ATERISS &

IMENT

|
DEPARTMENT
DEPARTMENT

BEPAR

E
E
CE

&lEN
GEN

ER
ER

[
Ut
UT

T

QM
OMP

8 WA
ITY OF WATERLOO C

r
Y
Y

A VLSI Circuit
for Anti-aliased Line
- Scan Conversion

Dan Field

CS-85-28

August, 1985

A VLSI Circuit For Anti-aliased Line Scan Conversion

Dan Field

Computer Graphics Laboratory
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3Gl

David P. Dobkin

Diane L. Souvaine

Department of EECS
Princeton University
Princeton, NJ 08544

ABSTRACT

Reducing aliasing artifacts contained in computer generated ras-
ter images is a time consuming process. The difficulty is that effec-
tive anti-aliasing is achieved only by low-pass filtering a continuous
image of the objects to be rendered. We describe a custom VLSI
circuit that employs such a filter to scan convert anti-aliased lines.

1. Introduction

In computer graphics, the phrase scan conversion refers to the process of creat-
ing pixel descriptions (locations and intensities) from high level descriptions of
geometric objects such as lines, curves, polygons, and surfaces. A pixel description
is used by the raster display device to create an image of the object. Of the typical
operations involved in rendering an image, data structure traversal, transformation.
and clipping take time that is linear in the size of the high level description. Scan
conversion however may take much more time since the length of the resultant
pixel description may have increased exponentially over the original high level

description. Thus, scan conversion can be a bottleneck in the rendering process.

2 D. Field

Some of the bottleneck can be alleviated by performing scan conversion locally
at the graphics display unit. In this fashion, both host processor contention and
host-display unit communication delays are avoided. One approach is to place a
programmable processor within the display unit and download scan conversion
software from the host. The approach taken by Fuchs et al.[Fuch82], is to use
VLSI “smart memory” consisting of a processing element at every pixel location.
The approach we are adopting is to place a set of non-programmable scan convert-
ers, one for each type of geometric object to be rendered, within the display unit.

In this paper, we describe a VLSI circuit for scan converting anti-aliased line
segments. Aliasing is an artifact produced when rendering objects on a bilevel
(pixels either on or off) display; the discrete nature of raster devices causes the
edges of objects to appear jagged. The anti-aliasing technique that produces the
most satisfactory results [Crow77b}—and the one we implement here—computes a
low-pass filtered continuous image of an object at pixel locations. In this context,
scan conversion consists of sampling the filtered image of an object at pixel loca-
tions. The filter modulates pixel intensities near object edges and reduces the stair-
casing effect.

The chip resides on an interface board that is connected to both the host and
the display memory. The circuit is activated when the interface board receives the
appropriate command and initialization data. The initialization data is loaded into
registers and scan conversion commences. The pixel description of the line segment
is produced by the circuit and sent to the interface. In turn, the interface board is
responsible for sending the pixel description to the display memory.

The interface provides some independence from the actual display device in
use. Data flow to a frame buffer memory is not uni-directional for algorithms that
perform anti-aliasing; knowledge of previous pixel intensities is required to compute
replacement intensities. The vagaries of bi-directional communication with the
frame buffer are further isolated from the chip by endowing the interface with
enough computational power to evaluate portions of the blending function as
described in section 3. We also give the interface the ability to interchange the x
and y portions of pixel addresses on command from the host as described in the

next section.

Discussion

The work described in this paper is an outgrowth of research into fast scan
conversion algorithms by the first author presented in [Fiel83]. This research
emphasized the importance of optimizing inner loop performance. In general, one
inner loop iteration of a scan conversion algorithm produces a single pixel location

A VLSI Circuit for Anti-aliased Line Scan Conversion 3

and intensity. Early in the current project we decided to concentrate on imple-
menting only the inner loop portions of the algorithm in custom VLSI, leaving
preprocessing and control to outside processors.

Our decision to implement only the inner loop can be evaluated by looking at
the communication and computing times for three scenarios in the environment
depicted by Fig. 1.

1) The host machine runs the entire scan conversion algorithm without help from
a special processor and communicates with the frame buffer memory via data
paths 4 and B. The interface is a no-op, but paths 4 and B are distinct.

2) A preprocessing step is run on the host machine and the resulting values are
sent across 4 to the interface circuit that implements the inner loop step. The
interface then communicates with the frame buffer memory via path B.

