Proposition 0.3.14: Closed subsets of a compact topological space are compact.

Proposition 0.3.15: Compact subsets of a Hausdorff topological space are closed.

A corollary of these three propositions is the following

Corollary 0.3.16: If X is a compact topological space, Y is a Hausdorff topological space

and f X—Y is continuous, then f is a closed map.

A further corollary is:

Corollary 0.3.17: If X is a compact topological space, Y is a Hausdorff topological space

and f :X—Y is continuous and injective, then f is a homeomorphism onto its image.

* Be warned that many books do not make the requirement that the space be Hausdorff in the definition
of compactness.



13

Definition 0.3.18: If (X;,A;) are topological spaces for i = 1,..,n € ZZ* then, denoting
by E the topology generated by {iﬁlAi: A; € A; for i=1,..,n}, (iIiX,- ,2) is the topological

product space of ((X;, ;)1 and E is called the product topology.

Definition 0.3.19: We will say that a topological space (resp. a map from a topological
space into a set) has a property semi-locally if every point of the topological space has a
neighborhood on which the property (resp. the map has the property) holds. We will say
that a topological space (resp. a map from a topological space into a set) has a property
locally if, for each point x of the topological space, every neighborhood of x contains a

neighborhood of x on which the property holds (resp. the map has the property).

Proposition 0.3.20: If (X, A) is semi-locally compact (and thus Hausdorff) then (X, A) is

locally compact.

Example 0.3.21: Thus, semi-local compactness and local compactness are equivalent for

IR*. For IR", semi-local and local properties are almost invariably equivalent.

Example 0.3.22: If (X,A) is a topological space and Y is a set and f:X—Y then f is

semi-locally injective & Vx € X, 3U € A s.t. f |y is injective.

Example 0.3.23: If (X,A), (Y,Q) are topological spaces and f :X—Y then f is a semi-
local homeomorphism « for each x € X, JU such that x € UCX, and f |y:U—f(U) is '

a homeomorphism.

Example 0.3.24: If I is an interval of IR with left endpoint a and right endpoint » and
n € ZZ+ and f:I—1IR" then f is semi-locally injective « V¢ € I\{a,b}, 36 s.t. § € IR,
[£—6,6+6]CT and f |[;—s,+4) is injective, and further:

1)ifa €1, then 36 s.t. § € IRY, [a,a+6]CI and f |[s 045] Is injective;

2)ifb €1, then 3§ s.t. § € IR+, [6-6,b]CI and f |[p—s 5] is injective.
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Proposition 0.3.25: If 7 is an interval of IR and f:J—IR then the following are
equivalent:

(1) f is semi-locally injective and continuous;

(2) f is injective and continuous;

(3) f is strictly monotone and continuous;

(4) f I—f () is a homeomorphism.



1. Some Differential Calculus

In this chapter, we present intuitively the main ideas involved with geometric con-
tinuity. These ideas are presented in more detail in chapters 2 and 3. Some authors refer
to a curve or surface as a function and others refer to it as a collection of points. We will
use the convention that a curve trace is a collection of points that is the range of a special
kind of function called a curve. In other words, a curve trace is a set that can be
parameterized by a curve. Curves are defined precisely in chapter 2. Geometric con-
tinuity is associated with curve (and surface) traces so we will be concerned with whether
the trace of the curve or surface can be pa‘rameterized in such a way that this parameteri-

zation has certain properties we will discuss.

1.1 Differentiability and Tangent Planes

A surface trace is geometrically continuous of order one if it has a continuously
changing tangent plane. We will explain geometric continuity of other orders later, but
first we will discuss conditions for a surface trace to be geometrically continuous of order
one. In this section, we put aside the question of whether the tangent plane changes con-
tinuously and just discuss conditions for having a tangent plane at a given point. We use
only calculus and intuition in this section. In the next section, we introduce differential

geometry and identify the intuitive aspect of the present section as being geometric.

Definition 1.1.1: If U is an open subset of IR? and f :U— IR and (a,b) € U then f is dif-
ferentiable at (a,b) < A B s.t.

im  f(atdr.bidy)—f(a.b)—(Adc+Bdy)
LT (G CULE

The tangent plane to f at (a,b) is (dx,dy) — f(a,b)+Adx+Bdy. The derivative (or

differential or Fréchet derivative or strong derivative) of f at (a,b) is

15
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df (a,b)=f "(a,b):(dx,dy) — Adx+Bdy.

Recall that a real valued function of two real variables is (Fréchet) differentiable at

a point « it has a (non-vertical) tangent plane at that point.

Another kind of derivative introduced in advanced calculus is the directional deriva-
tive (or Gateaux derivative or weak derivative). Differentiability at a point implies direc-
tional differentiability at that point, but not vice versa. In fact, a function can have direc-

tional derivatives in every direction and not even be continuous there. For example,

0 if x=y=0
(xy) = 2 .
;%yf otherwise

has directional derivatives in all directions at (0,0) but is not continuous there.

Now we recall the definition of Fréchet differentiability for vector valued functions

of vector variables in the following:

Definition 1.1.2: If ¢ € UcCIR™ and h:U—IR” then & is Fréchet differentiable at ¢ < 3
linear L JR™ — IR” s.t.

lim
jidrij—0

hc+dr)—h(c)-L(dr)l| _ |
lidr]] '

The definition of the differentiability of a function h:U— F, where UCE and E, F are

Banach spaces, is the same — just replace IR” by E and IR* by F in the definition.

Now, instead of considering maps from open subsets U of IR? into IR as we have
been doing, consider maps A from open subsets U of IR? into IR3. For the first definition
of Fréchet differentiability, the property of being Fréchet differentiable (Def. 1.1.1) was
sufficient for having a tangent plane. This is not the case for this second, more general
definition of Fréchet differentiability (Def. 1.1.2), as is shown by the examples at the end

of this section. In the remainder of this section, we explain how Fréchet differentiability,
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as given in Def. 1.1.1, defines the existence of a tangent plane as a special case of the fol-
lowing condition: If f (1) is differentiable at (a,b) and (2) has a rank-2 Jacobian at (a,b)
then the trace of f has a tangent plane at f (a ,b).* A function satisfying these two pro-
perties is said to be regular at (a,b). It is this condition that is the appropriate guarantee
for the existence of a tangent plane when we are dealing with vector-valued functions and

Def. 1.1.2 is used.

What could make the difference between having a tangent plane in the case of
Fréchet differentiable maps from U to IR and not necessarily having a tangent plane for
Fréchet differentiable maps from U to IR3? To answer this, we must first notice that
when f:U— IR, the tangent plane is associated not with f but with the graph of f (the
graph of f is the map (x,y) — (x,y,f(x,y)) ). This is a map from U to IR®. More-

over, the Jacobian of this map is [Tf_I(ZET]’ which has rank 2, where I, is the 2X2 identity

matrix and J¢(a) is the Jacobian of f at a. In general, if f:U— IR", where U is an open

subset of IR” and f is differentiable at a, then the graph of f, x — (x,f(x)), has a

tangent m-space at a because its Jacobian is

Ln , which has rank m. Thus graphs
T;(a) £

that are differentiable at a are members of the more general class of functions #:U — IR?,

where U is a subset of IR", m<p, whose Jacobian J;(a) has full rank.

Thus, without loss of generality, we can forget about maps like those from IR? into
IR and consider only this more general class, at least in the context of curves, surfaces

and their generalizations.

Note 1.1.3: Recall that a linear map of finite dimensional vector spaces is injective
(resp. surjective) < the matrix representing it has full column rank (resp. full row rank).
Here m<p and the matrix J,(a) representing A2'(a) is pxm so h'(a) is injective & J,(a)

has rank m.

* On the other hand, a differentiable function f whose Jacobian has less than full rank at (a,b) might
still have a tangent plane at f (a,b). That is, the condition is sufficient but not necessary.
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Definition 1.1.4: If h'(a) has full rank then a is called a regular point of h and & is said
to be regular at a. There are two cases for a regular point. (1) If 4'(a) is injective (thus,
m<p and rank h'(a) = m) then h is is said to be an immersion at a.

(2) If h'(a) is surjective (thus m>p and rank hA'(a) == p) then k is is said to be an submer-

sion at a.

Definition 1.1.5: If b € IR? then b is a regular value of & & every member of 2~1(b) is

a regular point of 4.

Definition 1.1.6: A function f that maps an open set UCIR™ into IR” is Ck-regular < it

is C* and its Jacobian has full rank on all U .

Definition 1.1.7: A function f that maps an open set UCIR” into an (open) set f (U) of

IR* is a Ck-diffeomorphism < is bijective, f is Ck and f-!is Ck.

Note 1.1.8: We could have allowed the dimension of the domain and range to differ in
the defintion and then proven that there is no C* bijection that has a C* inverse. See

page 12 of (Guillemin, 1974) .

Theorem 1.1.9: (Inverse Function Theorem) If f is a C* map of an open set UCIR" into
an open set f(U)CIR® and the Jacobian of f is regular at a then f is a Ck-

diffeomorphism in a neighborhood of a.

Note 1.1.10: Regular, immersion, submersion are all equivalent in the case that the
dimension of the domain and range are the same. It is also equivalent to say that the

derivative is an isomorphism.

We conjecture that Ck-regularity is a powerful condition with geometric significance,
at least when it is applied to parameterized curves and surfaces. As examples of how

deceptive continuous differentiability alone is, below we parameterize y=|x| as a C*
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function for k=1,..,00. (We also parameterize y=x as a function that is C*~! but not C¥
for each even k.) The derivative of the graph y=|x| agrees with our intuition — it
does not have even one derivative at (0,0). On the other hand, it seems that one
parametric derivative is as good as infinitely many of them. Parametric differentiability

alone seems to be devoid of geometric content. Define for each k € ZZ*,

(t*,ek) if 120
frit —
((—1)F+1ek (—1)k+1ek) if £ <O

and

(tk, %) if £ >0

8kt —

((—1)k+1ek (—1)kek) if <O
fi (resp. g) has y=x (resp. y=|x|) as its graph Vk € ZZ*+. For each k € ZZ+, g is Ct-1 |
but not C*. f, is (1) analytic for k odd, (2) C-! but not C* for k even. Thus, we have
managed to parameterize a nice graph in a nasty fashion (for even orders) and a nasty
graph in a nice fashion (for all orders). The following is an infinitely often continuously

differentiable parameterization of a nasty graph.

11
(e e 7)ifr>0

h:x — 1(0,0)if r=0

1 1
(—e “,e 7)ifr<0

is a C* parameterization of y =[x| < 1.

1.2 Geometry and Differential Geometry



20

It is difficult to take the definitions of orders one and two in the literature and
describe why geometric continuity of order two is an extension of the notion of geometric
continuity of order one. We give a general definition of geometric continuity in this -
thesis which is basically that of (Bartels, 1984) . The goal of this thesis, that is, the
description of this definition at order k as the application of a principle that can truly be
called geometric of order k, has not been achieved. In the sense of this goal, geometric
continuity is lacking formal mathematical depth. As a weak replacement for this, we
present in this section four notes in which we try to provoke thoughts on geometric con-
tinuity in an almost philosophical manner. We use algebraic curves and equivalence
classes of Taylor polynomials which have been used to great advantage in many branches
of geometry. The first note is an intuitive approach to the notions of tangent line (oscu-
lating line) and osculating circle from classical differential geometry. These are the basis
for the original presentations of geometric continuity (Barsky, 1981) . See also (Kah-
mann, 1983) . We will say that a curve trace is geometrically differentiable of order one
(resp. two)* at one of its points if it has a tangent line (resp. osculating circle) there.
Intuitively, a curve trace is geometrically continuous of order one if it has a tangent line at
each of its points and the tangent line changes direction continuously as we move along
the trace. Intuitively, a curve trace is geometrically continuous of order two if it has an
osculating circle at each of its points and the center of the osculating circle moves continu-
ously as we move along the trace. It is the trace that is referred to as having the property
of geometric continuity or differentiability — nor the parameterization. This line of
presentation shows how the transition is made from Geometry to Differential Geometry
and shows what is geometric about geometric differentiability. The problem with this
approach to geometric continuity is that the author cannot think of how to generalize the
notion to come up with a definition of geometric continuity of order higher than 2. The

third note outlines another approach (with less geometric feel to it) to geometric

* The author is not implying that this derivative is more fundamentally geometric than other derivatives
(like exterior, covariant and Lie derivatives) used in differential geometry. The name just implies a relation-
ship with the name geometric continuity.
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continuity that does generalize to higher orders of geometric continuity. Described in the
fourth note is the Monge-Taylor map, which the author read about after completing the

research for this thesis.

Note 1.2.1: Two distinct points determine a straight line uniquely in IR* with k>1.
Three distinct points determine a circle uniquely in IR*¥ for k>2 (where a straight line is
also considered a circle). The question is, do four distinct points determine uniquely
some curve from a class, WC[4], (which stands for “What curve has these properties?”’)
of curves in IR* for k>3 that interpolates the 4 points and satisfies the natural extension
of the properties satisfied by lines and circles, namely: (1) Circles are members of WC[4].
(2) WCJ4] is a subset of the algebraic curves of degree 3. (3) The trace of any member

of WCJ4] is invariant under translations and rotations of the coordinate system. It is the

invariance property that makes them geometric — lines and circles are ruler and com-
pass constructions -— there is no need to talk about coordinate systems to conceptualize
them.

A curve trace can be parameterized to have a first derivative with respect to arc
length at a point x < a line through two points on the curve approaches a unique line as
the two points approach x, independently of how they approach x. The first derivative

with respect to arc length is a unit vector along the line.

A curve trace can be parameterized so as to have a second derivative with respect to
to arc length at a point x & a circle through three points on the curve trace approaches a
unique circle as the three points approach x, independently of how they approach x. See
(Faux, 1979) for an outline of the proof in 3 dimensions. The second derivative with
respect to arc length is the vector from x to the center of this circle. Thus, the derivative
with respect to arc length is itself pointing to these algebraic curves and saying that they
are close friends. The extension to surfaces and higher dimensional immersions is easy
for the first two derivatives. Three affinely independent points determine uniquely a
plane in IR* with £>2. Four distinct points such that at least three are affinely indepen-

dent determine uniquely a sphere in IR* for k>3 (where a plane is also considered a
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sphere). Again, the question is: do five distinct points such that at least three are affinely
independent determine uniquely a member of some class WS[5] of algebraic surfaces in

IR* for k>4 (where a sphere is also considered a member of WS[5])?

