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ABSTRACT

Recently, the validity of the Ehrenfeucht Conjecture on test
sets for morphisms has been established. Based on this result we
give an entirely new proof of the decidability of the DOL sequence
equivalence problem. The new technique is more powerful and
allows us to prove that the sequence equivalence problems for
HDOL and DTOL sequences are decidable, as well.

We also survey the known results on various generalizations of
the DOL sequence equivalence problem.

1. Introduction

The DOL sequence equivalence problem (or DOL problem for short) was
posed by A. Lindenmayer at the beginning of the 1970’s. It first appeared pub-
lished in [28] where it is explicitly stated for propagating DOL systems. The sim-
plicity of the formulation of the problem made it soon one of the most challeng-

ing open problems within the theory of formal languages.

* This work was supported by the Natural Sciences and Engineering Research Council of
Canada under grant No. A-7403.

+ This work was done during the second author’s visit at the University of Waterloo.
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It was not only the problem itself but also the techniques developed to attack
it, as well as new problems encountered, which turned out to be extremely fruit-
ful. To mention a few such developments we first recall that the notion of an
equality language of two morphisms arose from the study of the DOL problem,
first implicitly in [7] and later explicitly in [19], and subsequently heralded,
among other things, a number of representation results for families of languages,
cf. [5], [14], [21] and [41]. Further the problem of morphic equivalence on
languages, introduced in [16], was motivated by the DOL problem and has lead
to quite an extend study of different kinds of equivalence problems on languages,
cf. e.g. [1], [27], [30], and [13]. Finally, the important Ehrenfeucht Conjecture,
see [26], seems to have its origin in the DOL problem.

The DOL sequence equivalence problem has been shown to be decidable in
[7]. The resulting algorithm, as well as the one found later in [19], is very com-
plicated. Only in the case when the systems are over the binary alphabet a sim-
ple algorithm is known for the problem, see [25]. Several special cases of the
DOL problem were solved before the complete solution of [7], cf. [3], [44], and
[24]).

The goal of this paper is two-fold. In the first place we discuss the new tech-
nique based on the validity of the Ehrenfeucht Conjecture, cf. [2], to give a new
proof for the DOL problem as well as to its several generalizations. Secondly, we
give a survey on the results obtained on the DOL problem and its modifications,
see also [6].

These two goals in mind the paper is organized as follows. In Section 2 we
give our basic definitions and fix our terminology. In Section 3 we give a
detailed outline of a new proof of the DOL sequence equivalence problem. This
proof is based on a decidability result of Makanin, see [29], stating that it is
decidable whether a given system of equation over a finitely generated free
monoid has a solution, on the validity of the Ehrenfeucht Conjecture, see [2],
and on a surprising connection between the Ehrenfeucht Conjecture and the
DOL problem shown in [10].
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In Section 4 we discuss several different generalizations of the DOL prob-
lem. We list the results obtained in this direction and, in particular, we
emphasize that the new proof for the DOL problem can be generalized to yield
many interesting decidability results, including the HDOL and DTOL sequence

equivalence problems.

2. Preliminaries

We assume that the reader is familiar with the basic notions of formal
language theory, see e.g. [23] or in the case of L systems [34]. Consequently,
the following lines are mainly to fix our terminology as well as to state our basic

problems.

In this paper we are mainly dealing with sets of words (languages) and
sequences of words generated in a “morphic way,” the simplest ones being the
so-called DOL languages and DOL sequences. A DOL system H is a triple
<X,h,w>, where ¥ is a finite alphabet, 2 is a morphism on £* and w is a
nonempty word of £*. H is called propagating or PDOL system if h is e-free.
The DOL system H defines the language L(H) = {(h"(w) | n > 0} and the
sequence E(H)=w,h(w),h*(w),---. Languages and sequences thus
defined are called DOL languages and DOL sequences. An HDOL sequence (resp.
HDOL language) is obtained from a DOL sequence (resp. DOL language) by
applying another morphism (not necessarily into £*) to that sequence (resp. to
that language). Further a DTOL system is a (k+2)-tuple <¥,hy, ..., I, w>
where each <%, h;,w> is a DOL system. A DTOL system defines in a natural
way a complete k-ary tree (called a DTOL tree or sequence) shown in Figure 1.
The set of all nodes of this tree forms a DTOL language. P- and H-
modifications of DTOL languages and sequences are defined as in the case of
DOL systems. Two DOL or DTOL systems are called equivalent if they define
the same DOL or DTOL sequences, respectively.
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Figure 1