3) The host machine sends the high level description of the line segment across A
to the interface circuit that runs the scan conversion algorithm. The interface
communicates with the frame buffer via path B‘.

Graphics Device

host A

processor

B display

interface
memory

Fig. 1. The hardware layout of a typical graphics environment. Channel
A connects the host processor with the graphics device while channel B is
an data bus internal to the graphics device.

It is not unreasonable to assume that communications time across A is consid-
erably slower than B due to operating system overhead and the need for a general
purpose hardware communication protocol on the host. For instance, on a typical
VAX running the UNIX* operating system, a DMA request takes on the order of 2
milliseconds. In other words, if the cost of computing the results in the host and the
graphics device is similar, then the communication cost of path 4 is so dominant
that computation local to the graphics device is the only reasonable strategy. Data
flow along B is equivalent for ail three scenarios and may be ignored when compar-
ing communication times.

{UNIX is a trademark of Bell Laboratories

4 D. Field

Let n be the number of pixels in the pixel description of a line segment. Each
bundle of information describing a pixel location and color is 7 bytes long. If a sin-
gle byte takes time t; to move across A4, then the bi-directional communication of
scenario 1 has a relative cost of at least 14nt;. The high-level description of a line
segment consists of 2 endpoints and a color for a total of 11 bytes. Thus, scenario
3 has a relative communications cost of 11z;. The preprocessing step (to be
described in section 3) yields a bundle of information 49 bytes long that is sent to
the inner loop circuit for a relative cost of 49z;,. We can see that there is a speed-
up in the communication time that is linear in the length of the pixel description
for scenarios 2 and 3 over 1.

We have measured the time to execute a single iteration of the inner loop step
(hand optimized assembler code) on a VAX 11/780 to be 28 microseconds. In con-
_ trast, we expect an iteration of the hardware inner loop implementation to take in
the neighborhood of 400 nanosecondsi. To a large extent, the difference between
the two times is due to parallelism in the algorithm that is exploited in the
hardware implementation. The lack of opcode decoding and memory fetches in the

hardware implementation is also a contributing factor.

The preprocessing (performed once per line) time for a VAX 11/780 (with
accelerator) was measured to be 52 microseconds. We aren’t able to measure the
time for a hardware implementation, but we don’t expect an improvement as
dramatic as was the case for the inner loop step because many of the computations
involved are of a serial nature.

While there is a measurable speed improvement in scenario 3 over 2, we have
chosen to implement 2. The major factor in this decision is that it didn’t seem to
be possible to implement the preprocessing step without including a programmable
ALU. The ALU would require a large circuit area and force us to abandon the
parallel structures used for the inner loop step. Note that we haven’t precluded the
use of a hardware implementation; a natural compromise would be to implement
the preprocessor and inner loop in separate physical packages and locate them both
on the interface board. This paper discusses only the circuit for the inner loop
implementation.

In the next section, we describe the circuit that scan converts bilevel lines. In
section 3, we show how to implement scan conversion of anti-aliased lines based on
the circuit for producing bilevel lines.

1This prediction is based upon timing tests made on a portion of the critical path that has al-
ready been fabricated.

A VLSI Circuit for Anti-aliased Line Scan Conversion

(9]

2. Bilevel Lines

An algorithm for scan converting bilevel line segments takes as input the pixel
endpoints (x1,y1),(x2,y2) and produces a list of (x,p) pairs of pixel coordinates
representing the segment. The well known Bresenham algorithm [Bres65] produces
such a list that, in some senses, is a “best” approximation to the segment [Spro82].
We use a variant of Bresenham’s algorithm.

Let 0=<x1,yl,x2,y2<<M, where M is the maximum number of addressable
pixels in the x or y direction. We make the assumption that
abs(y2—y1)=x2—x1; that is, the slope m of the line lies in the range [—1,1] and
the point (x1,y1) lies to the left of (x2,y2). Any segment can be made to satisfy
this assumption by interchanging the endpoints and/or interchanging the roles of x
and y throughout the course of the algorithm. The heart of the algorithm is then:

/* Initialization */

X — x1
y —yl
dx — x2 - x1
dy — y2 -yl

yinc — sign(dy)
dy — abs(dy)

Cl — 2*dy

C2 — 2*dy - 2*dx
r o— 2*dy - dx

while
dx = 0
do /* Inner loop */
pixel(x,y) — ON
if
r<<o0
then
r—r+Ci
else
r—r+ C2
y —y + yinc
fi
Xe—x+1
dx — dx -1
od

In words, the algorithm scans the x axis from x1 to x2 selecting a single y
coordinate at any x coordinate that lies closest to the line. Since —l1=m=],

choosing exactly 1 pixel per x coordinate ensures a uniform density of selected

6 D. Field

pixels and produces the illusion of connectedness.