Note 1.2.2: We require at least three of the points that are are approaching each other in
the above discussion to be affinely independent because, otherwise, there is no unique
way to pass a plane or sphere through them. What kind of additional information does
the (1) non-vanishing of the Jacobian at a point give us over (2) continuous differentia-
bilty in a neighborhood of the point? The Jacobian of a function can have full rank at a -
point without its trace having a tangent, even if the function is a graph. The Jacobian
must be continuous on a neighborhood of the point as well to guarantee the existence of a
tangent. Continuity of the Jacobian on a neighborhood of the point without full rank at
the point is not sufficient either. Rank deficiency in the Jacobian of a parametrization
just means that the first derivative of the parameterization is not enough information to
determine whether the curve trace has a tangent line. In some cases, when the Jacobian
is rank deficient, higher derivatives can be used to determine whether or not a curve trace

has a tangent line. See pages 40, 41 of (Goetz, 1970) .

Note 1.2.3: Because the author is unable even to determine whether or not WC[4] exists,
he must retreat to less geometric objects. Suppose we drop the invariance requirement
and consider polynomials. Polynomials have an invariance property as well. The trace of
a polynomial of degree <k, determined by a coordinate system and the requirement that
it interpolate k+1 given points, is invariant under translations of the coordinate system
and scaling of its axes. To obtain an object that is geometric in the sense of not referring
to one particular coordinate system, take the object to be the collection, over all coordi-
nate systems with axes of three linearly independent directions (Perpendicular directions
would do just as well as linearly independent ones.), of polynomials p=(p1,p2,p3) of
degree k which interpolate the k+1 points. That is, p; interpolates the ith component of

the points. Consider, as we did before, the passage to the limit of the points approaching
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a given point and, in the process, the passage from geometry to differential geometry.
Suppose we let k+1 points {}f4 approach a point a in the domain of a ‘“nice enough”’
curve f. Consider the polynomial p such that p(;)=f (;) for i=1,...,k+1. Assuming f is
injective in some neighborhood of a, when we let the #’s approach a, p becomes the
degree-k Taylor polynomial in the coordinate system of the curve at the point. (This is a
special case of osculatory intefpolation - see theorem 4.2 of (Conte, 1980) .) Doing the
same in each linearly related coordinate system and each ‘“nice enough” curve
parametrizing the trace, we get a collection of degree k Taylor polynomials that (1) is
geometric in the sense that it has no preference for any one coordinate system, and (2)
gives a fundamental measure of differentiability of order k at the point. For a curve in
IR*, we pick a C* parameterization (f1,..,f)it = (x1,..,X,) and take as the geometric
object of order k the collection of Taylor polynomials over all coordinate systems with
(x1,..,x,) axes with linearly independent directions. This collection of Taylor polynomials
is essentially the k-jet of f:—IR®, where I and IR" are considered as C* manifolds,
except that coordinate systems must be replaced by charts which are related by diffeomor-

phisms, not just by nonsingular linear transformations.

Note 1.2.4: Suppose f is a Ck-regular function from an open subset U of the plane into
IR? and (a,b) € U. The tangent plane at (a,b) is spanned by the first partials of f at
(a,b). Define three axes (a trihedron), all passing through f (a,b), one in each of the
directions of the first partials at (a,b) and one orthogonal to the tangent plane. In a small
enough neighborhood of f (a,b) in IR3, the surface trace can be expressed as the graph of
a function g using the axes of the first partials as independent axes and the axis orthogo-
nal to these two as the dependent axis. The map that takes (a,b) into the degree k Tay-
lor polynomial of g, and similarly for each other (a,b) € U, is called the Monge-Taylor
map for f. Although the parameterization f is used to constuct the trihedra on the sur- |
face trace, the construction of the Taylor polynomials from these trihedra does not use the
parameterization. Presumably, such a Ck-varying collection of trihedra could have been

constructed without a C*-regular parameterization and the variation of the Taylor
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coefficients with position on the surface could be studied without using a parameteriza-
tion. A Ck-regular parameterization provides the means construct such trihedra and,
through the Monge-Taylor map, the means to study how the surface trace connects these
trihedra together. In chapter 3, we show how this construction can be extended to cases

where the codomain has 2 or more dimensions more than te domain.

1.3 Geometric Differentiability

Here we concentrate on geometric differentiability. As with the Fréchet derivative,
it is important to distinguish between this geometric differentiability at a point and the
continuous geometric differentiability on a set. In accordance with the literature, we will
refer to ““continuous geometric differentiability in the set U’ as ‘‘geometric continuity in
the set U” and denote it G¥(U). The C in C* is for (k times) continuous (differentiabil-
ity in a set) and has no significance at a point. Likewise, G* is meaningless at a point.
Continuity becomes a consideration when we have geometric differentiability at each of a
set of points and we want the geometric derivative to change continuously throughout the
set. There has been no use so far for associating unique geometric derivatives or
“geometric continuitives” with each point of a geometrically continuous curve. The only
issue of importance is whether a curve segment has the property of being geometrically
continuous of some order. We have sketched what geometric differentiability is but we
have not yet indicated what the geometric derivatives themselves are. Likely candidates
are (1) derivatives with respect to arc length (which give rise to many of the quantitative
geometric measures used in differential geometry), (2) tangent lines and osculating circles

(for the first two, anyway) and (3) jets.



In the following figures, the solid
lines are the trace of f, tr(f),
while the dotted lines just join the
pieces together and serve to
highlight the jumps between the
pieces. Each piece of the trace
touches the two bounding dashed

curves.

Figure 3: tr(f ) has no geometric derivative at a
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The functions in the figures are not curves because they are not continuous. In chapter

one, we attempt to motivate why geometrically continuous functions of order zero should

be defined as curves. After these examples, geometric differentiability will only be

applied to curves (or surfaces or their generalizations). In the first figure, the two bound-

ing curves have different tangent lines at a so the trace of f is not geometrically differen-

tiable at a.



26

We illustrate the difference between

pointwise geometric differentiability , ;tr(f)
[ -
£ e
and geometric continuity by finding ) I
1 f,t,
a point a and function f such that 4’7
the trace of f is once geometrically , ’/q‘
P
differentiable at a but is not zero s vl
-—g:“'——;v"
times geometrically continuous in tr(f)

any neighborhood of a.

Figure 4: tr(f) is once geometrically differentiable at a

but not zero times geometrically continuous in any

neighborhood of a
Figure 4 shows the graph of f. Likewise, figure 5 is the graph of f for tr(f) twice
geometrically differentiable at a, but not zero times geometrically continuous in any
neighborhood of a. The two curve traces in figure 4 bounding tr(f) are meant to be
tangent at a. The two curves bounding tr(f) in figure 5 are meant to have the same
tangent line and osculating circle at a. The trace of f, tr(f), in figure 4 is once but not

twice geometrically differentiable at a because the two bounding curves have different

osculating circles at a.
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The author is
indebted to Prof.
Djokovi¢ who pro-
vided figure 4 in e
answer to the ques-
tion “Can you give
an example of a

curve that has a

derivative at a point !
A]
but no derivative in

any neighborhood of

that point?”’.

Figure 5: tr(f ) is twice geometrically differentiable at a
but not zero times geometrically continuous in any neighborhood of a

In the next chapter we see how these derivatives at distinct points can be glued together in

such a way that the curve doesn’t have visual kinks.



2. Topological Properties of Curves

We would probably be getting too philosophical if we asked, ‘“What is it that we like
about curve traces (resp. surface traces) better than other point sets that can only be
expressed as other functions of one (resp. two) variables?”’. But this question seems to
be the natural precursor to the question, ‘“What is it about geometric continuity that
makes it a geometric or natural kind of continuous differentiability?”’. Functions of one
variable that are geometrically continuous of order 1 or more are neccessarily curves as
defined below. We argue that it is natural to say that a function of one variable is
geometrically continuous of order 0 if it is a curve. The hypothesis of this chapter is that
we like the same thing (geometric continuity) in a derivative that we like in a curve
(resp. surface) — we like it to be locally homeomorphic with (the corresponding deriva-
tive on) the line (resp. plane). The problem then is to come up with a notion (definition)
of what a curve trace is and a notion of what a curve trace with nice derivative traces is.

The definition should (1) avoid pathologies and (2) give rise to interesting theorems.

2.1 Definition of a Curve

The most common definition of a curve is from topology.

Definition 2.1.1: (First definition of a curve) A curve is a continuous map from [0,1]
into a topological space. (A closed curve is a continuous map from the unit circle in the

plane into a topological space.)

An example of the trace of such a curve is [0,1]X[0,1]. It is the trace of the 2
dimensional Peano curve. See p. 105 of (Dugundji, 1970) . We do not want surfaces to
be special cases of curves, so we do not adopt this definition. Another definition of a -

curve is given in (Goetz, 1970) (whose exposition we follow closely in this chapter).

28
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Definition 2.1.2: If n € ZZ+ and ACIR" then A is a simple arc & da,b,f s.t.
a,b €IR and a<b and f:fa,b]—A is continuous and bijective. (where continuity is
with respect to the relative topologies from the ordinary topologies on IR, IR*, respec-

tively).

Example 2.1.3: A circle is not a simple arc. (The two endpoints of the interval have to

map to separate points for the map to be injective.)

Definition 2.1.4: (Second definition of a curve) If n € ZZ+ and CCIR” then C is a curve
trace < 3I,.f such that I is an (any) interval of IR and f :J— C is continuous, surjective
and locally injective. Such an f is a curve having C as its trace (or just a curve or a

parameterization of C ).

The fact that there is no injective continuous function from [0,1] onto [0,1] X [0,1]
is proven in (Hobson, 1957) . The fact that that there is no locally injective continuous
function from [0,1] onto [0,1] X [0,1] was proven for the author by Professor Gilbert.
His proof uses the result in Hobson and a proposition that we will state below. We state
the proposition (because of its own interest) but omit the rest of the proof. This only |
shows that the definition doesn’t let this particular pathology through. However, our
hypothesis is that the definition doesn’t let any pathologies through. A curve in IR" is a
continuous, semi-local injection « it is a semi-local homeomorphism ¢ it is a local
homeomorphism. This follows from the following result: if f is an injective, continuous
function from a compact space X into a Hausdorff space Y, then X and f(X) are
homeomorphic. An outline of a proof of this result is given in chapter 0. In the case
that the curve doesn’t intersect itself, the trace of the curve is a one dimensional topologi-
cal manifold. See (Boothby, 1975) for more on manifolds. For example, a circle with
the relative topology from the plane is a ‘'one dimensional topological manifold. If the
curve intersects itself, then its trace (with the relative topology from the plane) might not
be a topological manifold. Locally, it is a topological manifold, i.e. the curve can be res-

tricted to a subinterval such that the trace of this restriction is a topological manifold.
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Definition 2.1.5: An immersion (or topological immersion) is a locally injective continu-

ous map from one topological manifold to another.

Thus, our notion of a curve in IR* is an immersion of an interval of IR into IR”.
Our notion of a surface trace in IR®, n>2 is an immersion of a special kind of set in IR?
into IR". We do not want to immerse a line segment for example — this would be a
curve. The general m-trace is an immersion of a .special subset of IR™ into IR*. Take
the special subsets to be, say, connected sets with a nonempty interior. We probably also
want our intervals (and special subsets) to be compact as well to avoid curves like the line
with irrational slope on the torus, which is dense in the torus but is C>regular. Alterna-

tively, we could require curves to be rectifiable.

An m-trace that is geometrically continuous of order k is a C*¥-immersion of the
same kind of subset of IR” into IR*. In chapter 1, we presented geometrically differenti-
able functions of one variable that were not curves. Functions of one variable that are
geometrically continuous of order greater than one are always curves. We argue as fol-
lows that geometric continuity of order 0 is precisely the condition that the function be a
curve, that is, the condition that the function be locally injective and continuous. A Ck
immersion is a function whose first k derivatives are continuous and locally injective (See
chapter 3 for more on this.), so, for us, a more convenient name for a curve than a topo-
logical immersion is a C® immersion. Then, appling the rule that a G* function is a C*
immersion for k=0 as well, we have come informally to the conclusion that a G° function

of one variable is precisely a curve.

Proposition 2.1.6: If X is a set and ¢,d € IR, ¢<d and f:[c,d]— X is locally injective,

then 3n, ()0 s.t. c=t9<...<ty=d and f |, ;. is injective for i=1,...,n.

Proof: Let © denote the relative topology on [c,d] from the ordinary topology on IR. f

is locally injective so each a € [c,d] has a neighborhood A, s.t. f |4, is injective so for

each a elc,d] Jeo €eRY st flu qai)ica 18 injective.  Let E =
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{(a—¢a,a+e)[c,d]}a €[c.a) then E is a ©-open cover of [c,d] and [¢,d] is compact so E
contains a finite cover {(ai—e4.ai+¢4)([c,d]}fe1. Choose the finite cover so that
a1<...<a, and ((a—eq,i+e)[c,d]) A ((@i41—¢q 0 n+eq ) [cd]) # O for i =
1,...,n—=1. (A denotes the symmetric difference, AAB := (A| JB)\(ANB).)

. Qi+ €4+ y1—€4;) )
Thus if g :=c, t; 1= —0 2'+ % fori = 1,...,n—1 and ¢, := d then f T

is injective for i=0,...,n-1. O

Corollary 2.1.7: If I is an interval of IR with left endpoint ¢ and right endpoint ¢ and
(X,I) is a topological space and f:— X is continuous, locally injective then dn, (1) o

s.t. c=tp<...<t,=d and f |’ﬂ[‘i 1 is injective for i=0,...,n-1.