Now, we are ready to state the first of our basic problems.

Problem 1. The DOL (resp. HDOL, DTOL, HDTOL) sequence equivalence
problem is the problem of deciding whether or not two given DOL (resp. HDOL,
DTOL, HDTOL) sequences coincide.

Clearly, the above problem is related to the problem of studying the equation
h(x) = g(x) for a word x and two morphisms 2 and g. This in mind we

“say that morphisms # and g on I* are equivalent or agree on a language L,
in symbols h = g, if the equality h(x) = g(x) holds for all x in L. Obvi-

ously, the above notions can be defined with respect to other kinds of mappings,
such as deterministic gsm’s, as well.

Now, we can state the second class of our problems.

Problem 2. The morphic equivalence problem for a family L of languages is the
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problem of deciding, given a language L in L and two morphisms 4 and g,
whether or not » and g are equivalent on L, i.e., whether or not # = g

holds.

It is desirable that when testing whether h = g holds it is enough to test

whether h = g holds for a finite subset F of L. We formalize this by saying

that a finite subset F of a language L C ©* is a fest set for L with respect to
morphisms if for any two morphisms # and g, they agree on L if and only if
they agree on F, i.e., L is morphically forced by F. The claim that such an F
always exists is known as, cf. [26],

The Ehrenfeucht Conjecture: Each language possesses a test set.

It was shown in [10] that the Ehrenfeucht Conjecture can be stated as a com-
pactness claim for systems of equations. To be more precise let N be a finite set
disjoint from our basic finite alphabet . The equation over * with unknowns
N isapar (u,v) €e(E UN)* X (Z U N)*, usually written as u = v. A sys-
tem of equations is any collection of equations. A solution of a system S of equa-
tions is a morphism 4 : (£ U N)* —X* suchthat h(a) =a forall a in &
and h(u) = h(v) forall (u,v) in S. Since h(a)=a for a in £ we may
present any solution 2 as an n-tuple from (X*)*, where n denotes the cardi-
nality of N. Finally, we say that two systems of equations are equivalent if they
have exactly the same solutions. Now, we are ready for our alternative formula-
tion of the Ehrenfeucht Conjecture. It is equivalent to the statement that each
system of equations over £* with a finite number of variables is equivalent to
its finite subsystem. Using this interpretation Albert and Lawrence k[2] (and
independently Guba [22]) proved recently:

Theorem 1.  The Ehrenfeucht Conjecture holds true.
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A trivial application of this result to Problem 2 is that for an arbitrary
language L there exists an algorithm to decide the morphic equivalence on L.
Of course, in general such an algorithm can not be found effectively, but it

exists!
We conclude this section with another very useful and deep result due to

Makanin [29].
It is decidable whether or not a given finite system of equations over

Theorem 2.

X * possesses a solution.
Theorems 1 and 2 will be the cornerstones of our subsequent considerations.

3. The DOL Problem
In this section we give a solution to the DOL sequence equivalence problem

(or DOL problem for short) originally solved by Culik and Fris in [7].
Let H=<%,h,w> and G = <X, g,w> be two DOL systems. Then,

clearly, H and G are equivalent, in symbols H ~ G, if and only if the mor-
phisms & and g are equivalent on the DOL language L (H) (or equivalently on

L(G)), that is to say
H ~G ifandonlyif » ‘% g.

