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ABSTRACT

The following types of faults are considered in CMOS cells:
input and node stuck-at-0 and stuck-at-1 faults and transistor stuck-
on and stuck-open faults. A fault is called clean if there is a
sequence of input vectors resulting in one logic value in the good
network and the complementary value in the faulty network,
without the presence of any connections between Vpp and ground.
A clean fault is called static if it can be detected by a single input
vector and dynamic if the dynamic memory of an isolated output
node must be used in order to detect it. We show that input stuck
faults are static, transistor stuck-open faults are dynamic, and no
other faults are clean. We then modify the CMOS cell by adding a
control transistor and a control output. We prove that all of the
faults studied are clean in the modified cell, including faults in the

control transistor. This result holds for fully complementary CMOS
cells.

1. Introduction

Considerable attention has been given to the problem of testing CMOS cir-
cuits during the past several years; see, for example, [B-C,C-V,E,H,M,M-B,W].
In one of the earliest papers on this subject, Wadsack [W] considered not only
the “classical” input and output stuck-at-0 and stuck-at-1 faults, but also transis-
tor stuck-open faults. The stuck open faults produce an isolated output node
which retains its previous value because of the presence of capacitance. Thus the

node has dynamic memory and the fault converts a combinational circuit into a

* This research was supported by the Natural Sciences and Engineering Research Council
of Canada under grants No. A-1617 and A-0871.



2 Brzozowski

sequential one. Wadsack mentioned, but did not pursue, transistor stuck-on

faults which result in a connection between Vj,, and ground.

A fault which can be detected by a single input vector, resulting in one logic
value in the “good” cell and the complementary logic value in the faulty cell, will
be called statically detectable or simply staric. Wadsack showed that transistor
stuck-open faults are not static, but can be detected by a sequence of two vectors,
using the dynamic memory of an isolated output node; we will refer to such

faults as dynamically detectable or simply dynamic.

Transistor stuck-open faults received further attention in [C-V,E,M,M-B].
McCluskey and Bozorgui-Nesbat [M-B] proposed the addition of a test transistor,
a test line, and a charge/discharge line to each CMOS cell in order to facilitate
testing stuck-open faults. Baschiera and Courtois [B-C] studied the detection of
transistor stuck-on faults; their approach requires voltage measurements. Such an
approach is less desirable than purely logical tests because one has to know the
values of the various resistances in the network, and a fault that is detectable in
one environment may become undetectable in another, depending on the switch-
ing threshold of the gate driven by the faulty gate [B-C]. Bryant and Schuster
consider node stuck-at-0 and stuck-at-1 faults, in addition to transistor faults [B-
SI.

In this paper we study the detection of faults in CMOS cells. The following
classes of faults are considered:

input stuck

output stuck

transistor stuck-open and stuck-on
node stuck

where stuck is either stuck-at-0 or stuck-at-1. We restrict our attention to logic
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faults, where by a logic fault we mean one for which there exists an input
sequence that results in one logic value in the good network and the complement
of that value in the faulty network. Thus we do not consider performing any

electrical measurements in order to detect a fault.
Part of this work appears in [B-SA].

We first introduce our notation and terminology by means of an example.
‘Figure 1 shows the circuit diagram of a (fully complementary) CMOS logic gate
or cell. A transistor labeled p is a p-type transistor, or simply p-transistor,
which is conducting (ON) when its gate input is 0 and nonconducting (OPEN)
when the gate input is 1. Dually, an n-transistor, labeled n, is ON when its gate
input is 1 and OPEN when it is 0. Thus a p -transistor with gate input x may be
considered as a normally closed contact, closed when x'= 1. Similarly, an n-

transistor controlled by x corresponds to a normally open contact, closed when

x = 1.

The top three transistors constitute the p -part of the cell Cy, and the bottom
three —the n-part. Both parts may be viewed as two-terminal contact networks.
The p-part has terminals 1 and f, and the variable ¢; represents the transmis-
sion function of the p-part with respect to these two terminals, i.e. #; =1 iff
there is a closed path from 1 to f. Similarly ¢y is the transmission function of
the n-part with respect to terminals O and f. The contact network correspond-

ing to cell C; of Figure 1 is shown in Figure 2.

