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ABSTRACT

Smearing, shifting, and embossing effects can all be achieved
with digital filtering techniques. These effects could be a powerful
artistic tool for paint and image processing systems but are typi-
cally not included because their computation is too costly. A tech-
nique for simulating these and other filters is described that speeds
computation and reduces lookup table size over conventional filter
evaluation. This is accomplished by retaining information about
pixel contents that have already been swept by the brush and by
mapping the 360 degree range of brush paths to a single direction.
At the heart of the technique is an algorithm, interesting in its own
right, that orders pixels according to their perpendicular distance
from the cross section of the brush independent of its path.

1. Introduction

Typical paint systems provide brushes that deposit a set of pigments at
specified locations along the brush swath independent of surrounding pixels.
Many more interesting effects can be achieved by allowing the brush to use the
existing image (or possibly images) in the process of deciding what the new color
of every pixel along the swath is to be. The explode and ripple operators of
Warpitout[Veed83] and the smear and slide brushes of the NYIT paint program
[Smit78] are examples of brushes in this category. In their full generality a paint
brush and path can be considered as a set of digital filters located at every pixel
of the original image. Because of their computational expense, general brushes

would rarely be implemented in a paint system.
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This paper describes a class of brushes that is simpler and computationally
more tractable than a fully general brush, yet provides more versatility than
those available with a typical paint system. A few of the effects that can be

achieved with these brushes are:

Smearing
A brush is dragged across a wet canvass causing paint to be moved a dis-
tance along the brush path.

Shifting
The image under the brush shifts left or right across the perpendicular of the

brush path. The image can be made to ripple back and forth, fall off the

side of the brush and cycle back to the other, or just fall off the side and
remain. See Fig. 1.

before after

\

Figure 1. The shift brush move horizontally from left to right across
the image on the left producing the image on the right.

Embossing

A sheet of paper is placed over a bumpy surface and a pencil is wiped over
the paper transferring an image of the surface to the paper.

A conventional implementation for these brushes would involve convolving a
neighborhood of pixels for each pixel under the brush. This results in multiple
read operations for the same pixel. We save time by maintaining a 1 dimensional
state table containing pertinent information about all pixels swept by the brush.
Thus these brushes are one-sided in the sense that portions of the image not yet
swept by the brush do not affect pixels currently being modified. A consequence
is that the brushes are highly directional; sweeping the same path in opposite
directions will produce different results.
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Lookup tables are often used to reduce the time involved in computing a
brush. Alternatively, a set of rules describing the computation for each pixel
may also be used. For the class of brushes considered here, there are 3 degrees
of freedom in the description of each pixel touched by the brush; angle and dis-
tance from the current brush position and angle of brush path. See Fig. 2. How-
ever, 2 of these variables may be eliminated since the brushes are one-sided. All
that is needed to identify a pixel is its perpendicular distance p from the center
of the path. See Fig. 3. Once a pixel has been swept by the brush its informa-
tion is retained in the state table. Thus lookup table size and/or the number of

rules describing update operations is greatly reduced.

brush
path

brush
center

Figure 2. The location of a pixel swept by the brush is is described by
the angle ¢ of the brush path from the horizontal, the angle & between
the brush and the brush path, and the distance between the brush path
and the pixel when swept across by the brush.

Four operators are applied to update the state table:
1) U:
How the state table changes as the brush moves from pixel to pixel,
2) I:how a new pixel changes the current state,
3) C:
how the current state determines the contents of a pixel once it has been
swept over, and

4) D:

how the current state is updated by the modification of a pixel.
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pixel T

brush
P path

Figure 3. For a one-sided brush, only the perpendicular distance

between the brush path and the pixel is necessary to identify the loca-
tion of a pixel.

The richness of U, I, C, and D, and the order in which they are performed make
many different brushes possible. A difficult problem that is not addressed here is

that of providing a convenient mechanism for the artist to define new brushes in
the class.

At the heart of the technique for updating the state table is an algorithm
that orders pixels according to the time they cross the brush. The algorithm is
interesting in its own right and may be used to speed computation of more con-
ventional brushes.

