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ABSTRACT

It is shown that the Maratos effect can be avoided on certain
convex programming problems by careful choice of the penalty
parameters in the L; exact penalty function. Existing techniques
for avoiding the effect on non-convex problems are also discussed
and compared with a view to combining the best features of each
approach in a single method.
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1. Introduction

Sequential quadratic programming (SQP) methods for solving the nonlinear pro-
gramming problem

NLP: minimize f(z), 2z ER"

subject to ¢;(z) <0 i =12,...m

construct a sequence of approximations {z*; k = 1,2,...}
af = oF 4 ofdh 0 <oF <1 v (L.1)

where d¥ solves a quadratic programming problem of the form

QP(z*):  minimize % dT[H(z*)|d +dT f(z*)
subject to dT we;(2¥) + ¢;(z*) < 0,7 = 1,2,...,m.

The matrix Hf = H(mk) must be chosen carefully if problem QP is to have a
solution and to avoid some complications we assume that H* is positive definite
and the linearized constraints are consistent. Thus, QP is a strictly convex qua-
dratic programming problem which has a unique solution d*.

It is well known that if H* is the matrix
HY = 2 f(z*) + Y N V2, () (1.2)
1

(which may not be positive definite in general), then under suitable assumptions,
which include second order sufficiency conditions holding at the solution =* to
problem NLP, the iteration (1.1) with of =1 converges locally at a second order
rate (see [5] for example). The parameters N o i=12,..m in (1.2) are first
order approximations to the optimal Lagrange multipliers {}; *}{" of problem



9 I.D. Coope

NLP. A suitable choice is
A = arg mxin | V7(=¥) +33 X Vei(z*)ll, (1.3)

except that it may be preferable to reset negative estimates to zero. Alternative
choices for A are suggested by Gill and Murray [9)].

Many SQP algorithms have been proposed [1,7,8,10,11,13,14,15,17] includ-
ing variable metric versions which do not require second derivative information.
Wilson’s [17] algorithm was the first SQP method to be proposed but his method
required good initial estimates (A, z!). Therefore, we restrict attention to
methods of the type advocated by Han [11] which force global convergence by
choosing the steplength of in expression (1.1) in a way which gives "sufficient
descent” of the L, exact penalty function

P(zu) = f(z) + Y cilz)*. (1.4)
Thus, on every iteration the inequality
P(z* + o*d*, p) < P(z* ) (1.5)

is satisfied, but usually a condition which is slightly stronger than inequality (1.5)
is required (see section 3).

In order for there to be a correspondence between local solutions to prob-

lem NLP and local minimizers of P(z, u) satisfying the constraints of NLP the
inequalities

B > N i=12,.m (1.6)

must be satisfied [3]. Also if the Lagrange multipliers, \f of problem QP(z*)
satisfy '

A< o i=12..m (1.7)

then d* is a direction of descent for P(x,u) at z* [11]. Therefore, condition (1.4)
can be satisfied for some of €(0,1].

The fast local convergence of the SQP approach, combined with the global
convergence property obtained by forcing descent of the L, penalty function pro-
vides a simple and elegant approach to solving nonlinear programming problems.
Unfortunately, as Maratos (12| has demonstrated, the choice of = 1 may not be
allowed by inequality (1.5) for any positive values of g; ,¢ = 1,2,..,m in any
neighbourhood of the solution on some problems. Thus the technique for forcing
global convergence can result in a very slow, linear; asymptotic convergence rate.

A striking example of the "Maratos effect” is described by Powell [16].
Suggestions for countering the effect have been given by several authors and
these are considered in section 4. However, the proposed remedies usually
require extra calculation. Therefore we ask whether it is possible to avoid the
Maratos effect by suitable choice of the penalty parameters. We show in the
next section that for the special case of convex programming problems, the
Maratos effect may be avoided.
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2. The Convex Programming Problem

In this section we assume that the objective and constraint functions
f{c;}1" are twice continuously differentiable convex functions and we introduce
the notation

Go(z) = V?/(2)
Gi(z) = Vi¢i(z) ¢ =1.2,.,m.