In this paper we deal exclusively with fully complementary CMOS cells
where ¢y = t1, i.e. the output node f is connected to 1 iff it is not connected to

0. In our example
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p-part

n-part

O (Ground)

Figure 1. A CMOS cell C;.

f o=ty =x{{x3+x3) = tg= (x1+ xx3)".

For convenience, each p-transistor (rn-transistor) with gate input x; will be
referred to as transistor P; (N;), for i = 1,2,3. Also, we refer to input nodes 0

and 1, output node f , and internal nodes p and n.

We now describe our interpretation of the various fault types with the aid of
Figure 1. If x; is stuck-at-0, then transistor P; is permanently ON and transis-
tor N; is permanently OPEN. If x; is stuck-at-1, P; is OPEN and N; is ON.
If a node is stuck-at-O (stuck-at-1) we may consider it to be an input node con-

nected to ground (Vpp ), i.e. another node labeled 0 (1). Note that the output f
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Figure 2. Contact network corresponding to Cy.

is also a node; the distinction between the output node and the internal nodes is

made for technical convenience.
Throughout the paper we assume that only one fault may exist at any time.

In a “good” CMOS cell the state of the output node is always determined as
follows. If there is a path from f to O then it necessarily consists of -
transistors, and the complementarity assumption guarantees that there is no path
from f to 1. Thus the output terminal is “well-connected” to ground, and
f = 0. Similarly, if there is a path from f to Vpp then it consists solely of p-
transistors, and there is no path from f to ground. During certain fault condi-

tions we will depart to some extent from this ideal behavior of a CMOS cell.
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Specifically, we will assume that if a node is connected to O by a path consisting
of p-transistors (rather than n-transistors) or of p-transistors and » -transistors,
and it is not connected to 1, then this connection is sufficiently good to drive the
node to 0. These assumptions are consistent with commonly used switch-level

models such as that of Bryant [B].

The detection of faults is difficult in CMOS circuits because frequently it is
necessary to create a path from O to 1 in the faulty circuit. For instance, if
transistor N; is stuck-on there is a path from f to O in the faulty cell. To
detect this fault we must have no path from f to 0 in the good cell. Thus we
must set x; = 0 and either x, = 0 or x3 = 0 or both. But any such condition
creates a path from f to 1. Therefore, in the faulty cell there will be a path
from 1 to 0, and the value of the voltage at f will depend on the relative sizes
of the resistances from f to 1 and from f to 0. In general, the output voltage
will then take on an intermediate value between Vp, and ground, and electrical
measurements are required to detect the fault [B-C]. This may imply that the

fault is not detectable by logical means alone.

In this paper any connection between 0 and 1 will be called a fighr. We will
call a fault clean if there exists a sequence of input vectors resulting in one logic
value in the output of the good cell and the complementary value in the faulty
cell, and there is no fight in the faulty cell at the time the last input vector is
applied. Thus when a fault is clean, it is detectable by logic means alone; all
other faults are called unclean. Clean faults can be either static or dynamic as
explained earlier. The reader should note that some faults considered detectable
by other authors are unclean here. For example, an output stuck-at-0 fault can-
not be detected without a fight. We first show that very few faults are clean in
standard CMOS cells. Then we introduce a modified cell, with one additional

transistor and output, and prove that all the faults considered here are clean,
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under the single-fault assumption.

The paper is structured as follows. Section 2 illustrates all the fault types
using the example of Figure 1. Section 3 illustrates how faults can be made clean
by introducing an additional transistor in the cell of Figure 1. Thus Sections 2
and 3 illustrate the main ideas of the paper, but only for one example. The
remaining sections deal with general cells. In Section 4 we establish sbme
mathematical background and describe certain assumptions that we make about
the cells; basically we assume that there are no redundant inputs or transistors.
In Section 5 we prove Theorem 1 which characterizes the faults in standard cells.
Finally, in Section 6, we prove Theorem 2 which shows that all the faults con-
sidered in this paper become clean in the modified cell. This includes the faults

associated with the added transistor.

