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ABSTRACT

This thesis is concerned with handling degeneracy in a nonlinear optimization algorithm
based on an active-set strategy. Although the solution to the problem is given in the context of
nonlinear /| optimization, the approach is more general and can be used to overcome the non-

uniqueness of dual variables in methods that use optimality conditions constructively.
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CHAPTER 1

Introduction

This thesis presents a framework for the constrained nonlinear /; optimization problem:
m
minimize Y, | fi(x)| (CNLL1)
xeR"® i=1
subject to fi(x) =0, ielgg

fi(x) =0, iely

where, the f;’s are twice continuously differentiable functions mapping R” to R'.
The !, problem arises in the robust analysis of experimental data. In that context let
fi»ief{l, ..., m} be defined as
Sfi(x) = h(t;,x) — y; (1.1)
Here the y;’s are considered to be observations at time ¢;, and A (¢,x) is a model with the
unknown parameter vector x¢R”.
When the data y; are good, i.e. have normally distributed small errors, the traditional

method of data fitting by minimizing

1 m
EZ(h(ti,X) - y)? (1.2)
i=1
is ideal. But when a small portion of data is contaminated by bad values the least-squares technique
(1.2) can be quite inadequate. On the other hand the /, technique will often ignore that small por-
tion of bad data.
A simple linear example from Bartels and Conn [1] will suffice to illustrate that fact.

Let

h(t,x) = X1 + tXZ N

and consider the data that roughly correspond to A(#,x) with x; = 0 and x, = 1.
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It is obvious that the y value for + = 8 is wild. The /; estimation of x for this data is
x; = —0.1875, x, = 1.0625 which is quite reasonable. The least squares estimation of x for this

data is X; = +1.848, ¥, = +0.381. The two lines are

y1 = —0.1875 + 1.0625¢

y; = 1.848 + 0.381z.

Figure 1.1 shows the /, line in solid and the /, line in dashes. Note that the /; line ignores the
eighth value and reproduces a good model based on the first seven values. The least squares line
tries to average the error in the model and gets influenced by the large error for the eighth value.
So, the computed least squares model has no reasonable agreement with any portion of the data.

Recently, two algorithm for nonlinear /; optimization, based on an active set strategy, have
appeared in the literature. Bartels and Conn [1] proposed extending their algorithm for the linear /,
problem, Bartels and Conn [2] , to nonlinear problems. The exact penalty approach of Coleman and
Conn [9,10] was used as a theoretical foundation. Independently, Murray and Overton [30]
managed to transform the /; problem into a nonlinearly constrained one without nondifferentiable
parts.

Both algorithms faired well on nondegenerate problems but had substantial difficulties with
degenerate problems, i.e. the problems where so many f;’s were close to zero (hence, initially
regarded as active in the neighborhood of the solution) and where consequently their gradients were
linearly dependent. Unfortunately, /, data fitting problems generally have the property that many
functions are zero or nearly so at a solution. So, a good way of handling degeneracy is a necessary

building block for /, algorithms.
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Figure 1.1

The purpose of this thesis is to propose a way to handle degeneracy in a nonlinear /, optimi-
zation algorithm. The nonlinear /, algorithm of Bartels and Conn [1] is modified to cope with
degeneracy and the results of numerical tests are presented. The basic ideas appear to be applicable
to Murray and Overton’s algorithm [30]. Moreover, the same ideas could be applied in any method
that uses optimality conditions constructively.

Chapter 2 introduces notation and mathematical background. A framework for the non-
linear /, optimization problem is presented in Chapter 3. This chapter is intended to be motiva-

tional rather than formal. The theoretical material resumes in Chapter 4 which deals with
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degeneracy. In Chapter 5, the Bartels/Conn algorithm for nonlinear /, optimization is extended to
cope with degeneracy. (The proofs of convergence are given.) Chapter 6 shows how the
Murray/Overton algorithm for nonlinear /, optimization might be extended to cope with degen-
eracy; no convergence proofs are given. Numerical results for the extended Bartels/Conn algorithm
are given in Chapter 7. Concluding remarks are given in Chapter 8. Appendices I and II suggest

alternative ways of resolving degeneracy at a stationary point.



CHAPTER 2

Preliminaries

2.1. Notation and mathematical background

R"” will denote the n-dimensional real vector space. Vectors will be represented with lower-
case letters and are assumed to be column vectors, unless superscripted with a transpose symbol 7.
(So, x is a column vector and x7 is a row vector.)

Matrices will be represented by capital letters.
A matrix B,x, is positive definite if xT Bx >0 for all xgR".

We will consider algorithms that produce a sequence of points in R?, x!, x%, - - -, x/, - --
converging to a point x ¢R”. We will use definitions of Q-rate of convergence given in Ortega and
Rheinboldt [32]. A sequence of points {x*} converging to x* is said to converge
1. linearly, if there is a constant C, 0 < C < 1, and an integer ko = 1, such that

[|x*¥T1 — x*|| =C|lx* —x" ||, forall k = kg

2. superlinearly , if

fim AL = " I
k—o |lxF — x|

— 0,

3.  quadratically, if there is a constant C, C > 0, and an integer ko = 1, such that
[[x*¥*1 — x*[| = Cllx* —x" || forall k = kg

4.  2—step superlinearly, if

k+1 __ x" ”

0
=T e —

5.  2—step quadratically, if there is a constant C, C > 0, and an integer ko = 1, such that

k4 = <1 = Cllx*~t = %" |12, forall k = ke;

The following norms will be used:



1

2

Zx,-z} , (2—norm),
i=1

||x||2=

—P—

Ixtl =

|x; 1, (1—norm),

M

x|l o= max {Ix|}, (infinity —norm).
1=<i=<n
All functions used in the thesis are assumed to be twice continuously differentiable. If f is

a function mapping R” — R!, then the gradient of f at x is a column vector

ofx) . af() )T

axl ’ ’ 6x,,

Vfx) = (

The Hessian of f at x is an #Xn symmetric matrix

(The argument x will be omitted whenever there is no ambiguity)

Through out this thesis the /ittle o notation will be used:

g(a) = o(h(a)) means £@ —0asa— 0.
h (o)
The Taylor expansions of a twice continuously differentiable function will be used exten-
sively in this work and with that in mind, we will state a few forms of the expansion.
The Taylor expansion of f up to the first-order term can be written as

f&) =50)+ V/®(x—y),

where

E=y +06(x—y),forsome 0 <0 =<1, and x, yeR".

Alternatively, one may write

S =f0) + Vi) (x—y) + ol x—y Il .

Similarly, the Taylor expansion of f up to the second-order term is

1
fGE)=f0)+ VIE(x—y) + —Z_(X —»)TGENx—y),

where
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E=y +O6(x—y),forsome 0 <6 =<1, and x, yeR"

We can also write
1
f&x)=f@) + V) (x—y) + E(X—y)TG(x)(x =y) +o(llx—yll D.

2.2. Optimality conditions for the constrained nonlinear problem
Some basic definitions and results from optimization theory will be stated here.

Let us consider the constrained nonlinear minimization problem

minimize f(x) (CNP)

xeR”*
subject to fi(x) = 0,ielgy 2.2.1)
f[(X) =0, iSIIN (222)

where functions f; are twice continuously differentiable mappings of R" to R!, and the sets ro and
Iy are mutually disjoint.

A feasible point, x, for the problem (CNP) is a point which satisfies (2.2.1) and (2.2.2).

The active set at any point x is

Li(x) = {i | fi(x) = Oand ielgy \J Iin},

and the violated set at any point x is

If(x) = {i | fi(x) # 0,ielg} U {ilfi(x) <O, iely}.
Let us denote the feasible region of (CNP) by Q = {x | fi(x) = 0, ielgg and fi(x) = 0, iel;y}.
We say that x” is a (weak) global minimizer of f on Q if

f(x™) < f(x), for every xeQ,

and x” is an isolated global minimizer of f on C if

f(x") < f(x), for every xeQ, and x #x".

A point x” is said to be a (weak) local minimizer if there exists > 0 such that

fx*) = f(x), forall xeN(x",8) N,
where N(x*,8)is the §—neighborhood of x", i.e.



N(x*8) = {x:||x—x" || =8, x#x"}.

Similarly, x° is an isolated local minimizer if

f(x*) < f(x), forall xe N(x",8) £, and x #x".
In general, algorithms that use just local information will be able to locate only local minimizers.
We require some results on optimality conditions given, for example, in Fiacco and McCormick
[15].

Suppose that x is a feasible point of (CNP) and the problem functions, f and f;’s are dif-

ferentiable. Let us define a set of directions that are first-order descent and feasible, i.e.

Z(x)={z 2"V fi(x)=0 (ie;y N L) , 2" Vfi(x)=0 (ielgy) , and zTV f(x)<0 }. (2.2.3)
The most general first —order necessary conditions for a local minimizer have to insure that the set
Z(x") is empty. (The term first-order refers to the assumption of once continuous differentiability of
the problem functions.)
In order to state the necessary conditions for (CNP), we have to define the Lagrange function,

L(x,\w), associated with (CNP):

LxAw) = f(x) = X Afilx) + 3 wfi(x) (2.2.4)
iely ielgy
Theorem 2.2.1 If
(@) x° satisfies the constraints of (CNP),
(b)  the functions f and f;’s are once differentiable, and

(¢) atx’ theset Z (x") is empty,

then it follows that there exist vectors A" and w" such that (x",A",w") satisfies

filx) =0, iely (2.2.5)
fi(x) =0, ielg (2.2.6)
Aifi(x) = 0, iely (2.2.7)
A =0, iely (2.2.8)

VL(xAw)=0. 2.2.9)
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|

In applying Theorem 2.2.1 one has to be able to determine if the set Z(x") is empty, and that is a
necessary and sufficient condition for the existence of the vectors (A ,w’), called
Lagrange multipliers.

Many conditions have been established as constraint qualifications that guarantee that the
set Z(x") is empty (see O.L. Mangasarian [25]) but only one among them, namely the linear
independence of the gradients of the active functions, can be practically verified. Although all other
ones are just of theoretical importance, we have to assume one of them, for example, the Kuhn-
Tucker constraint qualification condition, in order to insure that the first-order necessary conditions
hold at the minimizer.

Definition 2.2.2 [Kuhn-Tucker constraint qualification]

Let x~ be a point satisfying (2.2.1) and (2.2.2) and assume that the functions f; are once
continuously differentiable. Then a first-order constraint qualification holds at x" if for any nonzero
vector z, such that z7V f;(x") = 0, iel;y M1, and 2ZTVfi(x")y =0, iglgg, z is tangent to a once
continuously differentiable arc emanating from x” and contained in the constraint region Q.

Now, the Kuhn-Tucker necessity theorem is a simple corollary of Theorem 2.2.1.

Theorem 2.2.2 [Kuhn-Tucker Necessity Theorem]

If the functions f and f;, ielgy |J I)n, are once continuously differentiable at x" and if
the Kuhn-Tucker constraint qualification holds at x", then a necessary condition that x~ be a local
minimizer of (CNP) is that there exist vectors A" and w" such that (x* A" w") satisfy (2.2.5)-
229). n

Similarly, the second-order sufficiency conditions for a point to be a minimizer are based on
the second-order constraint qualifications.

Definition 2.2.3 [Second-Order Constraint Qualification]
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Let x* be a feasible point of (CNP), and assume that the functions {f;}, iel ro U IIn are
twice continuously differentiable. A second-order constraint qualification holds at x* if the following
is true: Let y be any nonzero vector such that y7 ¥V f;(x") = 0 for all iel, () I}y, and such that
yTVfi(x™) = 0 for all il £o- Then y is the tangent of an arc a(6), twice continuously differenti-
able, along which f;[a(6)] = 0, iel, M Iy and f;[a(B)] = O, ielgy, where 0e[0,e], € > 0.
Theorem 2.2.4 [Second-Order Necessary Conditions]

If the functions f and {f;}, ielgy | J I;y are twice continuously differentiable and if the first- and
second-order constraint qualifications hold at a point x*, then necessary conditions that x* be a
local minimizer to (CNP) are that there exist vectors A* and w" such that (2.2.5)-(2.2.9) hold and
such that for every vector y, where ypTVf,(x")=0 for all iel, NI,y and
yTVfi(x") = 0, ielggp, it follows that

yTV2L(x Aw)y = 0. (2.2.10)
|
Finally, second-order sufficiency conditions for an isolated local minimizer are given in the following
theorem.
Theorem 2.2.4 [Second-Order Sufficiency Conditions]
Sufficient conditions that a point x~ be an isolated local minimizer of (CNP), where f and {f;} are
twice continuously differentiable functions, are that there exist vectors A* and w* such that the tri-
ple (x"A°w") satisfies (2.2.5)-(2.2.9) and for every nonzero vector y satisfying
YIVAi(x) =0, iely; yIVfixT) =0, for all ie i | A >0} N Iins and
yTVfi(x") = 0 ,ielgy; it follows that

yIV2L(x Aw)y > 0. (2.2.11)
R

Further details are given in [15].
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2.3. Optimality conditions for the 1, problem

2.3.1. First-order necessary conditions for the |; problem

Let f; : R" — R be twice continuously differentiable; where

strained /, minimization problem is defined as

m
minimize Y | f;(x)]
xeR" i=1

This problem can be restated as
m
minimize Y (u; +v;)
XSR", MSR-, veR™ i=1
subject to fi(x)—u;+v; = 0; ie{l,., m}
U; 20, is{l,..., m}

v; =0, igfl,.,m}

The Lagrangian for (P1) can be written as:

m m
Lix,uv;v.ud) = Y (u;+v) — Y viu

i=1 i=1

m
- Zuivi

i=1
m
+ Y A(fi(x)—u;+vy),
i=1
where,

xeR"; A1, yeR™; and u,veR™

The first-order necessary conditions for optimality of (P1) are:

L ViumL(e,uvy,pd) =0
2. v =0; w; =0; igfl,..,m}
. fix)—u;+v; =0; 4, =0; v, =0 ; igfl,.., m}

4, Yiu; = 0; Wv; = 0 N ia{l,...,m}.

ie{l,..,m} . The uncon-

(UNLL1)

(P1)

(2.3.1)

(2.3.2)
(2.3.3)
(2.3.4)

(2.3.5)
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In our case, equation (2.3.2) gives:

YAV Si(x) =0 (2.3.6)
i=1

1 — Y — }\.,' = O; ie{l,..., m} (2.3.7)
1—w + A =0; iefl,., m} (2.3.8)

Taking into account equalities (2.3.7) and (2.3.8, and the inequality (2.3.3), we get

—l=M=+1 2.3.9)
Let us assume that (x,u,v) is an optimal point for (P1). If for some i it is true that u; >0, then
v; =0 and f;(x)=w;. Furthermore, condition (2.3.5) implies that y;u; =0, and that leads to
Yi =0. Hence, equation (2.3.7) will give us A; =1. Similarly, for v, >0, ie. f;(x)<0 we get
A =—1

Now, equality (2.3.6) can be written as:

iszllcivxfi(x) + iszlj,‘xivxfi(x) =0 (2.3.10)
where,

o; = sign(fi(x)), I; = {ilfi(x)#0}, and I, = {i|fi(x)=0}.

Finally, we can state the first-order necessary theorem for the /; nonlinear problem.
Theorem 2.3.1
Under a first-order constraint qualification, the first-order necessary conditions for optimality of

(UNLL1) can be written as

20:Vufilx) + ZNVifilx) =0 (2.3.11)
iely iel,
and
—l=x =+1 (2.3.12)
where,

i = sign(fi(x)), I; = {i|fi(x)#0}, and L, = {i|fi(x)=0}.

This result follows immediately from the discussion above.
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It is a simple exercise to show that the constrained nonlinear /;, minimization problem:

m
minimize Y, | fi(x)|
xgR"

i=1
subject to fi(x) =0, iglgy

Silx) =0, iely
has the following first-order optimality conditions at a local minimizer xgR"

Yo, V. filx) + AV, filx) =0

ielo ielyo

—l=A =+1,iel,oN {1, -, m}
Silx) =0, iely

fix) = 0, ielgy

rMifi(x) = 0,ieln

M =0, iely

where,

; = sign(fi(x)), ie{l, -, m},

Q

Iip = {i | fi(x)#0,ig{l,- - ,m}},

IAO = {l |ft(x)=0 ’ i8{19 Ty m} UIEQ UIIN} ,and
the Kuhn—Tucker constraint qualification is assumed.