Thus for all z, s €R™® and for each 1 = 0,1,...,m
sT[Gy(z)]s > 0. (2.1)

We also assume that the SQP algorithm of section 1 is used to calculate the
search direction d* and that the sequence {xk; k = 12,.} converges to a Xuhn-
Tucker point z~ of problem NLP. Because we are interested in determining if
there exist values of x4 which ensure satisfaction of inequality (1.5) with o = 1
when z* is close to a:‘, we further assume that for k sufficiently large

bl = gk 4 gk (2.2)

and hence that ||d¥|| tends to zero as k—soco under the assumption of conver-
gence.

Finally we make two assumptions that are usual in asymptotic analysis of
nonlinear programming algorithms:

i) The active constraint normals at z are linearly independent.
1)  Strict complementarity holds.

Thus ) * is uniquely defined by the equation
Vi) + DN Ve(z) =0 (2.3)
and in a neighbourhood of the solution ¢;(x)> 0 for all indices ¢ ¢ I” where
I'={j:3\;>0}. (2.4)

To simplify the notation we frequently drop the "k" superscript and adopt the
convention that if an argument is missing then it is assumed to be z. Also we
refer to three types of Lagrange multiplier vector : X" refers to the optimal mul-
tiplier vector satisfying (2.3); \(z*) or \* or frequently just X, refers to the multi-
plier vector of problem QP(z¥) introduced in section 1; \(z) or A\ is any
Lagrange multiplier estimate satisfying the condition

*

lim X (zF) = \° (2.5)
k—c0

Finally we make extensive use of the order notation o - ). Thus we may write
(2.5) in the form
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M=\ +0(1), as k—c
Moreover, we note that the definition of A\* implies

M=\ + o(1). (2.6)

In fact if (z¥, \*) —(z ", ") at a superlinear rate then the stronger condition
A =2+ oflld) (2)

holds (see Gill and Murray [9], for example, on second order Lagrange multiplier
estimates).

Theorem 2.1

Let H(z*) be the matrix (1.2) and let d* solve problem QP(:::") of section 1.
If the conditions of t,hls section are satisfied and if g; > \;, i €I then 3 6 (&)
suchthat V || 2 — 27| < 6

Pz +dp)— Plzp) <% dT Gy d

Y% 2 2N\ — ) dTGld
:GI

+ o(|l4[1%). (2.8)

Proof:

Using Taylor series expansions
Plz + du) — Pla,p) = d"Vf + % d"God +o(||d|]?)
+ 23 i (eim + d) — i(2)7), (2.9)

and
ci(z + d)=c; + dT Ve; + % dTG;d + o(||d|]). (2.10)
But the Kuhn-Tucker conditions for (d,\) to solve problem QP(z) are
' Hd +Vf+ Y\ Ve, =0 (2.11)
>‘i (Ci + dT Vc,-) =0
A >0, ¢ + dT Ve, <0 = 12,.. m. (2.12)
Hence from (2.10), (2.12), (2.1)
ci(z + d)* <% dTGd + o(||d|]?). (2.13)
Also from (2.11), (2.12)
dTVf =3 Ne; — dTHd. (2.14)

Substituting expressions (2.13), (2.14) in (2.9) then gives the inequality
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Pz + d,u) — Pla,p) < —dTHd + 3 Ne; + % dTGod
+% ) p dTGid = Y py o
+ o(ll4l), (2.15)
and we note that the strict complementarity assumption allows the summations

in (2.15) to be taken over the set (2.4).

Now 3 X\;ie; —3) g et <0 if p; >N; and since p; >\, we deduce
from expression (2.6) that there exists a neighbourhood of 2" for which B > A
Therefore, we may replace inequality (2.15) by

P(z + d,pu) — Plzp) < —dTHd + % dTGod + % Y, p;d7G;d

ier’
+ o||d?) (2.16)
=—%dTGyd
— % E‘(‘-))A‘i - /h')dTGid
t €S
+ o(|l1[%) (2.17)

The required result follows from (2.5), (2.17) and the continuity of
G i=12,..m.0O

Corollary 2.2
If the matrix
Go+ X (2N—=m)af (2.18)
iel

is uniformly positive definite than the descent condition (1.5) is obtained for all &
sufliciently large. O

We note that under the assumptions of this section the matrix (2.18) is at least
positive semidefinite if