2. Faults in a Standard Cell

We will use the cell of Figure 1 to introduce:some additional terminology
and illustrate various types of faults. We will denote by f, #g, and 7; the func-
tions in the good cell Cq, and by f*, ¢§ and % the corresponding functions in
the faulty cell CT. We consider the input to be a vector x = xq,x,,x3 and will

write x =011 for x; =0,x,=1,x3= 1, etc.

Suppose input x; is stuck-at-0. When x =100 we find that f =0,
=1, =0 and f* =1. Thus the fault is detected by this input vector,
and it is clean since there is no fight in C}. As mentioned before, we will say

that such a fault is static. We will summarize this by the statement:

xy stuck-at-0 is static: x=100 f =0 f*=1



8 Brzozowski

We will prove in Section 5 that all input stuck faults are static, and that no

other fault is static.

Next consider the fault: transistor P; stuck-open. We show this fault is not
static. First note that any input with x; = 1 would open P in the good cell,
and would fail to detect the fault. Therefore we must have x; = 0, if a test vec-
tor exists. The vector x = 011 gives f = f* = 0, failing to detect the fault.
The remaining possibilities are 001, 010 and 000. Any such vector results in
f =1,but 5 =§ = 0 implying that f* is isolated. If we first drive f* to
0 by applying 100, f* will remain 0 when it becomes isolated due to the
dynamic memory of the node. We call this type of fault dynamic. It requires a

sequence of two vectors. We will summarize these observations in the statement:

Py stuck-open is dynamic: x =100 f =0 f*=0
x=00 f=1 f*=0

where 0 (1) denotes an isolated node with value 0 (1).

We will prove in Section 5 that all transistor stuck-open faults are dynamic,
and that there are no other dynamic faults. In fact, except for input faults and
transistor stuck-open faults, there are no other clean faults. We give some exam-

ples of unclean faults below.

Suppose the output node is stuck-at-0. We must drive the good cell to
f =1 in order to detect this. But this implies that #; = ] = 1, and there is a
path from f* =0 to 1, i.e. a fight. Since both the p-part and the n-part are
assumed to operate correctly, it is not possible to isolate the output node, i.e.

dynamic tests also fail. Therefore this fault is unclean.
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As a second example, consider P, stuck-on. To detect this fault we must
use some input vector that separates node p from node f ; otherwise the faulty
network behaves like the good one. Thus we must use x, = x3=1 which
results in #; =0 and ¢y = 1. Since the fault does not affect the n-part we also
have § = 1. Nowif x; =1 wehave f = f* =0, and, if x; = 0, we have a
fight in C1 —the path P\P,N,N;. Here it is also impossible to isolate the out-
put node. Consequently the fault is unclean.

As our last example in this section consider node p stuck-at-0. | Suppose this
fault is clean and that the final input vector is x. If x; = 0 in this vector there
is a fight through transistor P;. Thus we must have x; = 1, which implies that

ty=0 and 79 = 1. Since the n-part in the faulty network is not affected by
the fault, we also have f§ = 1, and there is a path from f* to 0. The stuck-at-

0 fault at p can only add another path to 0. Thus f = f* = 0. Therefore the

fault is unclean.

The reader can verify by similar arguments that the remaining faults are all

unclean. The general case will be proved in Section 5.

3. Faults in a Modified Cell

In Figure 3 we show the cell of Figure 1, but with an additional control
transistor P inserted in series between the p-part and the n-part. The gate
input of P is the control input ¢. Note that there is an additional node g
created; we assume that this node is observable, i.e. g is another output of the

cell —the control output.



10 Brzozowski

x,—][n node n t, n-part

Figure 3. Modified cell 51.

When ¢ = 0, transistor P is ON and the modified cell (N,‘1 behaves just
like C;. When ¢ =1 the two parts of 61 are separated. It is this capability
that results in clean faults in (Nl‘l. We consider several examples.

Suppose f* is stuck at 0. One verifies that this fault is dynamic:

Output stuck-at-0 is dynamic: ¢ = 0 x=00 f=1 f*-fight
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Similarly, P, stuck-on becomes dynamic. Apply first ¢ = 0, x = 011; then

node g is connected to O through P, N,, and N3, and it is not connected to 1.