A further implication of —1<m =<1 is if pixel (x,y) is selected by the algo-
rithm, either (x +1,py) or (x +1,y +yinc) will also be selected (as long as x +1 lies
between x 1 and x2). The algorithm uses r as a binary decision variable indicating
which of the two choices is to be made. The value of r is a simple linear function
of the rational number ¢ where (x +1,y +¢) is a point on the line.

The preprocessing step consists of finding initial values for C1, C2, r, dx, x,
y, and yinc. These are computed off chip and loaded into registers during an ini-
tialization phase. The restriction that abs(y2—y1)=<x2—x1 may be eliminated
by interchanging the endpoints and the roles of x and y; we assume that the inter-
face performs this function.

The circuit we describe implements the while loop and the statements within.
Each iteration of the loop may be divided into two steps with statements in each
step executed in parallel.

step 1
1. pixel(x,y) — ON

step 2

2a. r —r + {CI if r<0, otherwise C2}
2b. y — p -+ {0if r<<0; otherwise yinc}
2c. x —x + 1

2d. dx — dx -1

Statements 2a through 2d are performed in parallel using 4 distinct adder cir-
cuits.

Registers are required to retain the values of x, y, dx, r, Cl, and C2. The
value of yinc is generated using a single bit register sign_dy to select one of the
hard-wired values 1 or -1. Because there may be lengthy delays reading x,y data
from the chip, static registers are used.

Register Lengths

The following relationships are derived through analysis of the algorithm and
from the previous discussion.

O=x,y<M

A VLSI Circuit for Anti-aliased Line Scan Conversion 7

—l1=dx<M
0=Cl<2M—1
—2M+1<r<2M
—2M +1<C2=0
0=<sign_dy <2

Note that the value of dx must dip below zero to signal completion of the algo-

rithm. A single-bit register is needed for sign_dy, two [logzM] bit registers are

needed for x and y, and four [logzM] +1 bit registers are needed for dx, C1, C2,

and r.

Communication and Control

The interface board governs all i/o to the chip via 3 unidirectional contro! sig-
nals. The reset signal returns the chip to an initial state. The remaining two are
non-overlapping clock signals ¢, and ¢,. Data transfer between the chip and the
interface occurs during phase ¢;. Results from additions are allowed to settle dur-
ing ¢,. Because the raster display memory may not have high enough bandwidth,
the interface can stop the generation of the pixel description by leaving ¢, or ¢,
active an indefinite'period of time.

Once the chip has been reset, the chip reads initial values for x, y, dx, r, C1,
and C2 during an initialization phase. The remaining time is spent executing steps
1 and 2 of the parallel algorithm. The chip signals completion when the comple-
ment of the sign bit for dx falls.

On-board control signals are generated with a PLA fed by a finite state
machine. In our case, the FSM is a 1 bit shift register that cycles in the last two
positions to repeat steps 1 and 2 of the parallel algorithm.

Adder Design

It was clear from the start of the project that the heart of the chip consisted of
the circuitry to perform addition. Most of the design effort was spent optimizing
an adder for speed and area. Simple 1 bit carry look-ahead designs were ruled out
for speed concerns. Full carry look-ahead designs were ruled out because they
would require too much space, especially when modifications to perform anti-
aliasing were considered.

8 D. Field

We settled on an adder that uses a binary tree to propagate carry signals,
much like that described by Vuillemin and Guibas[Vuil82]. The binary tree is
organized so that leaf / has access to bit i of the two addends. Carry, generate,
and propagate signals from left and right subtrees are combined at interior nodes
and sent to the next higher level of the tree. In this fashion, information flows
upwards from the leaves to the root the tree. The combined generate signals then
flow back down the tree yielding carry information for the full-adders situated at

the leaves. Thus, the carry delay time is 2k [logzn] for an n bit adder and some

constant k. We use an O(nlogn) rectangular area layout for the tree since the
leaves route information to and from the storage registers that are closely coupled
to the i/o pads.