Note also that if f(z) is a uniformly convex function then much larger values of
#; than (2.19) suggests will still give descent of the penalty function. Iowever,
much weaker conditions are possible since inequality (2.8) shows that descent oc-
curs provided that there exists a constant 7 > 0 such that

dT[Ge + 3 (2N, — 1:)G{)d >~ dTd. (2.20)
ier
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3. Sufficient Descent

Condition (1.4) is not sufficiently strong to prove global convergence.
Therefore, in this section we consider replacing (1.4) with the test

P(z* + ofd* p) < P(z* p) + po* A (z*,d%), (3-1)

where p is a small number in the open interval (0,1). Several choices are possible
for the number A | for example

Mad) = lim (Ple + edw) — Plew)}/e (32)
Dofz,d) = dTVf(z) — 3} p; ci=2) (3.3)
Byz,d) = %dTVf(z) + % Y Nei(z) — 3 4y ei(z)t (3.4)

all give rise to convergent schemes under appropriate assumptions. Expression
(3.2) is just the directional derivative of P(z,u) in the direction d. Expression
(3.3) is the reduction P(z + d,u) — P(z,s) that would occur if the functions
[ {e;}1" were all linear and expression (3.4) is similar to (3.3) except that the term
% dTHd has been added to take account of some quadratic behaviour. In both
(3.3) and (3.4) the expressions for A, A; have been simplified by noting that
(d,\) is the solution to problem QP(z) so that (2.4), (2.5) are applicable. More-
over, if g > X it is straightforward to establish the inequalities

Al(m:d) S AQ(xvd) < As(mrd)' (3‘5)

It is important to note that each of expressions (3.2)-(3.4) is negative if d is non-
zero, if H is positive definite and if 4 > X\. Because the inequality

Pz + od,p) < P(z,p) + o Az d) + o(a), 0<a <1, (3.6)

holds when A is any of the expressions (3.2)-(3.4) the test (3.1) can always be
satisfied by some a€ (0,1]. To see that the definitions (3.2)-(3.4) provide inequal-
‘fy (3.6) it is sufficient to note that (3.6) holds with equality when the definition
(3.2) is used. Then inequalities (3.5) establish the result for (3.3), (3.4). A global
convergence result is given by Powell [16] when the test (3.1) is used with the
definition (3.4), but the choice (3.2) or (3.3) is also possible. :

Thus we would prefer to extend theorem (2.1) to show that there exist
values of g > X\ for which "sufficient descent" can be achieved by satisfying ine-
quality (3.1) with of = 1 when ||d*|| is sufficiently small.

Theorem 3.1

If the conditions of theorem 2.1 apply and Aj; is defined by expression (3.4)
then

Ple + dp) — Plz,p) < As+ % Y (8 — N)ATGid + o(|ld|P)  (3.7)
iel’
Proof

Rearranging inequality (2.15) and making use of the definition of H in (1.2)
gives
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Plz + d,p) — Plz,d) < — % dTHd + Y Nje; — Ypeit

8 D= 4 o). (39)
=Dy + % Y (p; —):,.)dTG’,-d
+ o(lld[]?), (3.9)

where (3.9) is a consequence of definition (3.4) and equation (2.11). The required
result follows from (2.5), strict complementarity and continuity of the matrices
Gi ,'l.=1)2,...,m.D

Theorem 3.2

If the assumptions of theorem (2.1) apply and A, is defined by expression
(3.3) then

P(z + d,p) —P(a,p) <% By + % Y (i — N)dTG/d + of||d|]) (3.10)
ier’
Proof

We show that A; < % A, in some neighbourhood of x*, then application of
theorem 3.1 completes the proof.

From (3.3), (3.4) we deduce
Bg=% Do+ % Y INic; — %3] picit
=% Az + % E)\ici_ — % E(ﬂz - >\i)ci+‘

Therefore, A§ <% A, if B 2 \;> 0, which occurs in some neighbourhood of z"
since pg; > \; and X\; —\;. O

Expression (3.7) shows that there exist values of g; > X; such that the test
(3.1) is satisfied for o = 1 when ||d*|| is small enough, provided that p < 1if A
is defined by (3.4) or p < % if (3.3) is used. This observation depends on the
assumption that Az < vd%d for some 4 > 0. It is clear that “sufficient" descent
with a unit steplength can be achieved in a neighbourhood of the solution if the
penalty parameters are not too large.