Sli+1

Proof: Extend f to f:—X by continuity. Take n, ;, i=0,...,n determined by apply-
ing the previous proposition to f. f agrees with f on I so f | INlh1] = f | I[t6-41°

which is injective for i =0,...,n-1 because f [,4.1 18 injective for i=0,...,n-1. ©

Example 2.1.8:
f(t):=(cos(3t)cost ,cos(3¢t)sint) is a curve
despite the fact that it intersects itself (i.e. is

not injective). The origin corresponds in a

x St

locally injective fashion to ¢= %— T

Figure 1: Cloverleaf

Note 2.1.9: Goetz says on p.28 that ‘““The intuition behind our definition of a curve is
that a curve [trace] could be drawn with one stroke without stopping and returning along

the line which led to the point we stopped at.”
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2.2 Oriented Curves

%
We add orientation to curves in this section.

Example 2.2.1: Suppose I is an interval of IR and f 7 — * )\”. The trace of f has 3 end-
points so at least one of them must correspond under f to an interior point o of 7. Hence

f cannot be locally injective at a.

Note 2.2.2: If we want to allow curves to stop and trace back over themselves (as in the
previous example) then we just have to change the definition of curve so that it is piece-

wise locally injective rather than locally injective.

Definition 2.2.3: A surface is a locally injective continuous map from a connected set

with a nonempty interior in the plane into IR*, n>2.

Definition 2.2.4: If 7 (resp. J) is an interval of IR with left endpoint a (resp. a) and
right endpoint b (resp. 8), n € ZZ* and f:I—1R", g:J—IR" are curves then f and g are
equivalent (resp. opposite) < It s.t. t:JJ—I is continuous, increasing (resp. decreasing)

and surjective and f (¢(x))=g(x) Vx € J.

Note 2.2.5: Two curves are equivalent < they trace out the same set of points in the

same order as we proceed from left to right through their respective intervals.

If a curve intersects itself then it is possible to have 2 parametric representations of

C that are neither equivalent nor opposite.

Definition 2.2.6: A curve trace A is a simple closed curve trace & Vx € A, A\{x}is a

curve trace. A curve trace intersects itself & it contains a simple closed curve trace.

* Tensor product splines, discussed later in this thesis, nced not be orientable. For example, a M&bius
band can be constructed just by joining a few patches end to end.
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Note 2.2.7: A curve trace A is a simple closed curve trace & VBCA s.t. B is a curve
trace, A\B is a curve trace. (There may be some B s.t. A\B is a curve trace while A is -

not a simple closed curve trace, as in the following example.)

Example 2.2.8: The limacgon i.e. the trace
of r=a(l1+2cosf) (a>0) (see figure 2) is
not a simple closed curve trace because A Q ¢
removing the point A leaves a set that is not

a curve trace.

Figure 2: Limagon

Proposition 2.2.9: Any two curves f, g having the same trace are either equivalent or

opposite if the trace doesn’t intersect itself.

Corollary 2.2.10: A curve trace is a simple arc < it doesn’t intersect itself.

Note 2.2.11: Equivalence and opposition of curves in IR* are equivalence relations.

Definition 2.2.12: The equivalence classes under equivalence of curves are oriented
curves. If f:1— C is a parametric representation of C then denote by [f ] the parametric

representation containing f .

Definition 2.2.13: If fJJ—C,g:JJ—C are clements of the same oriented curve, say
f@(r))=¢g(r) Vr €J then ((a,f)~(b,g) & t(b)=a) is an equivalence relation. The
equivalence classes are called points of the oriented curve. Denote by [a,f] or [¢;1;f] the

equivalence class containing (a,f ).
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Since two curves are equivalent < they trace out the same set of points in the same
order, we can think of a oriented curve invariantly as a curve trace together with an order

of traversal of the trace.

Example -1.1.1: The points [%’f]’ [%,f] [—56£,f] of example 0 are distinct points of [f ]

although f(%) = f(_7r2_) = f(%ﬂ")

Note -1.1.2: We gave examples of continuous curves with traces that filled space and
hypothesized that this was not possible for locally injective continuous curves. We now
ask whether the analogous thing can happen to the derivative. If we think of the range of
the derivative as being pairs, each consisting of a point on the curve and its derivative
with respect to arc length there,* is it possible for the trace of the derivative of a continu-
ously differentiable function to fill space? The derivative of a function that is regular as
well as continuous is certainly locally injective as the following argument of Professor
Djokovié shows. A curve that is continuous and has a full rank Jacobian at a has a full
rank Jacobian in some neighborhood of a. Thus, the only way for the curve trace to pass
through this point f (a) again in this neighborhood is through a closed curve with no
kinks. Doing this in every neighborhood of ¢ means that the derivative must spin con-
tinuously back to itself in every neighborhood of a, but this means that the derivative at a
does not exist. As an example of a curve that is continuously differentiable but not

locally injectively continuously differentiable, consider

* In the terminology of differential geometry, these are points of the tangent bundle.
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tzsinz(-i—)(cost sine) if ££0
(0,0) if =0

This may not fill space, but it has bad enough behavior near (0,0) that we don’t want to

think of this as a G! curve.



3. Curves with Differentiability

We continue our discussion of curves, but with differential structure in addition to
topological structure. Some differential structures do not give us the topological structure
on the trace that we demanded in the last chapter. Continuous regular differentiability
gives us this topological structure not only on the trace, but on the traces of the deriva-

tives as well. (See the discussion at the end of chapter 2.)

3.1 Arc Length and Singularities

Proposition 3.1.1: If E is a Euclidean space and 7 is an interval of IR and n € ZZ* and

1 (1

z €l and fI—E is C* and P(1)#0 V1 €1 and sf(u) = [P ()|dt Yu €I then s is
. * .

Cr, where ||-|| denotes the Euclidean norm and f) denotes the kth derivative of f.

1 1 1
Proof: g}) (u) = ((ff)(u)](f)(u)))*, which has n derivatives — see p.171 of (Maurin,
1976) O

1
We will also write s((/;f);) or s for sf. Suppose we allow (f)(t) = 0 in the above

definition of s. s remains constant for 7<..<ty & f remains constant for 7;<..<t.
t2 (1
(because s is continuous and nondecreasing and s((I,f);t2)—s((I.f)t1) = f”f)(u )l|du).
31
1 1 1 1
If Sf)(u) = 0 (Since (s)(u )=||(f)(u)[|, this implies (s)(u) = 0.) at isolated points then s, con- "
sidered as a function of ¢, is strictly increasing but the inverse of s is not continuously dif-

ferentiable (the derivative is Joo at these points). Also, s is not differentiable of order

greater than one, even if f is. If s is twice differentiable,

36
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1 2
Q. D) P

P

Definition 3.1.2: If m,n,p € ZZ+ and C is a curve trace in IR then C is piecewise

Cr-regular <= If , I, {1 },'i[) s.t. I is an interval of IR, {t,-},-l;g is a division of 7 and f is a
parameterization of C and the restriction of f to the interval (#,ti41), f | 4y 18 C™-

regular for i=0,...,p-1. Such an f is itself said to be a piecewise C"— regular curve. If

(?)(t;) does not exist or (jl)(t,-) = 0 then ¢; is a singularity of order m of f. If for every curve
gJ—C in [f], the point »; € J corresponding to #; is a singularity of g then (4,f) is an
essential singularity of order m of [f]. Any point of [f] that is not an essential singularity
of order m of [f] is a nonsingular point of order m of [f]. Any point of I that is not a

singular point of order m of f is a nonsingular point of order m of f.

Example 3.1.3: The limagon in figure 2 traversed in the orders ADBEAGCFA,
ADBEAFCGA are both parametric curves but in the first case the second incidence of A
in the traversal is an essential singularity whereas the second traversal has no essential

singularities.

Note 3.1.4: One cannot see an orientation on a curve, but one can usually see whether
there is an orientation that makes the curve look nice. Despite the fact that the lima¢on
has some orientations with kinks, it looks smooth precisely because there is a nice orienta-

tion.

Theorem 3.1.5: If f is a piecewise C"-regular curve then all members of [f] are piece-

wise C"-regular

Proof: page 24 of (Bruce, 1984) O

Definition 3.1.6: A oriented curve that contains a piecewise C"-regular curve is a
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piecewise C"-regular oriented curve.

Definition 3.1.7: If n € ZZ* and C is a curve trace in IR” then C is rectifiable < I .f

s.t. I is an interval of IR and f:— C is a parametric representation of C and ! := sup{
kf—lll f (%) — f (t—1)||; (% )P0 is a division of 7 } (i.e. the supremum with respect to all divi-

sions of [a,b]) exists and is finite. [ is the length of f .

Example 3.1.8: If a circle of radius r is parameterized to be traversed k times then the

length of the parameterization is 2kxr. Thus we can parameterize a circle to have any

length >2xr.

Theorem 3.1.9: If (X,||-||) is a Banach space and F:X XX — IR is continuous and positive
homogeneous in the second variable (i.e. F(x,cy) =c¢ F(x,y) Vc € IRY) then

right(7)
L:If) — :Z(I)F(f(t),%g-(t))dt

is an invariant of oriented curves (i.e. is invariant under equivalent reparameterizations

i.e. if (I;f), (J;g) are members of the same oriented curve then L((I;f)) = L((J;8)).

Proof: p. 368 of (Maurin, 1976) O

Corollary 3.1.10:

s(@f)ax= gl

is an invariant of oriented curves i.e. if [;/;f ] = (v 3/ ;g) then

rd T .4
WG AO LSRG O

Proof: Take F(x,y) = |ly|| in the previous theorem. O
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Theorem 3.1.11: If n € ZZ* and I is a finite interval with left endpoint ¢ and right end-

point b and fiI—IR* is a piecewise Cl-—regular curve then f(I) is rectifiable and

b a
length(f )= | (¢ )lldr
Proof: page 158 of (Bishop, 1964) O

Corollary 3.1.12: If f, g are members of the same parametric curve and f, g are piece-
wise Cl—regular then their lengths are equal. (This is the same as the corollary of the pre-

vious theorem.)

Definition 3.1.13: If 7 is an interval of IR and z €I and f 5" is a piecewise
Cl-regular curve then sf(¢) is an arc-length parameterization of C. (The arc-length coor-

dinate is unique up to a choice of the origin.)

Note 3.1.14: Since f is piecewise Cl—regular, (})(u )#0 except possibly at the ends of the
pieces so sf is a strictly increasing function of ¢ so sf has a strictly increasing piecewise
Cl_regular inverse #f so g(s):=f (¢/(s)) is an equivalent parametric representation i.e.
any parametric curve that contains a piecewise Cl—regular curve also contains an arc-

length parameterization.

If 7 (resp. J) is an interval of IR and f:/—C, gJ—C are equivalent piecewise
Cl-regular parametric representations of C and z € I and ¢ is the corresponding point of

J (exists because f, g are equivalent) then g(r)=f. tfo s§(r).

Theorem 3.1.15: If n € ZZ2% and f I — C is an arc-length parameterization of C and [f ]
is piecewise C*-regular and a €I then [a,f] is an essential singularity of order n of [f]

& a is a singularity of order nof f .

Proof: p. 35 of Goetz O
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Definition 3.1.16: If » € ZZ2° and I,J are intervals of IR and f:—Cy, g:J—C, are
arc-length parameterizations and a €1, « €J, A € CyNC2 and f(a)=A=g(e) then
[, [g] have contact of order n at [a f], [a,g] & ||f (a+h)—g(a+h)|| € o(h — h™) but
\If (a+h)—g(a+h)|| & o(h — h™t'). (o(g) is the collection of all functions p such that

}igb%’% —0.)

Theorem 3.1.17: If n € ZZ2° and 1,J are intervals of IR and fiI—Cq, gJ—C, are
Crtlregular parameterizations of C;, C,, respectively, and @ €I, a € J, A € C and
f(a)=A=g(a) and a, o are not singular points of order n of f, g respectively then
[ ], [¢] have contact of order n at [a,f], [a,g] & for any arc-length parameterizations
h,k contained in [f], [g], respectively, if we let [b,h]:=[a,.f], [8,k}:=[e,g] then
rD(b)=k®(B) for i=0,...,n and A+D(b)zk*+1(B).

Proof: p. 38 of Goetz O

Note 3.1.18: Any continuously regularly differentiable parameterization can be used to
generate the arc-length paraineterization. (Continuous differentiability is not good
enough.) On the other hand, the arc-length parameterization is itself a continuous regu-
lar parameterization. Thus, geometric continuity of a curve trace can be expressed either
as the condition that a continuously regularly differentiable parameterization exist or that

a continuously differentiable arc-length parameterization exist.

3.2 Submersions and Contact

There are other useful ways of describing a curve trace besides a parameterization.
So far, we have been asking when a map from UCIR™ into IR", n>m, is nice. When is
a map from IR™ into IR*, n<m, nice? For example, if F:IR?— IR, under what conditions
is F-1({0}) a nice curve trace? These sets can be ugly - see page 56 of (Bruce, 1984) .

One answer again is, when the Jacobian has full rank and all the derivatives are
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continuous. Thus we see that the notion of a regular point is very important in both
cases. Despite the fact that curves are constructed as parameterizations (n>m case - i.e.
immersion) in computer graphics, the m>n case (i.e. submersion) is useful for obtaining

a better understanding of geometric continuity.

In the light of this news, let us take another look at immersions. An immersion is
always a locally homeomorphic mapping - see pages 117, 324 of (Goetz, 1970) . For a
Ck-regular curve in IR”, we can add n—1 axes to the domain and a natural map induced
by the curve will be a C*¥ diffeomorphism. For example, if y7—IR2t — (X(¢),Y(¢)) is a

Ck-regular curve, then ¢:7%2— IR%(x,y) := (X (x),y+Y (x)) is injective & ~ is injective and
1
is a C* diffeomorphism in some neighborhood of (a,b) if (X)(a )#0. (This follows from

the inverse function theorem.) Since 7 is regular, if ()1()(a )=0, then (i)(a )#0. Thus, at least
one of ¢ and ¢I?— IRZ(y+X (x),Y(x)) is a C* diffeomorphism in some neighborhood of
each (a,b) € I2. The generalization of this example (which comes from page 52 of
(Bruce, 1984) ) is the parameterized manifold described on page 53 of (Bruce, 1984) .
Submersions and immersions are related through the result that any parameterized n
dimensional C¥-manifold in IR*+¢ is locally the inverse image of a regular value of a C*
map from an open subset of IR**¢ into IR?. An outline of proof of this result is given on
page 61 of (Bruce, 1984) . The idea is that a C*-regular map from a subset of IR™ into
IR” extends naturally to a local diffeomorphism from a subset of IRPax("-1) jnto JRM2x(m.n)
just by adding coordinate axes to the domain or range to make the dimensions of the
domain and range the same. Generalizing more yet, submersions and immersions are
special cases from the important class of functions f whose derivatives f ' have constant
rank in a neighborhood of the given point. See page 240 of (Maurin, 1976) . Perhaps
geometric continuity can be defined for any maps which have constant positive rank in

open sets.