So in the case of DOL systems we have the following connection between Prob-

lems 1 and 2: Problem 1 is a special case of Problem 2. However, the restricted
form of Problem 2, namely that L(H) is generated by one of the morphisms
whose equivalence on L(H) is to be tested, seems quite unnatural. So-let us
start to consider the general problem of deciding whether for a DOL system

H = <%,h,w> and two morphisms f and g the relation f L g holds.
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By Theorem 1, there exists a finite subset F of L(H) such that
f"® ¢ ifandonlyif f Zg. 6))

So the problem is of finding such an F effectively. To show that this indeed can

be done we first prove:

Theorem 3. For two finite languages L, and L,, with Ly CL,C X*, it is
decidable whether L is a test set for L,.

Proof: Let Xy and Xy be isomorphic copies of & via the mappings r and 7
such that all the alphabets ¥, X5, and X5 are pairwise disjoint. With a word
w in £* we associate the equation r(w) = F(w) over ©* with Xy U Xy,
as the set of variables. Clearly, morphisms » and g are equivalent on w if
and only if 2(X) and g(X) defines a solution of the equation r(w) = F(w).
Conversely, each solution of this equation defines a pair of morphisms agreeing
on w. So Theorem 3 follows directly from the following result which has been

shown in [10]. We include a proof only for the sake of completeness.

Theorem 4. The equivalence problem for finite systems of equations over ¥ *
with a finite number of variables is decidable.

Proof: Let §; and S, be two finite systems of equations over £*. We show
that we can test whether they are equivalent. Clearly, they are not equivalent if

and only if the following formula is satisfied by some words in £*:
S - s} A S)).
g, B1ad DV Y (=53 AS).
Since §; and S, are finite it is enough to consider the above for the simple for-
mula
S1 A {—s} where s €5,

Now, we start to consider the words satisfying —s, i.e., words satisfying the
inequality u # v. It is straightforward to see that it can be satisfied on £* if

and only if the following formula can be satisfied on X*:
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So the inequality of S; and S,, and hence also there equality, can be tested
by applying the algorithm of Theorem 2 a finite number of times.

As our final auxiliary result we need the following simple lemma.

Lemma 1. Let h : =% —A* be a morphism and L C =* a language. If F
is a test set for L, then h(F) is a test set for h(L).

Proof: If A(F) would not be a test set for 2(L), then there exist morphisms
f and g which agree on h(F) but not on h(L). So the morphisms f oh

and g oh agree on F but not on L, a contradiction.

Now, we are ready to show that F in (1) can be found effectively (special
cases of this result were shown in [11] and [31]).

Theorem 5. Each DOL language L possesses effectively a test set F. Hence,
Problem 2 for DOL languages is decidable.

Proof: lLet L ='L(H) for a DOL system H = <¥,h,w>. Define, for »
i >0,

L 0= {W},
Ly =L U h(Ly).
Then, by Theorems 1 and 3, we can find effectively an integer ig such that L;

is a test set for L; ,;. We claim that L;  is a test set for L; 2, too. Indeed, by

Lemma 1, L; ,;—(w) is a test set for L; o —{w}, and hence also L; 4 is a test
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set for L; 4. So the claim follows from the transitivity property of test sets. By
induction, we conclude that L;, is a test set for L, so that we can choose

F = Lio.

As a corollary we have a new proof for the DOL sequence equivalence prob-

lem:
Theorem 6. It is decidable whether or not two DOL sequences are equivalent.

Our proof of Theorem 6 is strongly based on the deep results of Theorems 1
and 2. Therefore, similarly as in the case of earlier solutions of the DOL prob-
lem in [7] and [19] we are not able to give any practical algorithm. So it remains

an open question whether such an algorithm exists.