Vuillemin and Guibas show that the carry delay time for a tree adder falls
below that for a simple ripple adder somewhere between n=4 and n=8%t. If
M =256 we have n=28 and the tree adder will be faster. The choice of tree over
ripple carry techniques becomes clear for the version of the circuit that renders
anti-aliased lines since # =32 bit additions are used.

The recursive structure of a tree based adder also allows us to exploit to fullest
advantage the capabilities of CLAY[Nort], the procedural layout system we are

using.

Floorplan

A floorplan and photograph of a test circuit is contained in Fig. 2. Storage
registers have i/o lines running directly to the pads. Registers for »,C1, and C2
are bitwise interleaved so the three bits in position i of each quantity are adjacent
and to the right of bits in position i +1. Since all 3 registers share the same i/o
lines to the pads, 3 distinct load cycles are required during the initialization phase.
In the circuit depicted, M was chosen to be 128; an extra bit and associated i/o
pad for the x and y registers were added for testing purposes - ordinarily they
wouldn’t appear.

Pad Count

A unique pad is dedicated to every bit position in all five storage registers for

a total of 4 [logM] +3. Additional pads for reset, ¢;, ¢, Vdd, and Gnd, bring the
total to 4 [logM] +8.

$This is only true if output drivers at each node have area proportional to their height in the
tree to compensate for long-wire charge time.

A VLSI Circuit for Anti-aliased Line Scan Conversion 9

Fig. 2. Annotated photo-micrograph of circuit for rendering bilevel lines.

3. Anti-aliased Lines

Anti-aliasing algorithms operate by replacing previous pixel values according to
the blending function

pixel (i ,j y—al +(1 —)] poe (1)

where I is the color of the object being drawn, I,,. is the previous color of pixel
(i,j), and « is the response of a low pass filter to the object at (i,j). Normally,
0=<a=1. We will concentrate on computing the o/ term of the blending function.

At the end of this section, we describe how the entire function can be computed.

The circuit for rendering anti-aliased lines is composed of two subcircuits. The
first is a modified version of the circuit described in the previous section and is
employed to find pixel positions lying near the line. The second computes the first
term of the blending function. We will sketch the algorithm that these two circuits
implement; a thorough development is contained in [Fiel84].

10 ‘ D. Field

We define a pixel as a unit area square. The value of the filter at a pixel is
simply the intersection area between the object being rendered and the pixel. Since
line segments have no inherent area, they are modeled as thin parallelograms
extending between the endpoints. The parallelogram
(x1y14+.5),(x2,y2+.5),(x2,y2—.5),(x1,y1—.5) will represent the segment
(x1,p1),(x2,p2) (See Fig. 3).

(5,2)

"
"

7
]

0,0)

T
P

Fig. 3. The line segment from (0,0) to (5,2) is represented as a parallelo-
gram with vertical height one centered on the segment. The parallelo-
gram intersects either 2 or 3 pixels in any horizontal column of pixels.

Once again, we make the assumption that abs(y2—yl1)=<x2—x1. Since
—1=m =1, and the vertical separation between the top and bottom of the paral-
lelogram is 1, the parallelogram intersects either two or three pixels in any column
of square pixel areas The two cases can be distinguished using the quantity » of the
algorithm for the bilevel case. Most of the intersection areas are related in a linear
fashion, hence can be computed using a simple counter. The other intersection
areas are approximated.

An algorithm to compute the products af at each pixel is:

A VLSI Circuit for Anti-aliased Line Scan Conversion 11

/* Initialization */

Z — 10

x —xl

y —yl

dx — x2 - xl

dy — y2-yl

yine — sign(dy)

dy — abs(dy)

Cl — Z*dy

C2 — 2*dy - 2*dx

r — 2*dy -dx

A —2¥*Z *(dx + I*(dx +dy))/(2%x)
Dl — 2%*Z * |

D2 — 2¥*Z * ((2*%I*dy) / (2*dx))