In the rest of this section, we write down two propositions from (Bruce, 1984) that
come from singularity theory. (Singularity theory is a part of differential topology - see

(Guillemin, 1974) .) We do this partly because the Monge-Taylor map is studied in
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singularity theory, but mainly because singularity theory, especially as presented in Brice
and Giblin’s book, is the only field that the author has found that studies pathologies of
curves in depth. Although the singularities are mostly not the pathologies that have
motivated the introduction of geometric continuity into the literature, the methods used
there may also be useful for studying geometric continuity. The two propositions (1)
make the above statements about regular values more precise and (2) point toward the
notion of transversality, which generalizes the notion of a regular value. In what follows,
take manifolds of dimension n to be generalizations of nonintersecting curves (1 dimen-
sional) and surfaces (2 dimensional). Manifolds may have kinks - see chapter 7. Ewvery-

thing is C* unless otherwise mentioned.

Proposition 3.2.1: If f:IR"—IR*, n<m, is a submersion at a then 3 an open neighbor-
*
hood U of a such that f-1(f (a)) is a parameterized n—m —manifold. A further gen-

eralization of this result is

Proposition 3.2.2: If MCIR™+ is an m dimensional manifold and f:M—IR"*? is
transverse to an n dimensional manifold N in IR*+¢ then f~1(N) is a manifold.
%k
Thus, although we have not defined transversality, we can at least note that the
second proposition is a generalization of the first and that the generalization involves

transversality.

Now, we define contact between a C* curve in IR* and a C*F hypersurface in R~.T
Although we do not use the definition in this chapter, we state it here (1) to have it close

to the other definition of contact and (2) because it is important in the classification of

* For the definition of a parameterized manifold, see page 53 of (Bruce, 1984) .
** The definition of transversality is on page 159 of (Bruce, 1984) .
+ More generally, one can define contact between any two intersecting sets. See page 22 of (Pogorelov, )
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critical points, which is a part of transversality theory and (3) it is closely related to defini-

tion of jets given in (Gardner, ) .

Definition 3.2.3: If O is a regular value of F then v and F~1(0) has k point contact (or k
fold contact) at a « the first k—1 derivatives of g(¢) := F(y(¢)) are 0 at a but the kth is

nonzero.

Example 3.2.4: The hyperplane through p perpendicular to u is the set of all x such that
F(x) = <x—p|u> = 0, where <.|.> denotes the usual inner product in IR*. The hyper-
sphere with center u that passes through p is the set of all x such that F(x) = |jx—u|]? —
llu—p|f> = 0.

In the plane, this definition of contact is equivalent to the definition of contact of

parameterized curves. See page 33 of (Pogorelov, ) .

As with the other definition, the order of contact is independent of reparameteriza-
tions of the curve. For curves in the plane, the order of contact with the line and circle

can be used to say many things about the curve.

3.3 The Frenet Formulae

First, we state a nice result, that holds if the first £ derivatives are linearly indepen-

dent, and watch how it degenerates as dependencies are introduced.

Theorem 3.3.1:

(Frenet formulae) If (7,x) is a C* arc-length parameterization of a curve trace in E* and
{xD(sg),....x™(sg)} is linearly independent, then (ei(s),...,e,(s)) obtained by Gram-
Schmidt on (xM(sg),...,x")(sg)) satisfies:

(1) xD(s) = exls)

(2) eZ(S) = ”;(2) j ”
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(3) ¢M(s) = g;(s)ejs1(s)—gj-1(s)ej1(s) for j = 1,...,n, where eo(s) = 0 = e,41(s) and
q(s)>0fork =1,...,n-1.

Proof: p. 374 of Maurin of

A C» arc-length parameterization exists < there is a C*-regular parameterization f
of the same curve trace. Also, the span of the first » derivatives of any two C"-regular
parameterizations is the same. There is a C¥ change of parameter (diffeomorphism)
between them and the chain rule gives the k’[h derivative of one parameterization as a
linear combination of the first k derivatives of the other parameterization. We will show
later in this section that linear independence of the first n derivatives at a point and con-
tinuity of the first n derivative maps imply that the first n derivatives are linearly indepen-
dent on a neighborhood of the point. Thus, we could have phrased the above theorem
using any Cr-regular parameterization. This is done on pages 11-13 of (Klingenberg,
1978) . He also shows that if e(t)=(e1(t),..,e,(z)) is the Frenet frame arising from one
C* regular parameterization and b (u)=(b1(u),..,b,(1)) is the Frenet frame obtained by a
reparameterization t=h(u) of the domain then e=b .h. If we build up a matrix Q(s) of
the curvatures on the first superdiagonal and the negative of the curvatures on the first
subdiagonal then part (3) of the above theorem says that eM(s)=Q (s)e(s). For an arbi-
trary Ck-regular parameterization f the result is eD()=||f O@)||Q (s (¢))e (¢).

Definition 3.3.3: g¢; in the above theorem is called the jth curvature of the oriented

curve. In the case n=3 of space curves, gp is called the curvarure and g, is called the

t A better study of curves would examine how the order of differentiability of the g;s affects the curve.
Perhaps the confusion about degnerate curves, discussed later in this section, could be dispelled by studying
their curvatures. On the other hand, if we make some assumptions about the g;s, we get the fundamental
theorem of curve theory:

Theorem 3.3.2: If I is an interval of IR and ¢; is a positive, C* function on I for i = 1,..,n, then there is an
oriented curve of class C*+! in E”, unique up to a Euclidean motion, whose curvatures are the g;.

Proof: p. 378 of (Maurin, 1976) O
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torsion of the oriented curve. We call the collection (x(s),e1(s),..,e.(s)) the moving n-

hedron.

Note 3.3.4: Because geometric continuity is to be a concept that is designed to avoid
degeneracies, we are taking the time to study as many degeneracies as we can think of to
design geometric continuity to be a notion that avoids them. We got around some of
these degeneracies by requiring that the derivative be continuous for some parameteriza-
tion. We got around more by requiring that the derivative be non-zero as well. Because
of the preceding theorem, we have cause to wonder about another possible source of
degeneracy. The Frenet-Serret formulae, which are important in classical differential
geometry, require that the derivatives with respect to arc-length be linearly independent.
(This is independent of the parameterization.) The question is, does the linearly depen- |

dent case correspond to some kind of kink in the curve?

Theorem 3.3.5: If (X,||-]|) is a Banach space and {v;}/.yCX and I{w;:1<i<n, 1<j <od}

s.t. for each j, {w;}/, is linearly dependent and for each i, jlimwj,- = v;, then {y;}/ is
)

linearly dependent.

Proof: The proof was given to the author by Prof. Zorzitto. For each j, 3{a;}CIR s.t.

—E i (bj1)f21 is a bounded (by +1) sequence,
Y la;
=1

n n
iélaﬁwﬁ = 0 and iZ=31 Iaj,- I;éO. Let bj;:=

so by the Bolzano Weierstrass theorem, it has a convergent subsequence (b;, 1)£2;. Using
this index sequence as input for i=2, repeat the argument: (b 2)f21 is a bounded

sequence so it has a convergent subsequence (b;, 2)f21. After having done this n times,

the nth index sequence J is such that (b;); ¢s is convergent for each i. Let b; = jli_gl bj
i€

fori = 1,..,n. To show that izjllb,- v; = 0, show that
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Jm)LE paea—E puv=0
To show this, show that each of the terms on the right side of
| iélbﬁ Wi "iélbi Vi ||Sif:31| |bjiwji —b; vi|
go to zero in the limit.
|bjiwii —bivil| < |bjiwji—bji vi ||+ |1bji vi —bi vi |
< lai W —vill+ |a—a; |||vil]

The |a; | are bounded and ||| is fixed, while ||w;—v;|| and |a;—a; | go to zero in the

limit. O

Note 3.3.6: Another way of stating this result is, the collection of (vy,..,v,) € ilfllX such
that {v1,..,v,} is linearly independent is open in irjIIX , with, say, the norm |[|(x1,..,x%,)|| =

inJIHx,-H. Alternatively, the collection of linearly dependent n-tuples is closed in 'IZIIX .

Given any collection of n linearly independent vectors, there are neighborhoods of each
vector such that any selection of n vectors, one from each neighborhood, is linearly
independent. Because the first n derivatives were assumed linearly independent and con-
tinuous at a point in the Frenet-Serret theorem, the above theorem implies that they are
also linearly independent in a neighborhood of of that point. What does the interior, A,
of the set of linearly dependent n-tuples look like? On A, given any collection of n
linearly dependent vectors, there are neighborhoods of each vector such that any selection
of n vectors, one from each neighborhood, is linearly dependent. We will desribe a result
for the case that the first n derivatives are linearly dependent in a neighborhood of a
point. The case where the first n derivatives are linearly dependent at a point, but not in
any neighborhood of the point is discussed briefly on pages 69-71 of (Vaisman, 1984) for

space curves and for the special case that (1) the first p—1 are zero and the pth is
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nonzero, (2) the p+1th through p 4+4¢—1th are linear multiples of the pth, (3) Jr such that
the pth, p+qg+rth, pth and p+qth derivatives at the point are linearly independent. In
such a case, p is called the order of the singularity, ¢ is called the class of the singularity
and r is called the rank of the singularity. The problem with this construction is that it
might not lead to a Frenet frame that changes continuously. See page 54 of (Goetz,

1970) .

Proposition 3.3.7: If x:— E” is a C" arc-length parameterization of a curve and {x((s),
k :
. ,x®)(s)} is linearly independent, but x*+(s) = X (s)xW(s) for s € [a-r,a+r],

then x([a—r,a+r]) lies in the translate of a k£ dimensional subspace of E” but not in the

translate of any k—1 dimensional subspace.

Proof: page 376 of (Maurin, 1976) O

Note 3.3.8: The condition on the k4 1th derivative in the proposition is implicitly a condi-
tion on all higher derivatives as well. By differentiating this expression, all derivatives of

order higher than & are in the span of the first £ derivatives Vs € [a—r,a+r].

If n=3 and k=2, then the previous proposition says that the space curve settles into
a plane for a little while. In the plane, we construct a Frenet bihedron instead of a
Frenet trihedron. If the torsion settles nicely to zero as the curve trace settles into a
plane, we can just add a third unit vector to the bihedron to get a trihedron that changes
continuously at the points where the curve enters the plane. On the other hand, is it pos-
sible for the trihedron to spin as the curve enters the plane in such a way that the orienta-
tion of the trihedron approaches no limit? There are certainly decent curves that are
degenerate. For example, the curve trace whose graph is y=x3 has a Frenet bihedron

that turns into a unihedron at x=y=0.
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At any point on a curve in IR” with a Frenet n-frame, there is a neighborhood of
the point on which the curve trace can be expressed exactly as x — (x,Y1(x),..,Y,(x))
where the independent coordinate x is the coordinate along the tangent line and the
remaining n—1 coordinates are the coordinates along the remaining n—1 axes of the
Frenet frame. Take the degree k Taylor polynomial of this map and according to page
173 of (Bruce, 1984) what we have done is to *...associate to each point ¢ € I a polyno-
mial of degree k which carries all the infinitesimal information about the curve v at ¢z up
to order k. This map of a curve into this Taylor polynomial is called the Monge-Taylor
map. (Bruce, 1984) does not worry about the degenerate case. They assume only the
existence of a tangent line and construct the remaining perpendicular axes as follows for
n=3. By Sard’s theorem,* there exists a direction in IR? such that no tangent line to the
(compact) curve is parallel to this direction. Orthogonally project a fixed vector in this
direction on the plane normal to the tangent line at each point of the curve. Together
with the unit tangent vector field, this gives two C* unit vector fields on the curve. Tak-
ing the cross product of these two at each point gives us a C¥* moving trihedron. In IR%,
we would be able to find two such directions by applying Sard’s theorem twice. We
described the Monge-Taylor map for a C¥ ;regular surface in IR3 in chapter 1. We could
find two axes orthogonal to the tangent plane for a surface in IR* by likewise applying

Sard’s theorem.

* Sard’s theorem is the main technical result in transversality theory, which generalizes the notion of a reg-
ular value, which is fundamental to geometric continuity. Interestingly, Sard also introduced a general defini-
tion of a spline. See page 215 of (Groetsch, 1980) .



4. Spline Curves

4.1 Applying Geometric Continuity to Splines

In the previous chapter, we defined a collection of points as being geometrically con-
tinuous if it is the image of a special kind of parameterization. Finding such a parameter-
ization can be difficult. In this chapter, we define a vector space of splines, such that the
trace of every element in the spline space is geometrically continuous. In this spline
space, we don’t have to look hard for special parameterizations — they are all special!
What has to be shown is that such a restriction leaves us with enough elements in the
space for it to be useful. If we can demonstrate an efficient method for selecting ele-
ments from this space based on some useful kinds of input (say a function or collection of
points that we want to approximate or interpolate) and demonstrate that the selected ele-
ment can be made to fit the input requirements as closely as desired, then the vector
space and procedure will have precise control over not only the degree of approximation
but also over the geometric properties of the approximant. We will also be striving to
construct a compact support basis for this spline space, so that as few as possible pieces of
a spline curve or surface are changed by changing one of the coefficients in its expression
as a linear combination of this basis. This gives us local control over elements of the

spline space.

In the following we give a loose, working definition of a spline. A general definition
of a spline can be found on page 216 of (Groetsch, 1980) . Specific cases of the defini-

tion as well as a more thorough discussion of splines can be found in (de Boor, 1976) .
Definition 4.1.1: A spline curve (trace) in IR" is (the trace of) a piecewise analytic func-

tion, each piece from an interval of IR into IR". Moreover, the intervals (pieces of the

trace) and their ends are ordered so that each piece has a lefr end that is associated with

49
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the right end of the previous piece (except the first piece) and a righr end which is associ-
ated with the left end of the next piece (except the rightmost piece). Finally, this associa-
tion satisfies some conditions that determine the type of the spline. The association

between ends of intervals (pieces of the trace), is called a knot (joint).