It was conjectured in [40] that to test the equivalence of two DOL sequences
it is enough to test whether or not the 2n first words of the sequences are the
same. This 2n-conjecture is still open in general, but it is known to hold in the
case of a binary alphabet, cf. [25]:

Theorem 7. Let H =<X,h,w> and G = <X,g,w> be DOL systems
where X is binary. Then H and G are equivalent if and only if
h"(w)=g"(w) for n=0,1,2,3.

The above theorem is optimal as is shown by the following example from
[32): w = ab; h(a) = abb, h(b) = aabba; g(a) = abbaabb, g(b) = a. By
considering multiple alphabets it is straightforward to generalize this e)gample to
show that for any n there exist two inequivalent DOL sequences which coincide
on [3/2n] first words. The only known general result in this direction is that
there exists a huge constant n(H,G) depending only on the parameters of the
DOL systems H and G such that H and G are equivalent if their sequences

coincide up to the level n(H,G). This follows from a result in [4] and is
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explicitly stated in [20].

We conclude this section by mentioning the following related result to

Theorem 6.

Theorem 8. It is decidable whether or not two DOL systems generate the same

language.

This result follows from Theorem 6 by the main result of [32] (see also [42]).

In [37] it has been shown that even the inclusion problem for DOL languages is
decidable.

4. Generalizations of The DOL Problem

In this section we consider the generalizations of the DOL sequence
equivalence problem. In particular, we want to point out that the techniques of
the previous section actually apply to several nontrivial generalizations of the
DOL problem, as well. We also list the interesting known results connected to
the DOL problem.

First we recall that the earlier algorithms for the DOL problem were based
on the so-called boundedi balance property of the equivalent DOL systems. That
is to say, if DOL systems H = (£,h,w) and G = <X,g,w> are equivalent
then the pair (h,g) has a bounded balance on L (H), i.e., there exists a con-
stant C such that |h(x)|—|g(x)| < C for any prefix x of a word in
L(H). On the other hand, two morphisms may agree on a DOL language L

~without having a bounded balance on L, as shown by the language
{a¥b? | n > 0} and the morphisms # and g defined by h(a) = a = g(b),
h(b) = ¢=g(a) (for a more nontrivial example c¢f. Example 7.1 in [11]).
Therefore the methods of [7] and [19] cannot be generalized to yield the follow-

ing:
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Theorem 9. The HDOL sequence equivalence problem is decidable.

Proof: HDOL sequence equivalence problem is equivalent, as was noted in [6],
to the morphic equivalence problem for DOL languages. Clearly, the latter is a

special case of the former. To prove the converse implication let f and f, be
morphisms and H = <Z,h,w> and G = <%, g,w> DOL systems. Let &

be a barred copy of £, f,, f, and & U § morphisms defined by
fi(@)=f1(a), Faa)=¢, (huUg)a)=nh(a) for a€x,
f1@) =€, fo@)=fra), (hug)a)=glay for aex.

Then, clearly, the HDOL sequences (f1(2"(w)))n>0 and (f2(g"(w)))n>0 are
equivalent if and only if morphisms f1 and f, are equivalent on the DOL
language {(h U g)"(ww) | n > 0}. Thus, Theorem 9 follows from Theorem 5.

Theorem 9, as well as Theorem 5, was first proved by Ruohonen in his
highly nontrivial paper [39] by employing similar arguments he used to prove a
surprising encoding of the DOL problem at the time when the problem was still
open. Namely, in his paper [35] he shows that if it is decidable whether a given
Z -rational sequence contains a zero —a well-known open problem, cf. [43] —then
the DOL problem is decidable. Note also that a special case of Theorem 9 was
proved in [11].

Another natural direction to generalize the DOL problem is to consider
DTOL systems. In the case of DTOL systems over the binary alphabet all com-
binations of Problems 1 and 2 are known to be decidable. Indeed; Theorem 7
can be extended to DTOL sequences over the binary alphabet as well as to their
morphic images, cf. [25]. Further Problem 2 is also known to be decidable for
HDTOL languages over the binary alphabet, first proved in [15], see also [18].
However, in the general case practically nothing had been known about these
problems until the Ehrenfeucht Conjecture was established. Now, all of these
problems can be shown to be decidable using the techniques of Section 3. We
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have

Theorem 10. Each HDTOL sequence possesses effectively a test set. Hence, Prob-
lem 2 is decidable for HDTOL languages.