D3 —_2%%Z *((dx + I*dy)/ (2*dx)-1)
D4 —2%%Z * ([-(dx + I*dy)/ (2%dx })
D5 — 2%*Z * ((dx + I*dy) /(2*dx) + 1}
D6 — 2%*Z * ((2%[*dy) [(2*dx) - 1)

dx — dx -1

while
dx =0
do /* Inner loop */
if
r<<o
then
pixel(x,y) — A | 2**Z
pixel(x,y-yinc) — (DI - A) | 2¥*Z
Xe—x+1
r—r+ Cl
A— A+ D2
dx — dx -1
else
pixel(x,y+yinc) — (A + D3) [2¥*¥(Z+ 1)
pixel(x,y) — D4 | 2%*Z
pixel(x,y-yinc) — (D5 -A) [2**(Z+1)
Xe—x+1
r—r+ C2
A— A+ D6
y —y + yinc
dx — dx -1
fi
od

The interested reader is referred to algorithm APPROXIMATE_B; in [Fiei84] for
a full derivation of the quantities 4 and D1 through D6*t. Notice that the control
tA minor difference between APPROXIMATE_B; and the algorithm used here is that 4 and

D1 through D6 will be represented in fixed point by multiplying each by a constant large
enough (in the example we use 2**Z=1024) to make any accumulated truncation error negligi-

12 D. Field

structure for the bilevel and anti-aliased cases are identical.

The circuit we have designed performs only the portion of the algorithm con-
tained in the while loop. Computation of all inner loop constants takes place off-
board. Common subexpressions in the formulas for these constants can be com-
bined to eliminate all but one of the multiply and divide operations.

A parallel implementation of the statements in the two cases of the if state-
ment follow immediately.

then case

1. pixel(xy) — A [2¥*Z

2. pixel(x,y-yinc) — (DI - A)] 2¥*Z
3a. x —x t+ 1

3b. r—r+ Cl

3c.. A— A + D2

3d. dx —dx-1

else case

1. pixel(x,y+yinc) — (A + D3) [2¥2%*Z
2. pixel(x,y) — D4 [2¥*Z

3. pixel(x,y-yinc) — (D5 - A) | 2*2%*Z
4a. x —x + 1

4b. r—r + C2

4c. A — A+ D6

4d. y — y + yinc

de. dx — dx-1

Statements 3a-d of the then case and 4a-e of the else case may all be executed
in parallel.

Circuit Description
Three alterations of the circuit described in the previous section are necessary:

1) The simple shift register FSM is modified to branch in the shape of a “Y”” on
the sign of register r to direct the operations of the then and else cases of the
if statement. Additional input states are necessary to read the initial values of
A and D1 through D6 from the interface (See Fig. 4). Steps 3 of the then

ble.

A VLSI Circuit for Anti-aliased Line Scan Conversion 13

case and 4 of the else case appear as “idle” periods to the interface. A new
signal, data_ready, notifying the interface that pixel information is ready dur-
ing steps 1-2 of the then case and steps 1-3 of the else case, has been added to
keep the two devices synchronized.

reset

Initialization

Fig. 4. The finite state diagram depicts the inner loop steps performed by
the algorithm.

14

2)

3)

D. Field

The circuit is augmented by seven 32 bit registers, a 32 bit adder, and a bi-
directional 32 bit data bus. The new subcircuit is responsible for storing and
manipulating sums of 4 and D1 through D6. The data bus connects 7 regis-
ters, one of the input ports of the adder, and the adder output. 4 is also routed
to the other input port of the adder (See Fig. 5). This configuration allows all
the quantities except D1—A4 and D5—A4 to be computed. If we permit the
selection of 4 or the 1’s complement of 4 to be sent to the second input port
of the adder, and store D1’=D1+1 and D5 =DS5+1 instead of D1 and D35,
either difference can be found in a single addition cycle.

The division by 2% or 2:2Z is accomplished by interposing a routing switch
between the pads and the 32 bit data bus. Data sent from the pads to the bus
is untouched; data sent from the bus to the pads is either left untouched, or
shifted 1 bit to the right. The remaining right shift of Z bits is performed by
the interface. Later, we show how the interface can exploit the Z-bit left shift
when computing the full blending function. '

DY D2 D3

A

Adder

D4 Dy D6 A

Fig. 5. The block diagram for the subcircuit that computes filter values.
Values from registers 4, D1 through D6 and the accumulator are read
and written from a common data bus. The common bus implies that 7

distinct load cycles are required during the initialization phase.

A VLSI Circuit for Anti-aliased Line Scan Conversion 15

Pad Count

An additional 32 pads are necessary for the i/o lines to the 7, 32-bit registers
and adder. A pad is also needed for the new control signal, data_ready. The total

pad count is now 4 [logM l +41.