G* spline curve traces (G* splines for short) satisfy the G* condition between joints.
Again one can think of G* splines invariantly (without parameterizations) but in practice

we will always refer to them through parameterizations.

In chapter 3, we gave several equivalent characterizations of geometric continuity.
We now repeat these characterizations, but for the specific case of splines, i.e. the case of
geometrically continuous pieces being joined together. More than just repeating the char-
acterizations, we wish to change such statements of chapter 3 as ‘“‘there exists a parame-

b

terization such that...” into a specific condition on the given parameterizations of the
pieces. We do this for characterizations 2, 3 and 4 of chapter 3. The pieces will be taken
to be parameterized by analytic functions and thus (because any collection of points
which is the trace of an analytic curve is G*¥ Vk ¢ IN) their traces will be geometrically
continuous of all orders. Because the pieces are G*, the only points of contention are the

joints between the pieces.

Characterizations 1 and 2: Characterization 1 is Barsky’s original characterization,
described in chapter 1, of having an osculating line (order 1) or osculating circle (order 2)
which ‘““‘changes continuously” as we traverse the curve trace. To make this precise, we
use Barsky’s terminology. Geometric continuity of orders one and two are continuity of
the unit tangent and curvature vectors, respectively. This characterization has not been
extended to higher orders or to surfaces or higher dimensional manifolds. Suppose f (¢) is
the curve representing the ‘left-hand” piece at a joint, say ¢<tg, and g(u) is the curve
representing the ‘“‘right-hand” piece at the same joint, u>ug, where f(tg)=g(ug). Let
fi®O(z0) denote the derivative from the left of f at #, and gf(uo) denote the derivative
from the right of g at ug. The conditions one obtains by applying the above characteriza-

tions of orders 1 and 2 to such parameterizations are as follows. (See (Barsky, 1981) for
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a derivation.):

88 (uo)=p1f M(t0)

and

88D (uo)=BLf (D(t0)+Baf £(t0)

respectively, where By and g, are real numbers. p; is taken to be positive because the

B1<0 case is the case of a cusp.

Note 4.1.2: We will take a diversion here to be sure in what follows that the trace has a
tangent line and not a cusp. In the case of a cusp, the two pieces have tangent lines as
the end point is approached and the two limiting tangent lines coincide, but the union of
the two traces does not have a tangent line at the cusp. Because the parameterization is
regular, the tangent always points in the direction in which the curve is being traced, in
the sense that f (t+h)=f (t)+hf D(¢). For points near the joint, the tangent points away
from the joint (i.e. & in the above expression is negative if f (z+k) is the joint and f (¢) is
a point on the curve near the joint) if it corresponds to the left end of the parameter inter-
val and toward the joint (4 is positive) if it corresponds to the right end of the parameter
interval. Thus there are the following cases. Suppose f:[a,b]—IR*, g:{w x]—IR"* are
Cl-regular. (1) If f(a)=g(w) and their traces have the same one-sided tangent lines
there then the union has a cusp of order one if B; is positive and a tangent line if g8 is
negative. (2) If f (b)=g(x) and their traces have the same one-sided tangent lines there
then the union has a cusp of order one if 8; is positive and a tangent line if 8; is negative.
(3) If f(b)=g(w) and their traces have the same one-sided tangent lines there then the
union has a cusp of order one if 8y is positive and a tangent line if 84 is positive. Case

(4) is just case (3) with f and g reversed.

From now on, we will take f to be defined and Ck-regular to the left of ¢y and g to
be defined and C*-regular to the right of ug. We will always make the choice of sign that

gives a tangent line instead of a cusp.
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Since a unit tangent vector is (except for sign) the first derivative with respect to arc
length, and the curvature vector is the second derivative with respect to arc length, requir-
ing the one sided derivatives with respect to arc length on either side of a knot to be equal
is equivalent to Barsky’s conditions (that the one-sided limits of the unit tangent and cur-
vature vectors are equal). This is a special case of the characterization of geometric con-
tinuity we gave in chapter 3: namely, that derivatives up to order k& with respect to arc
length exist and are continuous. These equivalent descriptions of geometric continuity are
invariant. Equating first and second derivatives with respect to arc length (and taking the

sign that gives a tangent line instead of a cusp) gives:

fiO(0)  gdY(uo)
IF 25 Co)]l — [lgdM(uo)]|

24P (ug) F1P(t0)
o llggPolll* _ [IFE1Ca)l*
FiO(o) | gdP(uo) F13(20)
FEO@) (Pl ~ FEO(o)]?

where ||-|| and (-|-) denote the Euclidean norm and inner product, respectively. Solving

for g and gf? in the above equations give us Barsky’s equations:

2d(u0)=p1f(to) where pi— |I|l§‘él)(':3))llll and

B =AY £210)+ 82 (ae) where pp=LED IS (0 LT (0)

The difference is that equating one-sided derivatives with respect to arc length gen-
eralizes to orders higher than 2 whereas we know of nobody who has generalized along
the lines of thought of continuous unit tangent vector and continuous curvature vector.
Moreover, the condition one obtains by equating one-sided arc length derivatives looks

like chain rule in the sense of the following



53

Characterization 3: Characterization 3 is a manifestation of the condition that the curve
trace have a Ck-regular parameterization. If f:a,b]—f(a,b])CIR® and
gx,yl—-g(x,y)DCIR* are CF bijections and f (b) = g(x) and fV(b)=0<gfV(x) then the
trace is GF & I ¢, h s.t. h:[b,c]—[x,y] is a C* bijection and h(b) = x and fO(b) exists
for i =0,..,k where
For={48y 952

Note that the existence of f@(b) (i.e., the requirement that f0(b), f(b) exist
and are equal) is equivalent to the requirement f{(b) = (g - #)§)(b). This is basically
the chain rule argument given in (Bartels, 1984) . See also (Barsky, 1984) and
(Ramshaw, 1984) . The right side is expanded using the chain rule and, taking 8; :=

hi)(b), we will get the same formula for any k as we get from characterization 2.

If there exists an & such that the first k derivatives of f can be made continuous,
this means that the trace of the degree k Taylor polynomial of the parameterization f of
one side can be made to coincide with the trace of the degree k£ Taylor polynomial of the
reparameterization, g . h, of the parameterization g of the other side. What about the
converse — does the trace of the degree £ Taylor polynomials coinciding for one pair of
C*-regular parameterizations imply that the union of the two traces can be parameterized

by a Ck-regular curve f? We prove that this is so in characterization 4.
y g p

Characterization 4: Characterization 4 is a manifestation of the condition that the curve

trace can be written as an immersion which has a k-jet. Suppose that

£ B gy g

and
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£ 6y =)

have the same trace and that gfD(u)=0<f V(o). It does not make sense to refer to g as
a reparameterization of f in a neighborhood of the joint because the traces of f and g do
not overlap. However, the traces of their Taylor polynomials do, so we can now refer to
one Taylor polynomial as being a reparameterization of the other. f®(tg)=0 because
Fi()=0 (and £D(ug)=0 because gfP(ug)=0). Thus, Ff! exists on some IR"-
neighborhood of f(z9). We are using the notation for the inverse of a function loosely
here. We mean that f . £~ is the identity on some neighborhood of tg and f~1|c . f is
the identity on some C -neighborhood of f (¢g) , where C is the portion of the trace of f
that falls within the domain of f—1. Let h:=f . g then

wf = £ L2905y

k gé )(uO) (

—1

Since two polynomials that agree on a neighborhood of a point agree everywhere, A can

be extended to be defined for all u. Since h(ug) = ig,

& g,{ )(uo)( wo) = £, fL (’0) L 220 (O (ug)(u— u0)+L2_('_Q(u ~uo)?

l

+ot hi@k)-(!@(u —ug)t+0 ((u—ug)t+1)

- £ L2209 (b (u oy +..)

Equating coefficients of (u—ug)’ for i=1,..,n gives the chain rules of orders 1 through n.
This is a consequence of the observation that if g,r IR—IR", s:IR— IR are analytic and
g=r - s then equating coefficients of (u—ug)* in

u oo res(u o st(u
_qu( D Gy ug) = £ Do o)) (g ST (,_ym s (ug)y

gives the chain rule of order k. One also has to note that the chain rule of order & is also

obtained if each of the three power series is truncated at order k.
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Is there a restriction on the 8;’s in view of the fact that they arise from the chain
rule or in view of the expressions from characterization 2? For gy, any positive real
number is permissible. Negative values correspond to cusps and zero is not possible
because B; is the scalar factor relating the one-sided derivatives of the two pieces, which
are both nonzero because the parameterization is regular. We will find in constructing
the g-splines that they have the partition of unity property for only some values of the
Bi’s. (The partition of unity property is the property that each g-spline is everywhere
non-negative and the sum of all the g-splines is 1.) Is this because these values of the g;’s

cannot be realized through the chain rule? We do not know.

Characterization 5: The Monge Taylor map exists to degree k at the joint. Some practical

methods for determining when this happens are given on pages 175, 176 of (Bruce, 1984)

4.2 A Historical Perspective of Geometric Continuity

We have given several characterizations of geometric differentiabilty of arbitrary
order, although they are hardly as intuitively geometric as the characterizations of first
and second geometric differentiability given by contact with once (resp. twice) geometri-
cally differentiable measuring sticks — lines (resp. circles). Tangent lines and osculat-
ing circles are not new to differential geometry but Barsky has taken a fresh (at least, it
was not emphasized in books that the author has read) and very interesting view towards
them: contact of order two of a curve trace with a line constitutes a geometric kind of
first derivative and contact of order three with a circle constitutes a geometric kind of
second derivative. His work begs the question ‘What is a geometric, third-derivative

measuring-stick equivalent of line and circle?’.

There were two major discoveries, in the author’s opinion, that led to the idea of
geometric continuity as presented in this thesis, and to the resulting g-splines. The first
was Barsky’s PhD thesis, which (1) made explicit the idea the order of differentiability in

a nonparametric (or geometric) sense, (2) gave a solid description of first and second
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geometric continuity for curves and (3) derived the g-splines of degree 33.*

The second was the observation that Barsky’s conditions (to be discussed in this chapter)
look like the chain rules of order 0, 1, 2. ( (Bartels, 1983) and (Ramshaw, 1984) ) The
origin of this thesis is really the quest to give geometric meaning to this chain rule argu-
ment. In fact, a parallel thesis by one of Barsky’s graduate students, T. DeRose,
embarked in the same direction and the same synopsis of the chain rule argument is given
in a resulting technical report (Barsky, 1984) (and in (Ramshaw, 1984) ) as is given
here. That is, it is a special case of the requirement that £ derivatives with respect to arc

length (equivalently, a Ck-regular parameterization) exist.

(Goodman, 1985) proposed an extension of the algebraic conditions defining 8; and
B2 to formal algebraic conditions for #’s associated with higher-order derivatives. These
conditions were proposed as a generalization of g-splines not on geometric principles but
because they permitted the theory which Goodman had developed for cubics to be
extended to higher degrees. A linear map on a vector space of polynomials, say I, can
be regarded as a linear map of polynomial coefficients or, equivalently, as a linear map
of the derivatives of the polynomial. Because the conditions at each knot for Goodman’s
splines, CF-splines and G*-splines all have the form that a linear combination of the one-
sided derivatives from the left of the knot is equal to a linear combination of the deriva-
tives from the right of the knot, at the knot, they are all g-splines (page 316 of
(Schumaker, 1981) ).

The author feels that there are pointers in chapter 3 for further research (especially
in singularity theory) but acknowledges failure, so far, in establishing anything like the

substantial theory of geometric continuity that there is for orders one and two.

* Actually, others besides Barsky in Computer Aided Geometric Design have published this notion. For
example, (Farin, 1983) calls it visual C*-continuity.



5. Beta Splines and Tensor Products of Them

In this chapter, we construct a vector space of geometrically continuous polynomial
splines and a useful basis for it, the g-splines. Then, we consider tensor products of

copies of this vector space and look briefly at surfaces obtained this way.

5.1 A Vector Space of Geometrically Continuous Polynomial Splines

Definition 5.1.1: Let Ii)k,(t,-),’”zo denote the vector space of piecewise polynomial functions
with knot vector (r; )™, whose pieces all have degree < k and are k—1 times geometrically

*
continuous.

(This is isomorphic to a subspace of the the direct sum of m copies of IP; by the map
which takes a polynomial segment into the polynomial with the same coefficients .) Let

ﬁ)f,(t,-),";o be the direct sum of n copies of IAPk,(,i),LO. If {b;}/2, is a basis for ﬁ’k,(‘i)’m:o, then

(1,0,..,0)b1,..,(1,0,..,0)by

0,..,0,1)b1,..,(0,..,0,1)b,

is a basis for IP}y»,. Members of IP{ =, have the form f(u) = iglv,-b,- (u). where
v; € IR* for i=1,..,m.
Next we show that the chain rule argument applied to a spline curve f in IR" just

reduces to the chain rule on each of the basis functions b; (independent of n). See also

(Barsky, 1984) .

* As yet, nobody has worked with spline spaces where the curve is GY in a neighborhood of ¢ (i.e.
geometrically continuous splines with confluence).
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Proposition 5.1.2: Let D, (resp. Dg) denote the derivative from the left (resp. right).
Let f; denote the piece of f on #_;1<t<t; and b; denote the piece of b; on ¢;_1<r<t;. Let
¢ (2;) be defined by

k
Dk Itif = rEOCkr (ti )DI’; |tif
(i.e., by applying the chain rule argument to f) then

Dk |y bi(e) = £,00 @)DL1, b (1),

Proof:  Substituting the expression for f in the “chain rule” gives
m m k
Vi Df |, bi(2) = 21V B Crr (t:)DE | bi(2).
Since the v; are arbitrary,
. k
iDf [y bi(t) = L ew ()DL, bi(r) O

Because this condition is independent of n, we don’t have to recompute the b;’s for
each n. We can do it once and for all. Figure 6 is the graph of a uniform cubic g-spline
with 81 = 4 and 8, = 0, while figure 7 is the graph of a uniform cubic g-spline with g; =
1/4 and B, = O (see appendix 1). The first reaction to one of these things is to ask, “How
could such an awful looking thing give a curve with a continuous unit tangent vector?”’.
One must remember that the graph of a g-spline (i.e. ¥ — (u,b(u))) with 811 is not a
G! curve (because u +— u does not have the required first derivative jump). It is not the
graph of the g-splines that one should look at. They are always taken in combinations
with points in IR" as coefficients. The point is that the same jump is being introduced in
each co-ordinate and the jump is controlled so that the jump in parameter space does not
show up as a visual jump on the curve. We started by worrying that parametric continu-
ous differentiability might not be good enough to guarantee geometric continuity. But, it

turns out that for polynomial splines, parametric continuous differentiability does
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guarantee geometric continuity. In fact, the space of continuously differentiable splines
(with no confluence) is a proper subspace of the space of geometrically continuous

splines. The 8;’s give additional degrees of freedom.