Under our assumptions about the switch-level model, g is driven to 0. Next,

¢ =1, x =011 isolates g, but g* is connected to 1 through P, and P,, and

we have:

P, stuck-on is dynamic: c=0 x =011

Finally, consider node p stuck-at-0 in Z‘l. We find:

p stuck-at-0 is dynamic: c=1 x = 000

where g* = 0 results from the connection to 0 through P, or P;.

g=0
g=0
g=1
g=1

g*-fight
gt =1

These examples illustrate the key points. In Section 6 we will prove that all

the faults of C; that we consider in this paper become clean in E’l. However,

now that we have modified the cell, we must also consider faults associated with

the control transistor. The reader will verify that:

P stuck-open is dynamic: ¢ =0 x =111
‘ c=0 x = 000

P stuck-on is dynamic: c=1 x =111
c=1 x = 000

N

oo
e o » ©

* _ (0
* _ ()
fr=0
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g stuck-at-0 is dynamic: c=1
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g stuck-at-1 is dynamic: c=0 x=111 g=0 g* -fight
c=1 x=111 g=0 gt =1

Since ¢ stuck-at-0 (stuck-at-1) is equivalent to P stuck-on (stuck-open),

this exhausts all the control faults.

4. Mathematical Background

In this section we describe our mathematical model of CMOS cells and make
certain assumptions about their behavior in order to eliminate degenerate and
redundant designs. For our purposes, a CMOS cell is a switch network in the
form of Figure 4. The external inputs, described by the vector x = xq, . . . , x,
of input variables, are connected to the gate terminals of transistors in the two
parts. The p-part is an arbitrary two-terminal network of p -transistors, and the
n-part is any network of n-transistors that is complementary to the p-part. The
transmission functions of these two networks are ¢ty and 7, and 7=t —as

before.

The transistors will be labeled Py, ..., Py in the p-part and
Ny, ..., Ng in the n-part. Similarly, the internal nodes will be labeled
Pt - - -» pp in the p-part and ny, . .., n in the n-part; these do not include

the input nodes 0 and 1 nor the output node f.

Let B = {0,1}. Note that, for a,b €B,a <b iff a =0 and b = 1.
The partial order < on B is extended in a natural way to B", the cartesian pro-

duct of n copies of B:
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Xy

. p-part t,
Xy /
v \
Xn

Figure 4. General CMOS cell.

agb iff a,-gbi fori=1,...,n,
where ¢ =ay,...,a, and b = by, ..., b, arein B".

A boolean function f :B" —B is positive iff there exists a sum of pro-
ducts (or product of sums) expression for f that does not contain any comple-

mented variables. It can be verified [G] that f is positive iff, for all a,b €B",
a <b implies f(a) < f(b).

Similarly, f is negative if there is a sum of products expression for f that

involves only complemented variables. A function f is negative iff

a < b implies f(a) > f(b).
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In any CMOS cell the transmission function ¢; is negative and ¢y is posi-
tive. Also f = t; = rg. Consequently the output f is always a negative func-

tion of the inputs.

We use the notation g;y to denote some vector in B* with the ith com-

ponent equal to 0, i.e.

Go=2ay, ..., a4 1,0,a,1, ..., a,.
Similarly,

ay=4ay, ..., 6 ,1,a.,,...,a,,
represents the same vector as a;q, except that the i th component is 1.

In order to avoid degenerate cases of CMOS cells we make several (very
weak) assumptions about them. The first condition simply states that there are

no useless inputs.

Assumption 1. In every CMOS cell the function f depends on each input. More

formally, for each i=1,...,n there exists aqg&B" such that
f (ai0) # f (a;1).
Assumption 1 is equivalent to the condition that, foreach i =1, ..., n,

there exists a;q € B® such that
f (@) = t1(aio) = to(ai0) = 1,
f @) = t1(ai1) = 15(a;1) = 0.

This is easily verified using the properties of negative and positive functions,

since a;g < a1, and f (a;0) < f (a;1)-
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Another consequence of Assumption 1 is the fact that f is not identically 0
or 1. For convenience, let 0 and 1 denote the vectors of length n whose com-

ponents are all 0 and 1, respectively. Since f is negative, Assumption 1 implies

that

fO® =1 and f(I)=0.