Thus, the Maratos effect can be avoided on some convex programming
problems by careful choice of the penalty parameters in a neighbourhood of the
solution.

4. Techniques for countering the Maratos effect

In [16] it is shown that the presence of a single non-convex constraint can
give rise to the Maratos effect for all positive values of the penalty parameters.
Therefore, the results of sections 2,3 cannot be extended to the non-convex case.
Of course even in the convex case, the need to satisfy inequality (1.7) at points
remote from the solution may result in a value of p which is too large to avoid
the Maratos effect. Therefore, we consider techniques that have been suggested
to overcome the dilficulties which do not depend on the choice of .
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The watchdog technique of Chamberlain et al [2] preserves a local super-
linear rate of convergence by allowing some iterations to vioclate the standard line
search criterion based on the test (3.1) provided that a "relaxed" line search con-
dition is satisfied. If a lower value for the penalty function (1.4) has not been
calculated in a fixed number of iterations (five is suggested) because the relaxed
criterion has been used then the technique discards the work of the last few
iterations and essentially restarts from the point giving the current lowest value
of the penalty function. The watchdog technique is highly efficient close to the
solution because it requires very little extra work. However, we note that there
may be much wasted calculation when a restart is necessary.

A different approach that depends on projecting infeasible iterates onto the
active constraint manifold has been used by several authors [4,6,8,13]. If zk 4 dF
does not satisfy the test (3.1) then in [6,8] a quadratic arc is defined as
z* + ¢*(a) where

¢*(a) = ad® + o®*, (4.1)
8* is usually the vector
6F = —ClOTC) te(z* + dF) (4.2)

and C is the matrix of active constraint normals [wcf: 2f > 0]. However,
Gabay [8] resets 6% = 0 if

lle(z® + d* + 65| > || e(z* + d*)| (4.3)
whereas Mayne and Polak [13] reset 6% = 0 if
ekl > fla*|l. (4.4)
Then z**! is chosen as
F = gF 4 g¥(a*), 0 <ef< 1 (4.5)

with of the first member of the sequence {1,8,8%,...}, 0< B< 1, that satisfies the
sufficient descent test (3.1) with ¢*(a*) replacing a*d*. Tt is shown [8,13] that
the Maratos effect cannot prevent a local superlinear rate of convergence with
this modification. The Mayne and Polak [13] technique is preferred because it
does not require the extra constraint evaluations in (4.3) when 6% = 0 is used.

A variation on the projection technique that has just been described is to
let 6% solve the equality quadratic programming problem

minimize % §TH*s + §T(vf* + H*d"), (4.6)
subject to ¢;(z* + d*) + §7VcF =0, i : N[>0,

where A* is still the Lagrange multiplier vector at the solution to problem
QP(a:k). This quadratic programming subproblem is easily solved in 0(n?) arith-
metic operations from the factorizations available at the solution to problem
QP(z*) which has already been solved to obtain d*. In fact the solution to (4.6)
can be written



Maratos Effect 9

6F = — HT'C[CTH™'C) "e(z + d), (4.7)

where the superscripts have been omitted for economy of notation. This form
emphasizes the projection nature of the step 6. Note also that if H = I we
recover the projection step (4.2) used in [4,8,13].

There is a close correspondence with problem (4.6) and Fletcher’s [6]
approach. The essential difference is that there are no simple bounds on the
variables and only the current active set of constraints is imposed (as equalities)
instead of all of the constraints. As in [8,13] we do not recommend defining 6%
by (4.6) if z*¥ + d¥ is far from z°. However, we prefer not to use either of the
tests (4.3) or (4.4) in deciding whether or not to reset §* to zero, because they
are dependent on constraint scaling. Instead we recommend the following pro-
cedure for preventing the occurrence of the Maratos effect when the step
z* + d* is unacceptable according to the test (3.1). If z*¥ + d* gives descent of
the Lagrangian function, that is, if