2.3.2. Second-order optimality conditions for the 1, problem

(CNLL1)

(2.3.13)

(2.3.14)
(2.3.15)
(2.3.16)
(2.3.17)

(2.3.18)

Second-order sufficiency conditions for the (UNLL1) problem are given in Charalambous

[6], but as pointed by Ben-Tal and Zowe [3] the proof is incorrect. Although Ben-Tal and Zowe [3]

derived second-order sufficiency conditions for the (UNLL1) problem in a quite general form, they

needed the linear independence of gradients of the active functions to obtain a useful statement. In

order to resolve this problem we have derived a proof for the second-order sufficiency conditions
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which does not depend on the linear independence of gradients of the active functions.

In section 2.3.1, we restated the unconstrained /; minimization problem (UNLL1) as a non-
linear problem (P1) and found the corresponding Lagrangian (2.3.1). According to theorem 2.2.4,
sufficient conditions that a point (x"7,u*T v*")T be an isolated minimizer of (P1), where f; are
twice continuously differentiable functions, are that there exist vectors y*, p* and A" such that the

tuple (x"u vy T ,AY) satisfies

L. ViunLl(xu,v;y,pd) =0 (2.3.19)
2. % =0; W =0; iefl,..,m} (2.3.20)
3. fi—ui+v;, =0; u; =0; v; =0 ; iefl,., m} (2.3.21)
4. viu; = 0; wv; =0 ;5 ig{l,.., m} (2.3.22)

for every nonzero vector y = (3,73, 7.y, 7)7 satisfying

YTV et = vy, = 0, ie{i]7,>0}, (2.3.23)
YTV i =y, = 0, ie{i |p;>0}, (2.3.24)
V'V i = Yu, = 0, ie{l,..,m}, (2.3.25)
YTV eumVi = Wy, = 0, i€{l,.., m}, and ' (2.3.26)
YTV (i = v 0" V) = », TV fi(x")—y, +y, = 0, ie{l,.., m} (2.3.27)

it follows that

yTV(zx,uyv)L(x,u,v;'y,p,k)y > 0. (2.3.28)
In order to derive the second-order sufficiency conditions for the original /, problem (UNLL1), let

us state some relations between v;’s, y;’s and A;’s.

Notice that from (2.3.19) we have

1—v — A& =0 iefl,. m} (2.3.29)

1—y; + A =0 igfl,., m} (2.3.30)
If we consider the relations (2.3.29), (2.3.30) and (2.3.20) we obtain the following:
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a) —1=)\=<+1,

b) —1<X}<+1 <=> y; >0and y; > 0,
c) A= +1 <=> v, = 0and y; = 2,
d) A= —1 <=> W, =0andy, = 2.

So, we need to consider only three cases:
Casel —1 <A <+1 (v;,>0andy; >0)

From the relations (2.3.23), (2.3.24) and (2.3.27) we have

Yy, = 0,

», = 0, and

yvafi(x‘) = 0.
Case2 A, = +1 (v, =Cand; = 2)

From the relations (2.3.25), (2.3.24) and (2.3.27) we have

Yu, = 0,
», = 0, and

yzvxfi(xt) =yu,-20'
Case3 A, =—1 (vy;=2andy; =0)

From the relations (2.3.23), (2.3.26) and (2.3.27) we get

Yy, =0,
Wy, = 0, and
y,\zt.vxfi(x‘) = Wy =0

The special structure of the Lagrangian (2.3.1) will reduce (2.3.28) to

YHUEEVSi(x) + ThVifi(x )y, > 0.

iel, igiy

Finally, we can state the second-order sufficiency theorem for the /; nonlinear problem.

Theorem 2.3.2 [Sufficiency Conditions]

(2.3.31)
(2.3.32)

(2.3.33)

(2.3.34)
(2.3.35)

(2.3.36)

(2.3.37)
(2.3.38)

(2.3.39)

(2.3.40)

Let the functions f;(x),ie{l,---, m} be twice continuously differentiable. Then x” is a strong
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local minimizer of (UNLL1) if there exist A;" , ie, such that

iezllcivxfi(x )+ ieZIA;\'ivxfi(x )=20 (2.3.41)
—1=< A =+1
where,

o; = sign(fi(x)), I; = {i|f;(x)#0}, and I, = {i|f;(x)=0},

and for every nonzero vector 4 satisfying

dTVfi(x")y =0 ,iefi:| N | <1} (2.3.42)
dTVfi(x") =0 ,ie{iA; = 1} (2.3.43)
dTVfi(x") =0 ,ief{ih = —1}, (2.3.44)

it follows that

dT Zciv2f,~(x) + Zl.ivzf,-(x) d>0. (2‘3.45)

iel; iel,
]
This result follows immediately from the discussion above.

Following the same idea it is straightforward to derive the second-order necessary conditions
for (UNLL1).
Theorem 2.3.3 [Necessary Conditions]
If the functions f and {f;} are twice continuously differentiable and if the first- and second-order
constraint qualifications hold at a point x*, then necessary conditions that x~ be a local minimizer

to (UNLL1) are that there exist A;” , i€l such that

Zlcivxfi + Z;‘ivxfi =0 (2.3.46)
iely iel, ’

—1=s\ <+1 (2.3.47)
where,

o; = sign(fi(x)), Iy = {ilfi(x)#0}, and I, = {i|f;(x)=0}, (2.3.48)

and for every nonzero vector d satisfying



-18 -

dTVvf,(x*)y =0 ,iefi:| )] <1}
dTVf,(xY =0 ,iefid;, = 1}
dTVfi(xY <0 ,iefih, = —1},

it follows that

dT | 3 6:V¥ix) + T A V3Sfi(x)|d = 0.

iel; iel,

(2.3.49)
(2.3.50)

(2.3.51)

(2.3.52)



CHAPTER 3

Framework for the I, problem

3.1. Introduction
We have defined the constrained nonlinear /; minimization problem to be

m
mim'gu'ze > fix)] (CNLL1)
xgR”

i=1

subject to fi(x) = 0, ielgg

filx) =0, iel

where functions f; are twice continuously differentiable mappings of R” to R!, and the sets
{1,- -+, m}, Igp and I;y are mutually disjoint.

The objective function of the (CNLLI1) problem is not differentiable at a point where
fi =0, for any ig{l, - -, m}, and that fact prevents us from directly applying standard methods
for nonlinear optimization. The problem (CNLL1) can be viewed as minimizing a piecewise-
differentiable objective function subject to differentiable constraints.

Instead of reformulating (CNLL1) by introducing new variables, as is done in the work of

Murray and Overton [30], we will note that by forming an exact penalty function

o) = Swlfil + X 15| — X min.f) G.11)

i=1 ielgy iely
n >0

we will get a uniform treatment of all functions defining the problem. That idea was introduced by
Bartels and Conn [2] in their algorithm for linear /, minimization.

From now on we proceed to solve the following problem

-19-
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minimize PD(x). (EPP)
xeR"

The exact penalty function ®(x) will be our natural merit function, i.e. we will try to construct a
sequence of points {x*} such that

D(x* T < P(x*) (3.1.2)
and x* — x* , k — oo, where x" is a local minimum of (EPP). Also, our goal is to achieve at least
superlinear convergence in the final phase of the algorithm.
Let us simplify notation by defining

uifi(x) ,i8{1,~--,m}

fix) =1 filx) ,ielg (3.1.3)
fix) ,iely

and

Ig = {1, -, m} | JIgp. 3.14)
Then (EPP) becomes

O(x) = 3 1 fix)| = X min(0fi(x)) (3.1.5)
ielg iel;y
As mentioned in Chapter 2, the set of f;’s which are zero at any given point, i.e. the active set, will
be of special importance. For a given x let
Iy(x) = {i | fi(x) =0 and ielz \J Iy} (3.1.6)

denote the set of active indices at x, and let
I(x) = Ig\J{ilfi(x) < Oand iely} — L4(x) (3.1.7)
represent the set of inactive indices.

We will define a matrix formed from the gradients of the active functions:

A(x)= [ e vﬁ(-x) e ]isIA(x)'

Only in this chapter we will assume that 4(x) has full rank. An orthogonal decomposition of 4 (x)

will be represented by
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R(x)
a)=[we) ze] [ 0 ] (3.18)
The columns of W(x) span the range-space of 4(x) and the columns of Z(x) span the null-space of
Ax)T, ie
Z(x)TA(x) = 0. (3.1.9)
For brevity of notation will often suppress the explicit reference to x; that is we will write 4 for

A(x), 14 for 1,(x), f; for f;(x), etc.

3.2. First-order change in the penalty function

By expanding all functions in (3.1.5) to the first-order about x we get

O(x+ap) = P(x) (3.2.1)
+ ag’p (3.2.2)
+al Y | viTp|— ) min(0,V f;7 p) (3.2.3)
ielyp iely
+ o(a)
where

p is an arbitrary direction,

o = 0 and small enough,

Lie =1,N1e Ly = LN Iin, (3.2.4)
g=Xo;Vfi+ Yo7 V], (3.2.5)
ielg iely

+1 ,if fi(x)>0
0 ,if fi(x)=0,ielg (3.2.6)
-1 ,if f;(x)<0

Q
1

and
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0 ,if f;(x)=0
o =1y if fxy <o Bl

3.27
Formula (3.2.1) is similar to the first-order Taylor expansion, but in addition to the differentiable
part (3.2.2) it also has the non-differentiable part (3.2.3). Bartels and Conn [2] pointed out that, in
the case of linear functions, the differentiable part can be viewed as the gradient of ® restricted to
the null-space of AT. The same remark is valid for the nonlinear case, and the vector g will be
called the restricted gradient of ®.

Instead of choosing an arbitrary vector p we would like to find a vector that will give us a direction
of descent for @. The following discussion reflects that given in {2].

There are three cases to consider.

Case 1 the orthogonal projection of g onto the null-space of AT is not zero, i.e.

ZZTg #0 (3.2.8)
Then the projected restricted gradient

p= _ZZTg (3.2.9)

is a descent direction, but so is

p=—Z(Z"BZ) 'Z7g (3.2.10)
where
B = Yo,V + Yo VY, (3.2.11)
ielg ieipy

and Z7BZ is assumed positive definite. The direction (3.2.10) can be derived from the local qua-
dratic model of P restricted to the null-space of 47.

Each of these p’s satisfies

ng < 0, (3.2.12)

and for a > 0 and small enough we have

O(x+ap) = &(x) + ag’p + o(a) (3.2.13)
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< ®(x) (3.2.14)

A suitable o can be found by a line search algorithm for non-differentiable functions. See, for exam-
ple, the work of Murray and Overton [28].
Case 2 The orthogonal projection of g onto the null-space of A7 is zero. Thus, the vector g is in

the range-space of 4, i.e.

g =Ar= I MVfi + T NVS, (3.2.15)

iel g ielyy

for some coefficients A;. Clearly, A is the vector of Lagrange multipliers, and the A values can be

obtained by solving

minimize || 4% — g |7 (3.2.16)

In order to handle this case it is convenient to substitute (3.2.15) into (3.2.2). The first-order change

to ®(x) is now given by
a[ SAVETp+ Y x,-Vf',-Tp] + a[ S IV7Tp| — X min(0,VFp) (3.217)
ielyp iely iel e iel

By combining those two terms, we can write the change to ®(x) as

al ¥ {x,-n,.+1}|vf,.Tp| + Z{ki+ni_}VﬁTp (3.2.18)

ielp iely
where
+1 ,if Vf;(x)Tp >0

m=1 0 ,if Vfi(x)Tp =0, ielg (3.2.19)
-1 Lif Vfx)Tp <0

and

_ 0 if V(x)Tp=0

n; = , i8N,

- (3.2.20)
-1 if Vi(x)"p <0

Now, it is easy to verify that the first-order change to ®(x) will be nonnegative for all a = 0 and

all choices of p # 0 if the following conditions hold
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—1 <X < +1 for iely (3.2.21)

0=<M) =< +1 for iely. (3.2.22)

That means that our model cannot provide us any more with a first-order descent direction.
Second-order information should be used to verify whether the point x is an optimizer.

Note that we have just derived the first-order optimality conditions for (3.1.1):

A —gx) =0 (3.2.23)
filx) =0, iel,
—157\.,_<_+1 for iSIAE

0=< }\.1 =< +1 for isIAI.

Case 3 If the conditions (3.2.21) or (3.2.22) are violated, let us say for some A;, then we will refer
to the current x as a non-optimal stationary point. We would like to find a direction p that will
allow us to descend from x and at the same time change the active set. The direction obtained as a
solution to

ATp = —sign(\)e (3.2.24)
will remove the i function from the active set and will also give us a descent direction. (e, is the
vector having zero components everywhere except one at the i** position.)
It is a straightforward exercise to show that the direction p from (3.2.24) is a descent direction for

®, for a > 0, i.e.

D(x +op) = D(x) + aw; + o(a) (3.2.25)
< P(x),
where
o = {(;\qn1+_1) ’ lf isIAE (3.2.26)
' A+ )(—sign(Ny)) , if igly,.

Again, a suitable a for (3.2.25) to hold will be found by a line search in the direction p.



-25-

3.3. Local change in a neighborhood of the optimal point

So far we know how to find a direction of descent for ®(x) far away from a local minimizer
and at a stationary point which is not a minimizer. The only outstanding problem is how to proceed
when the current point x is close to a local minimizer. We would like to solve the system of non-
linear equations (3.2.23) to obtain a local minimizer, using a solution process which has a higher
than linear rate of convergence.

For this reason, an algorithm for nonlinear optimization based on the idea of solving the
nonlinear equations (3.2.23) by the Newton method will be discussed in the next section. Then, some

well-known, and successfully implemented, algorithms will be related to that Newton —like method.

3.3.1. Newton-like algorithm for nonlinear optimization

Suppose that we have a pair (x,A) that is close to a solution (x*,A") of

g{x) — A(x)L =0 (3.3.1)
fax) =0, (3.3.2)
where
— — T
Fa) = [ Fi - Lrs (333)

and we want to solve (3.3.1)-(3.3.2) by holding A fixed, making a small step p from x in order to
satisfy (3.3.1)-(3.3.2), and then estimating A at x +p . Let p=v-+h, where v € Span(A4(x)) and

he Span(Z(x)) = Null Space of A(x)”. Then we have

gx+v+h) —A(Ex+v+h)A =0 (3.3.4)

SaG+v+h) =0 (3.3.5)
If we use the Taylor expansion of (3.3.4)-(3.3.5) we get

g(x)+B[v+h] — A(x)A — [Zlivzﬁ(x)][vﬂ] =0 (3.3.6)

il

fa(x) + AX)T[v+h] = 0,
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which is satisfied to o(] [v+A1]).

By rearranging (3.3.6) and taking in account that A(x)Th =0 we get

gx)—ACAF[B— T AV (x)][v+h] = 0 (3.3.7)

iel,

fa(x)+Ax)Tv = 0. (3.3.8)

One way of solving the system (3.3.7)-(3.3.8) is to assume that the matrix A(x) is full rank and
obtain v according to

v = —Ax)[4x)TAx)] " f4(x). (3.3.9)
Vector & can be expressed as a linear combination of columns of Z, i.e. h=2Zh;.

Assuming that the projected Hessian

ZT[B— Y LV fi(x)]Z

iel,

is positive definite we get

h = —Z[ZT(B— TV (x)NZ] ' Z7 {g(x)+(B = I NV (x)v} (33.10)

iel, igly

Then, the new x, x™*, is obtained as

xtT=x+v+h, (3.3.11)

and the new A is obtained by solving

mini}‘mize HAGx+v+rA — gx+v+h)|l 2 (3.3.12)
In summary, the method can be described as
1. Compute v by (3.3.9)
2. Compute h by (3.3.10)
3. Update x by (3.3.11)
4, Compute A by (3.3.12).