2. Computing the Brush

The brush path is an oriented segment defined by a initial point (z,y,) and
a final point (z,,y,). The sweep line is a line segment of length w that is cen-
tered on and runs perpendicular to the brush path. The brush swath is the set
of pixels that is touched by the sweep line as it moves from (zg,yo) to (z,y,;). See
Fig. 4. Unlike typical brushes that have area and cause some pixels to be modi-
fied multiple times|[Fish84], our brush modifies pixels in the swath exactly once
when they are crossed by the sweep line.

For the moment, assume that there is a queue Q containing records of the
form (¢t,p,x,y,r,9,b). Each record corresponds to a pixel in the brush swath
where t is the perpendicular distance of the pixel from the initial position of the
sweep line, p is the perpendicular distance of the pixel above or below the brush
path ( —w/2<p<w/2 ), (z,y) is the location of the pixel, and r,g,b are its red,
green, and blue components. Assume also that the records in Q are ordered by
increasing t. The algorithm to maintain Q is described in section 4.
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+ — pixels contained within brush swath

Figure 4. Pixels marked by a + are contained within the brush swath,
all others are not.

The following pseudo-algorithm describes how the brush is computed.

for
each (¢t,p,z,y,r,9,6) in Q

do
eupdate the state table with U
einsert (¢t,p,z,y,r,g,b) in the state table with I
eobtain (r',g'b") for pixel (z,y) with C
supdate the state table with D

od

The brush sweeps from the initial to final points performing the updates in the
for loop. The order of the updates may be interchanged for different effects.
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2.1. The State Table

The state table T is an array containing information about pixels that have
been crossed by the sweep line. Each index position ¢ in T corresponds to a
unique distance p above or below the brush path; information about r,g,b values
for the portion of the image that lies p away from the path is stored at T(z). See
Fig. 5.

sweep ® [ [ ] ® L]

L] * L] [ [ ]

Index [ [ [ ] [ 3 [ ]
locations . . . . .
in T

IOI*ININIMGiU'I*IGIWIBI=I

Figure 5. When a pixel is swept by the brush, the distance from the
brush path is used to determine the appropriate state table entry to be
updated.

Pixels crossing the sweep line do so at various distances p from the path
depending upon the path angle and length. When a pixel crosses the sweep line,
the index ¢ of T that most closely corresponds to its distance p may be found

with the following formula:
. n
i = l(HWQ)—w-l (1)

The sub-pixel resolution of T is w/n; increasing the number of table entries
causes the correspondence between pixel distance from the path and table index
to be more accurate at the expense of greater update times. Even for large n,
pixels will fall between the table entries and a form of aliasing occurs. Aliasing
artifacts can be overcome by distributing pixel values over several adjacent table

entries when using operator [.
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2.2. The U Operator

As the sweep line moves from a pixel at ¢, to a pixel at ¢;, T is updated to
reflect a move of distance t;—t;. One possibility for U is to modify each entry by
a function f independent of index number and adjacent table entries:

T(5) = f(t1—t0,T(5)) (2)

for 0<j<n. Smearing is accomplished by defining f to be a decreasing linear or
exponential function of parameter ¢. Another possibility is to shift the contents of
T k index positions depending upon the distance t,—t,. Values falling off the
ends may either disappear, accumulate in the last index position or wrap around.

In general, T(0),T(1),T(2),... can be considered as a waveform sampled at
intervals along the sweep line. The U operator first reconstructs the continuous
signal, modifies it, and resamples back into T. In some cases, much of the time
involved in computing U can be eliminated through the use of precomputed
lookup tables that are independent of the brush path.

2.3. The I Operator

T must be updated to reflect the r,g,b values of pixels entering the brush.
In the simplest case, I simply adds r,g,b from the current queue record to T(7)
where ¢ is from Eq. (1). To eliminate aliasing artifacts caused by single-valued

correspondences between ¢ and p, it is best to have I operate over a neighbor-
sinz

hood of table indices centered at :. Gaussian and weighting distributions

do quite well at eliminating aliasing[Smit83]. The weights would be symmetric
around 0 and sum to 1. The new table T would then be expressed:

T(5) = T(5Hwin(i—1)f(r,9,b) (3)

where 0<j<n, w;, is the weighting function, and f is either a single or mul-
tivalued function of the input pixel value. Initial shift effects can be produced by
adding constant or variable offsets to p before computing 7.