L(z* + d¥ \F) < L(z* %) (4.8)
where L(z,)\) is the Lagrangian function
Lz ) = f(z) + Y heil=) (4.9)

then &% is defined as the solution to problem (4.6). Otherwise 6§* = 0 is used.
Then z**! is calculated as described in the paragraph that includes equation
(4.5). Thus the recommended technique incorporates what we consider to be the
best features of each of the methods [2,4,6,8,13]. It is shown in [2] that the test
(4.8) is always satisfied in a neighbourhood of the solution. Moreover, if the
matrices {H* ; k = 1,2,..} are positive definite with bounded condition numbers
then the projection step (4.7) has similar properties to the projection (4.2). We
note that even if V2L(z"\") is indefinite then suitable positive definite matrices
{H*} can be defined which give superlinear convergence [16].

Tables 4.1 and 4.2 display numerical results for the recommended technique
on the problems described in [12,16] since these were designed to exhibit the
Maratos effect. For these simple examples the matrix H* was chosen to be
H(z") because this is positive definite in each case. The results show that the
recommended technique is successful even though the values of g are much larger
than would normally be used.
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x Zy c P 7
0.6000 1.2000 0.0000  1.8000 100
0.7620 0.9465 0.0005 1.5271
0.9366 0.5031 0.0034 1.4697
1.0010 0.0003 0.0041 1.4122
1.0000 0.0000 0.0000 1.0001

0.6000 1.2000 0.0000 1.8000 1000
0.6855 1.0766 0.0000 1.6607
0.7541 0.9608 0.0000 1.5400
0.8569 0.7432 0.0002 1.5308
0.9179 0.5675 0.0003 1.4224
0.9533 0.4300 0.0002 1.3126
0.9882 0.2176 0.0002 1.2675
1.0000 0.0000 0.0001 1.1415

NO T W = Ols W -~=O R

Table 4.1 Results for Maratos’ [12] example

If the second order correction 6 is always set to zero then the number of
iterations required to obtain similar accuracy to that given in the tables is 142
and and 1244 for g = 100 and g = 1000 respectively on the Maratos problem;
148 and 1249 on the Powell problem. In each case very small steps had to be
taken in order to achieve a reduction in the penalty function causing a dramatic
reduction in the rate of convergence. However, it is interesting to note that the
unit steplength was always allowed in the last few iterations.

z, Z, c P ]
0.8000 0.6000 0.0000 -0.8000 100
0.8810 0.4733 0.0001 -0.8671
0.9683 0.2515 0.0008 -0.8749
1.0005 0.0001 0.0010 -0.8877
1.0000 0.0000 0.0000 -1.0000

0.8000 0.6000 0.0000 -0.8000 1000
0.8428 0.5383 0.0000 -0.8348
0.8771 0.4804 0.0000 -0.8649
09284 0.3716 0.0001 -0.8668
0.9589  0.2837 0.0001 -0.8938
0.9766 0.2150 0.0001 -0.9214
0.9941 0.1088 0.0001 -0.9326
1.0000 0.0000 0.0000 -0.9643

O U W = O R W~ O F

Table 4.2 Results for Powell’s [18] example
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5. Concluding Remarks

The results of sections 2,3 help to explain why the Maratos effect is not
often observed in practice. Many test problems for nonlinear programming prob-
lems are convex because such problems are easy to construct with a guaranteed
solution. Moreover, we note that non-convex inequality constraints may be
present in the problem, if they are not active at the solution, without affecting
the results of sections 2,3. This is not to say that the Maratos effect should be
ignored but we do believe that more attention should be focussed on the problem
of choosing suitable values for the penalty parameters since this can go a long
way towards alleviating the difficulties.

The projection techniques described in section 4 have been shown to be
effective in giving vast reductions in the number of iterations that would other-
wise be required when a poor choice for y is made. However, even greater reduc-
tions are possible if extra derivative information is made available to the projec-
tion technique. Fukushima [7] in a recent and interesting approach has shown
that if the constraint gradients are evaluated at £ + d then a new quadratic pro-
gramming subproblem can be formulated which gives very high accuracy. Of
course the amount of work required for an iteration when the technique is
applied is almost doubled and it may be preferable to simply use another full
iteration of the SQP method from the point z* 4+ d* (using the same H* matrix)
to define the projection step 6* when needed.
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