Although the way of computing a new A (3.3.12) made the overall algorithm something less

than the Newton method for solving (3.3.1)-(3.3.2), the quadratic convergence is retained if the ini-

tial point is sufficiently close to the solution. M. H. Wright [35] established that the quadratic con-
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vergence of the Newton method in (x,A) will not be impaired if A is computed by (3.3.12). R. A.
Tapia [34] showed that using (3.3.12) we get a method that converges Q-quadratically in x, accord-
ing to Ortega and Rheinboldt’s [32] definition. (See the work by Nocedal and Overton {31] for a

detailed discussion on Newton-like methods.)

3.3.2. Some algorithms that are superlinearly convergent

Murray and Overton [30] use (3.3.9), (3.3.10) (with B = Zc,-vzf_,-) and (3.3.12). (Notice

ielg
that they consider only the unconstrained /, problem.) Conn and Coleman [10] justify a slightly dif-

ferent v and &, i.e.

h = _Z[ZT(B - Z}‘ivzfi(x))Z]_IZTg(x) (3.3.13)
iel,
v=—AlT4)" [ (x+h). (3.3.14)

They prove the 2-step superlinear convergence of their method.

3.4. Framework
The discussion in the two preceding sections suggests a framework for solving the nonliner
!, optimization problem (CNLL1). The crucial question is how well satisfied at x are the first-order

necessary conditions for (3.1.5):

AGA — g(x) = 0 (3.4.1)
fix) =0, iel, (3.4.2)

—1 =<2 =< +1 for iely (3.4.3)
0=<A = +1 for igly. (3.4.4)

1) If AA—g#0, or equivalently || ZZ7g || is large, the current point x is far from a stationary

point, and we would like to attempt so-called normal descent. A descent direction like

p=—2Z(Z"Bz)"'Z7¢ (3.4.5)

where
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- 7 - 727
B = 3oV + Yo Vi (3.4.6)
ielg igipy

derived from a local quadratic model and used in the Bartels and Conn algorithm [1] would be pos-
sible. Another choice would be the the direction

p=—-2Z(ZTBZ) 'Z7g (3.4.7)
where B is given by

F= 3 aV¥ - TNV

ig{l, -, m} iei,

This direction is used by Murray and Overton [30], and is obtained from a local quadratic model,
too. (Notice that they consider only the unconstrained /, problem (UNLL1).)
2) If A(x)A — g(x) =0, fi(x) =0, iel, and some multiplier A; violates (3.4.3) or (3.4.4), the
current point x is a stationary point, but it is not optimal. The active set is incorrectly chosen, and
we would like to attempt so-called dropping descent. The direction p obtained as a solution to

ATp = —sign(\)e; (3.4.8)
will provide descent as well as removing the i** function from the active set.
In order to find an a such that

D(x +ap) < P(x) (3.4.9)
a line search algorithm has to be used in 1) and 2). That could lead to linear convergence, but suffi-
cient decrease obtained on the merit function ® for every line search will force the algorithm even-
tually to reach a neighborhood of the local minimum x*. Following the terminology of Coleman
and Conn [9,10], and others we call 1) and 2) the global phase of the framework.

3) If all first-order necessary conditions (3.4.1)-(3.4.4) are approximately satisfied we should solve

(3.4.1) and (3.4.2), i.e.

AL — g(x) =0,

fi(x) =0, iel,.

In order to achieve a fast asymptotic convergence, a superlinearly convergent algorithm might be

used. Following general terminology, again, we call part 3) the asymptotic phase of the framework.
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1; framework
{Select any xeR". Determine tolerances}
repeat
{1dentify I}
{Form g; compute the multipliers A;’s}
if {(3.4.1)-(3.4.4) are approximately satisfied }
then
/* Asymptotic phase */
{Find p }
if {sufficient decrease in ®(x) in moving from x to x +p}
then
Xe—x-+p
go to OUT
else
{Modify tolerances}
/* Global phase */
if {x is close to a non-optimal stationary point}
then
{Find a descent direction p that moves away from the stationary point}
go to ALPHA
{Find the normal descent direction p}
ALPHA:
{Find a}
X e—x + ap

OUT:
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until {termination test satisfied or ®(x) does not decrease}
The two previously mentioned algorithms for solving (CNLL1), [1] and [30], can easily fit
in this framework, but those are not the only possibilities. In the asymptotic phase, we can use any
other superlinearly convergent algorithm, and moreover we could use an algorithm based on updat-

ing the projected Hessian

ZT| ¥ oV + X o7 Vi, - AV |Z (3.4.10)

ielg ielpy iely

See a paper by Nocedal and Overton [31] in this regard.

3.5. Reducing the penalty parameters

If the selected direction p fails to decrease the penalty function or if a reasonable termina-
tion criterion is satisfied we conclude that the minimum of & has been found. Now, we test whether
the computed x” is feasible for (CNLL1). If it is, we take x" as a solution to (CNLL1). In the case
that x* is infeasible for (CNLL1) we have three possibilities:
a) the penalty constants p;, i€{1, ..., m} are too large,
b) the original problem (CNLL1) is infeasible, or
c) a minimizer of the penalty function that is not a minimizer of the original problem (CNLL1)

has been found.

To distinguish case a) from cases b) and c) we need to reduce y;, i€{l, ..., m}. If we have to do it
repeatedly and y;, i€ {1, ..., m} becomes close to the machine precision we can only conclude that
the original problem is infeasible or a minimizer of the penalty function that is not a minimizer of
the original problem (CNLL1) has been found. (See Coleman and Conn [8] for an example of such
a situation.)

The above discussion suggests the following algorithm for reducing penalty parameters:

Reducing p
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{Select any w, >0, ie{l, ..., m}}
repeat
{Apply /; framework}
{Reduce y;, ie{1, ..., m}}

until {feasible or p;, ie{1, ..., m} too small}



CHAPTER 4

Degeneracy

4.1. Introduction

The preceding chapter provided us with some terminology and a framework upon which to
base further discussions but with no rigorous results.

In this chapter we will remove the assumption that the gradients of the active functions are
linearly independent and attempt to develop out framework into something more carefully con-
structed that will admit dependencies in these gradients. A point where the matrix, 4, formed from
the gradients of active functions, has linearly dependent columns is called a degenerate point. A
degenerate point can be stationary or nonstationary. The optimality conditions are the same as for a
nondegenerate problem but much of the discussion in Chapter 3 breaks down.

More specifically:

(1) We can no longer determine the vector of Lagrange multipliers uniquely from

mim‘{nize NA4r — gl 2
(2) If a stationary point is degenerate we can no longer use
ATp = —sign(\)e;
as a dropping descent.
(3) If a degenerate point is encountered in the asymptotic phase we will have problems comput-
ing both null-space and range-space components # and v.
(4) The Hessian used in computing the null-space component by (3.3.13) or (3.3.10) is defined in
terms of Lagrange multipliers, and as already mentioned they are not uniquely determined.
In the context of the nonlinear programming, we know of almost no work done to address these

questions directly. The practical resolution of degeneracy appears to have been attempted up to now

-32-



-33-

in the following ways:

1.

ignore the degeneracy, i.e. assume it will never happen but implement some sort of safeguard
to recognize (and possibly cope with) attempts to solve a singular system of equations; (done
in many nonlinear optimization algorithms);

try to select a working set, i.e. a largest set of active constraints whose gradients are linearly
independent and work just with it; (done in the algorithm of Murray and Overton [30]);
perturb the active constraints randomly and then find a descent direction for the new prob-

lem. (done in the algorithm of Bartels and Conn [1}).

None of those techniques proves to be robust for the nonlinear /; problems for the following reasons:

L.

The problem of degeneracy in an /; code cannot be ignored. It happens too often in the con-
text of data fitting. For example, the well known test problem given by Wood [26], has seven
problem functions in four variables and all seven of them are zero at the solution. Moreover,
even if a large number of exactly zero functions are not encountered at an optimal point,
good data-fitting models will often yield problem-function values (residuals) very close to zero
at optimality, so that large numbers of problem functions will be interpreted as active under
any reasonable computational tolerance.

So far there is no way to select a correct working set without trying all possible combinations,
and that can be exceedingly expensive. If the working set is chosen incorrectly the algorithm
can stall by trying to move in the direction that is descent for the working set but ascent for
the original problem. Large numbers of cycles can be wasted before a direction determined
from a working set proves to be an actual descent direction or before an indication of
optimality is attained. Furthermore, some record-keeping mechanism for selecting subsets
should be included in the algorithm to prevent the repetition of working sets, which increases
the programming complexity of the algorithm.

The perturbation technique is quite successful in resolving the degeneracy for mildly non-

linear constrained problems. In the case of highly nonlinear constraints the degeneracy still
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can be resolved but at possible cost of such outcomes as:
a) the optimizer of the perturbed problem being arbitrarily far away from the current point,
b) the final active set of the perturbed problem being totally different from the current one,
¢) the optimizer of the perturbed problem being strongly infeasible for the original problem,
d) the perturbed problem yielding an optimizer although the current point of the original
problem had not been optimal.
The extent to which the solution to the perturbed problem can be reinterpreted, possibly by
some form of continuation method, to yield information about the current point of the origi-
nal problem deserves further study.
It has been recognized that a sound way of handling degeneracy in a nonlinear /; programming is a
necessary building block for a robust /, algorithm. We will propose an alternative way of resolving
degeneracy in the context of the nonlinear /; framework, but we believe the proposed resolution is
more general. For example,
a) the resolution of degeneracy at a stationary point could be considered for use in any algo-
rithm for continuous optimization that uses optimality conﬂitions constructively.
b) the resolution of degeneracy in the asymptotic phase could be considered for use in any

Newton-like algorithm.

4.2. Resolving of degeneracy at a stationary point
Suppose that at a point x the matrix 4 has linearly dependent columns. Then a vector of
Lagrange multipliers, A, cannot be uniquely determined from:
minimize || 4% = g ||2. (4.2.1)
But, the necessary conditions for the optimality of a nonlinear /, minimization problem state that

there should exist a vector of Lagrange multipliers, A, that satisfies:

—1=N=<+1, ielyg (4.2.2)
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OS;\.i = +1, iBIAI

At a degenerate point we can combine (4.2.1) and (4.2.2) and solve the following constrained minim-

ization problem:
minamize HAar — gil 2 (4.2.3)

subject to —1 <) < +1, iely

0<h =< +1, iely

If the solution to (4.2.3) has zero residual we know from Section 3.2 that we have satisfied the first-
order necessary conditions for optimality. Otherwise, we can use the following theorem to find a
descent direction for ®(x) .

Theorem 4.1 Let A" be a solution to (4.2.3). If

4" —gll3=0
then

p=A\ — g (4.2.4)

is a descent direction for the exact penalty function ®(x).

Proof: Let us recall that the first-order expansion of the exact penalty function ®(x) is given by

O(x+op) = O(x)
+ a[ ng

+ T IVfiTp |l = X min(0,Y £, p)

el iely

+ o(a).

We will also need the following well-known lemma from convex analysis (see, for example Luen-
berger [24], page 69).
Lemma 4.1 Let y be a vector in a finite-dimensional vector space H and let X be a closed convex

subset of H. Then there is a unique vector kgeK such that
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Hy—koll, = lly—kll,

for all keK. Furthermore, a necessary and sufficient condition that k, be the unique minimizing
vector is that
Y —ko)T(k—kg) <0 forall kek. (4.2.5)
|
Note that the set
{A}\. l (—1 S}"l = +1, iSIAE) and (OS}\., = +1, iBIAI} (42.6)
is convex and closed.

We can choose the following vectors:

y =g
ko = AA", and (4.2.7)

k =AA., (‘—15&54’1, iSIAE)and(OS_XiS‘FI, iﬁIAI)

Then, according to Lemma 4.1,

0—ko)T(k—ky) < 0. (4.2.8)
or

(g—AAM)YTUA—AN)Y =<0 (4.2.9)
or

(g—AA)YT(AA—g—(4AA" —g)) <0 (4.2.10)
or

(—p)T(Ar—g—p) <0 (4.2.11)
or

—pT(ar—g)+pTp < 0. (4.2.12)

But, by the assumption that the residual is nonzero, p # 0. That implies p7p > 0.

So, (4.2.12) will give us

pT(—AL + g) <. (4.2.13)
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If we choose

—sign(alp) ,iely ' 4214
M= , T , , (4.2.14)
sign(min(0,a; p)) ,iely

where q; is the i % column of A, it follows that

g’p + X lafpl — ¥ min(0,6/p) <0, (4.2.15)
ielyp iely
and therefore p is a descent direction for the exact penalty function ®(x). B
It is important to notice that the problem (4.2.3) is nondegenerate, and that p = AA" —g is

unique, although the vector A" is not.

Other methods can be used in solving

Al — g=0 (4.2.16)
Subject to —1 =< A‘i = +1 s isIAE

0=<A =< +1, iely.

If the residual is zero, we know that we are at an optimal point for our model and the asymptotic
phase should be entered. But if the residual is nonzero, then finding a descent direction could be
based on some other idea. Using /; and /, norms in solving (4.2.16) has been explored in Appen-
dices I and II.

An algorithm for solving (4.2.3) is given in the next section. The algorithm is a modification of the

nonnegative least-squares algorithm from Lawson and Hanson [23].

4.3. Bounded least-squares problem

The bounded least-squares problem
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minilmize NAr — gl 3 (BLS)

subject to —1 <\ < +1, iely

OS;\.iS'i‘l, iﬁ[A[

can be solved efficiently by taking into account the very special structure of the constraints.
Let us assume that A is a feasible point for (BLS), and define a function ¥ as
YA) =L — g)TAL — g) = ATATal — 2AT4Tg + gTg (4.3.1)
Now, partition the coordinates of A in the following way:
B={il -1<Mh<+l,ielg} Uil 0<Xl < +1,icly} (4.3.2)
L= {ll A.,' =—1, iSIAE} U {l ‘ }"i =0, iEIAI}, and
U= {il A, =+1,iel,}
Our task is to find a step s s.t. W(A) > W(A+s) and that a point A+s is feasible.
Y(h+s) = ‘I’(A.)+sTV‘~I’(k)+-%—sTV2‘PO»)s
where,
VYN =sT[24T4A—247g], and
V¥ =sTA4T 4s.

We would like to have

Y(A+s5s)—¥YR) <0

at the point A+s. One way of finding such s is to consider the following subproblem:

minimize —;—STA TAs+sTAT(4AA—g) (4.3.3)
S

subject to —1 < M+s; = +1, ielyye
0S)\.,~+Si5+l, iSIAI
The feasibility of A+as is guaranteed ( for o small enough ) if

5; =0 for all ie L, and
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s; =0 for all ieU, and

otherwise, no restriction on s; for all ieB.

So, we can attempt to find s that solves

minimize %STA TAs+sTAT(4AL—g) (4.3.4)
S

subject to 5;=0, ieL|JU

The above constrained minimization problem can be reformulated as an unconstrained one if we
define s as s =1Igb where, Iy is obtained from the identity matrix by substituting zero for all the
ones on the diagonal not corresponding to the indices from the set B. With this formulation the

problem (4.3.4) becomes

minimize %bTI}A T Alyb+bTIEAT (AN—g) (4.3.5)

This minimizer will be found among the vectors b satisfying

IZATAIgb+15AT(AN—g) = 0 (4.3.6)

We can define a matrix ILUU in a way similar to defining Ipz. Taking into account that
I=Iz+1I, (> We can rearrange (4.3.6) into

IFAT AL b +1§AT Al = —15AT Al U yAtIgAT g 4.3.7)

Finally, we can write (4.3.7) as

15AT Al yu+h) = I5A (g —Al, Uuh): (4.3.8)

The equations (4.3.8) can be recognized as the normal equations for the least-squares solution of
Algz zg—AILUUl (4.3.9)

where, z=5b +A.