Let N be any two-terminal network of switches. The concept of tie-set [C]
is useful in the analysis of such networks. A set T of switches is said to be a
tie-set iff the network transmission function ¢ is 1 when all the switches in 7
are closed, and ¢ = 0 if any switch in 7 and all the switches not in T are

open. Thus 7 is a minimal set, in the sense that no subset of 7 can cause ¢ to

be 1.

Given a tie-set T of p-transistors we define the input of the tie-set T to be
the input vector ay defined as follows. For each transistor P; in T set its gate
input to 0, and set all other inputs to 1. A tie-set T will be called essential iff
there is only one path between f and 1 when x = ar. We make a similar

definition for tie-sets in the n -part.

Assumption 2. The following applies to both the p-part and the n-part. Every

transistor belongs to an essential tie-set.

An example of a cell that violates Assumption 2 is one which has two
transistors with the same gate input connected in parallel. Assumption 2 simply
requires that each transistor is necessary, in the sense that it alone controls .he
closing and opening of the path between the output terminals of the appropriate

part for at least one input vector.
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Our final assumption requires that there be no useless nodes.

Assumption 3.  For every node p in the p-part there exists an input vector aj,
such that f is connected to p but not connected to 1. Similarly, for every node n

in the n-part there exists an input vector a, that connects f to n but not f to0.

If Assumption 3 does not hold for a node p then, whenever f is connected
to p, f is also connected to 1, i.e. p is also connected to 1. Hence node p
could be identified with the input node 1 without changing the cell behavior. An
example of a cell that does not satisfy Assumption 3 is one whose p -part consists
of two transistors in series controlled by the same input. The internal node

defined by the two transistors is then redundant, as is one of the transistors.

To show that these assumptions are not severe, we point out that for every
negative function f that is not identically O or 1 there exists a CMOS cell satisfy-
ing Assumptions 1, 2, and 3. First find the sum of all prime implicants of f;
one verifies that this is the unique irredundant sum of prime implicants of f, if
f is positive or negative [B-Y]. Construct a parallel connection of series net-
works, where each series network corresponds to a prime implicant of f. This
forms the p-part of the cell, and the n-part is constructed in a similar way. It is

evident that this cell satisfies Assumptions 1, 2, and 3.

A CMOS cell satisfying Assumptions 1, 2, and 3 will be called proper.
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5. Faults in Arbitrary Cells

We now generalize the observations of Section 2 to arbitrary CMOS cells.

Theorem 1. Let C be an arbitrary CMOS cell. Then:

(a) A fault in input x; is clean iff f depends on x;. If such a fault is clean then it

is static.

(b) A stuck-open fault in a transistor is clean iff the transistor belongs to some

essential tie-set. If such a fault is clean it is not static but dynamic.

(c) All other faults are unclean.

It follows that, in any cell satisfying Assumptions 1 and 2, the only clean faults are

input faults and transistor stuck-open faults.

Proof:

(a) Suppose x; is stuck-at-0. It is obvious that the fault cannot be detected (and
hence is not clean) if f does not depend on x;. If f does depend on x;,
there exists a;; € B® such that f(g;1) =0 and f(ap)= 1. Since the
fault amounts to replacing a;; by g, we have f*(a;;) = f(a;) = 1.
Hence the fault is static.

A similar argument holds if x; is stuck-at-1.
(b) Suppose P; with gate input x; is stuck-open, and P; belongs to an essential

tie-set. Let g;¢ be the tie-set input. We then verify:

P; stuck-open is dynamic: x = a;; f=0 f*=0
x=ay [f=1 f*=0
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Conversely, suppose the fault is clean. Then there must be an input g;q
such that t(a;0) =1 and ¢ (a;) = 0. (But then #¢(a;q) = ¢4 (a;0) =0
and f* is isolated, proving that the fault is not static.) Now ;o must estab-
lish a path from f to 1 through P;. If any transistor in the path can be
removed without breaking the path, remove it. Thus we eventually obtain a
path from which no transistor can be removed, i.e. we have a tie-set contain-
ing P;. Let the input of this tie-set be b;q; it follows that b;g > a;9 and

11 (bio) < 1 (ai0), since r; is negative. Thus ¢ (b;) = 0 also, and P;
belongs to an essential tie-set.