For a standard display device with 512X512 resolution, we will need 77 pads.
Using our current maximum of 84 pins per package, we can generate a circuit for
devices with resolution 1024X1024. Circuits for higher resolution devices may be
fabricated using one of two techniques.

One method is to trade accuracy in the low-pass filter for positional accuracy
by allocating some of the low-order bits in the fixed point representation of A to x,
y, dx, and r. This amounts to trading spatial resolution for intensity resolution.
Justification for this tradeoff is discussed in [Lele80].

Another method is to divide the circuit across two packages; one containing
the modified bilevel circuitry, the other containing the registers for 4 and D1
through D6 and the associated adder. This leaves enough spare pins on the chip
for the control circuitry to handle ultra-high resolution devices of the future
without sacrificing filter accuracy.

Computing the Blending Function

Replacing existing pixel values with the first term of the blending function, a/,
is adequate for rendering grayscale lines on a black background. Color capability
can be added by placing three copies of the chip on the interface board, one for
each of the primaries red, green, and blue. However, only by computing the full
blending function is it possible to render anti-aliased lines on an arbitrary back-
ground.

One difficulty with computing the full blending function is that muiltiplication
is required. A single multiply can be eliminated by rewriting Eq. (1) as

pixel (l,])e—(l(l - Ibaclc) + 1 pack
The second difficulty is that it requires the knowledge of a pixel’s previous inten-
sity, I pack-
An on-board solution to these problems requires a multiplier and more complex
controlling circuitry to handle bidirectional communication of pixel intensities. We

assume the interface will perform these duties. Let us outline how the full blend-
ing function would be computed.

A VLSI Circuit for Anti-aliased Line Scan Conversion 15

Pad Count

An additional 32 pads are necessary for the i/o lines to the 7, 32-bit registers
and adder. A pad is also needed for the new control signal, data_ready. The total

pad count is now 4 [logM] +41.

For a standard display device with 512X 512 resolution, we will need 77 pads.
Using our current maximum of 84 pins per package, we can generate a circuit for
devices with resolution 1024X1024. Circuits for higher resolution devices may be
fabricated using one of two techniques.

One method is to trade accuracy in the low-pass filter for positional accuracy
by allocating some of the low-order bits in the fixed point representation of A to x,
y, dx, and r. This amounts to trading spatial resolution for intensity resolution.
Justification for this tradeoff is discussed in [Lele80].

Another method is to divide the circuit across two packages; one containing
the modified bilevel circuitry, the other containing the registers for 4 and D1
through D6 and the associated adder. This leaves enough spare pins on the chip
for the control circuitry to handle ultra-high resolution devices of the future
without sacrificing filter accuracy.

Computing the Blending Function

Replacing existing pixel values with the first term of the blending function, o/,
is adequate for rendering grayscale lines on a black background. Color capability
can be added by placing three copies of the chip on the interface board, one for
each of the primaries red, green, and blue. However, only by computing the full
blending function is it possible to render anti-aliased lines on an arbitrary back-
ground.

One difficulty with computing the full blending function is that multiplication
is required. A single multiply can be eliminated by rewriting Eq. (1) as

pixel (i.j)4—(1(1 - Iback) +1back

The second difficulty is that it requires the knowledge of a pixel’s previous inten-
Sity, Iback-

An on-board solution to these problems requires a multiplier and more complex
controlling circuitry to handle bidirectional communication of pixel intensities. We
assume the interface will perform these duties. Let us outline how the full blend-
ing function would be computed.

16 D. Field

Evaluate the constants during the preprocessing phase as if 7=1.1 The chip
then sends triples (x,y,J) to the interface, where 0=J =02 <2¢. Note that the
Z bit right shift to eliminate fractional information in J hasn’t been performed on-
chip. The interface requests the value of I,,4 at pixel (x,y) from the display
memory and computes

I*U =1 pae) | 2%*Z + 1 pacx

The result of the expression is stored in pixel location (x,y) by the interface.

4. Discussion

At present we have fabricated a 4 bit adder, a 16 bit adder with its associated
storage registers, as well as the circuit for scan converting bilevel lines depicted in
Fig. 2. Logic for the version of the circuit to render anti-aliased lines has been
designed and the layout is in progress. Initial plans are to implement this last cir-
cuit across two physical chip packages as described previously; once these circuits
are working correctly, we will combine them on a single chip.