2.4. The C and D Operators

The C operator produces the r,g,b values for a new pixel. If p is the dis-
tance from the pixel to the brush path, we extract information from T near the

corresponding index ¢. These values can be expressed as a convolution:
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(r9,6) = 3] wou(i—5)T(3) (4)

where 0<)<n, and w,,; is a set of output weights. Typically, the convolution
would be an average of several surrounding table entries because T is essentially
a supersampled version of the image under the brush. In the simplest case, the
D operator sets entries T(j) to zero anywhere w(¢—7) is nonzero, indicating that
the pixel has been removed from the table. Various shift effects can be produced
by using different values for ¢ of C and D.

3. An Example: Embossing

If a pencil lead is rubbed across a sheet of paper on a smooth surface, a uni-
form shade of gray is produced. If we now place a flat object of greater height
under a portion of the paper and rub the lead from the lower surface to the
higher surface, a uniform shade of gray appears followed by a dark band at the
joint between the two heights followed by another uniform shade of gray. Rub-
bing the lead in the opposite direction produces a lighter band at the joint.

This artistic technique can be simulated digitally in the following manner.
Consider a 1 dimensional signal z, sampled at ¢=0,1,2.... A new signal y, is pro-
duced from the z; modeling the behavior of the pencil lead. Let d,=z,,,—z,. If
all d;=0, then y,=b for all t. The quantity b is called the bias and corresponds to
a uniform gray shade on a smooth surface.

If d,#0 then the surface has either bump or a pit, and the lead produces a
darker or lighter region. Typically this region persists slightly past the surface
irregularity and eventually settles back to the uniform gray color. This behavior
can be modeled by defining

Y41 = b+sign(y,—b)|y,—b Il/c‘*'dt (5)

where ¢>1 and indicates how far y is affected past the irregularity in z. Various
quantities in Eq. (5) can be scaled to achieve different effects. For example, the

importance of a change in  can be exaggerated by scaling d, by a positive con-
stant greater than 1.

The embossing effect can be produced by modifying the procedure described
in the previous section. For simplicity, assume that the underlying image is
defined by luminosities ! between 0 and 255 and the r,g,b fields in the queue
records have been replaced by I. The image can be thought of as a surface
defined by the coordinates (x,y,!) with luminosity changes corresponding to
variations in surface height.
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Let t be the current position of the sweep line and (to,p,z,y,/) be the next
queue record. The U operator causes the state table to settle back to the bias
value:

1
ctty—t

T(i) = b+sign(T(i)~b)|T(:)-b | (6)

Note that exponential behavior can be achieved by multiplying T(:) by different
fractions less than 1 depending upon ty—t.

To find the variations in surface height, an additional state table S is main-
tained that retains the most recent surface height. The difference between the
recent height in S and ! of the current pixel is then added to T; the old height in
S is then replaced by I. The weights w;, distribute [ over several table indices to
reduce aliasing effects.

Let ¢ be the table index found from p by Eq. (1). The height of a pixel
should affect only table entries indexed by j for which w;,(¢—7)#0. The I
operator computes

T(5) = T(5)+S(5)—win (i =) (7)

and then updates S;

S(5) = win(i—3) (8)
for these non-zero entries.

The C operator simply averages several adjacent values in T around index ¢
using w,,s. The results of averaging are clipped to the range [0,255].

The D operator is not used; in some sense it has been incorporated within I
in the update of S.

Fig 6 contains an embossing using Mount St. Helens as the underlying sur-
face. The brush was swept horizontally from left to right and covers the entire
image. Each of the r,g,b channels were treated separately; different biases,

decay exponents, and scaling constants were used for each channel.
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Figure 6. The original image of Mount St. Helens above, and

result of embossing below.

the
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4. An Algorithm For Maintaining Q

The queue Q contains pixels in the swath ordered by their perpendicular dis-
tance from the initial position of the sweep line. Instead of identifying and sort-
ing these pixels all at once, an incremental update algorithm is employed. After

Q has been initialized, every deletion from the front causes one or two new pixels
to be added to the back.