So, after solving the least-squares problem (4.3.9) we can get the following two outcomes:

Casel z#0
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There is one component of z for each jeB. We have to look at each z; in order to see whether it is
inside the interval

[—1, +1], foriel e or [0, +1], for igl,,.

If it is not we save

o = lz; =]

and the corresponding ;.
If any a; exists, then we find g s.t. o, has minimal value and let a=aq,. Otherwise let a=1.

The new A is obtained in the following way:

Aj —A;+a(z;—A;)  forall jeB
We redefine B and L |J U as
LUU—~LYU U {/}

for all A; at a bound.

Case2 z=0

We are at a global minimum on the active set L | J U.

To see if we are at a global minimum with respect to all activities we need to compute a vector of

Lagrange multipliers u, i.e. to find a solution to the problem

minimize ||I,\jyu — (247AA—247g) |l (4.3.10)
The solution to this problem is given by

uj=[247(4r—g)]; forall jeL|\JU
So, if u; = 0 for all jeL and

u; =< 0 for all jeU we are at an optimal point.

Otherwise, we choose j, where u ;, s out of the bounds and consider the following problem:
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minimize %STA Tas+sTAT(AN—g) 4.3.11)
s

subject to 5;=0 , jeL|\JU — {jo}
That is, we redefine B and L | J U as

LUU—~LYU — {jo}

B — B {jo}

and then we minimize as above.
The finite-step convergence of the Lawson and Hanson algorithm (NNLS) [23] is not impaired by
these modifications. A similar algorithm, with more flexibility in simple bounds, was developed by
Hanson [22}].

Both algorithms are quite inefficient in the context in which the (BLS) problem is used.
They do not use the information from the previous point x;, i.e. Ay and the row and column order-
ing of A4;. It is worth noticing that based on the work of Stoer [33], Gill et al. [20] have imple-
mented an algorithm for the linearly constrained least squares problem in which the information
from the previous stage can be used. When dealing with a rank deficient matrix 4,, an extension of
this method (under preparation [21]) uses the full orthogonal decomposition of 4, to get the final

A

4.4. Resolving degeneracy far from a stationary point
In order to find a descent direction from a point far from a stationary one we need a matrix
Z, such that
ZT4 = 0.
Whether 4 has full column rank or not, the matrix Z is readily available from the
Sfull orthogonal decomposition of A (see Lawson and Hanson [23]). That is, if 4 is nXk and has

rank r < min(n,k),
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— R 0| pT
A4 =20 [0 O]P (4.4.1)
where, @ is an orthogonal nXn matrix, P is an orthogonal k Xk matrix and R is a nonsingular
r Xr matrix; and

Q=[W Z]nx(rln—r)- (4.4.2)
If the Lagrange multipliers are necessary in forming the normal direction, as in Section 3.2, we sug-

gest using the estimates for the A’s obtained from (BLS).

4.5. Resolving degeneracy in the asymptotic phase

We will assume here, for the sake of discussion, that there is a neighborhood of a degen-
erate local minimum x* where the rank of A will not change and will be the same as the rank of
A(x’). Also, we will assume that the global phase will be able to reach any neighborhood of x",
possibly at a linear rate of convergence.
4.5.1. Degenerate range-space component

Suppose that we have a full orthogonal decomposition of the matrix 4.

Apxr = Q[g 8]PT (4.5.1)
where, Q is an orthogonal nX»n matrix, P is an orthogonal k Xk matrix and R is a nonsingular
r Xr matrix.

Let us partition P and Q in the following way:

P=[V Slkx¢k-r) (4.5.2)

Q=[W Z]n)((r|n—r) (4.5.3)
Note that Span(W)=Span(A) and Span(Z)= null-space of AT .

A step p is formed from the null-space component A and the range-space component v, as
p=h-+v.

As derived in Section 3.3, the range-space component can be obtained from the formula
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ATy=—F, (4.5.4)

Taking the orthogonal decomposition of 4 into account we can write (4.5.4) as

P[’%T 8]QTv = —f, (4.5.5)
T T -

[V s] [Ro 8} [VZVT] v=—f4 (4.5.6)

VRTWTy = —f, (4.5.7)

RTwTy = —VTf, (4.5.8)

So, v can be viewed as a direction obtained by the Gauss-Newton method on the zero-residual prob-
lem.
Note that in the context of /; programming the two practically-encountered cases of (4.5.1)

are

a=[wz] [’g] (4.5.9)

(i.e. columns of 4 are linearly independent) and

a=[w][ro] [g;] (45.10)
(i.e. too many functions are active, but their gradients span the n-dimensional space R").
The general case (4.5.1) could happen if, for instance, the active functions f,—, iel, are
themselves linearly dependent.
Note that for the complete generality it would be necessary to consider an expansion of the

form

T
A(x) = [W(x) Z(x)] [Rg)x) M(()X)] [.SI{g;TJ’ (4.5.11)
for some M(x) — 0 as x — x". This is a far more difficult case to handle, and we will not deal

with it in this thesis.
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4.5.1.1. Descent property of the degenerate range-space component
The following lemma shows that v, computed from (4.5.8), is a correct direction in an itera-
tive procedure to solve

fa=0. (4.5.12)

Lemma 4.2 The range-space component obtained from

R™TWTy = —yTf, (4.5.13)

is a descent direction for the least-squares merit function

¥(x) = %f'}fi- (4.5.14)

Proof: The direction v will be descent for W(x) if

V¥(x)Tv <. (4.5.15)
VW(x)Tv = (4f)Tv (4.5.16)
= falv §] [%T 8] [g’:] v (4.5.17)
- [7v 7is] [RT{)V T“] (4.5.18)
= fAVRTWTv) (4.5.19)
= fAV(=VTfy) (4.5.20)
<0 (4.5.21)

|
4.5.2. Degenerate null-space component

For the null-space component # in the Newton-like algorithm we need the matrix Z such
that ZT4 = 0, and we need estimates of the Lagrange multipliers A’s. As pointed out in Section
4.5.1, the matrix Z is obtained from the full orthogonal decomposition of 4. The estimate of the
Lagrange multipliers is obtained from the (BLS) problem. Note that those Lagrange multipliers

satisfy their respective bounds, i.e.
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"‘1<A.,§+1, iSIAE

0=< A < +1, iely.

4.6. Applicability to Existing Algorithms
We will end this chapter by pointing out to what extent the foregoing discussion is con-
sistent with the practice carried on in the Bartels/Conn [1] and Murray/Overton [30] algorithms for

nondegenerate (CNLL1) problems.

4.6.1. Degeneracy far from a stationary point

The normal descent direction (3.4.5), used by Bartels and Conn [1], need not be changed at
all. On the other hand, if we use the direction (3.4.7), given by Murray and Overton [30], we also
need an estimate of A. It is not clear what the best estimate would be. If we solve (BLS) the resi-

dual vector will give us the descent direction immediately, so we do not need (3.4.7). If we solve

mim'{nize lAA—g |,
there is no guarantee that A’s are between the corresponding bounds.

It seems that the direction (3.4.5) should be preferred in the degenerate case.

4.6.2. The degenerate range-space component
Bartels and Conn {1] obtain the nondegenerate range-space component v from the formula
ATy = —f,(x+h).
So, by using the full orthogonal decomposition of 4 (4.5.1) the degenerate range-space component v
could be obtained from

RTWTv = —VTf, (x+h).
Murray and Overton [30] could use (4.5.8).
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4.6.3. The degenerate null-space components

The null-space component can be obtained either from the formula

h=—2Z(Z"BZ) 'ZT(g+Bv) (4.6.1)
where,
B= ¥ oV — INVY, (4.6.2)
ie{l,---,m} iel,
or from
h=—-2(Z"Bz) 'Z7g (4.6.3)
where,
B = Yo,V + Yo7 VY, - T,V (4.6.4)
ielg iely iel,

depending on whether we are using the Murray/Overton [30} or the Bartels/Conn [1} asymptotic

step.



CHAPTER 5

Handling degeneracy in the Bartels/Conn algorithm

As an example of a nonlinear /; algorithm that can fit in our framework we will extend the
Bartels and Conn [1] algorithm to handle degeneracy. Proofs of global and asymptotically super-
linear convergence under certain assumptions will be given.

For a given x and € = 0 let

Ii(x8) = {i:| fi(x)| <& andiely Iy} (5.0.1)

denote the set of g-active indices at x, and let
Ii(x8) = (Ig U {i:fi(x) < —g and iely}) — Ly(x.€) (5.0.2)
represent the set of g-inactive indices.

Although the theoretical discussion was given for the activity tolerance € = 0 we do not
want to follow the active functions so closely. There is a danger that an active function can be
repeatedly dropped from and added to the active set (zig —zagging). Furthermore, the problem
functions are nonlinear and there is a possibility of making too many small steps just in order to stay
on the active set manifold. So, we would like to use an & considerably greater than the machine
precision.

If we use the expansion (3.2.1)-(3.2.3) with & > 0, the first-order change in an g-active
function could predict an increase in the penalty function ®(x,g), although for small a > 0 we
would expect a decrease in ®(x,0). For example, if f;(x) # 0, i€y, is considered to be an g-active
function, € > 0, then the first-order change in ®(x,g) in a direction p, for o > 0, will contain the
contribution | Vf;7p |. But, in the 0-active model, the same function f;(x) # 0, i, will be con-

sidered inactive and the first-order change in ®(x,0) in the direction p will contain the contribution

Vf,-Tp.

-47 -
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Similarly, if fi(x) # 0, iel;y, is considered to be an g-active function, € > 0, then the
first-order change in ®(x,g) in a direction p will contain the contribution —min(0,VvV f, Tp). But, in
the O-active model the same function f,-(x) # 0, iel;y will be considered inactive and the first-

(sign(f(x))—1

order change in @(x,0) in the direction p will contain the contribution 5 ) vSiTp.

So, for all o > 0 small enough

AD(x) < AD(x,8), (5.0.3)

where AD(x,e) represents the first-order change in ®(x,g) in a direction p, i.e.

AD(xe) =alg™p + X |IVATpPI— 3 min(0,Vf"p) (5.0.4)

ielyp(x,8) i1 4(x,8)
and A®(x) is (3.2.2)-(3.2.3).
As a result of (5.0.3) there is an a > 0 such that if a direction p is a descent direction for
®(x,g) it is a descent direction for ®(x), too.
Now, the normal descent direction, p(x,g), will still give the first-order descent on ®(x,g)
due to the fact that p(x,€) is in the null-space of 4 (x,8)T.
For dropping descent a similar observation holds. If g(x,g) is in the range-space of 4 (x,g)

and if we combine the terms in (5.0.4) in the way that was done in Section 3.2 we obtain

al ¥ {Mﬁl}lVﬁTpl + ¥ {li+1t,-'}Vf_.-Tp (5.0.5)

ieLyp(x,€) iely(x.€)
where
+1 Lif VAix)Tp >0

m=14 0 ,if VA(x)Tp =0, iclg (5.0.6)
-1 Lif Vix)Tp <0

and

0 if VAx)Tp=0

=1 i V)T <o Bl

(5.0.7)
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Again, when the columns of A4(x,e) are linearly independent, it is easy to verify that the first-order

change to ®(x,e) will be nonnegative for all @ = 0 and all choices of p # 0 if the following condi-

tions hold
-1 =< 7\.,‘ =< +1 for iEIAE (5.0.8)
0=< }\.,' =< +1 for iSIAI. (509)

That means that our g-activity model cannot always provide us with a first-order descent direction.

There are two actions we might take if we perceive that ®(x,e) does not predict the local behavior

of ®(x,0).

(a) We could assume that the point x is close to a local minimum x”, and that the active func-
tions have been correctly chosen. In order to find a point where the first order optimality con-

ditions are satisfied exactly, we need to solve the following system of equations:

AXA —gx) =0 (5.0.10)

filx) = 0, igLy(x,e).

In other words, we would like to make the g-active functions zero (to machine precision) and
at the same time to retain the relation (5.0.10) and to decrease the penalty function. If this
attempt fails we could assume that our g-activity model is too crude and that we should
reduce €.

(b)  If the conditions (5.0.8) or (5.0.9) are violated, let us say for some A;, then we consider the
current x to be a non-optimal stationary point. We would like to find a direction p that will
allow us to descend from x and at the same time change the active set. The direction
obtained as a solution to

A(x,e)Tp = —sign(X)e; (5.0.11)
will remove the i function from the active set and will also give us a descent direction. If
this does not provide sufficient decrease for ®(x,0), we could assume that g-activity model is

too crude and that we should reduce &.
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If the columns of 4(x,e) are linearly dependent then the residual vector, p = A(x,6)A—g, obtained
from (BLS) will tell us which of the above cases hold. If ||p || < 8, 8; > 0, then we could
assume the case (a). Otherwise, we will assume the case (b) and Theorem 4.1 tells us that p is a

descent direction.

5.1. Extended Bartels/Conn algorithm
Bartels and Conn [1] motivate the task of solving (CNLL1) problem
m
mini;r’t'ize Y i) (CNLLD
xe i=1

subject to fi(x) = 0, ielgy

fix) =0, iely

by selecting a trial active index set I, and the violated index set I; suggested locally by x and some

activity tolerance €. Then, with I, chosen, they propose solving

minimize ®(x) = Y o,fi(x) + X o fi(x) (5.1.1)

ielg iely

subject to f,-(x) = 0,iel (x,8)

until they are sufficiently close to a minimum of ® to satisfy a convergence criterion, or until it is
evident that they are dealing with the wrong selection of I, in which case (5.1.1) is redefined (by
redefining I,) for further steps of the algorithm. The problems of the form (5.1.1) would be solved
using exact penalty method of Coleman and Conn [9, 10].

This way of solving (CNLL1) could hardly be incorporated in our framework. For one rea-
son, the set of functions that form the objective function of (5.1.1) would change from step to step,
depending which functions are currently active, and that means that at each step different sets of
functions would be multiplied by a penalty parameter p. Fortunately, just the motivation for solving
(CNLL1) is wrong. Bartels and Conn implemented their algorithm exactly as described in our

framework, i.e. they minimize
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o)=p S i1+ 3 1fi | — 3 min(.f;) (5.1.2)

i=1 ielgg iely

where g > 0.
The algorithm of Conn and Coleman [9,10] is used to find the minimum of the exact penalty func-
tion (5.1.2).

The estimates of Lagrange multipliers play an important role in the assessment of nearness
to the optimal point, and in the decision about which phase the algorithm is considered to be in. In
the degenerate case we will use our bounded least squares problem (BLS) to decide about the phase.
Algorithm 1
{Select any xeR”, g, 6, §,=8, A and set k =0}
repeat

{1dentify I,(x,g); obtain the full orthogonal decomposition of 4(x,e) }
{Form g(x,e); compute the multipliers, A’s, from (BLS)}
if {(3.4.1)-(3.4.4) are approximately satisfied and || AA—g || <8}
then
/* Asymptotic phase */
{Find p’s components h (see Section 4.6.3) and v (see Section 4.6.2)}
if {(Dx+h+v) < ®x) = 81 ZTg 13+ 11 f4 1l 1}
then
X—xth+v
go to OUT
else
repeat

if {either € or A is too small} then STOP
g 2
2

A
A«——z—-
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k —k+1

8o
k

Sy —
{Identify I4(x,€); obtain the full orthogonal decomposition of 4(x,g) }
{Form g(x,g); compute the multipliers, A’s, from (BLS)}
until { || ZTg || # 0}
/* Global phase */

if {1Z7g]l = A}

then
{p = Ar—g}
go to ALPHA

{Find the normal descent direction p (see Section 4.6.1)}
ALPHA:
{Find a}
X —x t+ op
OUT:
until {termination test satisfied or ®(x) does not decrease}
Note that the algorithm Algorithm 1 lays out the logical steps in the method for solving the
!, nonlinear optimization problem. Computationally, it would be less expensive to test conditions for
the global phase first.
Naturally, whenever we are dealing with a nondegenerate point we can use an appropriate
step from the Bartels/Conn algorithm [1]. That could save some computational effort.
Algorithm 1 is designed to minimize the exact penalty function ®(x) for a fixed p>0. The
user must also supply an initial guess for x°. In addition, the activity tolerance €>0 and the pro-
jected gradient tolerance A are supplied by the user. Following the approach of Coleman and Conn

[9,10] we will show that the global convergence properties are unaffected by the initial assignment
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for xg, €, and A. However, the efficiency of the algorithm can be greatly influenced by the choice.
In the proofs, the following notational rule is used: if a quantity is sub- or superscripted,

then it may change from iteration to iteration, otherwise it remains constant. As in Coleman and

Conn [9,10], the termination criterion is not shown, but in practice the algorithm stops when at least

all of the following conditions hold:

(1) —1=A=<+1, iel,
0<Af < +1, iely, and
Il4rf — gl 3 = TOLO,
2 I1ziegx") |l = ToLx,

3) .51 = TOL2.