A dual argument holds if N; is stuck-open.

We first prove that none of the remaining faults can be static. The case of
output node stuck-at-0 has already been proved, by the general argument of
Section 2, and the same argument holds for output stuck-at-1.

If P; with gate input x; is stuck-on, we must find an input g;; such
that r1(a;1) =0 and ¢f(a;1) = 1. But this implies zq(a;1) = £§ (@;1) = 1,
and there is a fight. A similar argument holds if N; is stuck-on.

If node p is stuck-at-0 and the test input a is such that z¢(a) = 1, the
fault can only add another path to 0 and cannot be detected. Thus we must
have y(a) = 1. If there is no path from f to p, the fault cannot be
detected. However, if there is such a path, there is a fight.

Similar arguments apply to the three remaining types of node faults.

Finally, notice that output faults, node faults and transistor stuck-on
faults cannot possibly lead to an isolated output node, and hence cannot be

dynamic. O
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6. Modified Arbitrary Cells

The results of Section 3 are now generalized to arbitrary CMOS cells. The
general form of the modified cell is shown in Figure 5, where the p -part and the
n-part are exactly the same as in Figure 4, and one p -type control transistor P
with gate input ¢ has been added in series with the two parts; this also adds a
new node g. As before, ¢y and 7, remain the transmission functions of the n-
part and the p -part respectively. The cell output is f, but we now have an addi-
tional ‘“‘control” output node g.

We point out that an n-transistor could be used equally well as the control

transistor. The reader can easily verify that the same results hold if the appropri-

ate modifications are made.

A modified cell is said to be proper iff the corresponding cell without the

control transistor P is proper. We will refer to any standard CMOS cell as C

and to its modified version as C.

Theorem 2. All the faults considered in this paper are clean in any modified proper
CMOS cell C. This includes faults associated with the control transistor P and the

control node g .

Proof: We have several cases:
Faults which are clean in C
When ¢ =0 transistor P is on, and the modified cell C has the same

behavior as C, when we consider the inputs to be x;, . . ., x, and the output to

be f. Since we are concerned only with single faults, the control transistor and
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Figure 5. Modified cell C.

control node cannot have a fault if one exists elsewhere. Hence all the faults that

are clean in Theorem 1 are detectable in the same way in C.

Output faults

The following is easily verified:

Output stuck-at-0 is dynamic: ¢ =0 x=0 f=1
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Output stuck-at-1 is dynamic: ¢ = 1 x=1 f=0 f*-fight

Transistor stuck-on faults

Suppose P; controlled by x; is stuck-on. By Assumption 2 P; belongs to

some essential tie-set T'; let its input be ;3. Then:

P; stuck-on is dynamic: c=0 X = a; g=0 g* -fight
c=1 X = an g=0 gr =1
N; stuck-on is dynamic: c=0 x=bgyg f=1 f*-fight
c=1 x=by f=1 f*=0

where b;; is the input of an essential tie-set of N;.

Node faults

Suppose node p is stuck-at-0. By Assumption 3 there exists an input vector

a,, such that f is connected to p, but p is not connected to 1. One verifies

the following:
p stuck-at-0 is dynamic: c=1 x=0 g=1 g* -fight
c=1 X =a, g=1 g*=0
p stuck-at-1 is dynamic: c=0 x=1 g=0 g =0

Node faults in the n-part are treated similarly.



22 Brzozowski
Control faults

The arguments presented in Section 3 are completely general, if we replace

000 by 0 and 111 by T; hence that proof applies also to arbitrary cells.

This concludes the proof. O

In summary, Theorem 1 states that very few faults are clean in a standard
CMOS cell, and this makes testing difficult. Theorem 2 shows that all the faults
are clean in the modified version of the cell. Thus the modified design is much
better from the point of view of testability. The cost of using modified cells
should not be prohibitive. Adding the extra transistor to a cell with several p-
transistors and several n-transistors represents a relative small increase in area.
Also, this approach can be easily combined with built-in self test techniques [M-
B].
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