Without loss of generality, it will be assumed that the brush path lies in the
first octant; that is, 0<yl—y0<z1—20. At any point, Q contains the pixels in
the swath that are in an 8-connected region lying to the right of the sweep line
that block the line from the rest of the swath. More formally, if pixel (z,y) lies
to the left of the sweep line and pixels (z+1,y) and (z,y+1) lie to the right of the
sweep line, then (z+1,y), (z,y+1), and (z+1,y+1) will be in Q if they are in the
swath. See Fig. 7.

When the sweep line crosses a pixel at (z,y), the hole in the 8-connected
region to the right of the line must be closed. This is accomplished by placing
pixel (z+1,y+1) on the tail of Q as long as it lies within the swath. Containment
in the swath is tested using the values of ¢ and p of the original pixel at the head
of Q. Formulas for performing this test are described below.

It is possible for pixel (z,y) but not (x—1,y—1) to be in the swath. Such pix-
els lie along the lower edge of the swath and would not be inserted in Q by the
above scheme. See Fig. 7. They can be included by maintaining a check pizel
(z.,y.) that is in the 8-connected region of the sweep line but is just below the
swath boundary. Every time the brush moves the check pixel is tested to see if it
has been swept across. If the pixel is in the swath, then before the record at the
head of Q is removed, pixel (z.+1,y.+1) is tested to see if it is in the swath. If
the pixel is in the swath, then it is added to the tail of Q and (z,+1,y.) becomes
the new check pixel. If not, it becomes the new check pixel. See Fig. 7.

Let ¢y and ¢, be the perpendicular distances from pixels (z,y) and (z+1,y+1)
to the initial position of the sweep line. It can be shown that:

t, = to+V2cosp (9)

-1 yl—yO

zl—-z0
path and the z axis. If ¢, is the perpendicular distance from pixel (z+1,y) to the
initial position of the sweep line, then:

where p=%—0, and 6 =tan . That is, 4 is the angle between the brush
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+ — pixels in the 8-connected region
to the right of the current
sweep line position.

— pixels not included in Q in the
ordinary fashion.

® — check pixels

Figure 7. The diagram indicates the relationship between pixels, the
current sweep line position, and brush swath. Pixels labelled 4+ are in
the 8-connected region to the right of the current sweep line position.
Pixels labelled by a square are not included in @ in the ordinary
fashion. Check pixels are labelled by an encircled dot.

ty = to+cosl (10)

Let p, and p; be the perpendicular distances from pixels (z,y) and
(z+1,y+1) to the brush path. It can be shown that:

P, = pot+V2sinp (11)

where p and @ are as defined above. If p, is the perpendicular distance from
pixel (z+1,y) to the brush path, then

Po = po+sind (12)

A pixel is contained in the swath if and only if its corresponding t and p
values satisfy the following inequalities:

—wR<p<wr (13)
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0 < t <V(z1-20)*+(y1—y0) (14)

We can now prove the following lemmas asserting that the algorithm for
maintaining Q is correct.

Lemma: Every pixel in the swath is inserted in Q.

Proof: Assume that Q has been initialized to contain the pixels in the 8-con-
nected region to the right of the initial position of the sweep line. For some y,
let I be the smallest integer such that pixel (I,y+!) is in the swath but never in
Q. The rule for insertion in Q implies that (I,y+!) must lie along the lower edge
of the swath and that the edge of the brush must have swept between
(I-1,y+!-1) and (I—-1,y+I). But this implies that (I—1,y+!—1) must have been
a check pixel and that (I,y+!) would have been inserted in Q.

Lemma: Every pixel is inserted in Q in increasing order of t.

Proof: Let (to,p,z,y,r,g,b) be the record at the front of Q. Assume that Q is
ordered correctly at the initial position of the sweep line. Initially, we have
t,--tog\/2_cosp for all the records ¢ in Q since the pixels in the 8-connected
neighborhood lie within \/Ecosp of the line. The pixel placed on the end of Q
generated by the record at the head has t=t0+\/§cosp and therefore t>t; for all
records ¢ in Q. Pixels may also be inserted in Q when the check pixel is crossed
by the sweep line. But all the pixels in Q are within V2cosp of the sweep line at
the check pixel and the pixel inserted in Q has t=tc+\/§cosp, where t, is the
perpendicular distance of the check pixel from the initial position of the sweep
line. Thus, t>t; for all pixels ¢ in Q. Since all pixels inserted in Q have larger
values of t than those already there, and Q was initially ordered, every pixel
must have been inserted in Q in the correct order.