Figure 6: 81 = 4, 5, = 0 (at each knot)

Figure 7: 8, = .25, 82 = 0 (at each knot)

Are CF splines useful in some applications where other g-splines would not be? As
another example to indicate that the answer might be no, consider the differential equa-

tion

Ror (1))
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x(t)=(x1(t ) x2(t))

C* splines are widely used for obtaining approximate solutions to differential equations.
They can be integrated easily to yield amazingly good results even for functional differen-
tial equations near unstable limit cycles. What we really want is trajectories with a con-
tinuously changing tangent line. G* splines give us this and they provide a larger class of

potential solution curves.

We describe several methods for obtaining g-splines. The actual programs to do this
are in appendix 1. Wherever the methods overlap, they produce the same results. Pro-
gram 1 in the appendix generates and solves the linear system obtained by applying the
chain rule argument with the same choice of g;’s at every knot and with unit knot spac-
ing, (Bartels, 1983) . The denominator common to each of the g-spline pieces is the
determinant of the coefficient matrix of the linear system that was solved in the program.
The zeroes of this determinant correspond to choices of the g’s for which the g-splines are
no longer a basis for the spline space. For cubic g-splines with uniform knot spacing and
the same @’s at all knots and 8; = 1, the determinant is zero at 8, = —12. At 8, = —4,
the first derivative of the graph of the 8-spline goes from having 1 zero to having 3 zeroes
(The graph of the g-spline goes from looking like the back of a dromedary to looking like
the back of a bactrian) and at 8, = —8, the g-spline goes negative (and continues to be
negative for some portions of the curve for all g, < —8). The subprogram ‘‘usgspline” of
program 1 is itself a program which has the property that the basis functions it produces
sum to 1. What aspect of the constraints is giving rise to the property that these basis
functions sum to 1? Besides summation to 1, the positivity of the basis functions for a
wide range of the g8’s is a curious artifact of the construction. Finding out what these
ranges are would be useful. As with B-splines, the positivity of g-splines can be investi-
gated by considering collections of them as Tchebycheff systems. See (Rice, 1964) and

(Schumaker, 1981) for more on this.
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In program 2 of appendix 1, the knot spacing is still uniform, but now the §’s can be
different at different knots. Here, making the splines add up to 1 at the endpoint does

not make them add up to 1 on the whole interval.

With non-uniform knot spacing, the question is: what do we replace the condition
above of summation to 1 at a point with? In program 3 of appendix 1, we first construct
the one-sided basis of (Bartels, 1983) . To construct a g-spline f; starting at knot wuw;,
start by requiring that f;(u) = 0 V u € [um,1,u1,45) =: I. The piece of f; on I is a
non-trivial linear combination of the onesided functions starting at ww;,..,uw;,,,1 (The
first n+1 of these one-sided functions will be linearly independent except for some
interesting choices of the §’s.) because n+2 pieces of degree <n cannot possibly linearly
independent. We have n+2 coefficients to determine, but requiring the linear combina-
tion to be 0 gives us n+1 conditions, one for each power, so we have one condition left -
over. If we require fj;,..,fjj+n to add up to 1 on uuj;y, < u < uujjin41 then there are n+1
conditions to satisfy, but there are n+1 functions, each with 1 free condition, so we now
have the same number of conditions as unknowns: (n+1)(n+2). VAXIMA could handle

nothing more than the linear case.

In program 4, we give the construction of the g-splines given in (Bartels, 1983) .
Here the g-splines are constructed by analogy with the divided difference definition of B-
splines. For, g-splines howe\}er, the construction is not exactly divided differencing.
Surprisingly, these ‘divided difference’ g-splines appear to add up to 1. The output for
the quadratic case is given in appendix 1. It looks from the quadratic case that the g’s
are local parameters of the g-splines insofar as changing the g’s at one of the knots affects

only those §-splines which are non-zero there.

The bases dual to the truncated powers and B-splines (pages 102 and 116 of
(de Boor, 1978) , respectively) are used to some advantage by de Boor, so it is probably
worth trying to do the same for the geometrically continuous truncated powers and the g-

splines.
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The coefficients {v;}f-; (called the control vertices) of B-splines could have arisen
from any application (interpolation, approximation, whatever). But, because they have
compact support, once one has expressed a G* polynomial spline in terms of g-splines, a
single v; or B;(r) can be varied without altering any but the B-splines that are non-
negative for this parameter. This is called local control and is important in computer
aided design. Two procedures useful for B-splines in computer graphics are: (1) taking
the coefficients as input, and (2) given a function g, taking the coefficients v; = g ("),

t; vob bk —
where ¢ = _'_+_1_tk__i1_’ﬁ_l.

The second choice gives rise to splines with the property that

any straight line crosses g at least as many times as it crosses the spline. See p. 160, 161
of (de Boor, 1978) . This is called the ‘“‘shape preserving” or ‘‘variation diminishing”’
property. It would be interesting to see if the same choice for g-splines also gives rise to a

variation diminishing spline.

5.2 Tensor Product Splines

The tensor product of the original spline space with itself is a vector space. One
builds up surfaces in IR* by taking control vertex combinations as we did for curves:

S(u,v)=Swibi(u)bj(v) i.e. by building up direct sums of the tensor product.

One can show (just by checking ratios of the three 2-by-2 subdeterminants of the
Jacobian) that such tensor product surfaces have a unit normal (hence, a tangent plane)
that changes continuously accross patches of the surface. The argument for Bézier
patches in (Kahmann, 1983) should be extendible to an argument about continuity of cur-
vature over patch boundaries for tensor products of g-splines. Tensor product patches can
be pathological in the sense that they are not what we have defined as surfaces. If, how-
ever, we take enough control points that a becomes an interior point of the union of the
resulting patches, then there is also a tangent plane at a. This is because parallelism is
transitive and the unit normals of the surface approach eachother in pairs at patch boun-
daries, so all the unit normals approach (up to sign) a common value. In figure 2, which

is a poor rendering of something which is supposed to look like a sphere, we see that the
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lonely point in figure 1 has become an interior point when more control points (and thus

patches) were added. The control points for figure 1 (proceeding from left to right, then

top to bottom) are:

-1 1 0 -1 -1 0 1 -1 0 1 1 O
0 1 1 0-~1 1 0 -1 -1 0 1 -1

1 0 1 -1 0O -1 -1 O -1 1 0
0 1 -1 0 -1 -1 0 -1 1 o 1

The 16 control points for figure 1 are obtained by taking the vertices of a square (the
first row) and rotating them 3 times by -72r— The ‘“‘sphere” is obtained by repeating the

first 3 entries of each row and appending them to the end of the row (to get 7 columns
per row) and then repeating the first 3 rows and appending these to the 4 for the single
patch (to get a total of 7 rows of 7 columns), in the same way that the cylinder and

doughnut are obtained in (Bartels, 1983)

Figure 8: A Patch of a “Sphere”

Just as a curve can be be given invariantly (and uniquely, up to orientation) as the
vector field of unit tangent vectors tangent to it, so a (nice enough) surface trace can be

invariantly (and uniquely up to orientation) given as the vector field of unit normal
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d P
vectors. The maps u — Tu_ and (u,v) — % (Gauss map) are fundamental

Il |lx 2|

to many of the constructs in classical Differential Geometry (see chapter 3 of (do Carmo,
1976) ). For surfaces in higher dimensions, there is no such unique vector field. This is
an indication that we will have to be content to look at equivalence classes of objects

rather than uniquely determined objects.
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Figure 9: “Sphere”

The problem of matching up pieces of splines at boundaries is more complicated for
surfaces than for curves. The problem of matching up patches has been researched more

for polyhedral splines than for splines which preserve geometric properties.



6. Polyhedral B-Splines

If, in the g-splines, we take 81=1 and 8;,=0 V& >1 (this is the case that the parame-
terization is C¥), we get the B-splines. In fact, B-splines are also defined with confluence
(where we let the degree of continuous differentiability vary from knot to knot). These
univariate B-splines have been generalized through the Hermite-Gennochi formula to a
multivariate analogue called polyhedral B—splines.* Over the last eight years there has
been active research by de Boor, Dahmen, Hollig and Micchelli on polyhedral B-splines.

(Recently, others have started studying them as well.)

In 1976, de Boor introduced the simplicial B-spline in the literature, attributing their
motivation to Schoenberg, who did a huge amount of work on univariate B-splines and
gave them their name. B is for basis of 1P ¢,, defined as follows. 1P ., is the spline
space of piecewise polynomials of degree k—1 on a knot vector ¢ such that each member
is C"1 at ¢.) Schoenberg claims that Laplace must have known about B-splines because
of their convolution properties. In his PhD thesis and the resulting paper (Kergin, 1980) ,
through trying to introduce a multivariate divided difference (a whole class of them satis-
fying properties like Leibniz rules have since been introduced), Kergin introduced a
natural kind of interpolation in IR”. Both of these results have since been generalized.
In 1982, the polyhedral B-spline was introduced in the literature by de Boor and Hollig
(de Boor, 1982) . Three kinds of convex polyhedra B have been studied so far for the
purposes of interpolation and approximation: simplices (the original ones), cones (also dis-
cussed in terms of multivariate truncated powers) and cubes (box splines - these are the
easiest to deal with because a linear independent collection with good approximation
power can be obtained just by taking translates of one of them). Variants of Kergin’s

interpolation scheme have also been discussed in the literature.

* We stay away from the terminology “multivariate B-splines” because this may refer to either simplicial
B-splines or polyhedral B-splines.
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On p.59 of (de Boor, 1982) , de Boor says that Kergin’s work “in a way gave
impetus to all the material yet to be discussed in these lectures” (which was polyhedral B-
splines and approximation from the span of polyhedral B-splines). The hardest proof in
Kergin’s paper is an application of Stoke’s theorem. de Boor and Héllig state that the
recurrence relations for polyhedral B-splines are a simple consequence of Stoke’s theorem.
Stoke’s theorem is a differential geometric result -— in fact Kergin used differential

forms and exterior derivatives in his proofs.

If wIR"—IR and X :IR"aE»neIR’ then define M, (x |X) by
]Lf (oM, (x [X)dx = n["w(u)f(X(u))du Vf € GR).

M,(x |X) is, in general, a distribution but, for the special case that w is the characteristic
function of a convex polyhedron (See page 35 of (Dahmen, 1983) for a precise descrip-
tion of the condition on w.), that makes M, (x |X) correspond to a polyhedral B-spline, it
can be identified with a function. (A useful list of the distributions that result for various
choices of w is given in (Dahmen, 1983) .) A large amount of the research on this sub-
ject so far has been spent on trying to determine linearly independent collections of
polyhedral B-splines that are useful for approximation and interpolation. The difficulty in
finding bases and their approximation power is closely related to how messy the problem
of fitting these B-splines together differentiably can be. Now, the integration in the above
formula is over a convex polyhedron, and polyhedra are the underlying sets of simplicial
complexes. The study of fitting together complexes that are differentiably immersed or
imbedded in a manifold and of approximating maps from simplicial complexes into mani-
folds is a part of Differential Topology (chapter 2 of (Munkres, 1966) ). The integrals in
the above equation would make sense on any oriented Riemannian manifold because any
such manifold has a well determined volume element (that allows us to integrate func-
tions). Triangulations correspond to diffeomorphisms in differential topology (see page
79 of (Munkres, 1966) ), so if the imbeddings of the complexes are triangulations as well,
the sense of approximation in differential topology may possibly be useful in studying the

approximation of functions with polyhedral B-splines.
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The questions of interest here are; (1) can multivariate g-splines be constructed in a
way analogous to the polyhedral B-splines and used in approximation theory and (2) can
the approximation of maps in differential fopology be made to preserve geometric proper-
ties of the original map? Just as B-splines are special cases of g-splines in the univariate
case, we are hoping that multivariate g-splines will turn out to be related to polyhedral B-

splines.

Tensor products of univariate B-splines, besides being computationally very efficient,
are also being found to have good approximation properties in the box spline investiga-
tions of de Boor and Hollig. But one should not conclude the other kinds of polyhedral
B-splines will not be useful in computer graphics. Box splines arising from two dimen-
sional grids are being found to give unified descriptions of many finite elements. As
another example, the de Casteljau-recursions for Bézier polynomials (important in com-

puter aided design) follow from the recurrence for simplicial B-splines.

Unfortunately, we do not have time to properly introduce the subject of polyhedral
B-splines. The Hermite-Gennochi formula follows from Peano’s theorem, page 70 of
(Davis, 1963) . With this result in hand, (Micchelli, 1979) is perhaps the easiest-reading
introduction to simplicial B-splines. It has some examples with nice pictures. Moreover,
this paper proves the theorem on which de Boor and Hollig’s generalization rests. A
book is being written by Dahmen and Micchelli, that should be invaluable to those study-
ing this branch of multivariate approximation theofy. In the meantime there is their sur-
vey (Dahmen, 1983) that contains quite a bit of detail, as well as an excellent guide to
the literature as of that moment. de Boor’s survey (de Boor, 1982) is better for putting
the study of polyhedral B-splines in the context of approximation theory but, being a large

scale map, it is lacking the detail of Dahmen and Micchelli’s survey.



7. Epilogue

This chapter contains a few notes on references that might prove useful to someone

who wants to research geometric continuity.