Our initial experience with the 4 bit adder has been positive - our first batch
of chips from the foundry were operative and were measured to have a maximum
settle time of 45 ns. The growth rate of the settle time is logarithmic in the
number of bits; with this knowledge and the aid of Crystal[Oust83], we have extra-
polated the time for a 32 bit addition to be under 200 ns. Testing of the other cir-
cuits involves strobing values into registers and has just recently begun with the
arrival of suitable test equipment.

We have targetted this project for integration with the Adage 3000 frame
buffer system. This system is composed of several component devices tied to a 24-
bit address/32-bit data bus. Typical components on the bus are the frame buffer
memory, video controller, lookup tables, and an AMD 2901 bit-slice processor. The
architecture of the system allows new devices to be placed on the bus with a
minimum of effort.

Our current plans are to place the interface on the bus and load the initializa-
tion constants from the bit-slice processor. The interface will then communicate
directly with the display memory across the bus. The bus has a cycle time of 400
nanoseconds; a memory read and replace operation takes 800 nanoseconds. This is
slower than the predicted time to produce a single pixel description from the chip.
We expect any free time afforded by the bus rate to be absorbed by the interface

tAs a side benefit, treating / as 1 eliminates all multiplications that cannot be performed with
shift operations.

A VLSI Circuit for Anti-aliased Line Scan Conversion 17

to compute the blending function.

A decision to keep the design simple has resulted in a small sacrifice in speed
and yet is significantly faster than comparable software implementations. Most
importantly we have achieved a level of confidence in the correctness of the design.
If greater throughput is necessary, we feel it could be accomplished through a care-
ful redesign of the critical paths.

The table below contains the performance figures of the overall scan conver-
sion process for short(10 pixel), medium(30 pixel), and long(100 pixel) length hor-
izontal lines. We assume an average of 2.5 pixels are modified at each horizontal
position and that each pixel description takes 400 ns. to produce. The final column
of the table indicates the percentage of pixels on a 512X 512 resolution display that
can will be modified in a single refresh period (1/30 sec.).

Length | %Preprocessing | %Inner loop | %Screen
short 84% 16% 5%
medium 63% 37% 12%
long 34% 66% 21%

The table shows that preprocessing takes a significant percentage of the scan
conversion time for all three line lengths. A logical next step is to implement this
step in hardware on the interface board.

Our future plans are to study the hardware implementation of bilevel and
anti-aliased scan conversion for other primitive shapes. Specifically, we are looking
at algorithms reported in [Fiel83] for triangles and [Fiel83] for circles and ellipses.
Our long-term goal is to have enough processing power local to the display memory
to support high-quality, anti-aliased animation in real time.

References

[Bres65] BRESENHAM, J.E. Algorithm for computer control of a digital
plotter. /BM Systems J. 4,1 (1965), 25-30.

[Crow77] Crow, F.C. The aliasing problem in computer synthesized shaded
images. Commun. ACM 20, 11 (Nov. 1977), 799-805.

[Fiel83] FIELD, D. Algorithms for drawing simple geometric objects on ras-
ter devices . PhD Thesis, Princeton University 1983.

[Fiel84] FIELD, D. Two algorithms for drawing anti-aliased lines. Proc.

Graphics Interface '84, (May, 1984), 87-95.

18

[Fiel85]

[Fuch82]

[Lele80]
[Nort85]

[Oust83]

[Spro82]

D. Field

FIELD, D. Algorithms for Drawing Anti-aliased Circles and
Ellipses. To appear in Comp. Vis. Gr. and Im. Proc., (1985),

FucHs, H., POULTON, J., PAETH, A., AND BELL, A. Developing
pixel-planes, a smart memory-based raster graphics system. 982
Conference on advanced research in VLSI, MIT, (Jan. 1982), 137-
146.

LELER, W.J. Human vision, anti-aliasing and the cheap 4000 line
display. Computer Gr. 14, 3 (Jul. 1980), 308-313.

NORTH, S.C. To appear in Princeton University Ph.D thesis,
(1985),

OUSTERHOUT, J. Using cyrstal for timing analysis. 7983 VLSI
Tools: Selected Works by the Original Artists, EECS Dept,,
University of California at Berkeley , (March 1983),

SPROULL, R.F." Using program transformations to derive line-
drawing algorithms. ACM Trans. on Gr. 1, 4 (Oct. 1982), 259-273.

	