We mention 2 possibilities for obtaining the initial contents of Q for the
starting position of the sweep line. The first determines the pixels that belong in
Q and then sorts them by their ¢ values. The second is able to generate the pix-
els in the correct order.

1) Consider the left endpoint of the brush path (z4,y0) as the current point, CP,
and insert it on a list L of unordered pixels. Let CP=(z,y) and check if
(z—L,y) is in the brush swath. If it is, set CP=(x—1,y), and append it to L.
If it isn’t, then it is above or to the left of the swath. If it is to the left, then
(z,y+1) must be in the swath; set CP=(z,y+1) and append it to L. If it is
above, then all pixels above the brush path that initially belong in Q have
been appended to L. The pixels below the brush path are generated and
appended to L in a similar fashion. The list L is then sorted by increasing
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value of ¢t. This technique works by staying as close as possible to the initial
position of the sweep line.

2) In [Fiel84], algorithm EXACT_F1 is described that draws anti-aliased line
segments. The algorithm generates pixel locations ordered by increasing
vertical and hence perpendicular distance from the line. Basic number-
theoretic results are employed to rearrange the order of pixels produced so
that the remainder values produced by Bresenham’s algorithm [Bres65] are
increasing. Thus, the initial contents of Q can be found without sorting.

The first algorithm is straightforward but requires sorting at most 2w values.
For thin brushes the cost of sorting could be negligible compared to the overall
cost of computing the image that results under the brush. The second algorithm
doesn’t require sorting, is more complicated to implement, and requires that the
greatest common divisor of y1—y0 and z1—x0 be computed.

5. Analysis

A conventional means of finding the result of brushing over a single pixel
(z,y) is to evaluate some function based on the contents of pixels lying in a
neighborhood of (z,y). For the class of brushes described here, the neighborhood
consists of pixels that have already been passed over by the sweep line. One com-
plication of this scheme is that different functions and neighborhoods must be
used for each brush path angle. Either extra preprocessing time for each brush
stroke angle or large numbers of lookup tables are required. Another problem
that must be overcome is that the pixels used to compute the new value of (z,y)
have already been modified by the brush. This necessitates the use of a pixel
buffer or cache [Whit84] to retain their old contents.

Suppose that the neighborhood has size wXd; that is, all pixels in the swath
less than distance d behind the sweep line are examined to determine the new
value for each pixel. If the brush path has length !, then the swath contains

O(wl) pixels. Thus, O(dw?l) operations are required to compute the result of the
particular brush path.

In contrast, the algorithm we have described requires O(n) work for each
pixel in the swath because each entry in table T may be examined and/or modi-
fied every time the sweep line moves. Since n=cw, our algorithm requires
O(cw?l) operations. It takes O(w) time to initialize Q if the second alternative is
employed. Thus, as long as d>c, our technique is faster than that described
above. Typically, ¢ is a small constant, say between 2 and 4, while d can vary
greatly depending upon the filter being used.
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6. Conclusion

A technique has been described for computing a class of paint brushes that
is a faster alternative to methods of computing fully general brushes. An incre-
mental algorithm for producing pixels in the order they cross the line perpendicu-
lar to the brush path is the basis of our brush computation technique. The algo-
rithm can also speed the computation of more conventional brushes if the brush
“footprint” [Fish84] can be collapsed to a single line.

The class of brushes described seems to be able to produce a wide variety of
effects. More analysis and experimentation will be necessary if the class is to be
fully categorized.

In general, paint systems do not allow the artist to simulate many of the
effects producible in an analog medium. Paint splashing, texturing, shadow, and
lighting effects have yet to be realized. It is also possible to simulate photo-
graphic effects available in the darkroom. It is a challenge of the future to pro-
vide the myriad of possibilities to the artist in the realm of computer graphics.
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