Note 7.0.1: Differential Geometry is difficult for the outsider to approach, so we set
aside a paragraph to suggest how one might make the approach. Differential Geometry
should probably be learned in several passes, with the complexity and generality of (essen-
tially the same) objects of study being increased at each pass. (Boothby, 1975) is an easily
read introduction. The main object of study is the differentiable manifold. Group struc-
ture and connection structure are added slowly. A useful second pass, both for its use of
modern language and for containing important results in Differential Geometry, is
(Kobayashi, 1969) . The main object of study is the principle fiber bundle with connec-
tion. A third pass would nail down some of the category theory used in differential

geometry. (Vaisman, 1973) is useful for this purpose.

Note 7.0.2: In chapter 6 we mentioned that, in 2 or more dimensions, piecing together
splines is really a problem that has been studied in Differential Topology, and that piecing
them together in such a way to preserve geometric properties would involve mixing
notions from Differential Topology and Differential Geometry together. The best refer-

ence for this that we have found is (Munkres, 1966) .

Note 7.0.3: The author spent much time trying to think of an intrinsic characterization
of geometric continuity. Prof. Webb convinced him that this is not possible. In view of
the fact that the atlas on §:={(x,y): y=|x|<1} consisting of the single chart 4 defined in
chapter 1 is a smooth manifold structure on S, manifold structure alone does not provide
enough intrinsic information to give the notion of geometric continuity that we want.

Apparently, no matter how much differentiability we give a curve, the only intrinsic
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information about it we get is the arc length between any two of its points. For a surface,
there are more intrinsic, invariant measures (like curvature) but the point is that there a
differences between surfaces like a sheet and a cone that are not intrinsic. Prof. Webb
explained the additional intrinsic information in surfaces as follows. One can bend a
piece of string all sorts of ways without breaking it (without changing the arc length
between any two points), but one cannot do the equivalent thing with a piece of paper.
We can roll a piece of paper into a cylinder, but we cannot bring the ends of the cylinder
together to form a torus without crinkling the piece of paper. Thus the difference
between a torus and a sheet can be measured intrinsically, but the difference between a
sheet and a cylinder cannot. Also, the difference between any two curves with the same

length cannot be measured intrinsically.

Note 7.0.4: The notion of transversality is a generalization of the notion of a regular
value, which we have seen is crucial to the notion of geometric continuity. (Bruce, 1984)
provides easy access to at least the introductory level of this field. (Guillemin, 1974) is a
popular readable book on Differential Topology that has a description of singularity
theory. Unfortunately, the author didn’t find this area of study until late in his research.
Singularity theory and the Monge-Taylor map are used to prove some very interesting
results in curve theory. For example, the statement that ‘“‘almost any compact plane
curve v — IR? has only ordinary inflections and vertices” appears throughout (Bruce,

1984) and is proven on pages 177-181.



Appendix 1: VAXIMA Programs for Constructing g-splines

This appendix assmbles together the MACSYMA programs discussed in chapter 5,
their output for a few examples and a small discussion of some implementation details.
All programs were run with the VAXIMA version of MACSYMA on the University of
Waterloo Computer Graphics Laboratory’s VAX 11/780 (“WATCGL”). This machine
is operated under BSD 4.2 UNIX an provides each process with 8 MB of actual memory
and 24 MB of virtual memory. As VAXIMA is currently configured on WATCGL, 3

MB are taken from actual memory by the VAXIMA system before execution begins.
Program 1: Uniform g-splines with the same 3’s at all knots

* n must be assigned the positive integer degree of the uniform

* beta-splines with the same betas at all knots before executing this

* program.

* The first part of this program develops the chain rule for the first
*

n"~-1 derivatives. See "betaspl_1.v" for a description of the algorithm.

n: n-1$ /¥ Interpret "n" as the order of the chain rule for a while. */
q(t) := sum( betalrl*t~r/r!, r, 1, n)$
plol(t):= ev( deriv[0] + sum( deriv[rl*q(t)~r/r!, r, 1, n) )$
coeff[0,0]: 18
for 1: {1 thru n do
(
coeff(1,0]: o0,
plil () := diff( pli-1](t), ¢ ),
for j: 1 thru i do
coeff[i,jl: diff( ev(p[il(0)), deriv[j] )
)8
/*
* The second part of this pgm constructs the degree ™n
* uniform beta splines with the same betas at every knot and
* shows that they add up to 1.
*/
n: n+1$ /* From now on, "n" is the degree of the beta-splines. */
batch("usgspline.v™)$

The subprogram ‘‘usgspline.v”’ that this program calls is useful in itself for examining
the properties of splines that arise from linear systems of the same form, but that use dif-

ferent constraints than the geometric constraints of the first part of the program.
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/*

* Construct a subclass of the degree "n" uniform polynomial g-splines
¥ with the same collection of linear functionals applied at every knot.
* These g-splines allow for the restricted class of

* linear constraints that are used in the construction of B- and beta-
* splines. See the comments in the program for a description of the

* special structure of these conditiomns.

*/

/* The following line imposes the condition that the functions be continuous.

coeff[0,0]: 1§

/* The following line imposes the condition that derivatives to the right
* of a knot do not depend on the zeroth derivative to the left of the knot.
*/

for i: 1 thru n do coeff[i,0]: 0%

npl: n+1$

nmi: n-1$

npltn: npi*n$

for k: -npl step 1 thru -1 do

b0l (k,u):= sum( alk,iJ*uv~i, 1, 1, n ) + alk,01$
for k: -nml step 1 thru -1 do
for i: 1 step 1 thru nmi do
blil(k,u):= diff( b[i-1](k,u), u )$

/* The following loop defines the equations that impose the conditions
* that the zeroth through n-ith derivatives must be zero at the
* endpoints of the compact support.

*/
for 1: 0 step 1 thru nmil do
(
eqi+1]: v[i](-1,0) = o,
eqnpitn+i+1]: sum( coeff[i,jI*b[j]l(-npi1,1), j, 0, 1) = 0
)$

/* The conditions in the following loop

are not the most general g-spline conditions that could be

imposed at the knots - the ith derivative at the right of the knot

1s a linear combination of those derivatives to the left

of the knot that are only of orders between i and i inclusive. The

general case would allow for linear combinations of derivatives

from the left of orders from O up to and including order n.

* ¥ K K %k ¥

*/
for k: 1 step 1 thru n do
for 1: 0 step 1 thru nmi do
eqlk*n+i+1]: sum( coeff[i,jI*b[jl(-k,1), j, 0, i) -
bl[il(-k-1,0) = 0§

/* This special constraint scales beta-splines to sum to 1. Of
¥ special interest to this thesis are the properties of other g-splines
* that also have the property that forcing them to sum to 1 at the knots
* causes them to sum to 1 everywhere.

*/

eqlnpi*npll: sum( b[0}(k,0), k, -npt, -2 ) - 1 = 0%

eqlist: makelist( eq[il, 4, 1, npi*npl )$

xlist: makelist( al-1,1il1, i, 0, n )$

for k: 2 step 1 thru npl do

xlist: append( xlist, makelist( a[-k,il, i, 0, n ) )$
linsolve( eqlist, xlist ), globalsolve: true$

/*typeset: true$x/

for k: 1 step 1 thru npt do

(
print( k, "th piece:" ),
disp(factor(b[0] (-k,u)))

*/
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)8
ratsimp( sum( b[0] (k,u), k, -npl, -1 ) );

The program has to solve an (n+1)? by (n+1)? system, although it is sparse. VAX-
IMA as presently configured on WATCGL could not do anything more than the quartic

case.

The results of previous program for the quartic case follow. (The last statement in
the program has produced 1 for n=1,2,3,4.)
First piece:
- [6u4]
/
[6[]3?[93 - B3 - 3818% - 68252 - 1882p, - 188182 - 682 - 68 - 1887 - 3084 - 3647 - 3087 - 1881 -
Second Piece:
[3Bsu* + 1881 82u* + 6p2u* + 682u* + 652u* + 681u* + 6u* - 483u3 - 3681 8ou3 - 243u3 -
1285u? - 36 82u? - 24B1u - 6]
/

[gfﬁs - B3 - 38182 - 68782 - 188282 - 186182 - 682 - 648f - 1887 - 308 - 3687 - 3082 - 1841 -

Third Piece:

[38283u* - 3B3u* - 9818Fu* - 687 Pu* - 1882Bru? - 188182u* - 68,u* - 687u* - 68 u* -
128¢u* - 6pfu* - 6p1u* - 88fB3u3 + 4B3u3 + 248.8Fu + 2487Pud + 3623 +
36818u3 + 24p7ud + 24p{u3 + 24p3u3 + 68¢B8s3u? - 18818%u? - 2483 8u? + 12B,u? -
3687u? + 3687u? + 3682u? - 36828u - 488f{u - 4882u + 24P1u - B3 - 188182 - 682 - 1883 -
/30ﬂiZ - 1884]

[5%[33 - B3 - 38182 - 68182 - 188£82 - 188182 - 682 - 68 - 1887 - 308f - 3647 - 308¢ - 188 -

Fourth Piece

- [81(3B183u* - 98Fut - 68¢Bu* - 18818,u* - 687u* - 68fu* - 68Pu* - 68fu* - 881P3u> +
24p3u® + 248¢8ud + 36818u3 + 24p7ud + 24pfu3 + 2482ud + 68183u? - 1883u? -
248¢B8u? - 3687u? - 368fu? + 3682u? - 36818u + 2487u - 48p2u - 488¢%u - B18; + 38% +
/6ﬂ?ﬁz + 18818, + 1881 + 3087 + 1852)]

[gfﬂs - B3 - 38167 - 68152 - 18£8, - 180182 - 682 - 64f - 1857 - 3081 - 3647 - 306¢ - 1861 -

Fifth Piece:



; [68f(u - 1)4]
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[8£83 - B3 - 38187 - 6872 - 18828, - 185182 - 682 - 64F - 1887 - 3084 - 3682 - 3082 - 184 -

6]
Program 2; Uniform g-splines

Mainline:

n: 2%

n: n-1$
batch("betaspl_1.v"$
n: n+1$
batch("ubeta_2.v"$
batch ("ubeta_3.v"$
quit(Q$

betaspl_I.v:

/%

This program develops the chain rule for the first

"n" derivatives. "tp[0](t)" is the first "n"+1 terms of the Taylor

expansion of p(q(t)) about 0, where p(0)=0=q(0) and p, q are "n
times differentiable but are otherwise arbitrary. "betal[r] (k)"
is the "r"th derivative of q - for beta-splines, it

corresponds to the r'th derivative of the change of parameter
from the "k"th piece to the ("k"+1)th piece at the knot between

them ("wulkl™ . "c[i,jl(X)" is the coefficient of the

"{"th derivative in the "i"th order chain rule at knot "k".

*/

q(t) := sum{ betalr] (K)*t"r/r!, r, 1, n )$

tpl0] () := ev( deriv[0] + sum( derivlrl*q(t)~r/r!, r, 1, n) )$
/%

tpl0] (t) =deriv[0]+deriv[11/1! (betal[1](x) t /1t!+...+betalnl(k) t~n /n!)~1
+...+deriv[n]/n! (beta{1l1(k) t /1!+.. .+betal[n](k) t~n /n!)~n

*/
define( c[0,0]1(k), 1 )$
for i: 1 thru n do

(

define( c[i,0](x), 0 ),

tp[1] (%) 1= diff( tpli-11(v), t ),

for j: 1 thru i do

define( c[i,jl(kx), diff( tplil(0), deriv[j]l ) )
)8

ubeta_2 .v:

/*

* This program sets up and solves the linear system for the degree “‘mn’’
* uniform beta splines.

* “‘b[i](k,u)’’ is the ‘‘i’’th derivative of the *‘‘k’’th piece.

¥ 0<=‘‘u’'’<=1 is the parameter of each piece.
*/

npl: n+1$

nmi: n-1$

npitn: npi*n$
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for k: 1 thru npl do

b[0)(k,u):= sum( alk,il*u~i, 1, 1, n ) + al[k,01$
for k: 1 thru nmil do

for i: 1 step 1 thru nml do

blil(k,u):= diff( bli-11(k,u), u )$

for i: 0 thru nmi do

(

eq[i+1]: b[i]l(1,0) = O,

eq[npitn+i+1]: sum( cl[i,j] (np1)*b[jl(npl,1), j, O, 1) =0

)8
for k: 1 thru n do

for i: 0 thru nmi do

eqlk*n+i+1]: sum( c[i,jl ) *b[j]1(k,1), j, o, 1) ~-
b1l (x+1,0) = of

eqlnpi*npt]: sum( b[0I1(k,0), k, 2, npt ) - 1 = 0%
eqlist: makelist( eql[il, i, 1, npi#npl )$
xlist: makelist( a[1,i], i, 0, n )$
for k: 2 step 1 thru npl do

xlist: append( xlist, makelist( alk,il, i, 0, n ) )$
linsolve( eqlist, xlist ), globalsolve: true$

ubeta_3.v:
eql0]: sum( d[k]*b[01(k,0), k, i, mnpl ) = 13
for i: 1 thru npl do
eq[il: ev( sum( d[kl*coeff( blo]l(k,uw), u, 1), k, 1, =npl ) )

= o0
eqlist: makelist( eqli]l, 1, 0, n )$
xlist: makelist( dfi], i, 1, np1 )$
linsolve( eqlist, xlist ), globalsolve: true$
total: 0%
typeset: true$
for k: 1 thru npil do
(
x: dlkI*b[0] (k,0),
total: ev(total+x),
print("piece #",k,":"),
disp(factor(x)),
print("new piece #",k,"= old pilece #",k,"times:™),
disp(factor(d[k]))
)8
typeset: false$
ratsimp(total);

The following is the output for quadratic beta splines with uniform knot spacing. As
configured on WATCGL, VAXIMA could not solve the second linear system (in the
““d’’s) for the cubic case, although it did solve the first system.
piece #1:

[42]
/
[Ai[2] + 1]
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new piece #1= old piece #1 times:

/[ Bil1]81[2] + 28102} + 1]

[ (81[2] + 1)%]
piece #2:
/- [ B1[1]81[2]u? + 2p1[1]u? + u? - 281[1] B1[2]w - 281[1]ue - B4[2] - 1]

[+ (s + 1) ]
new piece #2= old piece #2 times:

/[ Ail1]161[2] + 284[2] + 1]
[ (1] + D(B[2] + 1) ]

plece #3:
/[ Aill](u - 1)*]
[Ad1] + 1]

new piece #3= old piece #3 times:

/[ A} (B1[1]81[2] + 264[2] + 1) ]

[ (B1[1] + 1)?84[2] ]

Program 3: g-splines which are designed to add up to 1

MAINLINE:
/% :
* "n" must be assigned the (positive integer) degree of the beta splines

¥ desired either in this file or before reading this file into VAXIMA.
*/

n: 18

batch ("betaspl_1.v™$

kill(allbut(c,n))$
batch("betaspl_2.v")$
kill(allbut(n,nmi,npi,p))$
batch("betaspl_3.v")$
k111(2llbut(n,nmi,npl,p,eqlist,xlist))$
batch("betaspl_4.vM$

quit($

SECOND PART (betasp!_2.v):

/*
Find the truncated power functioms.
"p[j1(i,uw)" is the piece of (the truncated power fn starting at

"uuli]"™) on the interval "uwuli+j]"<="u"<="uwuli+j+1]".