Further conditions based upon the history by which (2) and (3) become satisfied over the last
several iterations may also be useful to make a computer implementation more robust.(See a discus-
sion of terminating iterative processes in, for example, Dennis and Schnabel [13].)

The algorithm minimizes the exact penalty function @(x) for a given and fixed p. If p is
less than a threshold value then the obtained minimizer will usually also solve the (CNLL1) prob-
lem. But, the threshold value of p is a function of the multipliers at the solution of the original prob-
lem, see Charalambous [5], and therefore this value is unknown a priori. Consequently, an initial
choice of p that is too large can lead to a minimum of ®(x) that is infeasible. So far there is no
proven successful strategy for choosing p’s a priori, but we adopted the usual practice, see Bartels

and Conn [2], of reducing p whenever an infeasible optimum for (CNLIL1) is found.

5.2. Implementation techniques
Numerical techniques described in Gill et al. [19] are used here. Just the basic ideas will be
mentioned and the reader is referred to the works by Gill and Murray [17], and Murray and Wright

[27] for more details.
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5.2.1. The range step and estimating multipliers
When A,x,, (the matrix formed from the gradients of the active functions has linearly

independent columns), we obtain an orthogonal decomposition of A such that

5 R
Apxt = OnxnRyx: = [an; an(,.—;)] [ ‘Ox’] , I =<n, (5.2.1)

where R is upper triangular. Then the vector of multiplier estimates, A, can be computed by solving

RA = WwTg (5.2.2)

Similarly, the range-space component can be computed by solving

RV = —f,(x* + n*) (5.2.3)

and then setting

When A, «, has linearly dependent columns, we compute a complete orthogonal decomposition of A4,
ie.
- Rr Xr 0 VT
AnXt = QanRnXtPIT;(t = [Wan ZnX(n—r)] [0 0 S,Txt::: ) s (5‘2'5)

where the rank of 4 is 7. (The lower two zeros and Z,x(,—, are often vacuous on practical prob-
lems; see (4.5.10).)

We compute the multiplier estimates as a solution to the (BLS) problem, i.e. we solve
mim’xmize | AL — g ]| 2 (BLS)
subject to —1 s A, < +1, iely

0=\ < +1, iely,.
The range-space component is found by solving

RTv = —VTf (x* + h*) (5.2.6)

and then setting
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vE = wvy (5.2.7)

5.2.2. Null-space component
The null-space component is obtained by solving the system

(ZIBZ)h = —Z]g (5.2.8)

and then setting

h* = zZh. (5.2.9)

ZTBZ is assumed to be positive definite, so the LDLT decomposition exists and if

ZTBZ = LDLT (5.2.10)
the solution to (5.2.8) is obtained as
Lh = —ZTg (5.2.11)

LTh = DL, (5.2.12)

The asymptotic convergence results will assume that the projected Hessian approximation, ZT BZ,

approach the true projected Hessian in the limit.

5.3. Convergence results
Convergence results from Coleman and Conn [9,10] will be closely followed in this chapter

and just the proofs that are modified in order to handle degeneracy will be shown.

5.3.1. Definitions and assumptions
Here we use the convention that ||- || denotes the 2-norm unless indicated otherwise.

(i) The reduced function of ®(x,e), i.e. the differentiable part of ®(x,g), is defined to be

Di(x,e) = E oifi + E o; fi.

ielg () I1(x,8) iely () I (x,8)

The reduced gradient of ®(x,g) is

VO(x8)= ¥ oVt X o Vi (=g (5.3.1)
ielg (Y I;(x.8) ielpy () I1(x,€)

(i1) Let 4; denote an n X, matrix whose columns are the gradients of the €—active functions. We



- 56 -

will not assume A; to be of full rank. The matrix Z, satisfies ZfZ, = Iin—ryx(n—r) (Where
I —yx(n—r) is an (n—r)X(n —r) identity matrix), and AlZ, = 0; where r = rank(Ay). If A, is
full rank, ie. r =1, the matrix Z,_; satisfies ZkT_jZk_j = I, _;+ixn—r+1, and
Vfi(x*¥)Zy—; = 0if ieLy(x*,€)={j}, for some jeL,(x* g).

Define

GL(x*) = VIO, (x%) — 3 MVi(xh)
iel(x*.6)

where A is the least-squares solution to 4,A = g when A, is full rank, and A¥ is the minimum-/,-

norm solution to

minamize AL — g || 2

subject to —1 <A, < +1, ielyy

OS;\,,- =< +1, iﬁIAI

when A; is not full rank.

At times, an arbitrary but fixed point ¥ will be considered. At such a point, 4 will denote a matrix
whose columns are the gradients of the precisely active functions. That is, the columns of 4 belong
to {Vf,-(f) | iel,(x,0)}. The matrix Z satisfies ATZ =0,Z7Z = Iy —ryx(n—r) Where 4 is n Xt
and r = rank(A4). If X is a stationary point, then A satisfies

AL = g(X)

(iv) A vector X is termed a stationary point of ® if there exists a vector A satisfying

A(X0 = g(F).

If A satisfies the above equations and

—1=<X=<+1, ielyg

05).,5'*‘1, iEIAI

then we call X a first-order point of ®.
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If

1<) < +1, iely (5.3.2)

0<)\.i<+1, iEIA]

then X is a strict first-order point. If inequalities (5.3.2) hold and

YICE V@ + X o Vi - ¥ AVHE)Y >0
isIz(%,0) iel(x,0) i81,4(%,0)
for all y satisfying 47y = 0,y # 0, then we term X a strict second-order point of .
(v) We make the following line search assumptions:
(a) If k¥ is a normal descent direction for ® at x*, then o* is determined so that
D(x*) — DGHF + akhF) = (4T g4 v > 0.

where

gf= X oVfi+t X oVi

iel NI ielg(x*,g)
+ Z Gi_ Vf, -+ Z Gi- Vf‘
ieliy (I iefy(x*.8)
and

Iin(x*e) = {ieL(x* )} N {iely : VF;Th* <0},

Ip(x*g) = {iel,(x* &)} N {iely : | VF;,Th* | >0}

(It is a direct extension of a result of Conn and Pietryzkowski (Proposition 1, [12]) to show
that the above condition can be satisfied.)

(b) If p*¥ = A Ak —g(x*)) is a dropping descent direction (4.2.4) for @ at x*, then of is deter-
mined so that

O(x*) — D(x* + akp*) = v,(0*)TP*, 1, > 0.

(The first-order expansion of ®(x,g):

D(x* +ap*.g) < Dd(x*e)
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+algTp*+ ¥ |IVATPKI— Y min(0,Vf,p¥)

ieLg(x*.€) iely(x* €)
+ o(a)
and the relation

gt + X VAT = X min(OVfTpF) = —(")p,
iel,g(x* &) iel (x*€)
which is derived in the proof for Theorem 4.1, show that the above condition can be satis-
fied).
(vi) Let Q denote a compact set, where {x*}eQ.

(vii) Let Sy, S, S denote the set of stationary points of @ in €, the set of stationary but not first-

order points, and the set of first-order points respectively.

5.3.2. Global convergence

Lemma 5.1 We assume that

(i  fi, ielg | Iy are twice continuously differentiable on a compact set 2, where {x*1eQ.
(ii) X is any strict-second order point of ® on Q.

(iii) We have a complete orthogonal decomposition of A (x%), i.e.

R(x*) 0 kNT
s = ey 260][§0 8] [1er]

There is a neighborhood of x such that A4 does not change its rank and there is a positive
constant bg such that || R™1(x*) || < b, for all k > K,

(Note this is certainly true when there are more active functions than the dimensionality of
the space, n, and the rank of 4 is equal to n. Also, it is true when the degeneracy is caused
by the presence of the linearly dependent functions. It is also true in the standard nondegen-
erate case.)

f4€ Range space(AT).

Also, x* # X for all k,and W, Z, R, V and S are computed as continuous functions of x.
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G(v) I,(x*,e) = 1,(x,0), forall k > K,

(v)  There exist positive constants b,, b, such that for all vectors weR" ™", w #0
billwll? = wl(ZI{BZ)w = byllw 2

Then there exist positive constants A;, A,, and & such that

1 lx* =5 =4

2 WziBz, — ZIG,(x")Z || = A,

implies that
D(x*+h*+vE) — @(xF) = =8(I ZTg (M) 113+ 1| L4 M) 1),

where
h* = —Z(z[B, Z,) "' Z{g(xY),

vk = —WR™TVTf (x*+h*).

Proof: (In order to simplify notation, the “k” superscripts and subscripts will be dropped. If an
argument is unspecified, it is assumed to be x. In addition, 7, and I; denote I,(X,0) and I;(x,0),
respectively.)

(a)  Consider changes in D,.

By Taylor’s theorem

O, (x+h+v) = ®(x) + gT[h+v] + —;—[h +vIV2D R +v] + o(ll B+ || . (5.3.3)

Recall

GL(x) = V®y(x) — TN, Vfi(x)

isl,

Thus

h=—-227G,2)"'ZT¢g + ZEZ"g (5.3.9)

where

E=Z7G,z)' —(Z"BZ)™\.
Notice that
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g =AM + Zw, (5.3.5)
for some we R" ™. Hence by (5.3.3)-(5.3.5)

O(x+h+v) — Oyx) = —gTZ2(Z7G,Z2)"'Z2Tg + 24Ty (5.3.6)
+ —é—hTVZQ)lh + —;-vTv%plv + KTV 2Dy

+o(llh+v||®) + gTZEZTg

But

ATy = —f (x+h), (5.3.7)
where f4 = (-~ f; -~ )&, . Since VfTh = 0, iely, it follows that

Fie+h) = Fi(x) + %hTVZf,-h +o(llnll® (5.3.8)
Therefore, by (5.3.7) and (5.3.8)

ATATY = = S0y + 2hTVFh) + o(llA 11

iel,

Hence (5.3.6) can be written

Qi(x+h+v) — @y(x) = —g72(Z27G,Z2)"'Z7g + —;—hT(Vzdﬁ D WAL (5.3.9)

iel,

~ A0S+ —;-vTvzcblv + KTV2D

igl,
+o(lla+vl|D +o(llhl|? + gTZEZTg
But, by the definition of G,

RT(V2D,— Y MV )h = hTGh

iel,

[—gTZ(zTBZ)—lzT+gTZETzT]GL [—Z(ZTBZ)‘lzTg+ZEzTg]

= g772(Z7G,2)"'2Tg — 2gTZEZTg

+ ¢gTZEZTG,ZEZTg

using (5.3.4). Substituting this expression into (5.3.9) results in
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D(x+h+v) — Py(x) = —%gTZ(ZTGLZ)"IZTg (5.3.10)

— YA+ —;—vTVZ(Dlv + WTVD,

iel,
+ e(x),
where
e(x) = o(|lh+v 12 + o(l| k I1?) — gT2EZTg + %gTZEZTGLZEZTg.
(b)  Consider changes in f,-, iely.
By Taylor’s theorem
filx+h+v) — fi(x) = Vf;Tv + —;—thzf,-h + %vTv2f‘,.v (5.3.11)
+ TV v + o(llh+v || D).
But A7v = —f,(x+h), and for each iel,,
—_ _ 1 _
filx+h) = fi(x) + EhTVZfih + o(ll R 1l%;
Vv = =) = ShTVFh + o(llh 1%,
and thus using (5.3.11),
filx+h+v) — fi(x) = —fi(x) + %vTvzf,-v + BTV (5.3.12)

+ o(llh+v{]?.
Case 1. (fi(x+h+v) =0, f;(x) <0)
Then,
min(0,f;(x)) — min(0.f;(x +h+v)) = fi(x), iely,
| fitx+h+v)| = | fix)| = filx+h+v) — (—fi(x))

- %vTVZfiv + BTV + Fix)
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+o(llh+vl|?), iel.
Case 2. (fi(x+h+v) <0, f,(x) <0)

Then, using (5.3.12),
min(0,f;(x)) — min(0,f;(x +h+v)) = fi(x) — —;—vTVZfiv — hTV
+o(llh+v |2, iely

[fix+h+0)| = 1/ix)| = = filx +h+v) — (=fi(x))

- — %vTvzﬁv — W7V + fi(x)

+o(llh+v||?), iely.
Case 3. (fi(x+h+v) =0, fi(x) = 0)
Then,
min(0,f;(x)) — min(0.f;(x +h+v)) = 0, iel,
| fix+h+v)| — | fix)| = filx +h+v) — fi(x)
=+ %vTvzﬁv + hTV2fv — fi(x)
+o(llh+v|l?), iely.
Case 4. (fi(x+h+v) <0, fi(x) =0)
Then, using (5.3.12),
min(0.f(x)) — min(0.F,(x +h +v)) = — %vTVZf,-v — KTV
+ o(llh+v ||, iely.
[ fix+h+v)| — | fix)| = = filx+h+v) — fi(x)
= — %vTVZf_,.v — hTVfv — fi(x)

+o({lh+v I, ielyg.

Using cases 1-4

(5.3.13)
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S Ufix+h+v) | = 3 1 fix) |+ X min(0.f:(x)— X, min(0.f;(x +h+v)) (5.3.14)

iel,p el iely iely

=0T+ S STV + SRV |+ o(ll kv 1Y),

iel, iel,

where

1 Lif fi(x) <Oandiely | YLy = I,
n = 1—1 ,if fi(x) = 0andiel
0 ,if fi(x) = 0andiely

(c) Consider changes in ].
We now combine parts (a) and (b) to obtain
O(x+h+v) — B(x) < ——;—gTZ(ZTGLZ)_IZTg + M—NTf,

+ %lvTVZCDIvI + ATV | + %Z 1vTV2Fy |

iel,
+ S IATV v | + e(x).
iel,
But
v=—WRTVTf, (x+h)
= —WR™TyT l:f_A +%q] + o(ll A 113,

where g = (- - KTV b - - - )iel,. Define

H, = VdWR VT, H, = VR™'WTH,,
H, = V3, WR™TvT and
H;, = VR'WTH,, icl,.

Thus

VIV = F4 ) W) + £ Hag + o(llh 11

where w(x) = H, [fA +q(x)]. But g"H,q = O(|| h*||), and hence by (5.3.16)

(5.3.15)

(5.3.16)
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%lva%blvl = =S 17| 1w + ol (5.3.17)

iel,

1
2
Similarly, we can define vectors

w(x) = I;j [f_A +q(x)], jel . Ifweletiy; = 3 | u/(x)], for iel,, we obtain
Jjely

SE IV = 2 E @I E©] + o4 117 (5.3.18)

2 igly iely

Consider now the terms h7 V2®,v, hTVf,v, iel,. Following lines similar to that used above, it

can be shown

a7V | < T 1) | 1y +o(llA]]D (5.3.19)
iel,
and
YTV v = T1A@THE)] + ol R 2. (5.3.20)
icl, iel,
where y7 = hTH|, s/ = hTH;, 5, = ¥ |s{(x)|, for jel,. Now, define
iely

a() = 1w + 2 1E] + 5@ ]+ 1yl

1
2
By (5.3.14), (5.3.17)«(5.3.20) (and noting that X is a strict second-order point of ®, so for A; suffi-

ciently small (0, —X)f; = — |&,—n; | [ f; ])
Dx+h+v) — Dx) < -——;—gTZ(ZTGLZ)_IZTg (5.3.21)

+ X a1 fix) ] + e(x)

iel,
By assumption (ii), for A, sufficiently small there exists a positive constant &, such that
T T —15T 2
g'Z(Z°G Z) 'Z gaTI
2

1Z7g (I (5.3.22)
Moreover, by assumption (ii), A;—1; # 0 and ¢;(x) — 0 as x — ¥ ( by assumption (iv) and con-

tinuity of ¢; ). Therefore for A, sufficiently small, and for some &; > 0,

D(x+h+v) — ®x) = =81 Z7¢ 13 + I fall ) + e(®). (5.3.23)

Consider,
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e(x) =o(llk+vll® + o(llr|l? — g"ZEZ"g

+ g"ZEZTG,ZEZ g
But

Wa+vili=1lallZ+ llvI]

=LlZ7gl13 + Ll fall3, Ly >0, L, > 0.
(Since R™1, (ZTBZ)™!, and Z are bounded on Q.)