The detailed proof of Theorem 10 as well as some of its generalizations can

be found in [12]. Observe also that, as in the case of DOL systems, Theorem 10
implies

Theorem 11.  The HDTOL sequence equivalence problem is decidable.

The decidability of the DTOL sequence equivalence problem is certainly a
nontrivial generalization of the DOL problem. This is illustrated, e.g., by the
fact that there does not exist an analogy to Theorem 8. On the contrary, we
have, cf. [33]:

Theorem 12. It is undecidable whether or not two DTOL systems generate the

same language.

Still another way of generalizing the DOL problem is to consider context-
dependent mappings. Now, the decidability status of the equivalence problem
changes dramatically. Even in the case of PDIL systems, i.e., when the rewrit-
“ing of a letter depends only on its left neighbour and the letter itself and no eras-
ing is allowed (for detailed definition see [34]), the equivalence problem is unde-

cidable as proved in [45]:
Theorem 13. The PDIL sequence equivalence problem is undecidable.

Of course, PD1L mappings are very special cases of deterministic gsm’s, cf.
[23]. So the sequence equivalence problem for deterministic gsm’s is undecid-
able, too. However, it is decidable whether or not two deterministic gsm’s are

equivalent on a given DOL language. This is a consequence of the following
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more general result proved in [13] (in fact, the result holds even for two-way
single-valued sequential transducers if instead of HDTOL languages NPDTOL

languages are considered, where N refers to nonerasing morphisms).

Theorem 14. For every HDTOL language L and integer n > 1 there effectively
exists a finite subset F of L such that any two deterministic gsm’s with at most n

states that are equivalent on F are also equivalent on L .

The subset F of L in the previous theorem may be called a test set for L

with respect to deterministic gsm’s with at most n states.

Corollary 1. It is decidable whether or not two deterministic gsm’s are equivalent
on a given HDTOL language.

Turning to the nonsymmetric equivalence problems we want to mention the
following two results proved in [36] and [38], respectively. Recall that an OL sys-
tem is obtained from a DOL system by replacing the morphism 4 by a finite sub-
stitution, for details see [34].

Theorem 15. The equivalence problem between OL and DOL languages is decid-
able.

Theorem 16.  The equivalence problem between DOL and DTOL languages is
decidable. '

We conclude this section with two more decidable generalizations of the
DOL problem. These problems differs from the previous ones in the sense that
the generating device is unchanged —it is still the DOL system —but the notion
of equivalence is defined in the more general setting. The first problem deals
with the ultimate equivalence of DOL sequence. We say that DOL systems
H=<Z,h,w> and G = <X,g,w> are ultimately equivalent if there exists
an integer ng such that h"(w) = g"(w) for all n > ng. In [4] it has been
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proved:
Theorem 17.  The ultimate equivalence problem for DOL systems is decidable.

Another generalization of the DOL problem is the w-equivalence problem
for DOL systems. In this problem we consider so-called prefix-preserving mor-
phisms, i.e., morphisms satisfying the condition #(a) = awg for some a in X
and wg in ©*. For such morphisms we have A"*l(a) = h"(a)w, for some
w, in ¥, so that we obtain as the limit, when n goes to infinity, the unique
w-word. The w-equivalence problem for DOL system is the problem of deciding
whether or not two prefix-preserving morphisms defines the same limit. It has
been proved in [8] that also this problem is decidable.

Theorem 18. The w-equivalence problem for DOL systems is decidabile.

We recall that both Theorems 17 and 18 are nontrivial generalizations of the
DOL problem. It seems that our new techniques of Section 3 do not apply to
these problems.
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