*/
npl: n+1$
nmi: n-1$

plil(i,u):= (u-uwul[il)~n +
sum(sum{ alr,k] (i)*(u-uuli+r]) -k,



k, i, nml ),
r, 1, 1)$
for j: 1 thru npil do
for s: nm1 step -1 thru 1 do

alj,sl(D):=

ev(

(

sum{cls,1](1+]) * subst( uwul[i+j], u, diff(plj-11Ci,u),u,1) D,

1, 1, s-1)

+(cls,s] (1+3)-1) * subst( wuli+j], u, diff(p[j-1]1(i,u),u,s) )
)/s!

)8

for j: O thru npl do
define( p[jl(i,u), ratsimp(p[ji(i,uw)) )$

THIRD PART (betaspl_3.v):

/*
Construct the beta-splines.
The beta-spline starting at knot "uu[iil" has value

i

blj1 1) := >  al11(11) plj-i1(ii+i,w)
i=0

for "uul[ii+j]1"<="u"<="uu[ii+j+1]1".

*/

betaend(ii) := ratsimp( .

sum(d[1] (1) *plnp1-1] (1i+i,u),

i,0,np1)
)$
for ii: jj thru jj+n do
(
t: betaend(ii),
for i: 0 thru npl do
(
t: ev( subst(cd[i,ii],d[1](i1),t) )
),
for k: 0 thru n do
(
eql(ii-jj)*np1+k+1]: ev( coeff(t,u,k) ) = O
)

)8
/*
These previous equations were the "zero on the last interval” conditions.
There are "n"+1 equations, one for each power of "u” on this last

interval, and "n"+2 unknowns, "d[i](i1)", for "i"=0 to "™n"+1. We
will put "n"+1 of these linear systems together, so that there are
"n"+1 beta-splines (stvarting at "au[jjl",..,"uwuljj+nl™)

in the works and so that we have "n"+1 degrees of freedonm,

which are enough to guarantee summation to 1 on

"wul[jj+n]"<="u"<="uu[jj+n+1]1", i.e. to guarantee

ji+n jitn ji+m-ii
1 => bljj+n-11]1 (i) [= > > dli](i1) pljj+n-1i-i] (1i+i,w)]
ii=3j ii=j} i=0

In total, there are ("n"+1) ("n"+2) equations in that many unknowns,
the "d[i] (i1)"s.
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*/
mess: ratsimp(
sum(sum(ed[1,1i]*p[jj+n-i1-i] (ii+i,u),
1,0,§j+n-i1),
11,353,353+

eqnpi~2+1]: ev(coeff(mess,u,0))-1=0%
for i: 1 thru n do
eqnpi1~2+i+1]: ev(coeff(mess,u,i))=0%
eqlist: makelist(eq[i], i, 1, np1~2+npi )$
grind(eqlist)$
xlist: makelist( cd[i,jjl, i, O, np1l )$
for ii: 1 thru n do
xlist: append( xlist, makelist( ecdfi,ii+jj], i, O, npt ) )$
grind(xlist)$

FOURTH PART (betaspl_4.v):

/*

* Solve the linear system that was constructed in "betaspl_3.v" and
* print out the solution (i.e. the beta-spline pieces).

*/

linsolve( eqlist, xlist ), globalsolve: true$
for i1i: jj thru jj+n do
for j: O thru n do
(
write("plece #",j+1," of the beta-spline starting at uu[",1i,"]:"),
disp(factor(ratsimp(sum( cd[1,11]*p[j-11(1i+i,w), i, 0, § DI
)8

Program 4: The Divided Difference g-splines

Mainline:

n: 2%

showtime: true$

ami: n-1$

npl: n+1$

n: nmi$

batch ("betaspl_1.v"M$

n: n+i$
kill(allbut(c,n,nmi,npi,uun))$
batch("dd_2.v")$
kill(allbut(n,nmi,npl,ac,uu))$
batch ("dd_3.v™$

quit()$

dd_2.v:

/*
SECOND PART: TRUNCATED POWER FNS
"trp[j1(ii,u)" 1is the piece of (the truncated power fn starting at
"wu[ii]™ on the interval "wul[ii+j]"<="u"<="vu[ii+j+1]"
j n-1
n --- --= k
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trplil(i,0) = (u-uulil) + > > alr,k]1(@) C(u-uuli+r])

-— k
trplil1 L, W-trp[j-11Ci,v) = > alj,. k1 (1) (u-uuli+]j])

k=1
n-1
s — k! k-s
D (trpljl i, w-trplj-11GE, W) => -—~--- alj,x] (1) (u-uuli+jl)
-—= (x-8)!
k=s
s
D I Cerp[j1 G, W -trp(j-11{,w)) = s? al],s] (1)
uuli+j]
By this eqn and the defn of the c¢’s,
s s
D | trpljl(i,u) =D | trplj-11(i,u) + s! alj,s] (D)
uuf[i+j] uu[i+j]
s
- P
= > cls,pli+}) D | trplj-11(1i,u) i.e.
- uufi+j]
p=1
s-1
1 - P
alj,sl(1) = -—- > cls,pl(i+j) D | trplj-11(i,u)
st -—- uuli+j]
p=1
s
+ (cls,sl(i+]) - 1) D | trpli-11(i,u)
wuf[i+j]

This equation is useful as a recurrence if one goes from "j"=1 to "n"+1i
and, for each "j", from "s"="n"-1 to 1.
*/
trp[jl (ii,u) := (u-uwul[iil)~™n +
sum(sum( a[r, k] (ii)*(u-uul[ii+r]) "k,

k, 1, nmi ),

r, 1, %
for j: 1 thru npl do

for s: nml step -1 thru i do

define(alj,s] (ii),

ev(
(
sum(cls,1] (1i+j)*subst( wulii*j], u, diffCerplj-11¢ii,w),u,1) ),
1, 1, s-1)
+(cls,s] (11+j)-1) *subst( wulii+j], u, diff(erplj-11(ii,w,u,s) )
)/s!
)
)8
/*
"ac[j,k]1(ii)" is defined by
n
- k
trpljlii,w) =: > acij, x](iid) u
k=0

(Note that "ac[j,nl(11)"=1.)



*/
for j: O thru npl do
(
define( ac[j,nl(ii), 1),
define( trp[j] (ii,u), ratsimp(trpl(j]l (1ii,uw)) ),
for k: O thru anmi do
define(ac[j, k] (i1),
ev(ratcoef( trpl[jl(ii,u), u, k ))
)
)8

dd_3.v:

/*

THIRD PART: CONSTRUCT THE °'DIVIDED DIFFERENCE' BETA SPLINES
"aa[0,1,k](ii)" is the coefficient, on "uulii+n+1]" <= "u"
<="uu[i1i+n+2]", of "u~k" in "p[n+1-1](ii+i,u)" i.e. "aal[0,i,k] (i1)"
= "ac[n+1-1,%k] (i1+1)".

Construct the beta spline which starts at "uwul[i]”. Find
"e[1t] (1)" so that
n+i

>  c[itl (i) aal0,it,k1(1) = 0

it=0

by ‘'divided differencing’.

Define the "ndd"th ’*divided difference’ "lp[ndd,nfnl}(i,u)", on
"wuli+n+1]"<="u"<="wuli+n+2]", of the truncated power functions
starting at "wu[nfnl”,..,"wulnfn+ndd]l" by:

--- k
1p[0,nfnl (i,u) := plnpt-nfn] (i+nfn,w) = > aal0,nfn,k] (i) u

-—- k
= > ac[0,n+1-nfn,k] (i+nfn) u

k=0
for 0<="nfn"<="n+1", and:

lp[ndd-1,nfn+11(i,uw) - 1plndd-1,nfnl(i,u)
lp[ndd,nfn] (1,u) = -—--—-————=——-—— e Y]
aa[ndd~-1,nfn+1,n-ndd] (i) - aa[ndd-1,nfn,n-ndd] (i)

for 1<="ndd"<="n+1" and 0<="nfn"<="n+1-ndd", where "aa[ndd,nfn,k](i)"
for 1<="ndd"<="n+1" is defined by:
n-ndd
————— k
lp[ndd,nfnl (i,u) =: > aal[ndd,nfn,k] (i) u (€3]

"aa[ndd,nfn,n-ndd]"=1 as in the "ndd"=0 case so
for "ndd"="n+1" the recurrence for "1p" reduces to:

lp(n+1,01(i,u):= 1pin,1] - 1p[n,0] (=1-1=0)
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Putting (2) into (1):

lpindd,nfn] (1,u) =

n-ndd

————— aa[ndd-1,nfn+1,kx] (1) - aalndd-1,nfn,k] (i) k
> e u
----- aa[ndd-1,nfn+1,n-ndd] (i) - aalndd-1,nfn,n-ndd] (i)

k=0

*/

for ndd: 1t thru n do
for nfn: 0 thru npl-ndd do
(
define(den[ndd,nfn] (ii),
aalndd-1,nfn+1,n-ndd] (ii) - aalndd-1,nfn,n-ndd} (ii)
),
define(place[ndd,nfn] (i1),
( place[ndd-1,nfn+1] (1i) - placel[ndd-1i,nfn] (ii) )
/ den[ndd,nfn] (ii)
J,
for power: 0 thru nml-ndd do
(
define(aa[ndd,nfn,power] (ii),
(
aa[ndd-1,nfn+1,power] (i1) - aa[ndd-1,nfn,power] (ii)
)/den{ndd,nfn] (11)
)
)
)8
define( place[npi,0] (11), place[n,0](ii)-place[n,1](ii) )$
ptop: ratnumer(place[npi,0](i1))$
define( pbot(ii), ratdenom(place(lnpi,0] (ii)) )$
for 1: O thru npl do
define(ct[i] (i1),
ratdiff( ptop, place[0,1](11) )
)8
/*
Tell VAXIMA what the "aa”s are so it can evaluate the "ct"s and
"pbot” in gory detail.
.74
for i: O thru npl do
(
define( 2a[0,1,n)(11), 1 ),
for k: O thru nmil do
define( aal[0,1,kx]1(i1), ev(acinpi-i,kx]1(ii+1)) )
)8
for i: 0 thru n do
define( ct[i](i1), ratsimp(et[i] (11)) )$
define( pbot(ii), ratsimp(pbot(ii)) );
kill(allbut(n,nmi,npi,ct,pbot,ac,uu))$
/*
FOURTH PART: CHECK WHETHER THE ‘DD’ BETA SPLINES ADD UP TO 1
Let "d[j1(i,u)" denote the "j+1"th plece of (the "divided difference”
beta spline starting at "wul[i]™ . Then,
i j n

k

d[j1(i,uw) = > cltil @) plj-til(i+ti,u) = > cltil (1) > ac[j-ti,kI(i+ti) u

ti=0 ti=0 k=0
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n ]

-—= (- ) k
= > (> cltil (1) aclj-ti,k1(i+ti) ) u
- (- )

k=0 ti=0

We want to check whether > d[jl1(jj+n-j,u) = 1, i.e whether

1=0

—— - (1 if k=1
> >  cleil (jj+n-3) ac[j-ti, k] (jj+n-j+ti) = (
—— e (0 if i<k<=n

j=0 ti=0
cltil (1) = ctlti] (1)/pbot (i)
*/
/*
for k: n step -1 thru 0 do
(
t: 0,

for j: 0 thru n do
for ti: 0 thru j do
t: ttev(et[ti]l (jj+n-3))*ev(ac[j-ti, k] (jj+n~-j+ti))/ev(pbot(jj+n-j)),
print("coefficient of ",k,"th degree term"),
disp(ratsimp(t))
)8
*/
/*
We could have avoided the computational hardships of polynomial
division by multiplying through by
n
I | ppot(jj+3)
j=0
but VAXIMA runs quickly out of memory.
*/
for j: 0 thru n do
(
print( "piece #", j+1 ),
grind(factor (ratsimp(

sum(

sum( ct[ti] (i1)*ac[j-ti,k] (ii+t1)/pbot(ii), ti, 0, j )*u~k,
k, 0, n)

) ) )

)8

As configured on WATCGL, this program verifies that these divided difference g-
splines add up to 1 for the quadratic case but runs out of memory for the cubic case. The

pieces for the quadratic case follow.
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piece #1

(i —u)?
(i — 1) (Bt + 1 (i 1 — i 42) — thi o1+ i)

plece #2

[ Bali +2] (Bali +1] (uiss u? + wiyn (—w% - 2u43 u) + 2uts v + wiyy Quiso wiys -
2uP2) + o (ipa - we3)) +ow (g2 igs + g1 (g2 - igs) - uP0) + wiq (Wi -
Wipz Ui+3) + w1 (Wigs - wie2)) + Bali +1] Quipz 42 + w1 Qus - 2u?) + u? 1 Qu -
2ui42) - 2uPio u) + owpq (W2 - uto) +ow (—u? + owg Quo- 2u40) + uPo) + ou?
(u; 42 - 2u) ]
/

[ Bl + 1] Gip1 - wiv2) - v + i) Qipr - wig2) (Bl +2] (Wig2 - wi43) - tign + uigy) |

piece #3

Buli + 2] (ui 43— u)2
Ball + 2] (s 42— i 43) — Ui 42+ Ui 1) (Wi 42— Ui 4 3)
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