Therefore by (2), for A, A, sufficiently small,

e(e) = 28N 27813 + 117411, (5.3.24)

Hence, if 6 = %81, by (5.3.23) and (5.3.24),

Dx+h+v) — Dx) = =81 Z7g 13 + I fally).
|

Theorem 5.1 We assume that
(1)  the functions f;, ielx | I;n are twice continuously differentiable
(2)  {x*} is generated by the Algorithm 1 starting from an arbitrary initial point, and {x*}eQ, Q
is compact,
(3)  the number of stationary points of ® in Q is finite,
(4)  all first-order points of @ in Q are strict second-order points of D,
(5)  if the vectors V.f;(x*), iel (x* &) are linearly dependent in a neighborhood of a degenerate
minimum then there is k > K, such that
(a) active functions are identified,
(b) rank of 4; does not change and
rank(4(x*)) = rank(4(x)),
(c) W(x), Z(x), R(x),V(x) and S(x) are continuous functions of x,

(d) there is a positive constant bg such that || R™!|| =< by,
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(e) f4& Range space(AT),
(6)  the line search condition (v) is satisfied,
7 if {xk‘ } is a subsequence and x is a first-order point such that

ki X, and IA(xk",sk) = 1,(x,0),

then the second-order information is approximated so that

ZiBZy, - ZT( Y o Vi® + Y o VHFE - Y MVI(E)NZ

ielz(%,0) el (5,0 iel,(%,0)

Then, for all § sufficiently small,
) & 40,
(i) x* - xeS,
(iii)  for k sufficiently large, the asymptotic (Newton) step is executed.
Proof: Part 1 [If Z7g(x*)#0 then —ZI(ZTB,Z:) 'g(x*) (=h*) is a descent direction for ®, at

x*.] The first-order change in ®(x ,€) in an arbitrary direction p is

AD(x,e) = a|gTp + Y ‘Vf—iTp | — > min(O,Vf—iTp) .

ielp(x,8) iely(x,€)

But when p =h* the first-order change is just

AD(x,8) = —og(x*)"Z{(Z{B, Z;) 'g(x*) < 0,

and moreover

D(x +ahk ) = D(x,e) — ag(x*)TZH(ZIB.Z,) 'g(x*) + o(w).

Hence for all a sufficiently small
O(x +akkg) < D(x,8).
Part 2 [If || AA—g || #0, where A is obtained from the (BLS) subproblem, then p=AA—g
is a descent direction for ®.]
The above result is established in Theorem 4.1.
Part 3 [There exist positive scalars A, & such that [||x*—%|| <A, xeS, and

Ly(x*,8)=1,(X,0) implies that
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@ N7l =114EF01—g) |l #0, and
()  A*eA— g U e A—g(x*) =" p* =38,
Since | S| is finite it is clear that there exists a positive scalar & such that if ¥ is any
member of S then || A(X,0A—g@ Il =7l =&
Let us consider the following problem
min{nize AL—2)T(AL—7)
on a compact set
Q(x)=R"X[—1, +1]'X[0, +1]°,
where I=|L,(x,00 N Ig| and s= | L,(x,0) N I;n |.
By Theorem 2.3.2 in Fiacco [16], pp. 25-26, there exists a positive constant A such that for
every x satisfying || x —X || <A the solution to the above problem changes differentiably.

Now, it follows that if || x*—% || <A, XS5, and I,(x*,e;)=1,(%,0) then

(G 80— ()T (A 88 () = (1) () > 3=3,

Part 4 [For all k sufficiently large the degenerate dropping step is not executed.]

Rather then considering a subsequence let us assume (without loss of generality) that the
dropping step is executed for all k. But Algorithm 1 requires that || p* || = (p*)"p*=§,, 5,>0,
and therefore by the line search assumption

O(x*,e)—D(x* +apk e)=7,8,
Now, we get that ®(x*) — — oo, which is contradictory.

Part 5 [If x%_,% then for k; sufficiently large, 1, (xk",sk,)gl 4(x,0).]

Suppose that I, (xk",ek,_)DI 4(x,0). We can assume (without loss of generality) that
Li(x e ) =L, g 4 )i =1,..,00.

(i) Suppose ZkT,_g(xk") —4 0. Then we can assume that AN = 0. Clearly —gTi{ >0,

where g =g(X).
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Let [_3= —ETh_ . By continuity, gk"__,g, where gki= g(xk").
Hence for k; sufficiently large “(hki)TgkIZ%B- By Part 4, k% is a descent direction for ® and

therefore, applying the line search condition,
D(x*6) —D(x* +ap*,0)=71(B/2)
It follows that CD(x" )——c0, a contradiction.

(ii) Suppose Z,CTig(xki) — 0. Since IA(xk",ski)g I4(x,0), it follows that for some j,
cj(xk")—,é 0. A consequence of this is that A —0. (Suppose A;—4 0. By Part 4, the asymptotic step
is attempted for all k sufficiently large. Since @ is bounded below and cj(xki)—# 0 it follows that for
k sufficiently large the asymptotic step is unsuccessfully attempted. This implies Ay —0 and g, —0.)
But g, —0, and i implies I (xk’,aki)_gIA (x,0).

Part 6 [The asymptotic step is successful for all k sufficiently large, €, —4 0, and x* —xeS.]

(i) Suppose g,—0. Then A,—0 and therefore ZkTig(xk") — 0 for some subsequence {xk‘}.
Then, for all k sufficiently large || Z7g(x*)|| >As. By Algorithm 1, it follows that A, is not
reduced, for all k sufficiently large, and thus A;—4 0. Therefore we have a convergent subsequence
x¥ % and ZkTig(xk') — 0. By Part 5, for k sufficiently large, I, (xk",skl_)g 1,(x,0). However, the
assumptions 5(a)-5(e) and ZkTig(xk') — 0, forces I, (xk’,ski)=1 1(x,0). Considering Parts 3 and 4, it
follows that for at least one subsequence {xk"}, xMxeS , and I, (xk",akl)=lA()?,0). By Lemma
5.1, for k sufficiently large, iterations k;+1, k;+2, ... will be asymptotic steps. It follows that
€4 0.

(ii) Suppose g;—4 0. Thus g, =&>>0, for k sufficiently large . By Part 5 it follows that there
exists a subsequence {xk‘}, such that x“—%, and I 4 (xk",sk',)=1 4(X,0). Using an argument identi-
cal to that used in Part 5(i), we can establish that x¢S. By Parts 3 and 4, %&S. By Lemma 5.1
and the boundedness of @, for k; sufficiently large, iterations k=k; +1, k; +2, ... are asymptotic

steps and x* _xeS. W
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5.3.3. Asymptotic 2-step superlinear convergence
As pointed out in Section 3.3, the asymptotic phase of Coleman and Conn’s algorithm can
be described as
Algorithm 2 (Asymptotic)
(0)  Select an x° sufficiently close to x* and set k — 1.
(1)  Determine the Lagrange multipliers {A}}.
(2) Update Z]B, Z, maintaining positive definiteness.

(3) Determine k* from

h* = —Z,(ZIB, Z,) g (x*).

(4) Determine v¥

ADE = fi(*+R%).
(5) Update:

xktExk + gk 4+ VK
go to (1).
Theoretically, it is not important how step (1) is performed as long as

IAF — A"l = o(llx* — x"l), k — oo, where g(x*) = 3 A VSfi(x"). If 4 is full rank,
iel (x",0)

the least-squares solution to

A = g(xb)

is used. Otherwise, the solution to the bounded Ieast squares problem

AR = g(x*)
Subject to —1=< ;\'i = +1 ) isIAE

0=k = +1, iely

is used.
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The result that the Algorithm 2 generates a sequence {x*}, which satisfies

Ix*T1=x"1
| x*~1=x" ||

will be established. First, the assumptions and the preliminary results will be given.
Assumptions
A [, ielg U I;n are twice continuously differentiable;
(B) the second-order sufficiency conditions are satisfied at x";
(C)  {x*} is generated by Algorithm 2, and {x*}eQ, where Q is a compact set;
(D) if the columns of A(x) = [+ Vf; - |, arc linearly dependent at x" then the follow-
ing assumptions hold for {x*}eQ:
(a) active functions are identified,
(b) rank of 4; does not change and rank(4(x*)) = rank(A4(x")),

(¢) W(x), Z(x), R(x), V(x) and S(x) are Lipschitz continuous functions of x ( recall

R(x) 0
that A(x) = [W(X) Z(x)] [o ’ 0] [SVg;;])

(d) there is a positive constant bg such that || R(x)7!|] < b,,

(e) f4& Range space(AT).
Following the work by Coleman and Conn [10], we will first establish that the null-space step h*, is
bounded by the distance between x* and x".
Lemma 5.2 Under assumptions (A)-(D) and assuming that there exist scalars b,, b, (0<<b,;=<b,)
such that

billy 12 = yT(Z{BcZi)y = byl y |12 all k; all yeSpan(Zy) (5.4.1)
then there exists an L; > 0 such that

Na* )l < Ll x*—x"|I.
Proof: See [10]. W
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A similar bound exists for the range-space component v*.

Lemma 5.3 Under assumptions (A)<(D) and (5.4.1), there exists L, > 0 such that

v 1l < Lyl x*—x"|I.

Proof: For the nondegenerate case see [10]. In the degenerate case, we compute v* as

vk = —w, R7TVIS, (xk+hk). (5.4.2)
But

[ix*+1*) = f;(x%) + o(ll k* 112), iel, (5.4.3)
and thus

IV 1l = Iw LITRETINVEN N £4G5) T+ ol B (1 3. (5.4.9)

Using Lipschitz continuity of f; and the boundedness of || R |, the result follows. M
Lemma 5.4 Under the assumptions of Lemmas 5.2 and 5.3, there exists an L; > 0 such that

Ix "' —=x" || = Lyl x*—x"||.
Proof: Recalling that x**1 = x* + p* + vk the proof follows directly from Lemmas 5.3 and
54 m
The columns of (4;,Z;) span R”, and therefore we can write

xk — x* = 4wk + Zuk. (5.4.5)
When the columns of 4; are linearly dependent w* is not unique and in that case we think of it as
the minimum-/,-norm least-squares solution to

Akw" = xk — x".

Using this representation of x* — x", the following lemma can be easily established.

Lemma 5.5 Under assumptions (A)-(D) and (5.4.1), if

L w 1] [ uk 1)
0 and —m——— 0
Ixk—x"1I | xk1=x" || —
k+1__ _*
then Il x x|l — 0.

[Ea
*

Proof: From the representation for x¥ — x*,
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xk — x* = 4wk + Zuk, (5.4.6)
we get
Waxkti—x*|] N Agew* ' — Zp | (5.4.7)
k—1_ _* o k—1_ _* o
|| x x| | x x|
_ | Wi s 1R 1 VEL w* Tt — Zp |
X~ =x™|
k+1 k+1
wk 1| ur
< W Il R N VE 22y, L Tl
[ =x" | Ix*=t=x" ||
But
Ix*—x"|| <= L;[|x*"'=x"||,L; >0 (5.4.8)
or
__Fl_* = L3——'k—l'—,"—, (5.4.9)
[| x*=1—x"|| | x*—x" |
and that implies
k+1__* k+1
x* T —x w
A 2 L W 1 R 11V 1 Lol (5.4.10)
[x*"1=x"| [1x*—x"f
K+
+ 1 Zg Il
R
From the assumption (D) and Lemma 5.4
N e N R I 1V I Ly < L
and
N Zei Il = Ls,
where, L, and Ls are positive constants. So
[ x*—x" i Lw k]
— 5 =L, r + L — ; (5.4.11)
Il x*t=x" || Il x*—x" 1| [ x*1—x"||
and consequently
Ix*" ="l

-
I x*~1—x" ||
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Lemma 5.5 allows us to prove 2-step superlinear convergence by showing separately that

[Lw** ] I u**1 )
- — 0 and ————F— 0.
lxk =l I x* =" ]

(5.4.12)

Theorem 5.2 Under the assumptions of Lemmas 5.2 and 5.3, and assuming that x* — x*, k — oo,

then

Wk

Hx*—x" ||

Proof: If A4 is full rank see [10] pp. 129-130. Otherwise, from the Algorithm 2

—0

k= xk + 0k + gt
= x* — W R TVIf4(x* + h*) + h*
= x* = WiRTVif4(x*) + b* + yF,

where || y* || = o(]| #* || ?). But for each il

fi(x®) = VAEHT* — x5,

where £f = x* + 0f(x* — x"),0 <0} < 1.

(5.4.13)
(5.4.14)

(5.4.15)

(5.4.16)

Thus if we define matrices Ay = (- - Vf;(E5) - - )ier,, and E; = (A, — A4;), then (5.4.15)

becomes

K= 3k — W RTTVIAI(x* — x7) — Wi RTTVIET(xF — x7) + F + pF,

but Ay = Wi R, VT, so (5.4.17) becomes

k= xk — W wlx* — x7) — W RTTVIE[(* — x7) + B* + )k,

Using (5.4.18) and then multiplying by W/, we obtain

Wlxkt! — x*y = =R TVIET(x* — x*) + wiy*.

Adding W7, (x*T1 — x") to both sides of (5.4.19) yields

Wi (x*T1=x") = =RFTVIE[(x* —x") + Wiy = W) (T =x") + Wiy,
and thus, using (5.4.5), we obtain

RirView* ™! = =R TVIE[* —xT) + (Wi = W) T (* T =)+ Wiy*,

or

(5.4.17)

(5.4.18)

(5.4.19)

(5.4.20)

(5.4.21)
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W — W G REH [—ROTVIER G, =)+ (Wi = W) (F T —x )+ Wik (5.422)
But ||y*{| = O(ll#*||?), and therefore using Lemma 5.2, assumption (D) and compactness,
there exists an Lg > 0 such that

| Vi i REGWIYE | < Ll x*—x" || 2 (5.4.23)
Using Lipschitz continuity of Vf;, iel, and assumption (D) we know that there exists Y > 0 such

that

I Werr=Wi ll < yllxFri—xk||
s yllxd=x"] + yllx*=x"1l.

Now, from Lemmas 5.2, 5.3 and 5.4 it follows that

Vit RGN N Fai = WOTHF T =) || = Ly |l xF—x" |13, (5.4.24)
for some L; > 0. Therefore
W Ul = Ve EHRG T NRETI VTN WET N 1| x* =" | (5.4.25)
+ (Le + Lyl x*—x" |2
But by the definition of E; and the convergence assumption || Ex || — 0, K — oo, and therefore

the result follows. M

Theorem 5.3 Under the assumptions of Theorem 5.2, and assuming that

Z(x*)TB(xM)Z(x*) - Z(x")TGL(x" A)Z(x"),

then

Lu* "I

[ x*=t=x" ]

Proof: See [10] pp. 130-132. B

— 0.

Theorem 5.4 Under the assumptions (A)-(D) and
(i) x* o x*, k — oo,
(ii)  there exist scalars b,, b, (0<b,=<b,) such that

billy 1> = yT(ZIBZy)y =< bylly ||? all k; all yeSpan(Zy)
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then

[|x**+1=x"||
TTT—————— e —
|| x* =1 —x" ||

Proof: It follows directly from Lemma 5.5 and Theorems 5.2 and 5.3. B

0.

Finally, the local convergence of Algorithm 2 can be established. That is, provided x~ is sufficiently

close to x*, then x* — x™.
Lemma 5.6 Suppose that x! and x? are generated by Algorithm 2 with starting vector x° Under

assumptions (A)-(D), if x° is sufficiently close to x*, it follows that

1 *
lapw? Il = 2 11x® = 2" I

Proof: If A4 is full rank see [10] p. 132. Otherwise, by (5.4.25)
4wl = w0l IR, VT I [IIVzII R WHRITH NPT I NET I 1 x —(54.16)

T Lyt L)l x" — X II2].

Now, using Lemma 5.4, we have , for x° sufficiently close to x*

1 *
Ll = 1150 = %"l
|
Lemma 5.7 Under assumptions (A)-(D) and assuming that

Z(xTB(xMZ(x*) — Z(x")TGL(x" ANZ(x"), as x¥ — x7,
then for x° Z(x%"B(x%Z(x% sufficiently close to x™, Z(x" )7 G, (x" A)Z(x"), respectively,

ha2ll = 5010 = %" 11
Proof: See [10] p. 133. 1
Theorem 5.5 Under the assumptions of Lemma 5.6 and 5.7, then for x% Z(x%)TB(x%Z (x°) suffi-
ciently close to x*, Z(x")T G, (x" X")Z(x"), respectively,
xk —_— x*,

where {x*} is generated by Algorithm 2.
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Proof: By Lemmas 5.6 and 5.7 and (5.4.5), |[x? — x"|| = —;—leo — x"||. It follows that

2k 2k+1

x?* _, x*. But, by Lemma 5.4 x — x", and therefore x* — x*. W
This completes the proof of the 2-step superlinear convergence of the extended Bartels/Conn algo-

rithm for nonlinear /, optimization.



CHAPTER 6

Degeneracy and the Murray/Overton algorithm

Murray and Overton [30] consider the following unconstrained nonlinear /; problem:

miné'g"tlize D(x) = i [ fi )1, (UNLL1))

i=1

where f;:R" -R! are twice continuously differentiable.

They transform (UNLLI) into the nonlinearly constrained optimization problem

m
minimize Y u; (ELP)
xeR", ueR™ ;
subject to ¢{(x,u) = 0,ie{l,---,m};08{—1, +1}

where ¢®(x,u) = u; — ofi(x).

Notice that the new problem has m more variables. For that reason they do not use the general non-
linear optimization algorithm to solve (ELP) but exploit its special structure and reduce it to a prob-
lem with n variables. Also, they point out that an important feature of transforming (UNLL1) into
(ELP) is the fact that the /; function ®, is a natural merit function for (ELP). Notice that in this
unconstrained /; case, the exact penalty function ® used by Bartels and Conn [1] is just p®,; (see
(5.1.2)).
Basically, the method of Murray and Overton [30] for solving (UNLL1) consists of
1) obtaining a direction of descent from a local quadratic model based on a projected Lagran-
gian algorithm for (ELP), and
2) taking a step along the given direction which reduces the natural merit function @,. The

multiplier estimates, used to form the Lagrangian function, are obtained as the solution to

min{cmize HArc + gl 3 6.1)

-77-
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It is interesting to point out that Murray and Overton also make use of the second-order multiplier

estimates:

min}f';nize | AAp — (g + B(R+V)) || % (6.2)
The second-order multiplier estimates are used to ensure that the accuracy with which the minimum
on the manifold has been approximated, and the accuracy of the multiplier estimates, are suffi-
ciently high compared to the uncertainty of the signs of multipliers.

The first-order estimates are‘ used to define the Hessian of the Lagrangian function in a
rather unusual way. Based on the fact that an active function for which the corresponding multiplier
is out of bounds will not necessarily be deleted from the active set, Murray and Overton decide to
use the following multipliers

-1 Life) < —1

AM=1 +1 Lif (), > +1 (6.3)

(A¢); , otherwise.

This chopped off version of the Lagrange multipliers is used to form an approximation to the Hes-
sian of Lagrangian. It is worth noting that our method of handling degeneracy at a stationary point

by solving

mim‘}:m‘ze AL — g || 3 6.4

subject to —1 =\ < +1, ielye

OS;\.,S“I‘]., iEIAI

obtains the Lagrange multipliers A;’s in corresponding bounds, too, but now we have a guaranteed
direction of descent if the residual is nonzero. We have not been able to see how to generalize the
above-mentioned change in the local quadratic model in order to cope with degeneracy.

Another interesting feature of the Murray/Overton algorithm is the fact that the range-
space component of the asymptotic phase is used to assess whether too many functions are active.

The theorem that they state in this regard is given here according to our notation:
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Theorem 6.1 Assume 4 has full rank and let v be defined as the solution of minimum-/,-norm to

ATV = _fA' (61)
If gfv — Y Ifil >0, then for some i either f; >0 and A, > +1, or f; <0 and

iely
A< —1,iely,.

Their interpretation of the above situation is that too many functions have been selected to
be active and are being forced to be approximately zero, thus forcing the inactive functions to
increase in modulus more than the active ones are decreasing. We have tried a similar idea, but the
results have been unimpressive. It seems, by observation, that the conditions of the theorem 6.1 are
only satisfied far from a stationary point, so the test does not help us very often.

Although an active function, let us say the i, corresponding to a multiplier out of bounds
can be removed from the set of active functions in the same way as in the Bartels/Conn algorithm,
Murray and Overton try to use second order information to delete the active function. To explain
their approach, let us define 4 with 4 the column a; deleted, and Z by

ATZ =0,ZTZ =1,Z = [Z z]. (6.6)
They first try computing the Newton step, defined by

p1= —Z(Z"BZ)"'Z7(g + sign(hc)if), (6.7)
where the i** active function will be deleted. If the direction p, yields a descent, it will be taken as

a search direction. Otherwise, they use p,, where

_ ;[-@"B2)127(¢ + signGc)isd
P2TZ T 4 signGo) | 68

They motivate the use of p, by pointing out that it combines the Newton step in the null space of
the previous active function Jacobian with the steepest descent step in the new direction made avail-
able by moving off an active function. The steepest descent component is justified by necessity to
ensure the first order feasibility for (ELP), and use is made of a Newton component in hopes of giv-

ing a larger reduction in the merit function ;.
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The k™ step of Murray/Overton algorithm is summarized as follows:
Algorithm  (Murray/Overton)
{Select any x&R", &,y and other tolerances}
repeat
{Identify I}

{Form g; compute the Lagrange multipliers}
{Obtain the decomposition 4 = [W Z] [Ig ] }

{Form ZTBZ}
{Obtain the decomposition ZTBZ + E = LDLT for a “small” diagonal matrix E }
if {(2.3.11) and (2.3.12) are approximately satisfied }
then
/* Asymptotic phase */
{RTvy = —f,, and setv = Wiy}
{(LDL"Yh; = —ZT(g + Bv),and set h = Zh,}
if {sufficient decrease in ®, expected by g7h < 0}
then
go to ALPHA
else
go to QP2
/* Global phase */
DROP:
{Find p that deletes a term from the active set}

go to ALPHA
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{Find the normal descent direction p }

QP2:

p=—ZWUDL") 'Z7g

ALPHA:

{Find a}

x—x+ op

until {termination test satisfied or ®,(x) does not decrease}
The matrix E in the above algorithm is zero if the LDLT (Cholesky) decomposition of Z7BZ exists,
i.e. if ZTBZ is numerically positive definitive. If this is not the case, E is chosen to be a diagonal
matrix with diagonal elements large enough to ensure that L and D will exist. See [19] for further
discussion of this method of modified Cholesky decomposition.

Although it looks as if the Murray/Overton algorithm deviates from our framework by per-
forming a line search after the asymptotic phase, their line search algorithm always attempts a step
size of one (i.e. o = 1), and consequently we get the same outcome. The algorithm has an ela-
borate section to test whether the first-order optimality conditions are approximately satisfied. For
ease of discussion we shall state the complete Murray/Overton algorithm in a step-by-step fashion
(as done in the original paper) and then point out what might be done in order to handle the degen-
eracy.

Algorithm (Murray/Overton) Step by step

1. [Select active set.] Form f4, 4. Let g = Y o;Vf;, where
igl,

~1 Liffi) <0
S = 1+1 ,iffix)=0 »¥a

2. [OR decomposition.] Obtain 4 = [W Z] [Ig}

3. [First-order multiplier estimate and one direction of search direction.]

Solve



10.

-82-

R}\'C = _WTg and RTVW == _fA’

and set v = Wyy.

[Projected Hessian.] Form Z7BZ, where B is given by

B = Z)‘ivzfi + Zoivzfia

igiy ig/ly

where

-1 LifQAe) < —1
A = +1 Lif (Ac); > +1
(A¢); , otherwise.

[Modified Cholesky decomposition.] Obtain Z7BZ + E = LDLT for a “small” diagonal
matrix E.
[Termination criteria.] If |} f4 ||, and || Z7g ||, are greater than prescribed tolerances then
go to Step 7.
Otherwise:
—if |[Ac| <1 and E = 0 (ZTBZ numerically positive definite) then STOP — x
satisfies the convergence criteria.
—if max | (A¢c); | > 1 then go to Step 13.
—if max|(Ac);| = 1 then optionally try the zero-multiplier procedure (see [18]).
—if E # 0 then optionally try the saddle-point procedure (see [29] and [17]).
[Other component of the search direction.] If E # 0 then go to Step 12. Otherwise solve

(LDLT)hy; = —ZT(g + Bv), and set h = Zh,

[Second-order multiplier estimates.] Solve RAy = —W7T(g + B(h+v)).
[Check whether too many functions are active.] If g7v — YIS | > 0 then go to Step 13.
icl,
[Check  multiplier estimates.] Let o)l = mcllxl(lc)i| and let
iel,

pr = max(| )i |, 1w ) — 1 and py = ([1Z7g 1l + /4 ll/(0 + Dy/m).  If

p2 < min(1,p;) and 2| (Ac); — (Aw); | < p; then go to Step 13.
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[Direction of search.] If g7h < 0 thenset p = v + h and go to Step 14.

[Alternative direction of search.] Solve (LDLT)h; = —ZTg and set p = Zh,. Go to Step
14.

[Delete a term from the active set.] Delete f; from the active set, where

o)l = max | (A¢); |, and compute the direction of search p by (6.7) or (6.8).
iel,

[Line search.] Replace x by x + ap, where o is obtained from the line-search algorithm

[28].

6.1. Extended Murray/Overton algorithm

In order to handle degeneracy in the Murray/Overton algorithm we would propose trying

the same modifications that we applied to the Bartels/Conn algorithm. The following steps would be

changed in the presence of degeneracy:

2.

3.

4.

[QRPT decomposition.] Obtain

R(x% 0 KT
AR = [W(xk) Z(x")] [O x 0] [gg";T}

[First-order multiplier estimate and one direction of the search direction.] Solve

min{cmize Hare — gl 2 (6.9)

subject to —1 =< (Ac); = +1, iely,

and,
RTVW = "‘VTfA(Xk),
and set v = Wvy,.

[Projected Hessian.] Form Z7BZ, where B is given by

B = inVZfi + Zcivzfi,

igiq ig/l,

and where the A;’s are obtained from (6.9).
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6’.  [Termination criteria.] If || f, ||, and || Z7g ||, are greater than prescribed tolerances, then
go to Step 7.
Otherwise:
—if |Ac| < 1and E = 0 (ZTBZ is numerically positive definite) and
l4rc —gli3 =0
then STOP — x satisfies the convergence criteria.
—if || A4A¢ — g || 2 # 0 then go to Step 13.
8., 9., 10.
Should be dispensed with.
13°.  [Descent from a degenerate stationary point.] p = AAs — g is a descent direction.

We have not tested these proposals computationally, nor have we investigated them theoretically.



CHAPTER 7

Numerical results

An experimental code, called CNLLI, has been implemented based on the ideas given in
Chapter 5. The main body of the code resembles the code for nondegenerate /, problems by Bartels
and Conn [1]. As pointed out in the Chapter 4, the (BLS) subproblem is currently solved by a modi-
fied NNLS algorithm (see Lawson and Hanson {23]). The code for the complete orthogonal decom-
position is taken from the same source. Finally, the line search algorithm is obtained from Murray
and Overton [28].

So far, not all of the requirements necessary for the convergence proofs have been imple-
mented. The most important missing ingredients are the continuously varying Z , R and V matrices

from the orthogonal decomposition of 4

R(x) O
A(x) = [W(x) Z(x)] [0 g 0] [g‘/gz;;]

The code from Lawson and Hanson [23] uses the standard Housholder transformations and, as
shown in the work by Coleman and Sorenson [7], those orthogonal transformations do not neces-
sarily give continuous changes even in the case of full-rank 4. Some ways to make an orthogonal
decomposition a continuous function of x were suggested by Coleman and Sorenson [7]. It is
important to point out that, based on the following assumptions:

(a)  f;’s are twice continuously differentiable, and

(b) A does not change rank in some neighborhood of x",

we can expect that there is a neighborhood of x* such that the column ordering of 4, induced by
the column norms of 4 as used in Lawson and Hanson [23] will not change. So we can apply the
results from Coleman and Sorenson [7] for the transformations comprising W and Z to get a con-

tinuous orthogonal decomposition

- 85-
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PAQ = [W Z] [g],
where T is upper trapezoidal. The continuity of these transformations should imply an unchanging
row ordering of T, from which the suggestions of Coleman and Sorenson [7] are applicable again to
the transformations which produce ¥V and S.

Also, as shown in section 4.3, the minimum-/,-norm A is not found. The code uses modified
Lawson and Hanson [23] NNLS (nonnegative least squares) subroutine which tries to keep as many
A;’s at their bounds as it can.

In spite of not enforcing the above theoretical assumptions, we have not encountered any
troubles as a result in solving test problems. For that reason the implementation of a complete
orthogonal decomposition which maintains continuity of Z, R and V and finding the minimum-/,-
norm A have been left for some future date.

The code has been tested on some well known problems compiled in Moré et al. [26], and
given by El-Attar et al. [14]. Although the problems from Moré et al. [26] have originally been
used mainly for testing /, methods, they are quite interesting for testing /; problems, too. Note,
however, that the /5, minimizer and minimum values reported in the literature will often differ from
the /| minimizer and minimum.

For each of the test problems the name, the initial point, the minimizer obtained by our

code, and the minimum value of the /, function are listed below.

EL-ATTAR 5.1
xX= (1,1
x" = (2.8425033e00, 1.9201751e00)

m
3 1 fi(x")y| = 4.7042427¢-01
i=1

EL-ATTAR 5.2

xX= (0,11

*

x = (5.3606100e-1, 0.0, 3.1929055¢-02)
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3 1fi(x")| = 7.8942270e00
i=1
EL-ATTAR 6.1

x°=(,2,7,0,-2, 1)

*

x = (2.2407476¢00, 1.8576930e00, 6.7700487e00 -1.6448982¢00, 1.6589113e-01,

7.4228294¢-01)

m
3 1f:(x")] = 5.5981421e-01
=1

EL-ATTAR 6.2(I)

x% = (1.7060000e-01, 1.7578000€00, 0.0, 9.5370000e-01, 0.0)

x* = (0.0, 8.5628785¢00, 2.9312344¢01, 2.4737458¢01, 1.2228476€01)

m
3 [ fi(x")] = 7.0718168¢-02
i=1

MURRAY/OVERTON 1 (BARD)
= (1,1,1)

x* = (1.0093749¢-01, 1.5251270¢00, 1.9721407¢00)

3 1 fi(x")| = 1.2434061¢-01
i=1

MURRAY/OVERTON 3 (MADSEN)
xX0= (3,1

x* = (0.0, -2.0497181¢-03)
i »
Y 1 f:(x")| = 1.0000021¢00
i=1
WOOD
x® = (3,-1,-3,-1)

= (,1,1,1)

f | fix™)] = 0.0
i=1
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POWELL
xo = (3’ '1, 0, 1)
x" = (5.5879354¢-09, -3.7252844e-10, 1.2501352¢-09, 1.7157965e-09)
<, *®
> | fi(x")| = 2.9039014e-09
i1

ROSENBROCK

x0 = (1.2, 1.0)

*

x* = (9.9999949¢-01, 9.9999899¢-01)
m »

3 | fi(x")| = 5.0664205¢-07

i=1

WATSON

x® = (0,0,0,0)

*

x* = (-4.4271325¢-01, 1193208000, -4.7676029¢-01, 3.8448579¢-01)
3 1fi(x")| = 6.0185842¢-01
i=1

HELIX

XO

('ls 09 0)

*

x* = (1.0000001e+00, 2.933120de-11, 4.2632564¢-14)
3 1fi(x™)| = 4.6643683¢-10
i=1
MARTENSON
x® = (-1.2, 1.0, 1.0)
x* = (-1.3629154¢00, 2.8358438¢00, 3.8859299¢00)
m x
3 1f:(x")| = 2.0052319¢01
i=1

LRNKLS

x0 = (-1.2, 1.0, 1.0)

*

X

(-3.2099085¢-1, 2.6749238e-01, 1.0837855¢00)
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m
Y | fi(x")] = 3.6899270e-06
i=1

BIGGS-EXP5
xXX= (1,111

»

x* = (6.1882386¢-01, 1.0397100€01, 5.8688609¢-01, 4.6106889¢00, 3.3088040¢00)
ud *

3 1 fi(x")| = 3.1531560e-04

i=1

BIGGS-EXP6

= (1,1,1,1,1)
Failure.

POLYNOMIAL CURVE FITTING

x® = (-0.1, 0.1, 0.0, 0.0, 0.1)

x* = (1.0000000€00, -2.0833333¢00, 1.4583333€00, -4.1666665¢-01, 4.1666664¢-01)
m *

3 fi(x")| = 2.3376197¢-07

i=1

BOX-3
x% = (0.1, 0.1, 1.0)

*

x* = (-2.6958381e-01, -2.6958383e-01, -2.4883775¢-08)
m *
3 1fi(x")] = 1.3479876e-07
i=]
BOX-2
x® = (-0.1,0.1)
x* = (1.0000000€00, 9.9999754¢00)
m *
3 I fi(x")| = 1.4104855¢-09
i=1
BROWN & DENNIS
x0 = (25,5,-5,-1)

x* = (-1.0223572e+01, 1.1908427e+01, -4.5804122¢-01, 5.8031970e-01)
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m
3 I fi(x™)| = 9.0323431e+02

i=1
CRAGG & LEVY
0

x=1(,222

*

X

(-6.5421164e-03, 9.9357426e-01, 1.0021038¢-+01, 1.0000000¢00)

3 fi(x")] = 1.0642390¢-05

i=1
BEALE

x0= (1, 1)

*
X

(2.9999955e+00, 4.9999931¢-01)

m
3 I fi(x")| = 3.6954880e-06

i=1
BRANIN

x°= (2,0

*

X

(-6.9075031¢-07, 6.9080852¢-07)

Y I fi(x") | = 4.1446806¢-06

i=1
FREUDENSTEIN & ROTH
0

x% = (0.5, -2)

*
X

(6.4427691e+00, -8.9837897e-01)

I 1fi(x")] = 9.8979273e+00

i=1
JENNRICH & SIMPSON
0

x’ = (0.3, 0.4)

*

X

(2.5584278e-01, 2.5584280e-01)

3 1 fi(x")] = 3.2091946e+01

i=1
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KOWALIK & OSBORN
x% = (0.25, 0.39, 0.415, 0.39)
x* = (-3.8207465¢-01, -2.9640751e-02, 3.3936000¢-01, -1.6528348¢ +00)

m
3 | fi(x")] = 6.7670248¢-02
i=1

OSBORN (FIRST)

x% = (0.5, 1.5,-1.0, 0.01, 0.02)

*
X ==

(1.0671568¢00, 1.8025689¢00, -1.8073120e00, 3.4459896¢-03, 1.0885496¢-03)

Y | fi(x")| = 8.2037266e-01
i=1
OSBORN (SECOND)

x% = (1.3, 0.65, 0.65, 0.7, 0.6, 3.0, 5.0, 7.0, 2.0, 4.5, 5.5)

Failure.

ENGVALL
x0 = (1,2,0)
x* = (2.9426883e-07, -2.8494105¢-07, 1.0000000e + 00)

Y I fi(x")] = 3.8743019¢-06
i=]

ZANGWILL (SECOND)
x® = (100, -1, 2.5)

*

x* = (-4.4703484¢-08, 4.2319298¢-06, 4.2027968¢-06)
m *

3 I fi(x")| = 8.5688371e-06

i=1

MARKET RESPONSE 1
x® = (-1.2, 1.0, 1.0)

*

x = (-2.2306226e-+02, -7.9779944¢00, -1.8429138¢e-01)

Y 1 fi(x")] = 4.3779707¢+01
i=1
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MARKET RESPONSE 2
x® = (-1.2, 1.0, 1.0)
Failure.

CHEMICAL REACTION
x% = (-1.2, 1.0, 1.0, 1.0)

*

X

(-7.8844978e00, 7.9498363¢01, -9.8983908¢00, 8.8180143¢00)

m
Y | fi(x")] = 5.2873616e+01

i=1

The numerical results are presented in Table 7.1. This table shows the problem name,
number of functions (m), number of variables (n), number of iterations (iter), number of function
evaluations (fun), number of gradient evaluations (grad), the success (S) or the failure (F) and the
column dimension of Z at the solution (dim(Z)). The letter D next to S or F indicates that the
degeneracy has been encountered. More specifically, DP indicates that a degenerate non-optimal
point has been encountered, and DO that a degenerate local optimizer has been found.

The computation was carried out on the Honeywell 6660 computer at the University of
Waterloo’s Mathematics Faculty Computing Facility. The algorithm stops when all of the following

conditions hold:

(1) —1=A=<+1, ielyg
0<Af= +1, iely, and
l4xf — g3 =< 8&machine(1+ || fia I) (=TOLO),
2 zfegx"l =107 lgll (=TOLY),

(3 N ="l = 1075 (=TOL2).

The tolerances have been the following: €,y = 0.1 and A = 0.1 f,4 || . No attempts have been
made to optimize the value of different tolerances in order to get a better performance. The goal

has been to explore how the (BBC) algorithm copes with degeneracy.
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Name m n iter fun grad S/F dim(Z)
EL-ATTAR 5.1 3 2 8 21 19 S 0
EL-ATTAR 5.2 6 3 5 10 6 S 2
EL-ATTAR 6.1 51 6 | 28 88 85 SDP 0
EL-ATTAR 6.2(1) 51 5 17 58 55 SDP 0
M/O 1 (BARD) 15 3 13 29 26 SDO 0
M/O 3 (MADSEN) 3 2 13 20 15 S 0
WOOD 7 4 | 25 45 45 SDO 0
POWELL 4 4 3 9 9 SDO 2
ROSENBROCK 2 2 | 51 103 103 S 0
WATSON 31 4 | 24 62 61 SDP 0
HELIX 3 3 11 31 31 S 0
MARTENSON 3 3 8 16 13 S 1
LRNKLS 3 3 5 13 12 SDO 2
BIGGS-EXP5 5 5 | 21 67 63 S 1
BIGGS-EXP6 6 6 F
POLYNOMIAL CURVE 5 5 5 11 10 S 0

FITTING

BOX-3 3 3 9 19 18 SDO 1
BOX-2 2 2 17 41 35 S 0
BROWN & DENNIS 20 4 2 9 9 S 4
CRAGG & LEVY 5 4 15 36 36 SDO 0
BEALE 3 2 8 17 17 SDO 0
BRANIN 2 2 7 11 11 S 0
FREUDENSTEIN & ROTH 2 2 8 12 12 S 1
JENNRICH & SIMPSON 10 2 12 33 32 S 1
KOWALIK & OSBORN 11 4 | 26 67 67 SDP 1
OSBORN (FIRST) 33 5 55 241 239 SDP 3
OSBORN (SECOND) 65 11 72 257 255 F

ENGVALL 5 3 10 19 19 SDO 0
ZANGWILL (SECOND) 3 15 35 33 S 0
MARKET RESPONSE 1 8 3 | 40 96 59 S 2
MARKET RESPONSE 2 8 3 F

CHEMICAL REACTION 37 4 | 79 208 198 SDP 1

Table 7.1 Numerical results
The results shows that the main goal has been achieved, i.e. the CNLL1 code has been able
to solve the degenerate problems from the set of the well known test problems. It is worth noticing
that the Bartels/Conn and Murray/Overton algorithms could not deal successfully with many of

these problems. Although three problems ended with failure, i.e they only exhibited a linear rate of
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convergence, a closer investigation showed that the projected Hessians for all three had negative
eigenvalues along the paths taken. Moreover, none of these problems was degenerate. The current
implementation of the (BBC) algorithm uses exact Hessians and makes no provision for indefinite-
ness.

In conclusion, we can say that the proposed way of handling degeneracy enabled us to
design and implement a more reliable algorithm for nonlinear /, optimization. Since a considerable
number of /; optimization problems exhibit some sort of degeneracy, as it can be seen even from the
above well-known test problems, it is the author’s belief that the proposed methods for handling
degeneracy should be investigated for use in any nonlinear /, algorithm in which our basic /; frame-

work has been followed.



CHAPTER 8

Concluding remarks

8.1. Contributions

In this thesis we have studied the problem of handling degeneracy in a constrained non-

linear /, algorithm. In summary, the major contributions in this thesis can be stated as follows:

(1)

03

(3)

4)

&)

A proof of the second-order optimality conditions for the nonlinear /, problem that does not
assume the linear independence of the gradients of the active functions.

A direction of descent from a degenerate non-optimal stationary point for constrained non-
linear optimization algorithms based on an exact /; penalty function.

A direction of descent in a neighborhood of a degenerate optimal point in Newton-like optimi-
zation algorithms that explicitly computes the step from the null space and range space com-
ponents.

A general outline for exact-penalty approaches for solving the constrained nonlinear /, optimi-
zation.

An extension of the Bartels/Conn [1] algorithm which handles degeneracy.

8.2. Further work and open questions

1)

Some of the important open problems are listed below.
Near-degeneracy is a harder problem than the true degeneracy. For instance, if we are
attempting the simple dropping step (47p = —sign(A;)e;) and if the columns of 4 are
almost linearly dependent than the computed “descent” direction p could be poorly deter-
mined. In that case, it would be interesting to explore whether the way in which we find a

direction of descent from a nonoptimal stationary point will give any improvement.

-95-
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(2)  The current implementation of the BBC algorithm uses the exact projected Hessian and that
can be quite expensive for some practical problems. It is necessary to explore how well the
schemes for updating the projected Hessian, proposed by Coleman and Conn [11] and
Nocedal and Overton [31], fare in the context of nonlinear /, optimization.

(3) The Coleman/Conn algorithm for nonlinear optimization [9,10] assumes that the gradients of
the active functions will be linearly independent. That is not always a realistic assumption. It
would be useful to apply our results for handling degeneracy to the Coleman/Conn algo-
rithm. The convergence proofs for the (BBC) algorithm can be used for the Coleman/Conn
algorithm extended to handle degeneracy.

(4) In general, when we are dealing with a degenerate optimizer, the full orthogonal decomposi-

tion of 4 will be

() = [wex) 2] [Ré") M?x)] [?ﬁi‘?:]’
for some M(x) — 0 as x — x". This is a far more difficult obstacle to overcome and bears
an obvious relationship with Newton’s method applied to singular problems.
8.3. Historical note
An independent suggestion of solving a constrained norm problem to estimate Lagrange
multipliers in the presence of degeneracy for linear /, problems was made during the development

of this work by G.A. Watson of Dundee, Scotland.
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Appendix 1
Using the 1; norm to resolve degeneracy

As pointed out in Chapter 2, the first-order optimality conditions for the (UNLL1) problem

m
mini;nize X 1 fix)] (UNLL1)
xeR" o
are
—1_<_;\.,_<_+1, iEIAE.
If we solve
(BL1)

minixmize Nar — g,

subject to —1 <A, < +1, iely

and the residual (|| AA — g||,) is zero, we know that the current point, x, is an optimal point to

first order. Otherwise, the direction of descent can be found from reformulating (BL1) as a linear

programming problem and then using duality.

Let us restate (BL1) as
(LPR)

m
minimize Y. (u; +v;)
uER-, veR™ i=1

subject to AL — g =u —v;

—l=i=+1

The (LPR) problem can be written in the canonical form as
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minimize[07 17 17] f; (CLPR)
1%
- ; -
—A +I —1I —g
A —I +1 g
+I 0 Of[A] = {—1
subject to -1 0 0 l‘f -1
0 +7 0O 0
0 0 +I | 0]

The dual problem for (CLPR) is

Y1
Y2
minimize[+gT —gT +17 +17 07 07] ij (DCLPR)
Vs
-y6d
Y1
—AT +4T +1 -1 =1 0 o] |P2| _ fo
subjectto | +1 —I 0 0 0 +I 0 ii 1
-1 41 0 0 0 0+, 1
by6_

J/’l20,)’220,}’320,)’420,}’520,}’620-

Taking in account the very simple structure of (DCLPR) we can rewrite it as

minimize g7(y; — y,) + Z((h)i + (r4)i) (A1.2)

Yoo Vs

subject to AT(y, — y3) = (y3 — y4)

B = 0,y2 = 0,y3 = 0,_)/'4 = 0,y5 = 0’y6 = 0.

Now, if we rename y; — y,as p , yzasr and y, as s we get

minimize g'p + Z(ri + 5) (A1.3)
1
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subject to alp = r, — 5,

r,=0,s; =0
and that can be restated as:
minimize g'p + ¥ |alp|. (A1.4)
i
Finally, we recognize that p gives us locally the best direction of descent for the (UNLL1) problem,
provided that the residual || AA — g ||, is nonzero.

This way of resolving degeneracy at a stationary point could be useful in dealing with prob-
lems where the dimensionality is large and the matrix 4 has a sparse structure. A good code for
linear programming should be able to cope successfully with those problems; note: it may have to
deal with degeneracy.

We have not explored this approach any further.
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Appendix 11

Resolving degeneracy by using norm duality

Another way of testing whether the first-order optimality conditions

AL —g =0 (A2.1)

_15}»,5"'1, iSIAE
for the (UNLL1) problem

minirl?ize 3 £ (UNLL1)
xeR*

i=1

are satisfied at a current point x is to solve
minimize || Ml o (A2.2)

subject to Al=g,
provided that the system AA=g is consistent.
If A;’s are within the bounds (A2.1) then we know that we are dealing with a first order
point. Otherwise, we have to rely on the duality theorem, see Luenberger [24], to obtain a descent

direction.

Definition A2.1

. . 1 .
Vectors weR” (with norm ||"||,) and zeR" (with norm |||l ,), where —i— —q—=1, are said to be
aligned if
T n
w Z=Zwizi= ”W “,”Z ”q

i=1

with 1 < r =< co.
Theorem A2.1 (Duality Theorem)

Given a system of m consistent linear equations of n unknowns
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Al =g
then

minimize ||ML|l, = maximize gTd
Ar=g H47d |l =1

where %+%= 1. Furthermore, optimal A and A7d are aligned.

Now, returning to our original problem (A2.2) we see that the dual problem is

maxzmize gTd (A2.3)

subject to  ||ATd ||, = 1.

Suppose that we have d°, a solution to (A2.3). Thenp = —d* gives us a direction of descent if
gld® > 1.
In that case
g’p + Xlalpl <o,
i
i.e. p is a descent direction for the problem (UCLL1).
In the case of g7d” < 1, we can use the alignment of A7d” and A" to find A", see Cadzow [4].

We have not explored this approach any further.
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